RTA, July 23, 2002

Conditions for Efficiency Improvement by
Tree Transducer Composition

Janis Voigtlander
Dresden University of Technology

voigt@tcs.inf.tu-dresden.de

Supported by the “Deutsche Forschungsgemeinschaft” under grant KU 1290/2-1 and by the

“European Commission — DG Information Society” with a FLoC’02 travel grant.

Macro Tree Transducers [Eng80]

data Term = Term ® Term | Term & Term |A | B
datalns = Mullns | Add Ins | Load, Ins | Loadg Ins | Nil
data Nat = Succ Nat | Zero

pre :: Term — Ins — Ins

pre (1 @ zz) y = Mul (pre x; (pre x2 y))
pre (x, @ x2) y = Add (pre x; (pre z3 y))

pre A y = Loaday y
pre B y = Loadg y
Mul
Mul Mul |
pre | | Loada
/ \ pre Load, |
® Nil / \ | Add
/\ = A Dpre = pre =3 |
A @ / \ / \ Loadg
/ \ ® Nil @ Nil |
B A / \ / \ Load,
B A B A |
Nil

ops :: Ins — Nat

ops (Mulx) = Succ (ops x)
ops (Add x) = Succ (ops x)
ops (Loady) = ops x

ops (Loadg) = ops x

ops Nil = Zero

Intermediate Results'

ops
|
ops hﬁul
|
pre Loadp
/N])
& Nil = pre Add = ops
/\ |
A D Loadg
/ \ |
B A Loadp
|
Nil

Inefficient !

Succ
Succ

Zero

Tree Transducer Composition [EV85]: Example

01|93 Su|cc Succ
breops Mul ops preops
/ N\ | | / \
Q Yops = pre = pre = x; OpSs
/ N\ / N\ / N\ |
r1 Io xr, pre xr, pre pre
/ \ / \ / \
rs Y ro Y 2 Y
Succ
Succ
PTeops
VAR PTEeoOpPs
= X1 preops = N\
/ \ xr, Ppreops
Ty OPS / \
| T2 Yops
Y

Replace occurrences of (ops (pre t Nil)) by (preops t (ops Nil)).

Transformed Program: I

preops :: Term — Nat — Nat

preops (21 @ T2) Yops = Succ (preops xy (PTe0Ps Tz Yops))
preops (21 @ @2) Y.ps = Succ (PTeops ¢ (PTEOPS T Yops))
preops A Yops = Yops

preops B Yops = Yops

_ Succ
preops Succ
/ \ preops Succ
® Zero SN PTeops |
/\ = A Dreops = /\ =3 Succ
A D / N\ D Zero |
/ \ @ Zero /\ Zero
B A /\ B A
B A

No intermediate result is produced !

Transformed program requires fewer reduction steps !

Formal Efficiency Analysis'

should be:
e with respect to call-by-need reduction steps
e input-independent

e based on original program before transformation

Ticking of Producer: I

pre’ (xy Q@ x2) y
pre’ (1 @ x2) Y

o (Mul (pre’ o; (pre’ @2 y)))
o (Add (pre’ z; (pre’ @ y)))

pre’ A y = ¢ (Loada y)
pre’ B y = ¢ (Loadg y)

NJ;I
pre’ Mul Mul Loada
/N , Jﬁ Jf

: pre
/®\ Nil — / \ . LoadA :>3 Add
A D A pre! »
At
B A /@\ Nil /@\ Nil Loadg
B A AN %
Loadj

Nil

Ticking of Consumer: I

ops’ (Mulz) = e (Succ (ops’ x))
ops’ (Add £) = e (Succ (ops’ x))
ops’ (Loada) = e (ops’ x)
ops’ (Loadg) = e (ops’ x)
ops’ Nil — e Zero
ops’ (¢ x1) = o (ops’ xy)
®
®
ops’ ? L L
Jﬁ ops’ Su|cc |
| | Succ
Mul Mul , L
Jﬁ Jﬁ ops ‘
Loadp Loadp % L
Jﬁ # Loadp L
= = Jﬁ 9 |
Add Add " Succ
%} %’ Add L
AR
oj; 5 0:; 5 Loadg L
Load, Load, Jf L

| | Load,
Nil Nil |

<
N
o
=
o

Steps of Original Program Reflected in Output (Lemma 2)'

The number of e-symbols in the reduction result of:

B A

is equal to the number of call-by-need reduction steps of:

ops
|
pre Succ
/\ |
& il =* Succ
/ \ |
A D Zero

\
A

@

Ticking of Composed Program:'

p?“eops’ (33]_ ® 2132) yops
preops’ (wl @ 2132) yops

o) (Succ (preops’ Ty (pT‘eOPS’ L2 yops)))
o (Succ (preops’ ¢ (Preops’ T2 Yops)))

preops’ A Yops = O Yops
preops’ B Yops = O Yops
@)
‘f ? 3
ucc
preops’ Su|cc Succ g
/ \ preops’ é|) g
/®\ Zero / N\ N s |
A @ A preops’ preop Succ
N\ / N\ & Zere b
B A @ Zero / \ g
/ \
B A B A |

Annotation through Composition (Lemma 4)'

pre’ (x; ® x3)
pre’ (z; @ o)
pre’ A

/

pre B

ops” (Mul x)
ops” (Add x)

44

ops Nil

ops” (o x)

ops” (Loadp x)
ops” (Loadg)

y = o (Mul (pre’ & (pre’ =3 y)))
y = © (Add (pre’ x; (pre’ 2 y)))
y = ¢ (Loada y)
y = ¢ (Loadg y)

= Succ (ops” x)

Succ (ops” x)

ops” x

ops” x
= Zero

= o (ops” x;)

composed into:

p’l“e’OPS” (ml ® m2) Yops
pre’ ops’”’ (331 D w2) Yops
pre’ ops” A Yops

pre’ ops” B Yops’

= o (Succ (pre’ops” xy (pre’ops” xu Yopsr)))
o (Succ (pre’ops” x (pre’ops” x3 Yops)))
O yops”

= O yops”

10

Steps of Composed Program Reflected in Output (Lemma 5)'

The number of o-symbols in the reduction result of:

is greater or equal to the number of call-by-need reduction steps

of:
PTreops
/" \ Succ
® Zero |
/\ =* Succ
A & |
/\ Zero

11

Compare Annotated Programs:

pre
pre
pre

pre

ops’ (Mul x)
ops’ (Add x)
ops’ (Loada)

ops’ (Loadg)

ops

ops

/

/

Nil
(¢ x1)

"(21 @ xz2) y = © (Mul (pre’ ; (pre’ 2 y)))

"(¢1 B x2) y = © (Add (pre’ o, (pre’ 2 y)))

! A y = < (Loada y)

! B y = ¢ (Loadg y)

= o (Succ (ops’ x)) | ops” (Mulx) = Succ (ops” x)
= o (Succ (ops’ x)) | ops” (Add x) = Succ (ops” x)
= o (ops’ x) ops” (Loadpa) = ops” x

= e (ops’ x) ops” (Loadg) = ops” x

— e Zero ops” Nil = Zero

= o (ops’ x;) ops” (¢0x1) = o (ops” x;)

Always more e- than o-symbols !

12

Abstracting from the Example (Theorem l)I

The composed program is at least as efficient as the original

program, provided that:
1. the producer is context-linear or basic
2. the consumer is recursion-linear

3. the consumer 1s context-linear or basic

13

Further Results: I

e Weaker pre-conditions by counting only steps of the con-

sumer (Lemma 3, Lemma 6, Lemma 7, Theorem 2)

e Application to special cases of classical deforestation [Wad90]
(Corollary 1)

e Analysis technique scales for the case that both involved

transducers use context parameters [VKO01]; work in progress

14

References

[Eng80] J. Engelfriet. Some open questions and recent results on tree transducers and
tree languages. In R.V. Book, editor, Formal language theory; perspectives and
open problems, pages 241-286. New York, Academic Press, 1980.

[EV85] J. Engelfriet and H. Vogler. Macro tree transducers. J. Comput. Syst. Sci.,
31:71-145, 1985.

[VKO1] J. Voigtldnder and A. Kithnemann. Composition of functions with accumulat-
ing parameters. Technical Report TUD-FI01-08, Dresden University of Tech-
nology, August 2001.
http:/ /wwwtcs.inf.tu-dresden.de /~voigt/TUD-FI01-08.ps.gz.

[Wad90] P. Wadler. Deforestation: Transforming programs to eliminate trees. Theoret.
Comput. Sci., 73:231-248, 1990.

