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A small “test”

Which function is this?

f1 [a ] = a
f1 [a, b ] = b
f1 [a, b, c ] = c
f1 [a, b, c , d ] = d

And this one?

f2 [ ] = [ ]
f2 [a ] = [a ]
f2 [a, b ] = [b, a ]
f2 [a, b, c ] = [c , b, a ]
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View-Update [Banc. & Sp., ACM TODS’81]

source view

s v

s ′ v ′

get

2



View-Update [Banc. & Sp., ACM TODS’81]

source view

s v

s ′ v ′

get

update

2



View-Update [Banc. & Sp., ACM TODS’81]

source view

s v

s ′ v ′

get

put

update

2



View-Update [Banc. & Sp., ACM TODS’81]

source view

s v

s ′ v ′

get

put

update

2



View-Update [Banc. & Sp., ACM TODS’81]

source view

s v

s v

get

=

Acceptability / GetPut

2



View-Update [Banc. & Sp., ACM TODS’81]

source view

s v

s v

get

put

==

Acceptability / GetPut

2



View-Update [Banc. & Sp., ACM TODS’81]

source view

s v

s ′ v ′

get

put

update

Consistency / PutGet

2



View-Update [Banc. & Sp., ACM TODS’81]

source view

s v

s ′ v ′

get

put

update

get

Consistency / PutGet

2



View-Update [Banc. & Sp., ACM TODS’81]

source view

s v

s ′ v ′

get

put

update

2



View-Update [Banc. & Sp., ACM TODS’81]

source view

s v

s ′ v ′
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update

Lenses, DSLs

[Foster et al., ACM TOPLAS’07, . . . ]
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View-Update [Banc. & Sp., ACM TODS’81]

source view

s v

s ′ v ′

get

put

update

Bidirectionalization

[Matsuda et al., ICFP’07], [V., POPL’09], . . .
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Bidirectionalization (BX)

Examples:

“abc” “bc”

“ade” “de”

tail

3



Bidirectionalization (BX)

Examples:

“abc” “bc”

“ade” “de”

tail

update

3



Bidirectionalization (BX)

Examples:

“abc” “bc”

“ade” “de”

tail

put

update

3



Bidirectionalization (BX)

Examples:

‘a’ ‘b’ ‘a’ ‘c’
“abac”

‘a’ ‘b’ ‘x’ ‘c’
“abxc”

flatten
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Nondeterminism / Choices to make

Let get = sieve with:

s "" "a" "ab" "abc" "abcd" "abcde"

sieve s "" "" "b" "b" "bd" "bd"

Then, for example:

put "abcd" "xy" = "axcy"

put "abcde" "xy" = "axcye"

put "abcde" "xyz"= "axcyez" or "axcyez " ?

put "abcd" "xyz"= "axcy z"

put "abcd" "x" = "axc" or "ax" ? , or "cx" ?
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Nondeterminism / Choices to make

Let get = head with:

head (x : xs) = x

Maybe:

put (x : xs) y = [y ]

But that violates put xs (get xs) = xs !

Better:

put (x : xs) y | y == x = (x : xs)
| otherwise = [y ]

But “really intended”:

put (x : xs) y = (y : xs)

5
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A slightly more complex case, with recursion

Let get = init with:

init [x ] = [ ]
init (x : xs) = (x : (init xs))

Possible, and correct:

put xs ys | length ys == (length xs)− 1 = ys ++ [last xs ]
| otherwise = ys ++ " "

But intended:

put xs ys = ys ++ [last xs ]

Problem: How to guide/control the possible choices?
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Entry: Inductive Program Synthesis (IP)

Recall, I/O pairs for a function:

f1 [a ] = a
f1 [a, b ] = b
f1 [a, b, c ] = c
f1 [a, b, c , d ] = d

From this, an IP system automatically generates the program:

f1 [x ] = x
f1 (x : xs) = f1 xs

Or:

f2 [ ] = [ ]
f2 [a ] = [a ]
f2 [a, b ] = [b, a ]
f2 [a, b, c ] = [c , b, a ]
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Entry: Inductive Program Synthesis (IP)

Or:

f2 [ ] = [ ]
f2 [a ] = [a ]
f2 [a, b ] = [b, a ]
f2 [a, b, c ] = [c , b, a ]

Again automatically generated:

f2 [ ] = [ ]
f2 (x : xs) = ((f3 (x : xs)) : (f2 (f4 (x : xs))))

f3 [x ] = x
f3 (x : xs) = f3 xs

f4 [x ] = [ ]
f4 (x : xs) = (x : (f4 xs))

7



Entry: Inductive Program Synthesis (IP)

Or:

f2 [ ] = [ ]
f2 [a ] = [a ]
f2 [a, b ] = [b, a ]
f2 [a, b, c ] = [c , b, a ]

Or, through provision of snoc as “background knowledge”:

f2 [ ] = [ ]
f2 (x : xs) = snoc (f2 xs) x
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The master plan: BX + IP

Problem: Of the view-update laws

put xs (get xs) = xs

get (put xs ys) = ys

only the first one directly delivers I/O pairs for put.

Like, for get = init:

put [a ] [ ] = [a ]
put [a, b ] [a ] = [a, b ]
put [a, b, c ] [a, b ] = [a, b, c ]
put [a, b, c , d ] [a, b, c ] = [a, b, c , d ]

But then one would synthesize:

put xs ys = xs

1. possible solution: Enforce use of both arguments?

8
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The master plan: BX + IP

First, on a simpler example, get = head:

put [a ] a = [a ]
put [a, b ] a = [a, b ]
put [a, b, c ] a = [a, b, c ]
put [a, b, c , d ] a = [a, b, c , d ]

To avoid put xs y = xs, insist on use of y , i.e., something like:

put xs y = (y : )

Starting from this hypothesis, practically only one reasonable path
of synthesis, with result something like:

put xs y = (y : (tail xs))
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The master plan: BX + IP

On the more complex example, get = init:

init [x ] = [ ]
init (x : xs) = (x : (init xs))

different “degrees” of use of ys in put xs ys are possible.

For example:

put xs ys = (take (length ys) xs) ++ [last xs ]

Or:

put xs ys = ys ++ [last xs ]

Caution: Not every put generated (like) above automatically sa-
tisfies get (put xs ys) = ys. (But it’s okay, trust IP.)
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The master plan: BX + IP

2. possible solution: To after all generate I/O pairs for put from

get (put xs y) = y

as well, “inversion” of get.

Then:
put xs y = get−1 y

as provider of further I/O pairs beside put xs (get xs) = xs.

Like, for get = head,

head−1 y = [y ]

or, better,

head−1 y = (y : )

In this case, agrees with the other suggestion . . .
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The master plan: BX + IP

On the more complex example, get = init:

init [x ] = [ ]
init (x : xs) = (x : (init xs))

Use of

init−1 ys = snoc ys

to provide, beside:

put [a ] [ ] = [a ]
put [a, b ] [a ] = [a, b ]
· · ·

also:

put [a ] [b ] = [b, ]
put [a, b ] [ ] = [ ]
put [a, b ] [c ] = [c , ]
· · ·
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Conclusion / Outlook

I Bidirectional Transformations:

I “hot topic” in various areas, including PL approaches
I typical weakness: nondeterminism, and limited (or no)

impact of programmer intentions

I Inductive Program Synthesis:

I application of machine learning
I detects/exploits regularities
I hypothesis: captures programmer intentions

I Connection:

I inductive program synthesis as a “helper”
I either naively as a black box, or deeper integration
I further ideas: I/O pairs per parametricity of get;

user impact through ad-hoc I/O pairs or
provision of background knowledge;
. . .
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