
Ideas for Connecting
Inductive Program Synthesis

and
Bidirectionalization

Janis Voigtländer

University of Bonn

PEPM’12

A small “test”

Which function is this?

f1 [a] = a
f1 [a, b] = b
f1 [a, b, c] = c
f1 [a, b, c , d] = d

And this one?

f2 [] = []
f2 [a] = [a]
f2 [a, b] = [b, a]
f2 [a, b, c] = [c , b, a]

1

A small “test”

Which function is this?

f1 [a] = a
f1 [a, b] = b
f1 [a, b, c] = c
f1 [a, b, c , d] = d

And this one?

f2 [] = []
f2 [a] = [a]
f2 [a, b] = [b, a]
f2 [a, b, c] = [c , b, a]

1

View-Update [Banc. & Sp., ACM TODS’81]

source view

s v

s ′ v ′

get

2

View-Update [Banc. & Sp., ACM TODS’81]

source view

s v

s ′ v ′

get

update

2

View-Update [Banc. & Sp., ACM TODS’81]

source view

s v

s ′ v ′

get

put

update

2

View-Update [Banc. & Sp., ACM TODS’81]

source view

s v

s ′ v ′

get

put

update

2

View-Update [Banc. & Sp., ACM TODS’81]

source view

s v

s v

get

=

Acceptability / GetPut

2

View-Update [Banc. & Sp., ACM TODS’81]

source view

s v

s v

get

put

==

Acceptability / GetPut

2

View-Update [Banc. & Sp., ACM TODS’81]

source view

s v

s ′ v ′

get

put

update

Consistency / PutGet

2

View-Update [Banc. & Sp., ACM TODS’81]

source view

s v

s ′ v ′

get

put

update

get

Consistency / PutGet

2

View-Update [Banc. & Sp., ACM TODS’81]

source view

s v

s ′ v ′

get

put

update

2

View-Update [Banc. & Sp., ACM TODS’81]

source view

s v

s ′ v ′

get

put

update

Lenses, DSLs

[Foster et al., ACM TOPLAS’07, . . .]

2

View-Update [Banc. & Sp., ACM TODS’81]

source view

s v

s ′ v ′

get

put

update

Bidirectionalization

[Matsuda et al., ICFP’07], [V., POPL’09], . . .

2

Bidirectionalization (BX)

Examples:

“abc” “bc”

“ade” “de”

tail

3

Bidirectionalization (BX)

Examples:

“abc” “bc”

“ade” “de”

tail

update

3

Bidirectionalization (BX)

Examples:

“abc” “bc”

“ade” “de”

tail

put

update

3

Bidirectionalization (BX)

Examples:

‘a’ ‘b’ ‘a’ ‘c’
“abac”

‘a’ ‘b’ ‘x’ ‘c’
“abxc”

flatten

3

Bidirectionalization (BX)

Examples:

‘a’ ‘b’ ‘a’ ‘c’
“abac”

‘a’ ‘b’ ‘x’ ‘c’
“abxc”

flatten

update

3

Bidirectionalization (BX)

Examples:

‘a’ ‘b’ ‘a’ ‘c’
“abac”

‘a’ ‘b’ ‘x’ ‘c’
“abxc”

flatten

put

update

3

Nondeterminism / Choices to make

Let get = sieve with:

s "" "a" "ab" "abc" "abcd" "abcde"

sieve s "" "" "b" "b" "bd" "bd"

Then, for example:

put "abcd" "xy" = "axcy"

put "abcde" "xy" = "axcye"

put "abcde" "xyz"= "axcyez" or "axcyez " ?

put "abcd" "xyz"= "axcy z"

put "abcd" "x" = "axc" or "ax" ? , or "cx" ?

4

Nondeterminism / Choices to make

Let get = sieve with:

s "" "a" "ab" "abc" "abcd" "abcde"

sieve s "" "" "b" "b" "bd" "bd"

Then, for example:

put "abcd" "xy" = "axcy"

put "abcde" "xy" = "axcye"

put "abcde" "xyz"= "axcyez" or "axcyez " ?

put "abcd" "xyz"= "axcy z"

put "abcd" "x" = "axc" or "ax" ? , or "cx" ?

4

Nondeterminism / Choices to make

Let get = sieve with:

s "" "a" "ab" "abc" "abcd" "abcde"

sieve s "" "" "b" "b" "bd" "bd"

Then, for example:

put "abcd" "xy" = "axcy"

put "abcde" "xy" = "axcye"

put "abcde" "xyz"= "axcyez" or "axcyez " ?

put "abcd" "xyz"= "axcy z"

put "abcd" "x" = "axc" or "ax" ? , or "cx" ?

4

Nondeterminism / Choices to make

Let get = sieve with:

s "" "a" "ab" "abc" "abcd" "abcde"

sieve s "" "" "b" "b" "bd" "bd"

Then, for example:

put "abcd" "xy" = "axcy"

put "abcde" "xy" = "axcye"

put "abcde" "xyz"=

"axcyez" or "axcyez " ?

put "abcd" "xyz"= "axcy z"

put "abcd" "x" = "axc" or "ax" ? , or "cx" ?

4

Nondeterminism / Choices to make

Let get = sieve with:

s "" "a" "ab" "abc" "abcd" "abcde"

sieve s "" "" "b" "b" "bd" "bd"

Then, for example:

put "abcd" "xy" = "axcy"

put "abcde" "xy" = "axcye"

put "abcde" "xyz"= "axcyez"

or "axcyez " ?

put "abcd" "xyz"= "axcy z"

put "abcd" "x" = "axc" or "ax" ? , or "cx" ?

4

Nondeterminism / Choices to make

Let get = sieve with:

s "" "a" "ab" "abc" "abcd" "abcde"

sieve s "" "" "b" "b" "bd" "bd"

Then, for example:

put "abcd" "xy" = "axcy"

put "abcde" "xy" = "axcye"

put "abcde" "xyz"= "axcyez" or "axcyez " ?

put "abcd" "xyz"= "axcy z"

put "abcd" "x" = "axc" or "ax" ? , or "cx" ?

4

Nondeterminism / Choices to make

Let get = sieve with:

s "" "a" "ab" "abc" "abcd" "abcde"

sieve s "" "" "b" "b" "bd" "bd"

Then, for example:

put "abcd" "xy" = "axcy"

put "abcde" "xy" = "axcye"

put "abcde" "xyz"= "axcyez" or "axcyez " ?

put "abcd" "xyz"= "axcy z"

put "abcd" "x" = "axc" or "ax" ? , or "cx" ?

4

Nondeterminism / Choices to make

Let get = sieve with:

s "" "a" "ab" "abc" "abcd" "abcde"

sieve s "" "" "b" "b" "bd" "bd"

Then, for example:

put "abcd" "xy" = "axcy"

put "abcde" "xy" = "axcye"

put "abcde" "xyz"= "axcyez" or "axcyez " ?

put "abcd" "xyz"= "axcy z"

put "abcd" "x" =

"axc" or "ax" ? , or "cx" ?

4

Nondeterminism / Choices to make

Let get = sieve with:

s "" "a" "ab" "abc" "abcd" "abcde"

sieve s "" "" "b" "b" "bd" "bd"

Then, for example:

put "abcd" "xy" = "axcy"

put "abcde" "xy" = "axcye"

put "abcde" "xyz"= "axcyez" or "axcyez " ?

put "abcd" "xyz"= "axcy z"

put "abcd" "x" = "axc"

or "ax" ? , or "cx" ?

4

Nondeterminism / Choices to make

Let get = sieve with:

s "" "a" "ab" "abc" "abcd" "abcde"

sieve s "" "" "b" "b" "bd" "bd"

Then, for example:

put "abcd" "xy" = "axcy"

put "abcde" "xy" = "axcye"

put "abcde" "xyz"= "axcyez" or "axcyez " ?

put "abcd" "xyz"= "axcy z"

put "abcd" "x" = "axc" or "ax" ?

, or "cx" ?

4

Nondeterminism / Choices to make

Let get = sieve with:

s "" "a" "ab" "abc" "abcd" "abcde"

sieve s "" "" "b" "b" "bd" "bd"

Then, for example:

put "abcd" "xy" = "axcy"

put "abcde" "xy" = "axcye"

put "abcde" "xyz"= "axcyez" or "axcyez " ?

put "abcd" "xyz"= "axcy z"

put "abcd" "x" = "axc" or "ax" ? , or "cx" ?

4

Nondeterminism / Choices to make

Let get = head with:

head (x : xs) = x

Maybe:

put (x : xs) y = [y]

But that violates put xs (get xs) = xs !

Better:

put (x : xs) y | y == x = (x : xs)
| otherwise = [y]

But “really intended”:

put (x : xs) y = (y : xs)

5

Nondeterminism / Choices to make

Let get = head with:

head (x : xs) = x

Maybe:

put (x : xs) y = [y]

But that violates put xs (get xs) = xs !

Better:

put (x : xs) y | y == x = (x : xs)
| otherwise = [y]

But “really intended”:

put (x : xs) y = (y : xs)

5

Nondeterminism / Choices to make

Let get = head with:

head (x : xs) = x

Maybe:

put (x : xs) y = [y]

But that violates put xs (get xs) = xs !

Better:

put (x : xs) y | y == x = (x : xs)
| otherwise = [y]

But “really intended”:

put (x : xs) y = (y : xs)

5

Nondeterminism / Choices to make

Let get = head with:

head (x : xs) = x

Maybe:

put (x : xs) y = [y]

But that violates put xs (get xs) = xs !

Better:

put (x : xs) y | y == x = (x : xs)
| otherwise = [y]

But “really intended”:

put (x : xs) y = (y : xs)

5

Nondeterminism / Choices to make

Let get = head with:

head (x : xs) = x

Maybe:

put (x : xs) y = [y]

But that violates put xs (get xs) = xs !

Better:

put (x : xs) y | y == x = (x : xs)
| otherwise = [y]

But “really intended”:

put (x : xs) y = (y : xs)

5

A slightly more complex case, with recursion

Let get = init with:

init [x] = []
init (x : xs) = (x : (init xs))

Possible, and correct:

put xs ys | length ys == (length xs)− 1 = ys ++ [last xs]
| otherwise = ys ++ " "

But intended:

put xs ys = ys ++ [last xs]

Problem: How to guide/control the possible choices?

6

A slightly more complex case, with recursion

Let get = init with:

init [x] = []
init (x : xs) = (x : (init xs))

Possible, and correct:

put xs ys | length ys == (length xs)− 1 = ys ++ [last xs]
| otherwise = ys ++ " "

But intended:

put xs ys = ys ++ [last xs]

Problem: How to guide/control the possible choices?

6

A slightly more complex case, with recursion

Let get = init with:

init [x] = []
init (x : xs) = (x : (init xs))

Possible, and correct:

put xs ys | length ys == (length xs)− 1 = ys ++ [last xs]
| otherwise = ys ++ " "

But intended:

put xs ys = ys ++ [last xs]

Problem: How to guide/control the possible choices?

6

A slightly more complex case, with recursion

Let get = init with:

init [x] = []
init (x : xs) = (x : (init xs))

Possible, and correct:

put xs ys | length ys == (length xs)− 1 = ys ++ [last xs]
| otherwise = ys ++ " "

But intended:

put xs ys = ys ++ [last xs]

Problem: How to guide/control the possible choices?

6

Entry: Inductive Program Synthesis (IP)

Recall, I/O pairs for a function:

f1 [a] = a
f1 [a, b] = b
f1 [a, b, c] = c
f1 [a, b, c , d] = d

From this, an IP system automatically generates the program:

f1 [x] = x
f1 (x : xs) = f1 xs

Or:

f2 [] = []
f2 [a] = [a]
f2 [a, b] = [b, a]
f2 [a, b, c] = [c , b, a]

7

Entry: Inductive Program Synthesis (IP)

Recall, I/O pairs for a function:

f1 [a] = a
f1 [a, b] = b
f1 [a, b, c] = c
f1 [a, b, c , d] = d

From this, an IP system automatically generates the program:

f1 [x] = x
f1 (x : xs) = f1 xs

Or:

f2 [] = []
f2 [a] = [a]
f2 [a, b] = [b, a]
f2 [a, b, c] = [c , b, a]

7

Entry: Inductive Program Synthesis (IP)

Recall, I/O pairs for a function:

f1 [a] = a
f1 [a, b] = b
f1 [a, b, c] = c
f1 [a, b, c , d] = d

From this, an IP system automatically generates the program:

f1 [x] = x
f1 (x : xs) = f1 xs

Or:

f2 [] = []
f2 [a] = [a]
f2 [a, b] = [b, a]
f2 [a, b, c] = [c , b, a]

7

Entry: Inductive Program Synthesis (IP)

Or:

f2 [] = []
f2 [a] = [a]
f2 [a, b] = [b, a]
f2 [a, b, c] = [c , b, a]

Again automatically generated:

f2 [] = []
f2 (x : xs) = ((f3 (x : xs)) : (f2 (f4 (x : xs))))

f3 [x] = x
f3 (x : xs) = f3 xs

f4 [x] = []
f4 (x : xs) = (x : (f4 xs))

7

Entry: Inductive Program Synthesis (IP)

Or:

f2 [] = []
f2 [a] = [a]
f2 [a, b] = [b, a]
f2 [a, b, c] = [c , b, a]

Or, through provision of snoc as “background knowledge”:

f2 [] = []
f2 (x : xs) = snoc (f2 xs) x

7

The master plan: BX + IP

Problem: Of the view-update laws

put xs (get xs) = xs

get (put xs ys) = ys

only the first one directly delivers I/O pairs for put.

Like, for get = init:

put [a] [] = [a]
put [a, b] [a] = [a, b]
put [a, b, c] [a, b] = [a, b, c]
put [a, b, c , d] [a, b, c] = [a, b, c , d]

But then one would synthesize:

put xs ys = xs

1. possible solution: Enforce use of both arguments?

8

The master plan: BX + IP

Problem: Of the view-update laws

put xs (get xs) = xs

get (put xs ys) = ys

only the first one directly delivers I/O pairs for put.

Like, for get = init:

put [a] [] = [a]
put [a, b] [a] = [a, b]
put [a, b, c] [a, b] = [a, b, c]
put [a, b, c , d] [a, b, c] = [a, b, c , d]

But then one would synthesize:

put xs ys = xs

1. possible solution: Enforce use of both arguments?

8

The master plan: BX + IP

Problem: Of the view-update laws

put xs (get xs) = xs

get (put xs ys) = ys

only the first one directly delivers I/O pairs for put.

Like, for get = init:

put [a] [] = [a]
put [a, b] [a] = [a, b]
put [a, b, c] [a, b] = [a, b, c]
put [a, b, c , d] [a, b, c] = [a, b, c , d]

But then one would synthesize:

put xs ys = xs

1. possible solution: Enforce use of both arguments?

8

The master plan: BX + IP

Problem: Of the view-update laws

put xs (get xs) = xs

get (put xs ys) = ys

only the first one directly delivers I/O pairs for put.

Like, for get = init:

put [a] [] = [a]
put [a, b] [a] = [a, b]
put [a, b, c] [a, b] = [a, b, c]
put [a, b, c , d] [a, b, c] = [a, b, c , d]

But then one would synthesize:

put xs ys = xs

1. possible solution: Enforce use of both arguments?
8

The master plan: BX + IP

First, on a simpler example, get = head:

put [a] a = [a]
put [a, b] a = [a, b]
put [a, b, c] a = [a, b, c]
put [a, b, c , d] a = [a, b, c , d]

To avoid put xs y = xs, insist on use of y , i.e., something like:

put xs y = (y :)

Starting from this hypothesis, practically only one reasonable path
of synthesis, with result something like:

put xs y = (y : (tail xs))

9

The master plan: BX + IP

First, on a simpler example, get = head:

put [a] a = [a]
put [a, b] a = [a, b]
put [a, b, c] a = [a, b, c]
put [a, b, c , d] a = [a, b, c , d]

To avoid put xs y = xs, insist on use of y , i.e., something like:

put xs y = (y :)

Starting from this hypothesis, practically only one reasonable path
of synthesis, with result something like:

put xs y = (y : (tail xs))

9

The master plan: BX + IP

First, on a simpler example, get = head:

put [a] a = [a]
put [a, b] a = [a, b]
put [a, b, c] a = [a, b, c]
put [a, b, c , d] a = [a, b, c , d]

To avoid put xs y = xs, insist on use of y , i.e., something like:

put xs y = (y :)

Starting from this hypothesis, practically only one reasonable path
of synthesis, with result something like:

put xs y = (y : (tail xs))

9

The master plan: BX + IP

On the more complex example, get = init:

init [x] = []
init (x : xs) = (x : (init xs))

different “degrees” of use of ys in put xs ys are possible.

For example:

put xs ys = (take (length ys) xs) ++ [last xs]

Or:

put xs ys = ys ++ [last xs]

Caution: Not every put generated (like) above automatically sa-
tisfies get (put xs ys) = ys. (But it’s okay, trust IP.)

10

The master plan: BX + IP

On the more complex example, get = init:

init [x] = []
init (x : xs) = (x : (init xs))

different “degrees” of use of ys in put xs ys are possible.

For example:

put xs ys = (take (length ys) xs) ++ [last xs]

Or:

put xs ys = ys ++ [last xs]

Caution: Not every put generated (like) above automatically sa-
tisfies get (put xs ys) = ys. (But it’s okay, trust IP.)

10

The master plan: BX + IP

On the more complex example, get = init:

init [x] = []
init (x : xs) = (x : (init xs))

different “degrees” of use of ys in put xs ys are possible.

For example:

put xs ys = (take (length ys) xs) ++ [last xs]

Or:

put xs ys = ys ++ [last xs]

Caution: Not every put generated (like) above automatically sa-
tisfies get (put xs ys) = ys. (But it’s okay, trust IP.)

10

The master plan: BX + IP

On the more complex example, get = init:

init [x] = []
init (x : xs) = (x : (init xs))

different “degrees” of use of ys in put xs ys are possible.

For example:

put xs ys = (take (length ys) xs) ++ [last xs]

Or:

put xs ys = ys ++ [last xs]

Caution: Not every put generated (like) above automatically sa-
tisfies get (put xs ys) = ys.

(But it’s okay, trust IP.)

10

The master plan: BX + IP

On the more complex example, get = init:

init [x] = []
init (x : xs) = (x : (init xs))

different “degrees” of use of ys in put xs ys are possible.

For example:

put xs ys = (take (length ys) xs) ++ [last xs]

Or:

put xs ys = ys ++ [last xs]

Caution: Not every put generated (like) above automatically sa-
tisfies get (put xs ys) = ys. (But it’s okay, trust IP.)

10

The master plan: BX + IP

2. possible solution: To after all generate I/O pairs for put from

get (put xs y) = y

as well, “inversion” of get.

Then:
put xs y = get−1 y

as provider of further I/O pairs beside put xs (get xs) = xs.

Like, for get = head,

head−1 y = [y]

or, better,

head−1 y = (y :)

In this case, agrees with the other suggestion . . .

11

The master plan: BX + IP

2. possible solution: To after all generate I/O pairs for put from

get (put xs y) = y

as well, “inversion” of get.

Then:
put xs y = get−1 y

as provider of further I/O pairs beside put xs (get xs) = xs.

Like, for get = head,

head−1 y = [y]

or, better,

head−1 y = (y :)

In this case, agrees with the other suggestion . . .

11

The master plan: BX + IP

2. possible solution: To after all generate I/O pairs for put from

get (put xs y) = y

as well, “inversion” of get.

Then:
put xs y = get−1 y

as provider of further I/O pairs beside put xs (get xs) = xs.

Like, for get = head,

head−1 y = [y]

or, better,

head−1 y = (y :)

In this case, agrees with the other suggestion . . .

11

The master plan: BX + IP

2. possible solution: To after all generate I/O pairs for put from

get (put xs y) = y

as well, “inversion” of get.

Then:
put xs y = get−1 y

as provider of further I/O pairs beside put xs (get xs) = xs.

Like, for get = head,

head−1 y = [y]

or, better,

head−1 y = (y :)

In this case, agrees with the other suggestion . . .

11

The master plan: BX + IP

2. possible solution: To after all generate I/O pairs for put from

get (put xs y) = y

as well, “inversion” of get.

Then:
put xs y = get−1 y

as provider of further I/O pairs beside put xs (get xs) = xs.

Like, for get = head,

head−1 y = [y]

or, better,

head−1 y = (y :)

In this case, agrees with the other suggestion . . .

11

The master plan: BX + IP

On the more complex example, get = init:

init [x] = []
init (x : xs) = (x : (init xs))

Use of

init−1 ys = snoc ys

to provide, beside:

put [a] [] = [a]
put [a, b] [a] = [a, b]
· · ·

also:

put [a] [b] = [b,]
put [a, b] [] = []
put [a, b] [c] = [c ,]
· · ·

12

The master plan: BX + IP

On the more complex example, get = init:

init [x] = []
init (x : xs) = (x : (init xs))

Use of

init−1 ys = snoc ys

to provide, beside:

put [a] [] = [a]
put [a, b] [a] = [a, b]
· · ·

also:

put [a] [b] = [b,]
put [a, b] [] = []
put [a, b] [c] = [c ,]
· · ·

12

The master plan: BX + IP

On the more complex example, get = init:

init [x] = []
init (x : xs) = (x : (init xs))

Use of

init−1 ys = snoc ys

to provide, beside:

put [a] [] = [a]
put [a, b] [a] = [a, b]
· · ·

also:

put [a] [b] = [b,]
put [a, b] [] = []
put [a, b] [c] = [c ,]
· · ·

12

Conclusion / Outlook

I Bidirectional Transformations:

I “hot topic” in various areas, including PL approaches
I typical weakness: nondeterminism, and limited (or no)

impact of programmer intentions

I Inductive Program Synthesis:

I application of machine learning
I detects/exploits regularities
I hypothesis: captures programmer intentions

I Connection:

I inductive program synthesis as a “helper”
I either naively as a black box, or deeper integration
I further ideas: I/O pairs per parametricity of get;

user impact through ad-hoc I/O pairs or
provision of background knowledge;
. . .

13

Conclusion / Outlook

I Bidirectional Transformations:

I “hot topic” in various areas, including PL approaches
I typical weakness: nondeterminism, and limited (or no)

impact of programmer intentions

I Inductive Program Synthesis:

I application of machine learning
I detects/exploits regularities
I hypothesis: captures programmer intentions

I Connection:

I inductive program synthesis as a “helper”
I either naively as a black box, or deeper integration
I further ideas: I/O pairs per parametricity of get;

user impact through ad-hoc I/O pairs or
provision of background knowledge;
. . .

13

Conclusion / Outlook

I Bidirectional Transformations:

I “hot topic” in various areas, including PL approaches
I typical weakness: nondeterminism, and limited (or no)

impact of programmer intentions

I Inductive Program Synthesis:

I application of machine learning
I detects/exploits regularities
I hypothesis: captures programmer intentions

I Connection:

I inductive program synthesis as a “helper”
I either naively as a black box, or deeper integration
I further ideas: I/O pairs per parametricity of get;

user impact through ad-hoc I/O pairs or
provision of background knowledge;
. . .

13

References I

F. Bancilhon and N. Spyratos.
Update semantics of relational views.
ACM Transactions on Database Systems, 6(3):557–575, 1981.

J.N. Foster, M.B. Greenwald, J.T. Moore, B.C. Pierce, and A.
Schmitt.
Combinators for bidirectional tree transformations: A linguistic
approach to the view-update problem.
ACM Transactions on Programming Languages and Systems,
29(3):17, 2007.

S. Katayama.
Systematic search for lambda expressions.
In Trends in Functional Programming 2005, Revised Selected
Papers, pages 111–126. Intellect, 2007.

14

References II

E. Kitzelmann and U. Schmid.
Inductive synthesis of functional programs: An explanation
based generalization approach.
Journal of Machine Learning Research, 7:429–454, 2006.

K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi.
Bidirectionalization transformation based on automatic
derivation of view complement functions.
In International Conference on Functional Programming,
Proceedings, pages 47–58. ACM Press, 2007.

J. Voigtländer.
Bidirectionalization for free!
In Principles of Programming Languages, Proceedings, pages
165–176. ACM Press, 2009.

15

	Bidirectionalization
	Inductive Program Synthesis
	BX + IP
	Conclusion / Outlook
	References

