Ideas for Connecting
Inductive Program Synthesis
and
Bidirectionalization

Janis Voigtlander
University of Bonn

PEPM'12

A small “test”

Which function is this?

1 [a] =a
fq [a,b] =b
fi [a,b,c] =c

fi[a,b,c,d] =d

A small “test”

Which function is this?

£ [a] =
f1 [a’ b] =
fi[a,b,c] =
fi[a,b,c,d] =d

0 o w

And this one?

2 (] =[]

£, [a] = [a]

5 [a, b] = [b, a]
fy[a,b,c] =]c, b, a]

View-Update [Banc. & Sp., ACM TODS’81]

source view

A

View-Update [Banc. & Sp., ACM TODS’81]

source view
i j get R i t
update

/N

View-Update [Banc. & Sp., ACM TODS’81]

source

A
QN

get

view

A

update

put

/N

View-Update [Banc. & Sp., ACM TODS’81]

source

A
QN

view

A

get - i i
\update

Pt A

View-Update [Banc. & Sp., ACM TODS’81]

source view

i j get R

/N
AN

Acceptability / GetPut

View-Update [Banc. & Sp., ACM TODS’81]

source view

get R

A— A
e —

Acceptability / GetPut

View-Update [Banc. & Sp., ACM TODS’81]

source view
j j get R i t
update

O —

Consistency / PutGet

View-Update [Banc. & Sp., ACM TODS’81]

source view
i t get R i t
update
A : P A
\/
get

Consistency / PutGet

View-Update [Banc. & Sp., ACM TODS’81]

source

A
QN

view

A

get - i i
\update

Pt A

View-Update [Banc. & Sp., ACM TODS’81]

source A view
AN
VY
) \
get\ R
7)
] \
] \
] \
' \
' \
: \
' ' update
']
' '
']
\]
[}]
[}]
\]
\)
< \ 7
\put,
N
N
W
v

Lenses, DSLs
[Foster et al., ACM TOPLAS'07, ...]

View-Update [Banc. & Sp., ACM TODS’81]

source view
j j get R i t
update

Qrrccccccccca=

AL A

Bidirectionalization
[Matsuda et al., ICFP'07], [V., POPL'09], ...

Bidirectionalization (BX)

Examples:

tail

“abc”

“p

Bidirectionalization (BX)

Examples:

tail

“abc” “bc”

update

uden

Bidirectionalization (BX)

Examples:
“3be” tail > b
update
v
Hade” < “de”

put

Bidirectionalization (BX)

Examples:

flatten

> “abac”
lal Ab’ Aal ACY

Bidirectionalization (BX)

Examples:

flatten Y "
»> “abac

xay Aby Aay Acy

update

“sbxc”

Bidirectionalization (BX)

Examples:

flatten Y "
»> “abac

xay Aby Aay Acy

update

v
K On - o “abe

Nondeterminism / Choices to make

Let get = sieve with:

S llall Ilabll llabcll Ilabcdll llabcdell

Sleve S nn nn IIbII

np" ‘ "bg" ‘ "pg"

Nondeterminism / Choices to make

Let get = sieve with:

S llall Ilabll llabcll Ilabcdll llabcdell

Sleve S nn nn IIbII

np" ‘ "bg" ‘ "pg"

Then, for example:

put n abcdll "Xy“ — n aXCyll

Nondeterminism / Choices to make

Let get = sieve with:

S nn [g | ugpn | ngpe" | "abed" | "abcde"
sieve s | "o nn ‘ np" ‘ np" ‘ "bg" ‘ "pg"
Then, for example:
put "abcd" ann — "axcy"

put "abcde" "xy" ="axcye"

Nondeterminism / Choices to make

Let get = sieve with:

S nn [g | ugpn | ngpe" | "abed" | "abcde"
sieve s | "o nn ‘ np" ‘ np" ‘ "pqa" ‘ "bd"
Then, for example:
put "abed" ann — "axcy"
put "abcde" "xy" ="axcye"

put "abcde" "xyz" =

Nondeterminism / Choices to make

Let get = sieve with:

S nn [g | ugpn | ngpe" | "abed" | "abcde"
sieve s | "o nn ‘ np" ‘ np" ‘ "pqa" ‘ "bd"
Then, for example:
put "abed" ann — "axcy"
put "abcde" "xy" ="axcye"

put "abcde" "xyz" = "axcyez"

Nondeterminism / Choices to make

Let get = sieve with:

S nn [g | ugpn | ngpe" | "abed" | "abcde"
sieve s | "o nn ‘ np" ‘ np" ‘ "pqa" ‘ "bd"
Then, for example:
put "abed" ann — "axcy"
put "abcde" "xy" ="axcye"

put "abcde" "xyz" ="axcyez" or "axcyez "7

Nondeterminism / Choices to make

Let get = sieve with:

s nn [g | ugpn | ngpe" | "abed" | "abcde"
sieve s | " nn ‘ np" ‘ np" ‘ "bg" ‘ "pg"
Then, for example:
put "abed" "Xy" — "axcy"
put "abcde" "xy" ="axcye"
put "abcde" "xyz" = "axcyez" or "axcyez "7

put "abcd" '"xyz"="axcy z"

Nondeterminism / Choices to make

Let get = sieve with:

S nn llall n abll llabc" n abcdll llabcde n
sieve s | " nn ‘ np" ‘ np" ‘ "bg" ‘ "pg"
Then, for example:
put Ilabcdll "Xy“ — llaXCyll
put "abcde" "xy" ="axcye"
put "abcde" "xyz" = "axcyez" or "axcyez "7
put "abcd" '"xyz"="axcy z"

put "abcdll "X" —

Nondeterminism / Choices to make

Let get = sieve with:

S nn llall n abll llabc" n abcdll llabcde n
sieve s | " nn ‘ np" ‘ np" ‘ "bg" ‘ "pg"
Then, for example:
put Ilabcdll "Xy“ — llaXCyll
put "abcde" "xy" ="axcye"
put "abcde" "xyz" = "axcyez" or "axcyez "7
put "abcd" '"xyz"="axcy z"

put "abcdll "X" — "aXC"

Nondeterminism / Choices to make

Let get = sieve with:

S nn llall n abll llabc" n abcdll llabcde n
sieve s | " nn ‘ np" ‘ np" ‘ "bg" ‘ "pg"
Then, for example:
put Ilabcdll "Xy“ — llaXCyll
put "abcde" "xy" ="axcye"
put "abcde" "xyz" = "axcyez" or "axcyez "7
put "abcd" '"xyz"="axcy z"

put "abcdll "X" — "aXC" or IIaXll ?

Nondeterminism / Choices to make

Let get = sieve with:

put
put
put
put

s nn [g | ugpn | ngpe" | "abed" | "abcde"
sieves | " nn ‘ np" ‘ np" ‘ "bg" ‘ "pg"
Then, for example:
"abed" anu — "axcy"
"abcede" "Xy" —mn axcye"
"abcde" "xyz" = "axcyez" or "axcyez "7
"abed" "XyZ" — "axcy Z"
"abed" "x" — "axc" or "ax"?, or "cx"?

put

Nondeterminism / Choices to make

Let get = head with:

head (x:xs) = x

Nondeterminism / Choices to make

Let get = head with:

head (x:xs) = x

Maybe:
put (x:xs) y = [y]

Nondeterminism / Choices to make

Let get = head with:

head (x:xs) = x

Maybe:
put (x:xs) y = [y]

But that violates put xs (get xs) = xs!

Nondeterminism / Choices to make

Let get = head with:

head (x:xs) = x

Maybe:
put (x:xs) y = [y]
But that violates put xs (get xs) = xs!

Better:

put (x:xs)y |y==x =(x:xs)
| otherwise = [y]

Nondeterminism / Choices to make

Let get = head with:

head (x:xs) = x

Maybe:
put (x:xs) y = [y]
But that violates put xs (get xs) = xs!

Better:

put (x:xs)y |y==x =(x:xs)
| otherwise = [y]

But “really intended”:

put (x:xs) y = (y: xs)

A slightly more complex case, with recursion

Let get = init with:

init [x] =]
init (x:xs) = (x:(init xs))

A slightly more complex case, with recursion

Let get = init with:

init [x] =]
init (x:xs) = (x:(init xs))

Possible, and correct:

put xs ys | length ys == (length xs) — 1 = ys 4 [last xs]
| otherwise =ysH" "

A slightly more complex case, with recursion

Let get = init with:

init [x] =]

init (x:xs) = (x:(init xs))
Possible, and correct:

put xs ys | length ys == (length xs) — 1 = ys 4 [last xs]
| otherwise =ysH" "

But intended:

put xs ys = ys H [last xs]

A slightly more complex case, with recursion

Let get = init with:

init [x] =]

init (x:xs) = (x:(init xs))
Possible, and correct:

put xs ys | length ys == (length xs) — 1 = ys 4 [last xs]
| otherwise =ysH" "

But intended:

put xs ys = ys H [last xs]

Problem: How to guide/control the possible choices?

Entry: Inductive Program Synthesis (IP)

Recall, 1/O pairs for a function:

1 [a] =a
f1 [3, b] =b
fi [a,b,c] =c
fi [a,b,c,d] =d

Entry: Inductive Program Synthesis (IP)

Recall, 1/O pairs for a function:

1 [a] =a
fl [a,b] =b
fi [a,b,c] =c

fi [a,b,c,d] =d

From this, an IP system automatically generates the program:
1 [x] =X
fi(x:xs)==£; xs

Entry: Inductive Program Synthesis (IP)

Recall, 1/O pairs for a function:

1 [a] =a
fl [a,b] =b
fi [a,b,c] =c

fi [a,b,c,d] =d

From this, an IP system automatically generates the program:
1 [x] =X
fi(x:xs)==£; xs

£ (] =1

£ [a] = [a]

5 [a, b] = [b, a]
fs [a,b,c] =]c,b,a]

Entry: Inductive Program Synthesis (IP)
Or:
2 (1 =

£, [a] = [a]
5 [a, b]
£, [a, b, c] [c, b, a]

Again automatically generated:

&[] =1l

fo (x:xs)=((f5 (x:xs)): (f2 (fa (x: xs))))
f3 [x] =X

f3 (x:xs) =1f3 xs

fax] =]

fa (x:xs) = (x:(fa xs))

Entry: Inductive Program Synthesis (IP)

Or:
2 (] =[]
f5 [a] = [a]
5 [a, b] = [b, a]
7 [37 b,C] = [C’ b7 a]

Or, through provision of snoc as “background knowledge”:

&[] =1

fo (x:xs) = snoc (f5 xs) x

The master plan: BX + IP

Problem: Of the view-update laws

put xs (get xs) = xs

get (put xs ys) = ys
only the first one directly delivers /O pairs for put.

The master plan: BX + IP

Problem: Of the view-update laws

put xs (get xs) = xs

get (put xs ys) = ys
only the first one directly delivers /O pairs for put.

Like, for get = init:

put [a] [] = [a]
put [a,b] [a] =[a b]
put [a,b,c] [a,b] =]a,b,c]

put [a, b, c,d] [a, b, c] = [a, b, c,d]

The master plan: BX + IP

Problem: Of the view-update laws

put xs (get xs) = xs

get (put xs ys) = ys
only the first one directly delivers /O pairs for put.

Like, for get = init:

put [a] [] = [a]
put [a,b] [a] =[a b]
put [a,b,c] [a,b] =]a,b,c]

put [a, b, c,d] [a, b, c] = [a, b, c,d]

But then one would synthesize:

put xs ys = xs

The master plan: BX + IP

Problem: Of the view-update laws

put xs (get xs) = xs

get (put xs ys) = ys
only the first one directly delivers /O pairs for put.

Like, for get = init:

put [a] [] = [a]
put [a,b] [a] =[a b]
put [a,b,c] [a,b] =]a,b,c]

put [a, b, c,d] [a, b, c] = [a, b, c,d]

But then one would synthesize:

put xs ys = xs

1. possible solution: Enforce use of both arguments?

The master plan: BX + IP

First, on a simpler example, get = head:

put [a] a=|[a]

put [a, b] a=|a,b]

put [a,b,c] a=]a, b,c]
put [a,b,c,d] a=[a,b,c,d]

The master plan: BX + IP

First, on a simpler example, get = head:

put [a] a=|[a]

put [a, b] a=|a,b]

put [a,b,c] a=]a, b,c]
put [a,b,c,d] a=[a,b,c,d]

To avoid put xs y = xs, insist on use of y, i.e., something like:

put xsy = (y:-)

The master plan: BX + IP

First, on a simpler example, get = head:

put [a] a=|a]

put [a, b] a=|a,b]

put [a,b,c] a=]a, b,c]
put [a,b,c,d] a=[a,b,c,d]

To avoid put xs y = xs, insist on use of y, i.e., something like:
put xsy = (y:-)

Starting from this hypothesis, practically only one reasonable path
of synthesis, with result something like:

put xs y = (y: (tail xs))

The master plan: BX + IP

On the more complex example, get = init:

init [x] =]
init (x:xs) = (x:(init xs))

different “degrees” of use of ys in put xs ys are possible.

10

The master plan: BX + IP

On the more complex example, get = init:

init [x] =]
init (x:xs) = (x:(init xs))

different “degrees” of use of ys in put xs ys are possible.

For example:

put xs ys = (take (length ys) xs) H [last xs]

10

The master plan: BX + IP

On the more complex example, get = init:

init [x] =]
init (x:xs) = (x:(init xs))

different “degrees” of use of ys in put xs ys are possible.

For example:

put xs ys = (take (length ys) xs) H [last xs]

Or:

put xs ys = ys H [last xs]

10

The master plan: BX + IP

On the more complex example, get = init:

init [x] =]
init (x:xs) = (x:(init xs))

different “degrees” of use of ys in put xs ys are possible.
For example:

put xs ys = (take (length ys) xs) H [last xs]

Or:
put xs ys = ys H [last xs]

Caution: Not every put generated (like) above automatically sa-
tisfies get (put xs ys) = ys.

10

The master plan: BX + IP

On the more complex example, get = init:

init [x] =]
init (x:xs) = (x:(init xs))

different “degrees” of use of ys in put xs ys are possible.
For example:

put xs ys = (take (length ys) xs) H [last xs]

Or:
put xs ys = ys H [last xs]

Caution: Not every put generated (like) above automatically sa-
tisfies get (put xs ys) = ys. (But it's okay, trust IP.)

10

The master plan: BX + IP

2. possible solution: To after all generate |/O pairs for put from

get (put xsy) =y

as well, “inversion” of get.

11

The master plan: BX + IP

2. possible solution: To after all generate |/O pairs for put from

get (put xsy) =y

as well, “inversion” of get.

Then:
put xsy = get_1 y

as provider of further 1/O pairs beside put xs (get xs) = xs.

11

The master plan: BX + IP

2. possible solution: To after all generate |/O pairs for put from

get (put xsy) =y

as well, “inversion” of get.

Then:

put xsy = get_1 y

as provider of further 1/O pairs beside put xs (get xs) = xs.

Like, for get = head,

head ' y = [y]

11

The master plan: BX + IP

2. possible solution: To after all generate |/O pairs for put from

get (put xsy) =y

as well, “inversion” of get.

Then:

put xsy = get_1 y

as provider of further 1/O pairs beside put xs (get xs) = xs.
Like, for get = head,

head "y = [y]
or, better,

head 'y = (y:_)

11

The master plan: BX + IP

2. possible solution: To after all generate |/O pairs for put from

get (put xsy) =y

as well, “inversion” of get.

Then:

put xsy = get_1 y

as provider of further 1/O pairs beside put xs (get xs) = xs.
Like, for get = head,

head "y = [y]
or, better,

head 'y = (y:_)

In this case, agrees with the other suggestion ...

11

The master plan: BX + IP

On the more complex example, get = init:

init [x] =]
init (x:xs) = (x:(init xs))

12

The master plan: BX + IP

On the more complex example, get = init:
init [x] =]
init (x:xs) = (x:(init xs))

Use of

init ! ys = snoc ys _

12

The master plan: BX + IP

On the more complex example, get = init:

init [x] =]
init (x:xs) = (x:(init xs))

Use of
init ! ys = snoc ys _
to provide, beside:

put [a]]
put [a, b] [a]

[a]
[a, b]

also:
put [a] [b] =[b,]

put [a,b] [] =[-]
put [a, b] [c] = [c, -]

12

Conclusion / Outlook

» Bidirectional Transformations:
» “hot topic” in various areas, including PL approaches
» typical weakness: nondeterminism, and limited (or no)
impact of programmer intentions

13

Conclusion / Outlook

» Bidirectional Transformations:
» “hot topic” in various areas, including PL approaches
» typical weakness: nondeterminism, and limited (or no)
impact of programmer intentions

» Inductive Program Synthesis:
» application of machine learning
» detects/exploits regularities
» hypothesis: captures programmer intentions

13

Conclusion / Outlook

» Bidirectional Transformations:
» “hot topic” in various areas, including PL approaches
» typical weakness: nondeterminism, and limited (or no)
impact of programmer intentions

» Inductive Program Synthesis:
» application of machine learning
» detects/exploits regularities
» hypothesis: captures programmer intentions

» Connection:

» inductive program synthesis as a “helper”

» either naively as a black box, or deeper integration

» further ideas: 1/O pairs per parametricity of get;
user impact through ad-hoc 1/O pairs or
provision of background knowledge;

13

References |

[§ F. Bancilhon and N. Spyratos.
Update semantics of relational views.
ACM Transactions on Database Systems, 6(3):557-575, 1981.

[J.N. Foster, M.B. Greenwald, J.T. Moore, B.C. Pierce, and A.
Schmitt.
Combinators for bidirectional tree transformations: A linguistic
approach to the view-update problem.
ACM Transactions on Programming Languages and Systems,
29(3):17, 2007.

[§ S. Katayama.
Systematic search for lambda expressions.
In Trends in Functional Programming 2005, Revised Selected
Papers, pages 111-126. Intellect, 2007.

14

References |l

[@ E. Kitzelmann and U. Schmid.
Inductive synthesis of functional programs: An explanation
based generalization approach.
Journal of Machine Learning Research, 7:429-454, 2006.

@ K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi.
Bidirectionalization transformation based on automatic
derivation of view complement functions.

In International Conference on Functional Programming,
Proceedings, pages 47-58. ACM Press, 2007.

[§ J. Voigtlander.
Bidirectionalization for freel!

In Principles of Programming Languages, Proceedings, pages
165-176. ACM Press, 2009.

	Bidirectionalization
	Inductive Program Synthesis
	BX + IP
	Conclusion / Outlook
	References

