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A small “test”

Which function is this?

1 [a] =a
fq [a,b] =b
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A small “test”

Which function is this?

£ [a] =
f1 [a’ b] =
fi[a,b,c] =
fi[a,b,c,d] =d
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And this one?

2 (] =[]

£, [a] = [a]

5 [a, b] = [b, a]
fy[a,b,c]  =]c, b, a]
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Lenses, DSLs
[Foster et al., ACM TOPLAS'07, ...]
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Bidirectionalization
[Matsuda et al., ICFP'07], [V., POPL'09], ...
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Let get = sieve with:
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Nondeterminism / Choices to make

Let get = sieve with:

put
put
put
put

s nn [ g | ugpn | ngpe" | "abed" | "abcde"
sieves | " nn ‘ np" ‘ np" ‘ "bg" ‘ "pg"
Then, for example:
"abed" anu — "axcy"
"abcede" "Xy" —mn axcye"
"abcde" "xyz" = "axcyez" or "axcyez "7
"abed" "XyZ" — "axcy Z"
"abed"  "x" — "axc" or "ax"?, or "cx"?

put
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Nondeterminism / Choices to make

Let get = head with:

head (x:xs) = x

Maybe:
put (x:xs) y = [y]
But that violates put xs (get xs) = xs!

Better:

put (x:xs)y |y==x  =(x:xs)
| otherwise = [y]

But “really intended”:

put (x:xs) y = (y: xs)
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A slightly more complex case, with recursion

Let get = init with:

init [x] =]

init (x:xs) = (x:(init xs))
Possible, and correct:

put xs ys | length ys == (length xs) — 1 = ys 4 [last xs]
| otherwise =ysH" "

But intended:

put xs ys = ys H [last xs]

Problem: How to guide/control the possible choices?
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Entry: Inductive Program Synthesis (IP)

Recall, 1/O pairs for a function:

1 [a] =a
fl [a,b] =b
fi [a,b,c] =c

fi [a,b,c,d] =d

From this, an IP system automatically generates the program:
1 [x] =X
fi(x:xs)==£; xs

£ (] =1

£ [a] = [a]

5 [a, b] = [b, a]
fs [a,b,c]  =]c,b,a]



Entry: Inductive Program Synthesis (IP)
Or:
2 (1 =

£, [a] = [a]
5 [a, b]
£, [a, b, c] [c, b, a]

Again automatically generated:

&[] =1l

fo (x:xs)=((f5 (x:xs)): (f2 (fa (x: xs))))
f3 [x] =X

f3 (x:xs) =1f3 xs

fax] =]

fa (x:xs) = (x:(fa xs))



Entry: Inductive Program Synthesis (IP)

Or:
2 (] =[]
f5 [a] = [a]
5 [a, b] = [b, a]
7 [37 b,C] = [C’ b7 a]

Or, through provision of snoc as “background knowledge”:

&[] =1

fo (x:xs) = snoc (f5 xs) x
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1. possible solution: Enforce use of both arguments?
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First, on a simpler example, get = head:

put [a] a=|a]

put [a, b] a=|a,b]

put [a,b,c] a=]a, b,c]
put [a,b,c,d] a=[a,b,c,d]

To avoid put xs y = xs, insist on use of y, i.e., something like:
put xsy = (y:-)

Starting from this hypothesis, practically only one reasonable path
of synthesis, with result something like:

put xs y = (y: (tail xs))
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The master plan: BX + IP

On the more complex example, get = init:

init [x] =]
init (x:xs) = (x:(init xs))

different “degrees” of use of ys in put xs ys are possible.
For example:

put xs ys = (take (length ys) xs) H [last xs]

Or:
put xs ys = ys H [last xs]

Caution: Not every put generated (like) above automatically sa-
tisfies get (put xs ys) = ys. (But it's okay, trust IP.)

10
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The master plan: BX + IP

2. possible solution: To after all generate |/O pairs for put from

get (put xsy) =y

as well, “inversion” of get.

Then:

put xsy = get_1 y

as provider of further 1/O pairs beside put xs (get xs) = xs.
Like, for get = head,

head "y = [y]
or, better,

head 'y = (y:_)

In this case, agrees with the other suggestion ...

11
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The master plan: BX + IP

On the more complex example, get = init:

init [x] =]
init (x:xs) = (x:(init xs))

Use of
init ! ys = snoc ys _
to provide, beside:

put [a] ]
put [a, b] [a]

[a]
[a, b]

also:
put [a] [b] =[b,]

put [a,b] [] =[-]
put [a, b] [c] = [c, -]

12
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» Bidirectional Transformations:
» “hot topic” in various areas, including PL approaches
» typical weakness: nondeterminism, and limited (or no)
impact of programmer intentions

» Inductive Program Synthesis:
» application of machine learning
» detects/exploits regularities
» hypothesis: captures programmer intentions

» Connection:

» inductive program synthesis as a “helper”

» either naively as a black box, or deeper integration

» further ideas: 1/O pairs per parametricity of get;
user impact through ad-hoc 1/O pairs or
provision of background knowledge;

13
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