
Colloquium at TU München, November 18, 2003

Elimination of Intermediate Results
in Functional Programs

Janis Voigtländer
Dresden University of Technology

http://wwwtcs.inf.tu-dresden.de/∼voigt

Supported by the “Deutsche Forschungsgemeinschaft” under grant KU 1290/2-4.

1

Outline

1. Functional programs and intermediate results

2. Deforestation

3. Tree transducer composition

4. Surprise

2

Why functional programming matters

• declarative specifications, but executable

• no side effects ⇒ referential transparency

• clear semantics ⇒ equational reasoning

• encourages use of high-level programming constructs

• high potential for modularisation of programs

3

Function definition by structural recursion

data List = A List | B List | Nil

split :: List → List → List

split (A u) y = A (split u y)

split (B u) y = split u (B y)

split Nil y = y

split

B

A

B

Nil

Nil

⇒

split

A

B

Nil

B

Nil

⇒

A

split

B

Nil

B

Nil

⇒

A

split

Nil B

B

Nil

⇒

A

B

B

Nil

4

Modularity vs. efficiency

exch :: List → List

exch (A v) = B (exch v)

exch (B v) = A (exch v)

exch Nil = Nil

main t = exch (split t Nil)

exch

split

B

A

B

Nil

Nil
⇒4

split

exch

A

B

B

Nil

⇒4
exch

B

A

A

Nil

Intermediate results lead to inefficiencies!

5

Deforestation [Wadler, 1990]

Key ideas: folding

exch

split

u y

to
spex

u y
and “translating” right-hand

sides of split with rules of exch:

1.
spex

A

u

y =

exch

split

A

u

y

⇒split

exch

A

split

u y

⇒exch

B

exch

split

u y

;

B

spex

u y

6

2.
spex

B

u

y =

exch

split

B

u

y

⇒split

exch

split

u B

y

;

spex

u B

y

3.
spex

Nil y
=

exch

split

Nil y

⇒split

exch

y

Deforestation eliminated only part of the intermediate result:

spex

B

A

B

Nil

Nil

⇒

spex

A

B

Nil

B

Nil

⇒

B

spex

B

Nil

B

Nil

⇒

B

spex

Nil B

B

Nil

⇒

B

exch

B

B

Nil

⇒3

B

A

A

Nil

7

Tree transducer theory comes to the rescue

• Tree transducers are:

– finite devices computing tree translations

(tree automata with output)

– used as models for syntax-directed semantics

– used as models for fragments of XML query languages

– often, special functional programs

• Their theory studies:

– complexity, decidability issues

– expressive power of different classes

– closure under composition

8

Example: MAC ; TOP ⊆ MAC [Engelfriet & Vogler, 1985]

Approach: replace

exch

split

u y

by

spex

u exch

y

and hence assume that

spex has as second argument the translation of split’s accumu-

lating parameter with exch:

1.
spex

A

u

yex =

exch

A

split

u y

⇒exch

B

exch

split

u y

;

B

spex

u exch

y

;

B

spex

u yex

9

2.
spex

B

u

yex =

exch

split

u B

y

;

spex

u exch

B

y

⇒exch

spex

u A

exch

y

;

spex

u A

yex

3. spex

Nil yex

=
exch

y
; yex

Production of intermediate result completely avoided:

spex

B

A

B

Nil

exch

Nil ⇒

spex

A

B

Nil

A

exch

Nil

⇒

B

spex

B

Nil

A

exch

Nil

⇒

B

spex

Nil A

A

exch

Nil

⇒

B

A

A

exch

Nil

⇒

B

A

A

Nil

10

How about more interesting cases?

rev :: List → List → List

rev (A v) z = rev v (A z)

rev (B v) z = rev v (B z)

rev Nil z = z

main t = rev (split t Nil) Nil

Have to replace

rev

split

u y

z by

sprev

u rev

y ?

z , but how exactly?

In general, what about the values in question in:

g

f

u y1 y �

z1 z �
· · ·

· · · ⇒
�

g

z1 z �· · ·

y �

⇒

�

g

�

y �

? ?· · ·

11

Two solutions

1. Using auxiliary functions:

rev

split

u y

z ;

sprev

u rev

y 1sp1rev

u z

z
[V. & Kühnemann] Composition

of functions with accumulating pa-

rameters. J. Funct. Prog., to ap-

pear.

2. Using tupling and circular bindings:

rev

split

u y

z ;

fst

sprev

u rev

y snd

z

[V.] Using circular programs to de-

forest in accumulating parameters.

Higher-Order and Symb. Comp.,

to appear.

12

After post-processing (in both cases):

sprev

�

:: List → List → List

sprev

�

(A u) z = sprev
�

u (A z)

sprev

�

(B u) z = B (sprev

�

u z)

sprev

�

Nil z = z

main

�

t = sprev
�

t Nil

13

What about efficiency?

data Nat = S Nat | Z

div , div

�

:: Nat → Nat

div (S u) = div

�

u

div Z = Z

div

�

(S u) = S (div u)

div

�

Z = Z

exp :: Nat → Nat → Nat

exp (S v) z = exp v (exp v z)

exp Z z = S z

main t = exp (div t) Z

;

divexp, div

�

exp :: Nat → Nat → Nat

divexp (S u) z = div

�

exp u z

divexp Z z = S z

div

�

exp (S u) z = divexp u (divexp u z)

div

�

exp Z z = S z

main
�

t = divexp t Z

exp

div

S
2

�

Z

Z

⇒2 �2

�

+2

� S
2

�

Z

, but

divexp

S
2

�

Z

Z ⇒3 �2

�

� 2
S

2

�

Z

14

Formal efficiency analysis

• Measure: number of call-by-need reduction steps

• Approach:

– annotate original and composed programs to reflect per-

formed reduction steps in the output

– push annotation of composed program backwards through

the composition construction

– compare and manipulate resulting annotations of the

original program to obtain sufficient criteria

[V.] Conditions for efficiency im-

provement by tree transducer com-

position. Proc. RTA’02, LNCS

2378.

15

An Example Criterion at Work

Annotated program:

split (A u) y = • (A (split u (◦ y)))

split (B u) y = split u (◦ (• (B y)))

split Nil y = y

main t = rev (split t (◦ (• Nil))) Nil

rev (A v) z = rev v (A z)

rev (B v) z = rev v (B z)

rev Nil z = z

rev (◦ v) z = ◦ (rev v z)

rev (• v) z = • (rev v z)

Since split is context-linear and -nondeleting, and rev is linear and nondelet-

ing, the following rules may be used with the aim of eliminating all ◦-symbols

in the right-hand sides of split:

•

◦
v

⇒ v

•

f

u v1 v �· · ·

⇒

f

u v1 •
v �

v �· · ·· · ·

•

C

v1 v �· · ·

⇒

C

v1 •

v �

v �· · ·· · ·

◦

•
v

⇒ v

f

u v1 •
v �

v �· · ·· · · ⇒

•

f

u v1 v �· · ·

C

v1 •

v �

v �· · ·· · · ⇒

•

C

v1 v �· · ·

16

Implementation

Haskell+ system GHC compiler pass

• research tool • prototype implementation

• annotated input programs:
beginmag Split [Mac]

input Data

syn split :: List → List → List

split (A u) y = A (split u y)

split (B u) y = split u (B y)

split Nil y = y
endmag

• ordinary Haskell source, e.g.:

split x y = case x of

A u → A (split u y)

B u → split u (B y)

Nil → y

• requires user interaction • integration as an optimiza-

tion pass in compiler pipeline

17

Deaccumulation

Surprise: sometimes it is a good idea to transform an efficient

program into an inefficient one.

split (A u) y = A (split u y)

split (B u) y = split u (B y)

split Nil y = y

main t = split t Nil

;

split

�

(A u) = A (split

�

u)

split

�

(B u) = app (split

�

u) (B Nil)

split

�

Nil = Nil

app (A u) y = A (app u y)

app (B u) y = B (app u y)

app Nil y = y

main

�

t = split

�

t

linear runtime quadratic runtime

Why?

18

Improving Provability

Proving idempotence of the original program, i.e.,

split (split t Nil) Nil = split t Nil ,

by induction on t requires a generalization that is difficult to

find automatically.

In contrast, an inductive proof of

split ′ (split ′ t) = split ′ t

is much easier. [Giesl, Kühnemann & V.] Deaccu-

mulation — Improving Provability.

Proc. ASIAN’03, LNCS, to appear.

References

[Engelfriet & Vogler, 1985] Macro tree transducers. Journal of Computer and System Sciences,

31, 71–145.

[Giesl, Kühnemann & Voigtländer, 2003] Deaccumulation — Improving provability. Proc. of:

Asian Computing Science Conference. LNCS, to appear. Springer-Verlag.

[Kühnemann, 1998] Benefits of tree transducers for optimizing functional programs. Proc.

of: Foundations of Software Technology & Theoretical Computer Science. LNCS 1530.

Springer-Verlag.

[Kühnemann, 1999] Comparison of deforestation techniques for functional programs and for

tree transducers. Proc. of: Functional and Logic Programming. LNCS 1722. Springer-Verlag.

[Voigtländer & Kühnemann, 2004] Composition of functions with accumulating parameters.

Journal of Functional Programming, to appear.

[Voigtländer, 2002a] Using circular programs to deforest in accumulating parameters. Proc.

of: Asian Symposium on Partial Evaluation and Semantics-Based Program Manipulation.

ACM Press. Extended version to appear in Higher-Order and Symbolic Computation.

[Voigtländer, 2002b] Conditions for efficiency improvement by tree transducer composition.

Proc. of: Rewriting Techniques and Applications. LNCS 2378. Springer-Verlag.

[Wadler, 1990] Deforestation: Transforming programs to eliminate trees. Theoretical Com-

puter Science, 73, 231–248.

