$$\begin{array}{ll} p & ::= & p/p \mid test[q] \\ q & ::= & q \land q \mid true \mid p \end{array}$$

where

- p is the root nonterminal of the grammar and
- test is one of $\{*\} \cup \Sigma$.

Figure 1: Syntax of Simple CoreXPath.

Figure 2: Translation to Tree Patterns.

Definition

A CoreXPath path p_1 is said to semantically contain another one p_2 , written $p_1 \supseteq p_2$, if for every tree document and node n therein, $[\![p_1]\!]_{NodeSet}(n) \supseteq [\![p_2]\!]_{NodeSet}(n)$.

Proposition

Let p_1 and p_2 be Simple CoreXPath queries. Let t be the tree pattern corresponding to p_2 , with root n_0 and tip n_{tip} . Then $p_1 \supseteq p_2$ iff $n_{tip} \in [\![p_1]\!]_{NodeSet}(n_0)$ (interpreted on t; note the role of * as an actual symbol in t).