Much Ado about Two
 A Pearl on Parallel Prefix Computation

Janis Voigtländer

Technische Universität Dresden

POPL'08

Parallel Prefix Computation

Given: inputs x_{1}, \ldots, x_{n} and an associative operation \oplus
Task: compute the values $x_{1}, x_{1} \oplus x_{2}, \ldots, x_{1} \oplus x_{2} \oplus \cdots \oplus x_{n}$

Parallel Prefix Computation

Given: inputs x_{1}, \ldots, x_{n} and an associative operation \oplus Task: compute the values $x_{1}, x_{1} \oplus x_{2}, \ldots, x_{1} \oplus x_{2} \oplus \cdots \oplus x_{n}$ Solution:

Parallel Prefix Computation

Alternative:

Parallel Prefix Computation

Alternative:

Or:

Or: ...

A la [Sklansky 1960]:

A la [Sklansky 1960]:
$\begin{array}{llllllll}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8}\end{array}$

A la [Sklansky 1960]:
$\begin{array}{lllllllll}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} & x_{9}\end{array}$

A la [Sklansky 1960]:
$\begin{array}{llllllllll}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} & x_{9} & x_{10}\end{array}$

A la [Sklansky 1960]:
$\begin{array}{lllllllllll}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} & x_{9} & x_{10} & x_{11}\end{array}$

A la [Sklansky 1960]:
$\begin{array}{llllllllllll}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} & x_{9} & x_{10} & x_{11} & x_{12}\end{array}$

A la [Sklansky 1960]:

A la [Sklansky 1960]:

A la [Sklansky 1960]:

$\begin{array}{lllllllllllllll}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} & x_{9} & x_{10} & x_{11} & x_{12} & x_{13} & x_{14} & x_{15}\end{array}$

A la [Sklansky 1960]:

Sklansky's Method in Haskell

$$
\begin{aligned}
& \text { sklansky }::(\alpha \rightarrow \alpha\rightarrow \alpha) \rightarrow[\alpha] \rightarrow[\alpha] \\
& \text { sklansky }(\oplus)[x]=[x] \\
& \text { sklansky }(\oplus) x s=u s+v s \\
& \text { where } t=(\text { length xs }+1) \text { 'div' } 2 \\
&(y s, z s)=\text { splitAt } t x s \\
& u s=\text { sklansky }(\oplus) \text { ys } \\
& v s=[(\text { last us }) \oplus v \mid v \leftarrow \text { sklansky }(\oplus) z s]
\end{aligned}
$$

Sklansky's Method in Haskell

$$
\begin{aligned}
& \text { sklansky }::(\alpha \rightarrow \alpha\rightarrow \alpha) \rightarrow[\alpha] \rightarrow[\alpha] \\
& \text { sklansky }(\oplus)[x]=[x] \\
& \text { sklansky }(\oplus) x s=u s+v s \\
& \text { where } t=(\text { length xs }+1) \text { 'div' } 2 \\
&(y s, z s)=\text { splitAt } t x s \\
& u s=\text { sklansky }(\oplus) \text { ys } \\
& v s=[(\text { last us }) \oplus v \mid v \leftarrow \text { sklansky }(\oplus) z s]
\end{aligned}
$$

Wanted: reasoning principles, verification techniques, systematic testing approach, ...

A Knuth-like 0-1-2-Principle

Given: serial :: $(\alpha \rightarrow \alpha \rightarrow \alpha) \rightarrow[\alpha] \rightarrow[\alpha]$

$$
\begin{aligned}
& \text { serial }(\oplus)(x: x s)=\text { go } x \times s \\
& \text { where go } x[]=[x] \\
& \text { go } x(y: y s)=x: g o(x \oplus y) y s
\end{aligned}
$$

A Knuth-like 0-1-2-Principle

Given: serial :: $(\alpha \rightarrow \alpha \rightarrow \alpha) \rightarrow[\alpha] \rightarrow[\alpha]$

$$
\begin{aligned}
& \text { serial }(\oplus)(x: x s)=\operatorname{go~} x \times s \\
& \text { where go } x[]=[x] \\
& \text { go } x(y: y s)=x: g o(x \oplus y) y s
\end{aligned}
$$

candidate $::(\alpha \rightarrow \alpha \rightarrow \alpha) \rightarrow[\alpha] \rightarrow[\alpha]$

A Knuth-like 0-1-2-Principle

Given: serial :: $(\alpha \rightarrow \alpha \rightarrow \alpha) \rightarrow[\alpha] \rightarrow[\alpha]$

$$
\begin{aligned}
& \text { serial }(\oplus)(x: x s)=g o x \times s \\
& \text { where go } x[]=[x] \\
& \text { go } x(y: y s)=x: \operatorname{go}(x \oplus y) y s
\end{aligned}
$$

candidate $::(\alpha \rightarrow \alpha \rightarrow \alpha) \rightarrow[\alpha] \rightarrow[\alpha]$
data Three $=$ Zero \mid One \mid Two

A Knuth-like 0-1-2-Principle

Given: serial :: $(\alpha \rightarrow \alpha \rightarrow \alpha) \rightarrow[\alpha] \rightarrow[\alpha]$
serial $(\oplus)(x: x s)=$ go $x \times s$
where go $x[] \quad=[x]$
go $x(y: y s)=x: g o(x \oplus y) y s$
candidate $::(\alpha \rightarrow \alpha \rightarrow \alpha) \rightarrow[\alpha] \rightarrow[\alpha]$
data Three $=$ Zero \mid One \mid Two
Theorem: If for every xs :: [Three] and associative $(\oplus)::$ Three \rightarrow Three \rightarrow Three,

$$
\text { candidate }(\oplus) x s \equiv \text { serial }(\oplus) x s,
$$

then the same holds for every type τ, xs $::[\tau]$, and associative $(\oplus):: \tau \rightarrow \tau \rightarrow \tau$.

Why 0-1-2? And How?

A question: What can candidate :: $(\alpha \rightarrow \alpha \rightarrow \alpha) \rightarrow[\alpha] \rightarrow[\alpha]$ do, given an operation \oplus and input list $\left[x_{1}, \ldots, x_{n}\right]$?

Why 0-1-2? And How?

A question: What can candidate $::(\alpha \rightarrow \alpha \rightarrow \alpha) \rightarrow[\alpha] \rightarrow[\alpha]$ do, given an operation \oplus and input list $\left[x_{1}, \ldots, x_{n}\right]$?

The answer: Create an output list consisting of expressions built from \oplus and x_{1}, \ldots, x_{n}. Independently of the α-type!

Why 0-1-2? And How?

A question: What can candidate $::(\alpha \rightarrow \alpha \rightarrow \alpha) \rightarrow[\alpha] \rightarrow[\alpha]$ do, given an operation \oplus and input list $\left[x_{1}, \ldots, x_{n}\right]$?

The answer: Create an output list consisting of expressions built from \oplus and x_{1}, \ldots, x_{n}. Independently of the α-type!

Among these expressions, there are good ones:

Why 0-1-2? And How?

A question: What can candidate $::(\alpha \rightarrow \alpha \rightarrow \alpha) \rightarrow[\alpha] \rightarrow[\alpha]$ do, given an operation \oplus and input list $\left[x_{1}, \ldots, x_{n}\right]$?

The answer: Create an output list consisting of expressions built from \oplus and x_{1}, \ldots, x_{n}. Independently of the α-type!

Among these expressions, there are good ones:

bad ones:

Why 0-1-2? And How?

Among these expressions, there are good ones:

bad ones:

and ones in the wrong position:

That's How!

Let

\oplus_{1}	Zero	One	Two		\oplus_{2}	Zero	One	Two
Zero	Zero	One	Two	and	Zero	Zero	One	Two
One	One	Two	Two		One	One	One	Two
Two	Two	Two	Two		Two	Two	One	Two

That's How!

Let

\oplus_{1}	Zero	One	Two			\oplus_{2}	Zero	One
Two	Two							
Zero	Zero	One	Two					
One	One	Two	Two		and		Zero	Zero
Twe	One	Two						
Two	Two	Two	Two			Two	One	Two
	Two	One	Two					

If candidate $\left(\oplus_{1}\right)$ is correct on each list of the form

$$
\left[(\text { Zero },)^{*} \text { One }(, \text { Zero })^{*}(, \text { Two })^{*}\right]
$$

That's How!

Let

\oplus_{1}	Zero	One	Two	and	\oplus_{2}	Zero	One	Two
Zero	Zero	One	Two		Zero	Zero	One	Two
One	One	Two	Two		One	One	One	Two
Two	Two	Two	Two		Two	Two	One	Two

If candidate $\left(\oplus_{1}\right)$ is correct on each list of the form

$$
\left[(\text { Zero },)^{*} \text { One }(, \text { Zero })^{*}(, \text { Two })^{*}\right]
$$

and candidate $\left(\oplus_{2}\right)$ is correct on each list of the form

$$
\left.\left[(\text { Zero, })^{*} \text { One, Two (, Zero }\right)^{*}\right]
$$

then candidate is correct for associative \oplus at arbitrary type.

A Knuth-like 0-1-2-Principle

Given: serial :: $(\alpha \rightarrow \alpha \rightarrow \alpha) \rightarrow[\alpha] \rightarrow[\alpha]$
serial $(\oplus)(x: x s)=$ go $x \times s$
where go $x[] \quad=[x]$
go $x(y: y s)=x: g o(x \oplus y) y s$
candidate $::(\alpha \rightarrow \alpha \rightarrow \alpha) \rightarrow[\alpha] \rightarrow[\alpha]$
data Three $=$ Zero \mid One \mid Two
Theorem: If for every xs :: [Three] and associative $(\oplus)::$ Three \rightarrow Three \rightarrow Three,

$$
\text { candidate }(\oplus) x s \equiv \text { serial }(\oplus) x s,
$$

then the same holds for every type τ, xs $::[\tau]$, and associative $(\oplus):: \tau \rightarrow \tau \rightarrow \tau$.

The Overall Proof

- To get going, uses relational parametricity [Reynolds 1983] to derive a free theorem from candidate's type [Wadler 1989].
- Remaining proof largely done by program calculation. (But also a bit "by picture".)
- Formalisation available in Isabelle/HOL:
S. Böhme.

Much Ado about Two. Formal proof development.
The Archive of Formal Proofs.
http://afp.sf.net/entries/MuchAdoAboutTwo.shtml

References I

B
R.P. Brent and H.T. Kung.

The chip complexity of binary arithmetic.
In ACM Symposium on Theory of Computing, Proceedings, pages 190-200. ACM Press, 1980.

回 G.E. Blelloch.
Prefix sums and their applications.
In J.H. Reif, editor, Synthesis of Parallel Algorithms, pages 35-60. Morgan Kaufmann, 1993.

R N.A. Day, J. Launchbury, and J. Lewis.
Logical abstractions in Haskell.
Haskell Workshop, 1999.

References II

固 D．E．Knuth．
The Art of Computer Programming，volume 3：Sorting and Searching．
Addison－Wesley， 1973.
回 J．C．Reynolds．
Types，abstraction and parametric polymorphism．
In Information Processing，Proceedings，pages 513－523．
Elsevier Science Publishers B．V．， 1983.
图 M．Sheeran．
Searching for prefix networks to fit in a context using a lazy functional programming language．
Hardware Design and Functional Languages， 2007.

References III

(J. Sklansky.
Conditional-sum addition logic.
IRE Transactions on Electronic Computers, EC-9(6):226-231, 1960.

圊 P. Wadler.
Theorems for free!
In Functional Programming Languages and Computer
Architecture, Proceedings, pages 347-359. ACM Press, 1989.

