
Much Ado about Two
A Pearl on Parallel Prefix Computation

Janis Voigtländer

Technische Universität Dresden

POPL’08

Parallel Prefix Computation

Given: inputs x1, . . . , xn and an associative operation ⊕

Task: compute the values x1, x1 ⊕ x2, . . . , x1 ⊕ x2 ⊕ · · · ⊕ xn

2

Parallel Prefix Computation

Given: inputs x1, . . . , xn and an associative operation ⊕

Task: compute the values x1, x1 ⊕ x2, . . . , x1 ⊕ x2 ⊕ · · · ⊕ xn

Solution: x1 x2 x3 x4 x5 x6 x7 x8

⊕

⊕

⊕

⊕

⊕

⊕

⊕

2

Parallel Prefix Computation

Alternative: x1 x2 x3 x4 x5 x6 x7 x8

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

3

Parallel Prefix Computation

Alternative: x1 x2 x3 x4 x5 x6 x7 x8

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

Or: x1 x2 x3 x4 x5 x6 x7 x8

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

Or: . . .
3

A la [Sklansky 1960]:

x1 x2

⊕

4

A la [Sklansky 1960]:

x1 x2 x3

⊕

⊕

4

A la [Sklansky 1960]:

x1 x2 x3 x4

⊕

⊕

⊕

⊕

4

A la [Sklansky 1960]:

x1 x2 x3 x4 x5

⊕

⊕

⊕

⊕

⊕

4

A la [Sklansky 1960]:

x1 x2 x3 x4 x5 x6

⊕

⊕

⊕

⊕

⊕

⊕

⊕

4

A la [Sklansky 1960]:

x1 x2 x3 x4 x5 x6 x7

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

4

A la [Sklansky 1960]:

x1 x2 x3 x4 x5 x6 x7 x8

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

4

A la [Sklansky 1960]:

x1 x2 x3 x4 x5 x6 x7 x8 x9

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

4

A la [Sklansky 1960]:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

4

A la [Sklansky 1960]:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

4

A la [Sklansky 1960]:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

4

A la [Sklansky 1960]:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

4

A la [Sklansky 1960]:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

4

A la [Sklansky 1960]:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

4

A la [Sklansky 1960]:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

4

A la [Sklansky 1960]:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

4

A la [Sklansky 1960]:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

4

A la [Sklansky 1960]:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

4

A la [Sklansky 1960]:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

4

Sklansky’s Method in Haskell

sklansky :: (α→ α→ α)→ [α]→ [α]
sklansky (⊕) [x] = [x]
sklansky (⊕) xs = us ++ vs

where t = (length xs + 1) ‘div ‘ 2
(ys, zs) = splitAt t xs

us = sklansky (⊕) ys

vs = [(last us)⊕ v | v ← sklansky (⊕) zs]

5

Sklansky’s Method in Haskell

sklansky :: (α→ α→ α)→ [α]→ [α]
sklansky (⊕) [x] = [x]
sklansky (⊕) xs = us ++ vs

where t = (length xs + 1) ‘div ‘ 2
(ys, zs) = splitAt t xs

us = sklansky (⊕) ys

vs = [(last us)⊕ v | v ← sklansky (⊕) zs]

Wanted: reasoning principles, verification techniques,
systematic testing approach, . . .

5

A Knuth-like 0-1-2-Principle

Given: serial :: (α→ α→ α)→ [α]→ [α]
serial (⊕) (x : xs) = go x xs

where go x [] = [x]
go x (y : ys) = x : go (x ⊕ y) ys

6

A Knuth-like 0-1-2-Principle

Given: serial :: (α→ α→ α)→ [α]→ [α]
serial (⊕) (x : xs) = go x xs

where go x [] = [x]
go x (y : ys) = x : go (x ⊕ y) ys

candidate :: (α→ α→ α)→ [α]→ [α]

6

A Knuth-like 0-1-2-Principle

Given: serial :: (α→ α→ α)→ [α]→ [α]
serial (⊕) (x : xs) = go x xs

where go x [] = [x]
go x (y : ys) = x : go (x ⊕ y) ys

candidate :: (α→ α→ α)→ [α]→ [α]

data Three = Zero | One | Two

6

A Knuth-like 0-1-2-Principle

Given: serial :: (α→ α→ α)→ [α]→ [α]
serial (⊕) (x : xs) = go x xs

where go x [] = [x]
go x (y : ys) = x : go (x ⊕ y) ys

candidate :: (α→ α→ α)→ [α]→ [α]

data Three = Zero | One | Two

Theorem: If for every xs :: [Three] and associative
(⊕) :: Three → Three → Three,

candidate (⊕) xs ≡ serial (⊕) xs ,

then the same holds for every type τ , xs :: [τ], and
associative (⊕) :: τ → τ → τ .

6

Why 0-1-2? And How?

A question: What can candidate :: (α→ α→ α)→ [α]→ [α]
do, given an operation ⊕ and input list [x1, . . . , xn] ?

7

Why 0-1-2? And How?

A question: What can candidate :: (α→ α→ α)→ [α]→ [α]
do, given an operation ⊕ and input list [x1, . . . , xn] ?

The answer: Create an output list consisting of expressions built
from ⊕ and x1, . . . , xn. Independently of the α-type !

7

Why 0-1-2? And How?

A question: What can candidate :: (α→ α→ α)→ [α]→ [α]
do, given an operation ⊕ and input list [x1, . . . , xn] ?

The answer: Create an output list consisting of expressions built
from ⊕ and x1, . . . , xn. Independently of the α-type !

Among these expressions, there are good ones:

⊕

⊕

⊕

x1 x2

x3

x4

,

⊕

⊕

x1 x2

⊕

⊕

x3 x4

x5

, . . . ,

7

Why 0-1-2? And How?

A question: What can candidate :: (α→ α→ α)→ [α]→ [α]
do, given an operation ⊕ and input list [x1, . . . , xn] ?

The answer: Create an output list consisting of expressions built
from ⊕ and x1, . . . , xn. Independently of the α-type !

Among these expressions, there are good ones:

⊕

⊕

⊕

x1 x2

x3

x4

,

⊕

⊕

x1 x2

⊕

⊕

x3 x4

x5

, . . . ,

bad ones:
⊕

⊕

x1 x2

⊕

x3 x5

,

⊕

x1 ⊕

x2 x2

,

⊕

⊕

x3 x2

x1 , . . . ,

7

Why 0-1-2? And How?

Among these expressions, there are good ones:

⊕

⊕

⊕

x1 x2

x3

x4

,

⊕

⊕

x1 x2

⊕

⊕

x3 x4

x5

, . . . ,

bad ones:
⊕

⊕

x1 x2

⊕

x3 x5

,

⊕

x1 ⊕

x2 x2

,

⊕

⊕

x3 x2

x1 , . . . ,

and ones in the wrong position:

[

x1 ,
⊕

x1 x2

,

⊕

⊕

x1 x2

⊕

x3 x4

, . . .

]

7

That’s How!

Let

⊕1 Zero One Two

Zero Zero One Two

One One Two Two

Two Two Two Two

and

⊕2 Zero One Two

Zero Zero One Two

One One One Two

Two Two One Two

8

That’s How!

Let

⊕1 Zero One Two

Zero Zero One Two

One One Two Two

Two Two Two Two

and

⊕2 Zero One Two

Zero Zero One Two

One One One Two

Two Two One Two

If candidate (⊕1) is correct on each list of the form

[(Zero,)∗ One (,Zero)∗ (,Two)∗]

8

That’s How!

Let

⊕1 Zero One Two

Zero Zero One Two

One One Two Two

Two Two Two Two

and

⊕2 Zero One Two

Zero Zero One Two

One One One Two

Two Two One Two

If candidate (⊕1) is correct on each list of the form

[(Zero,)∗ One (,Zero)∗ (,Two)∗]

and candidate (⊕2) is correct on each list of the form

[(Zero,)∗ One,Two (,Zero)∗]

then candidate is correct for associative ⊕ at arbitrary type.

8

A Knuth-like 0-1-2-Principle

Given: serial :: (α→ α→ α)→ [α]→ [α]
serial (⊕) (x : xs) = go x xs

where go x [] = [x]
go x (y : ys) = x : go (x ⊕ y) ys

candidate :: (α→ α→ α)→ [α]→ [α]

data Three = Zero | One | Two

Theorem: If for every xs :: [Three] and associative
(⊕) :: Three → Three → Three,

candidate (⊕) xs ≡ serial (⊕) xs ,

then the same holds for every type τ , xs :: [τ], and
associative (⊕) :: τ → τ → τ .

9

The Overall Proof
�

To get going, uses relational parametricity [Reynolds 1983] to
derive a free theorem from candidate’s type [Wadler 1989].

�
Remaining proof largely done by program calculation.
(But also a bit “by picture”.)

�
Formalisation available in Isabelle/HOL:

S. Böhme.
Much Ado about Two. Formal proof development.
The Archive of Formal Proofs.
http://afp.sf.net/entries/MuchAdoAboutTwo.shtml

10

References I

R.P. Brent and H.T. Kung.
The chip complexity of binary arithmetic.
In ACM Symposium on Theory of Computing, Proceedings,
pages 190–200. ACM Press, 1980.

G.E. Blelloch.
Prefix sums and their applications.
In J.H. Reif, editor, Synthesis of Parallel Algorithms, pages
35–60. Morgan Kaufmann, 1993.

N.A. Day, J. Launchbury, and J. Lewis.
Logical abstractions in Haskell.
Haskell Workshop, 1999.

11

References II

D.E. Knuth.
The Art of Computer Programming, volume 3: Sorting and
Searching.
Addison-Wesley, 1973.

J.C. Reynolds.
Types, abstraction and parametric polymorphism.
In Information Processing, Proceedings, pages 513–523.
Elsevier Science Publishers B.V., 1983.

M. Sheeran.
Searching for prefix networks to fit in a context using a lazy
functional programming language.
Hardware Design and Functional Languages, 2007.

12

References III

J. Sklansky.
Conditional-sum addition logic.
IRE Transactions on Electronic Computers, EC-9(6):226–231,
1960.

P. Wadler.
Theorems for free!
In Functional Programming Languages and Computer

Architecture, Proceedings, pages 347–359. ACM Press, 1989.

13

