Bidirectionalization for Free!

Janis Voigtländer

Technische Universität Dresden

POPL'09

Bidirectional Transformation

Acceptability / GetPut

Bidirectional Transformation

Acceptability / GetPut

Bidirectional Transformation

Consistency / PutGet

Bidirectional Transformation

Consistency / PutGet

Bidirectional Transformation

Bidirectional Transformation

Lenses, DSLs
[Foster et al., TOPLAS'07, ...]

Bidirectional Transformation

Bidirectionalization
[Matsuda et al., ICFP'07]

Bidirectional Transformation

(Syntactic) Bidirectionalization
[Matsuda et al., ICFP'07]

Bidirectional Transformation

This work

Semantic Bidirectionalization

Aim: Write a higher-order function bff such that any get and bff get satisfy GetPut, PutGet,

Semantic Bidirectionalization

Aim: Write a higher-order function bff such that any get and bff get satisfy GetPut, PutGet,
Example:

$$
\text { "abc" } \xrightarrow{\text { tail }} \text { "bc" }
$$

Semantic Bidirectionalization

Aim: Write a higher-order function bff such that any get and bff get satisfy GetPut, PutGet,
Example:

Semantic Bidirectionalization

Aim: Write a higher-order function bff such that any get and bff get satisfy GetPut, PutGet,

Example:

Analyzing Specific Instances

Assume we are given some

$$
\text { get }::[\alpha] \rightarrow[\alpha]
$$

How can we, or bff, analyze it without access to its source code?

Analyzing Specific Instances

Assume we are given some

$$
\text { get }::[\alpha] \rightarrow[\alpha]
$$

How can we, or bff, analyze it without access to its source code?
Idea: How about applying get to some input?

Analyzing Specific Instances

Assume we are given some

$$
\text { get }::[\alpha] \rightarrow[\alpha]
$$

How can we, or bff, analyze it without access to its source code?
Idea: How about applying get to some input?
Like:

$$
\text { get }[0 . . n]= \begin{cases}{[1 . . n]} & \text { if get = tail } \\ {[n . .0]} & \text { if get = reverse } \\ {[0 . .(\min 4 n)]} & \text { if get = take } 5 \\ & \vdots\end{cases}
$$

Analyzing Specific Instances

Assume we are given some

$$
\text { get }::[\alpha] \rightarrow[\alpha]
$$

How can we, or bff, analyze it without access to its source code?
Idea: How about applying get to some input?
Like:

$$
\text { get }[0 . . n]= \begin{cases}{[1 . . n]} & \text { if get }=\text { tail } \\ {[n . .0]} & \text { if get }=\text { reverse } \\ {[0 . .(\min 4 n)]} & \text { if get }=\text { take } 5 \\ & \vdots\end{cases}
$$

Then transfer the gained insights to source lists other than $[0 . . n]$!

Enter Free Theorems [Wadler, FPCA'89]

For every

$$
\text { get }::[\alpha] \rightarrow[\alpha]
$$

we have

$$
\operatorname{map} f(\text { get } I)=\operatorname{get}(\operatorname{map} f I)
$$

for arbitrary f and l, where

$$
\begin{aligned}
& \text { map }::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta] \\
& \operatorname{map} f[] \quad=[] \\
& \operatorname{map} f(a: a s)=(f a):(\operatorname{map} f a s)
\end{aligned}
$$

Enter Free Theorems [Wadler, FPCA'89]

For every

$$
\text { get }::[\alpha] \rightarrow[\alpha]
$$

we have

$$
\operatorname{map} f(\text { get } l)=\operatorname{get}(\operatorname{map} f l)
$$

for arbitrary f and l, where

$$
\begin{aligned}
& \operatorname{map}::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta] \\
& \operatorname{map} f[]=[] \\
& \operatorname{map} f(a: a s)=(f a):(\operatorname{map} f \text { as })
\end{aligned}
$$

Given an arbitrary list s of length $n+1$, set $f=(s!!), I=[0 . . n]$, leading to:

$$
\operatorname{map}(s!!)(\operatorname{get}[0 . . n])=\operatorname{get}(\operatorname{map}(s!!)[0 . . n])
$$

Enter Free Theorems [Wadler, FPCA'89]

For every

$$
\text { get }::[\alpha] \rightarrow[\alpha]
$$

we have

$$
\operatorname{map} f(\text { get } I)=\operatorname{get}(\operatorname{map} f l)
$$

for arbitrary f and l, where

$$
\begin{aligned}
& \text { map }::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta] \\
& \operatorname{map} f[] \quad=[] \\
& \operatorname{map} f(a: a s)=(f a):(\operatorname{map} f a s)
\end{aligned}
$$

Given an arbitrary list s of length $n+1$, set $f=(s!!), I=[0 . . n]$, leading to:

$$
\begin{aligned}
\operatorname{map}(s!!)(\operatorname{get}[0 . . n]) & =\operatorname{get}(\underbrace{\operatorname{map}(s!!)[0 . . n]}_{s}) \\
& =\operatorname{get}\left(\begin{array}{l}
\text { gen }
\end{array}\right)
\end{aligned}
$$

Enter Free Theorems [Wadler, FPCA'89]

For every

$$
\text { get }::[\alpha] \rightarrow[\alpha]
$$

we have

$$
\operatorname{map} f(\text { get } I)=\operatorname{get}(\operatorname{map} f l)
$$

for arbitrary f and l, where

$$
\begin{aligned}
& \operatorname{map}::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta] \\
& \operatorname{map} f[]=[] \\
& \operatorname{map} f(a: a s)=(f a):(\operatorname{map} f \text { as })
\end{aligned}
$$

Given an arbitrary list s of length $n+1$,

$$
\begin{array}{r}
\operatorname{map}(s!!)(\text { get }[0 . . n]) \\
=\text { get } s
\end{array}
$$

Enter Free Theorems [Wadler, FPCA'89]

For every

$$
\text { get }::[\alpha] \rightarrow[\alpha]
$$

we have

$$
\operatorname{map} f(\text { get } I)=\operatorname{get}(\operatorname{map} f l)
$$

for arbitrary f and l, where

$$
\begin{aligned}
& \operatorname{map}::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta] \\
& \operatorname{map} f[]=[] \\
& \operatorname{map} f(a: a s)=(f a):(\operatorname{map} f a s)
\end{aligned}
$$

Given an arbitrary list s of length $n+1$,

$$
\operatorname{get} s=\operatorname{map}(s!!)(\operatorname{get}[0 . . n])
$$

The Resulting Bidirectionalization Scheme by Example

The Resulting Bidirectionalization Scheme by Example

The Resulting Bidirectionalization Scheme by Example

The Resulting Bidirectionalization Scheme by Example

The Resulting Bidirectionalization Scheme by Example

The Resulting Bidirectionalization Scheme by Example

The Resulting Bidirectionalization Scheme by Example

The Resulting Bidirectionalization Scheme by Example

The Resulting Bidirectionalization Scheme by Example

The Resulting Bidirectionalization Scheme by Example

The Implementation (here: lists only, inefficient version)

$$
\begin{aligned}
& \text { bff get } s v^{\prime}=\text { let } n=(\text { length } s)-1 \\
& t=[0 . . n] \\
& g=z i p t s \\
& h=\operatorname{assoc}(\operatorname{get} t) v^{\prime} \\
& h^{\prime}=h+g \\
& \text { in seq } \left.h\left(\operatorname{map}\left(\lambda i \rightarrow \text { fromJust (lookup } i h^{\prime}\right)\right) t\right) \\
& \text { assoc [] [] }=\text { [] } \\
& \operatorname{assoc}(i: i s)(b: b s)=\text { let } m=\text { assoc is } b s \\
& \text { in case lookup } i m \text { of } \\
& \text { Nothing } \quad \rightarrow(i, b): m \\
& \text { Just } c \mid b==c \rightarrow m
\end{aligned}
$$

The Implementation (here: lists only, inefficient version)

```
bff get \(s v^{\prime}=\) let \(n=(\) length \(s)-1\)
\(t=[0 . . n]\)
\(g=\operatorname{zip} t s\)
\(h=\operatorname{assoc}(\) get \(t) v^{\prime}\)
\(h^{\prime}=h+g\)
in \(\operatorname{seq} h\left(\right.\) map \(\left(\lambda i \rightarrow\right.\) fromJust (lookup \(\left.\left.\left.i h^{\prime}\right)\right) t\right)\)
assoc [] [] = []
assoc \((i: i s)(b: b s)=\) let \(m=\) assoc is \(b s\)
                                    in case lookup \(i m\) of
                                    Nothing \(\quad \rightarrow(i, b): m\)
                                    Just \(c \mid b=c \rightarrow m\)
```

- for the actual (slightly more elaborate) code, see the paper
- try out: http://linux.tcs.inf.tu-dresden.de/~bff

What Else?

In the paper:

- treatment of equality and ordering constraints
- full proofs, using free theorems and equational reasoning
- a datatype-generic account of the whole story

What Else?

In the paper:

- treatment of equality and ordering constraints
- full proofs, using free theorems and equational reasoning
- a datatype-generic account of the whole story

Pros of the approach:

- great fun
- liberation from syntactic constraints
- very lightweight, easy access to bidirectionality

What Else?

In the paper:

- treatment of equality and ordering constraints
- full proofs, using free theorems and equational reasoning
- a datatype-generic account of the whole story

Pros of the approach:

- great fun
- liberation from syntactic constraints
- very lightweight, easy access to bidirectionality

Cons of the approach:

- efficiency still leaves room for improvement
- partiality, e.g., rejection of shape-affecting updates so far

References

(J.N. Foster, M.B. Greenwald, J.T. Moore, B.C. Pierce, and A. Schmitt.

Combinators for bidirectional tree transformations: A linguistic approach to the view-update problem.
ACM Transactions on Programming Languages and Systems, 29(3):17, 2007.
(K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi.
Bidirectionalization transformation based on automatic derivation of view complement functions.
In International Conference on Functional Programming,
Proceedings, pages 47-58. ACM Press, 2007.
P. Wadler.

Theorems for free!
In Functional Programming Languages and Computer
Architecture, Proceedings, pages 347-359. ACM Press, 1989.

