
RTA, July 23, 2002

Conditions for Efficiency Improvement by
Tree Transducer Composition

Janis Voigtländer
Dresden University of Technology

voigt@tcs.inf.tu-dresden.de

Supported by the “Deutsche Forschungsgemeinschaft” under grant KU 1290/2-1 and by the

“European Commission – DG Information Society” with a FLoC’02 travel grant.

1

Macro Tree Transducers [Eng80]

data Term = Term ⊗ Term | Term ⊕ Term | A | B

data Ins = Mul Ins | Add Ins | LoadA Ins | LoadB Ins | Nil

data Nat = Succ Nat | Zero

pre :: Term → Ins → Ins

pre (x1 ⊗ x2) y = Mul (pre x1 (pre x2 y))

pre (x1 ⊕ x2) y = Add (pre x1 (pre x2 y))

pre A y = LoadA y

pre B y = LoadB y

pre

⊗

A ⊕

B A

Nil
⇒

Mul

pre

A pre

⊕

B A

Nil

⇒

Mul

LoadA

pre

⊕

B A

Nil

⇒3

Mul

LoadA

Add

LoadB

LoadA

Nil

ops :: Ins → Nat

ops (Mul x) = Succ (ops x)

ops (Add x) = Succ (ops x)

ops (LoadA x) = ops x

ops (LoadB x) = ops x

ops Nil = Zero

2

Intermediate Results

ops

pre

⊗

A ⊕

B A

Nil ⇒5 �� �

ops

Mul

LoadA

Add

LoadB

LoadA

Nil

⇒6� ��

Succ

Succ

Zero

Inefficient !

3

Tree Transducer Composition [EV85]: Example

preops

⊗

x1 x2

yops =

ops

Mul

pre

x1 pre

x2 y

⇒

Succ

ops

pre

x1 pre

x2 y

⇒

Succ

preops

x1 ops

pre

x2 y

⇒

Succ

preops

x1 preops

x2 ops

y

⇒

Succ

preops

x1 preops

x2 yops

Replace occurrences of (ops (pre t Nil)) by (preops t (ops Nil)).

4

Transformed Program:

preops :: Term → Nat → Nat

preops (x1 ⊗ x2) yops = Succ (preops x1 (preops x2 yops))

preops (x1 ⊕ x2) yops = Succ (preops x1 (preops x2 yops))

preops A yops = yops

preops B yops = yops

preops

⊗

A ⊕

B A

Zero
⇒

Succ

preops

A preops

⊕

B A

Zero

⇒

Succ

preops

⊕

B A

Zero
⇒3

Succ

Succ

Zero

No intermediate result is produced !

Transformed program requires fewer reduction steps !

5

Formal Efficiency Analysis

should be:

• with respect to call-by-need reduction steps

• input-independent

• based on original program before transformation

6

Ticking of Producer:

pre
�

(x1 ⊗ x2) y = � (Mul (pre
�

x1 (pre
�

x2 y)))

pre
�

(x1 ⊕ x2) y = � (Add (pre
�

x1 (pre
�

x2 y)))

pre
�

A y = � (LoadA y)

pre
�

B y = � (LoadB y)

pre
�

⊗

A ⊕

B A

Nil
⇒

�

Mul

pre
�

A pre
�

⊕

B A

Nil

⇒

�

Mul

�

LoadA

pre
�

⊕

B A

Nil

⇒3

�

Mul

�

LoadA

�

Add

�

LoadB

�

LoadA

Nil

7

Ticking of Consumer:

ops
�

(Mul x) = • (Succ (ops
�

x))

ops
�

(Add x) = • (Succ (ops
�

x))

ops
�

(LoadA x) = • (ops
�

x)

ops
�

(LoadB x) = • (ops
�

x)

ops
�

Nil = • Zero

ops
�

(� x1) = • (ops
�

x1)

ops
�

�

Mul

�

LoadA

�

Add

�

LoadB

�

LoadA

Nil

⇒

•

ops
�

Mul

�

LoadA

�

Add

�

LoadB

�

LoadA

Nil

⇒

•
•

Succ

ops
�

�

LoadA

�

Add

�

LoadB

�

LoadA

Nil

⇒9

•
•

Succ

•
•
•
•

Succ

•
•
•
•
•

Zero

8

Steps of Original Program Reflected in Output (Lemma 2)

The number of •-symbols in the reduction result of:
ops

�

pre

�

⊗

A ⊕

B A

Nil

is equal to the number of call-by-need reduction steps of:

ops

pre

⊗

A ⊕

B A

Nil ⇒

�

Succ

Succ

Zero

9

Ticking of Composed Program:

preops

�

(x1 ⊗ x2) yops = ◦ (Succ (preops

�

x1 (preops

�

x2 yops)))

preops

�

(x1 ⊕ x2) yops = ◦ (Succ (preops

�

x1 (preops
�

x2 yops)))

preops

�

A yops = ◦ yops

preops

�

B yops = ◦ yops

preops

�

⊗

A ⊕

B A

Zero
⇒

◦

Succ

preops

�
A preops

�

⊕

B A

Zero

⇒

◦

Succ

◦

preops

�

⊕

B A

Zero

⇒3

◦

Succ

◦
◦

Succ

◦
◦

Zero

10

Annotation through Composition (Lemma 4)

pre

�

(x1 ⊗ x2) y = � (Mul (pre

�

x1 (pre

�

x2 y)))

pre

�

(x1 ⊕ x2) y = � (Add (pre

�

x1 (pre

�

x2 y)))

pre

�

A y = � (LoadA y)

pre

�

B y = � (LoadB y)

ops

� �

(Mul x) = Succ (ops

� �

x)

ops

� �

(Add x) = Succ (ops

� �

x)

ops

� �

(LoadA x) = ops

� �

x

ops

� �

(LoadB x) = ops

� �

x

ops

� �

Nil = Zero

ops

� �

(� x1) = ◦ (ops
� �

x1)

composed into:

pre

�

ops

� �

(x1 ⊗ x2) yops

� � = ◦ (Succ (pre

�

ops

� �

x1 (pre

�

ops

� �

x2 yops

� �)))

pre

�

ops

� �

(x1 ⊕ x2) yops

� � = ◦ (Succ (pre

�

ops

� �

x1 (pre

�

ops

� �

x2 yops

� �)))

pre

�

ops

� �

A yops
� � = ◦ yops

� �

pre

�

ops

� �

B yops

� � = ◦ yops

� �

11

Steps of Composed Program Reflected in Output (Lemma 5)

The number of ◦-symbols in the reduction result of:

ops

� �

pre

�

⊗

A ⊕

B A

Nil

is greater or equal to the number of call-by-need reduction steps

of:
preops

⊗

A ⊕

B A

Zero

⇒

�

Succ

Succ

Zero

12

Compare Annotated Programs:

pre

�

(x1 ⊗ x2) y = � (Mul (pre

�

x1 (pre

�

x2 y)))

pre

�

(x1 ⊕ x2) y = � (Add (pre

�

x1 (pre

�

x2 y)))

pre

�

A y = � (LoadA y)

pre

�

B y = � (LoadB y)

ops

�

(Mul x) = • (Succ (ops

�

x))

ops

�

(Add x) = • (Succ (ops

�

x))

ops

�

(LoadA x) = • (ops

�

x)

ops

�

(LoadB x) = • (ops

�

x)

ops

�

Nil = • Zero

ops

�

(� x1) = • (ops

�

x1)

ops

� �

(Mul x) = Succ (ops

� �

x)

ops
� �

(Add x) = Succ (ops

� �

x)

ops
� �

(LoadA x) = ops

� �

x

ops

� �

(LoadB x) = ops

� �

x

ops

� �

Nil = Zero

ops

� �

(� x1) = ◦ (ops

� �

x1)

Always more •- than ◦-symbols !

13

Abstracting from the Example (Theorem 1)

The composed program is at least as efficient as the original

program, provided that:

1. the producer is context-linear or basic

2. the consumer is recursion-linear

3. the consumer is context-linear or basic

14

Further Results:

• Weaker pre-conditions by counting only steps of the con-

sumer (Lemma 3, Lemma 6, Lemma 7, Theorem 2)

• Application to special cases of classical deforestation [Wad90]

(Corollary 1)

• Analysis technique scales for the case that both involved

transducers use context parameters [VK01]; work in progress

References

[Eng80] J. Engelfriet. Some open questions and recent results on tree transducers and

tree languages. In R.V. Book, editor, Formal language theory; perspectives and

open problems, pages 241–286. New York, Academic Press, 1980.

[EV85] J. Engelfriet and H. Vogler. Macro tree transducers. J. Comput. Syst. Sci.,

31:71–145, 1985.

[VK01] J. Voigtländer and A. Kühnemann. Composition of functions with accumulat-

ing parameters. Technical Report TUD-FI01-08, Dresden University of Tech-

nology, August 2001.

http://wwwtcs.inf.tu-dresden.de/∼voigt/TUD-FI01-08.ps.gz.

[Wad90] P. Wadler. Deforestation: Transforming programs to eliminate trees. Theoret.

Comput. Sci., 73:231–248, 1990.

