Colloquium at TU Miinchen, November 18, 2003

Elimination of Intermediate Results
in Functional Programs

Janis Voigtlander
Dresden University of Technology
http://wwwtcs.inf.tu-dresden.de/~voigt

Supported by the “Deutsche Forschungsgemeinschaft” under grant KU 1290/2-4.

Outline I

. Functional programs and intermediate results

. Deforestation

. Tree transducer composition

. Surprise

Why functional programming matters'

declarative specifications, but executable

no side effects = referential transparency

clear semantics = equational reasoning

encourages use of high-level programming constructs

high potential for modularisation of programs

Function definition by structural recursion'

data List = A List | B List | Nil
split :: List — List — List
split (Au)y = A (split uy)
split (Bu)y = split u (B y)
split Nil y = y

split A

/\ split A |

B Nil / \ | split |
| A B split

A = | | = / \ = Nil B = |
| B Nil B B | B
B | | | B |
| Nil Nil Nil | Nil

Modularity vs. efficiency

exch :: List — List

exch (Av) = B (exch v)
exch (Bwv) = A (exch v)
exch Nil = Nil

main t = exch (split t Nil)

exch
| exch

split | B

/ \ A |
B Nil |) A
A :>Split |B :> exch A

| B |
B | Nil

| Nil
Nil

Intermediate results lead to inefficiencies!

Deforestation [Wadler, 1990]'

exch
| Spex
Key ideas: folding split to /\ and “translating” right-hand
/\ u Y
u Yy

sides of split with rules of exch:

1. exch exch B
Spex | | | B
/\ split A exch
A Y = /\ = split | ~ Texch | ~ Spex
| A Y splat splat /\
u | /\ SN Ay
u u Yy u Yy

2.
Spex
/
B Y
s
3.
SpEex
/
Nil Y

exch exch
| | Spex
split splat \
/\ = split /\ ~> q[/ B
B VY u B |
| | Yy
U Yy
exch
| exch
split = split |
/ \ Y
Nil Y

Deforestation eliminated only part of the intermediate result:

Sp ex

/ \
B Nil

Sp ex

B
B |
| Sper
Spex /
=4 / \ = Nil B =
B B |
| | B
Nil Nil |
Nil

Tree transducer theory comes to the rescue'

® Tree transducers are:

— finite devices computing tree translations

(tree automata with output)
— used as models for syntax-directed semantics
— used as models for fragments of XML query languages

— often, special functional programs

e Their theory studies:
— complexity, decidability issues
— expressive power of different classes

— closure under composition

Example: MAC ; TOP C MAC |[Engelfriet & Vogler, 1985]

ea:|ch spexr

\
Approach: replace 37l<t by u/ exch and hence assume that

|

u Y Yy

spex has as second argument the translation of split’s accumu-

lating parameter with exch:

1. exch B B
spex | | | B
/ \ A exch Spex |
A Yow = | = exch | ~ /N ~ Spex
| splat split u exch / \
u /\ /\ | U Yes
u Yy u Yy Yy

2.
sperx
/ \
B Yex
z|¢
3. Sp ex
/ N\
Nil Yez

exch Sperx Sp ex
| / \ /\ SperT
split U exch u A / \
\ > | = exch | N> u
u B exch |
| | | Yex
Yy Yy
exch
— | ~> Yex

Production of intermediate result completely avoided:

Spex

/\

I_|°> ea:|ch

? Nil =
B

|
Nil

B
B | B
Sper | Sper | B
VRN Spex / \ A |
A A /\ Nil A | A
| | = g A = | = A = |
B exch | | A | A
| | Nil exch | exch |
Nil Nil | exch | Nil
Nil | Nil

How about more interesting cases?'

v :: List — List — List

rev (Av)z = rev v (A z)
rev (Bv) z = rev v (B 2)
rev Nil z = 2z

main t = rev (split t Nil) Nil

Tev sprev
/ \ YARN

Have to replace Spl<ft Z by wu re<) z , but how exactly?

u Yy y 7

In general, what about the values in question in:

g / j
/ \\ g A
k

/AN

wo Y Ye 7477

10

1. Using auxiliary functions:

Trev

/ N\

split z ~»

/ \
u Yy

Two solutions'

sprev

VTN

u nrev =z
/N
Yy 1sp1rev

/\

u =z

[V. & Kiithnemann| Composition
of functions with accumulating pa-
rameters. J. Funct. Prog., to ap-

pear.

2. Using tupling and circular bindings:

[V.] Using circular programs to de-
forest in accumulating parameters.
Higher-Order and Symb. Comp.,

to appear.

11

After post-processing (in both cases):'

sprev’ :: List — List — List

sprev’ (Au) z = Sprev’ u (A z)

sprev’ (Bu) z = B (sprev’ u z)
sprev’ Nil z = z
main’ t = Sprev’ t Nil

12

What about efﬁciency?'

data Nat = S Nat | Z
div, div’ :: Nat — Nat

div (Su) = div' u divexp, div’exp :: Nat — Nat — Nat
div Z =12 diverp (Su)z = div'exp u z

div’ (Su) = S (div u) diverp Z z = Sz

div':. Z =12 ~ div'exp (Su) z = divexp u (diverp u z)
exp :: Nat — Nat — Nat divverp Z z = Sz

exp (Sv) z = exp v (exp v 2) main' t = diveap t Z

exp Z z = Sz

maint = exp (divt)Z

exrp
d'/ \Z , divexp
U " g2" / \ _ g2"
|2n :>2-2 +2n | , but g2n 7 :>3-2 —2 |
S| Z | Z
Z
Z

13

Formal efficiency analysis'

e Measure: number of call-by-need reduction steps

e Approach:

— annotate original and composed programs to reflect per-
formed reduction steps in the output
— push annotation of composed program backwards through

the composition construction

— compare and manipulate resulting annotations of the

original program to obtain sufficient criteria

[V.] Conditions for efficiency im-
provement by tree transducer com-
position. Proc. RTA’02, LNCS
2378.

14

An Example Criterion at Work'

Annotated program:

split (Au)y = o (A (split u (oy))) rev (Av)z = rev v (A z)
split (Bu) y = split u (o (e (By))) rev (Bv)z = rev v (B 2)
split Nil y = y rev Nil z = z

rev (ow) z = o (rev v 2)
main t = rev (split t (o (e Nil))) Nil rev (e v) z = e (rev v 2)

Since split is context-linear and -nondeleting, and rev is linear and nondelet-
ing, the following rules may be used with the aim of eliminating all o-symbols
in the right-hand sides of split:

[® f ® C
| |
(|) = v f\ = u/’()'lmvr /C\ = v1{+>vq
’l|) u/,v|1...'v,r ’U|k V1 -+ Vg V;
o f o C [
| |
L = v U/Jlx v, = f V1 / L \ Vg = C
| | /TN | /N
(% Vg U Vy--- U, v; V1 -. - Vg

15

Implementation'

Haskell™ system

GHC compiler pass

e research tool

e annotated input programs:
beginmag Split [Mac]
input Data
syn split :: List — List — List
split (Au)y = A (split uy)
split (Bu)y = split u (B y)

split Nil y = y
endmag

e requires user interaction

e prototype implementation

e ordinary Haskell source, e.g.:

split x y = case x of
Au— A (split uy)
Bu— splitu(Buy)
Nil — vy

e integration as an optimiza-

tion pass in compiler pipeline

16

Deaccumulation I

Surprise: sometimes it is a good idea to transform an efficient

program into an inefficient one.

split’ (A uw) = A (split’ u)
split’ (B u) = app (split’ u) (B Nil)
split’ Nil = Nil

split (Au)y = A (split uy)

split (Bu)y = split u (B y)
split Nil ~ | app (Au)y = A (app uy)

Yy Yy
. s app (Bu)y = B (app u y)
main t = split t Nil .
app Nil y =y

main’ t = split’ t

linear runtime quadratic runtime

Why?

17

Improving Provability'

Proving idempotence of the original program, i.e.,
split (split t Nil) Nil = split ¢ Nil,
by induction on t requires a generalization that is difficult to
find automatically.
In contrast, an inductive proof of
split’ (split’ t) = split’ t

[Giesl, Kithnemann & V.| Deaccu-
mulation — Improving Provability.
Proc. ASTAN’03, LNCS, to appear.

i1Is much easier.

18

References

[Engelfriet & Vogler, 1985] Macro tree transducers. Journal of Computer and System Sciences,
31, 71-145.

[Giesl, Kithnemann & Voigtlander, 2003] Deaccumulation — Improving provability. Proc. of:
Asian Computing Science Conference. LNCS, to appear. Springer-Verlag.

[Kithnemann, 1998] Benefits of tree transducers for optimizing functional programs. Proc.
of: Foundations of Software Technology & Theoretical Computer Science. LNCS 1530.
Springer-Verlag.

[Kithnemann, 1999] Comparison of deforestation techniques for functional programs and for
tree transducers. Proc. of: Functional and Logic Programming. LNCS 1722. Springer-Verlag.

[Voigtldnder & Kithnemann, 2004] Composition of functions with accumulating parameters.
Journal of Functional Programming, to appear.

[Voigtlander, 2002a] Using circular programs to deforest in accumulating parameters. Proc.
of: Asian Symposium on Partial Evaluation and Semantics-Based Program Manipulation.
ACM Press. Extended version to appear in Higher-Order and Symbolic Computation.

[Voigtldnder, 2002b] Conditions for efficiency improvement by tree transducer composition.
Proc. of: Rewriting Techniques and Applications. LNCS 2378. Springer-Verlag.

[Wadler, 1990] Deforestation: Transforming programs to eliminate trees. Theoretical Com-
puter Science, 73, 231-248.

