Proving Correctness via Free Theorems The Case of the destroy/build-Rule

Janis Voigtländer

Technische Universität Dresden

PEPM'08

Short Cut Fusion [Gill et al. 1993]

Example: from To n = go nwhere go i = if i > m then [] else i : go (succ i) sum [] = 0 sum (x : xs) = x + sum xs

Problem: Expressions like

sum (fromTo 1 10)

involve creating and consuming an intermediate list.

Short Cut Fusion [Gill et al. 1993]

Example: fromTo $n \ m = \text{go } n$ where go i = if i > m then [] else i : go (succ i)

$$\mathsf{sum} \ [] = 0 \\ \mathsf{sum} \ (x : xs) = x + \mathsf{sum} \ xs$$

Problem: Expressions like

sum (fromTo 1 10)

involve creating and consuming an intermediate list.

- Solution: 1. Write from To in terms of build.
 - 2. Write sum in terms of foldr.
 - 3. Use the following foldr/build-rule:

foldr c n (build prod) \rightsquigarrow prod c n

The Dual of Short Cut Fusion [Svenningsson 2002]

Example: fromTo $n \ m = \text{go } n$ where go i = if i > m then [] else i : go (succ i)

zip [] [] = []
zip
$$(x : xs) (y : ys) = (x, y) : zip xs ys$$

Problem: Expressions like

zip (fromTo 1 10) (fromTo 'a' 'j')

involve two intermediate lists.

The Dual of Short Cut Fusion [Svenningsson 2002]

Example: fromTo
$$n \ m = \text{go } n$$

where go $i = \text{if } i > m$ then []
else $i : \text{go (succ } i)$

zip [] [] = []
zip
$$(x : xs) (y : ys) = (x, y) : zip xs ys$$

Problem: Expressions like

zip (fromTo 1 10) (fromTo 'a' 'j')

involve two intermediate lists.

- Solution: 1. Write from To in terms of unfoldr.
 - 2. Write zip in terms of destroy.
 - 3. Use the following destroy/unfoldr-rule:

destroy cons (unfoldr psi e) \rightsquigarrow cons psi e

Why a destroy/build-Rule?

Example: from To n = go nwhere go i = if i > m then [] else i : go (succ i)

zip [] [] = []
zip
$$(x : xs) (y : ys) = (x, y) : zip xs ys$$

Problem: What if we have

zip (fromTo 1 10) (build prod)

where the producer of the second intermediate list cannot be expressed in terms of unfoldr?

Why a destroy/build-Rule?

Example: from To n = go nwhere go i = if i > m then [] else i : go (succ i)

zip [] [] = []
zip
$$(x : xs) (y : ys) = (x, y) : zip xs ys$$

Problem: What if we have

zip (fromTo 1 10) (build prod)

where the producer of the second intermediate list cannot be expressed in terms of unfoldr?

After fusion: destroy ($\lambda psi \ xs \rightarrow zipD$ ($\lambda i \rightarrow if \ i > 10 \ \cdots$) $psi \ 1 \ xs$) (build prod) where $zipD = \cdots$ A destroy/build-Rule, How?

By the definitions,

destroy cons (build prod)

is the same as

cons match (prod (:) [])

where

data Maybe α = Nothing | Just α match :: [α] \rightarrow Maybe (α , [α]) match [] = Nothing match (x : xs) = Just (x, xs) A destroy/build-Rule, How?

By the definitions,

destroy cons (build prod)

is the same as

cons match (prod (:) [])

where

data Maybe α = Nothing | Just α match :: [α] \rightarrow Maybe (α , [α]) match [] = Nothing match (x : xs) = Just (x, xs)

Why, then, not simply

destroy cons (build prod) $\sim \rightarrow$ cons id (prod ($\lambda x \ xs \rightarrow$ Just (x, xs)) Nothing) ?

Does it Preserve Semantics?

All we know about cons and prod are their types:

cons ::
$$\forall \beta$$
. $(\beta \rightarrow \mathsf{Maybe} (\mathsf{T}_1, \beta)) \rightarrow \beta \rightarrow \mathsf{T}_2$

and

prod ::
$$\forall \beta$$
. (T₁ $\rightarrow \beta \rightarrow \beta$) $\rightarrow \beta \rightarrow \beta$

But that might be enough, thanks to free theorems [Wadler 1989]! In the following, a proof sketch.

The free theorem for

cons ::
$$\forall \beta$$
. ($\beta \rightarrow \mathsf{Maybe}(\mathsf{T}_1, \beta)$) $\rightarrow \beta \rightarrow \mathsf{T}_2$

is:

$$\begin{aligned} \forall \tau_1, \tau_2, \mathcal{R} &\subseteq \tau_1 \times \tau_2, \mathcal{R} \text{ strict, continuous, and bottom-reflecting.} \\ \forall p :: \tau_1 \to \mathsf{Maybe} \ (\mathsf{T}_1, \tau_1), q :: \tau_2 \to \mathsf{Maybe} \ (\mathsf{T}_1, \tau_2). \\ (p \neq \bot \Leftrightarrow q \neq \bot) \\ & \land \ (\forall (x, y) \in \mathcal{R}. \ (p \ x, q \ y) \in \mathsf{lift}_{\mathsf{Maybe}}(\mathsf{lift}_{(,)}(\mathsf{id}, \mathcal{R}))) \\ & \Rightarrow \forall (z, v) \in \mathcal{R}. \ \textit{cons} \ p \ z = \textit{cons} \ q \ v \end{aligned}$$

The free theorem for

cons ::
$$\forall \beta$$
. ($\beta \rightarrow \mathsf{Maybe}(\mathsf{T}_1, \beta)$) $\rightarrow \beta \rightarrow \mathsf{T}_2$

is:

$$\begin{aligned} \forall \tau_1, \tau_2, \mathcal{R} &\subseteq \tau_1 \times \tau_2, \mathcal{R} \text{ strict, continuous, and bottom-reflecting.} \\ \forall p :: \tau_1 \to \mathsf{Maybe} \ (\mathsf{T}_1, \tau_1), q :: \tau_2 \to \mathsf{Maybe} \ (\mathsf{T}_1, \tau_2). \\ (p \neq \bot \Leftrightarrow q \neq \bot) \\ & \land \ (\forall (x, y) \in \mathcal{R}. \ (p \ x, q \ y) \in \mathsf{lift}_{\mathsf{Maybe}}(\mathsf{lift}_{(,)}(\mathsf{id}, \mathcal{R}))) \\ & \Rightarrow \forall (z, v) \in \mathcal{R}. \ \textit{cons} \ p \ z = \textit{cons} \ q \ v \end{aligned}$$

$$\begin{array}{l} \textit{cons match (prod (:) [])} \\ = \\ \textit{cons id (prod (λx xs \rightarrow Just (x, xs)) Nothing)} \end{array}$$

The free theorem for

cons ::
$$\forall \beta$$
. ($\beta \rightarrow \mathsf{Maybe}(\mathsf{T}_1, \beta)$) $\rightarrow \beta \rightarrow \mathsf{T}_2$

is:

$$\begin{aligned} \forall \tau_1, \tau_2, \mathcal{R} &\subseteq \tau_1 \times \tau_2, \mathcal{R} \text{ strict, continuous, and bottom-reflecting.} \\ \forall p :: \tau_1 \to \mathsf{Maybe} \ (\mathsf{T}_1, \tau_1), q :: \tau_2 \to \mathsf{Maybe} \ (\mathsf{T}_1, \tau_2). \\ (p \neq \bot \Leftrightarrow q \neq \bot) \\ &\land \ (\forall (x, y) \in \mathcal{R}. \ (p \ x, q \ y) \in \mathsf{lift}_{\mathsf{Maybe}}(\mathsf{lift}_{(,)}(\mathsf{id}, \mathcal{R}))) \\ &\Rightarrow \forall (z, v) \in \mathcal{R}. \ cons \ p \ z = cons \ q \ v \end{aligned}$$

$$\begin{array}{l} \textit{cons match (prod (:) [])} \\ = \\ \textit{cons id (prod ($\lambda x xs \rightarrow Just (x, xs)$) Nothing)} \end{array}$$

The free theorem for

cons ::
$$\forall \beta$$
. ($\beta \rightarrow \mathsf{Maybe}(\mathsf{T}_1, \beta)$) $\rightarrow \beta \rightarrow \mathsf{T}_2$

is:

$$\begin{aligned} \forall \tau_1, \tau_2, \mathcal{R} &\subseteq \tau_1 \times \tau_2, \mathcal{R} \text{ strict, continuous, and bottom-reflecting.} \\ \forall p :: \tau_1 \to \mathsf{Maybe} \ (\mathsf{T}_1, \tau_1), q :: \tau_2 \to \mathsf{Maybe} \ (\mathsf{T}_1, \tau_2). \\ & (p \neq \bot \Leftrightarrow q \neq \bot) \\ & \land \ (\forall (x, y) \in \mathcal{R}. \ (p \ x, q \ y) \in \mathsf{lift}_{\mathsf{Maybe}}(\mathsf{lift}_{(,)}(\mathsf{id}, \mathcal{R}))) \\ & \Rightarrow \forall (z, v) \in \mathcal{R}. \ cons \ p \ z = cons \ q \ v \end{aligned}$$

$$\begin{array}{l} \textit{cons match (prod (:) [])} \\ = \\ \textit{cons id (prod ($\lambda x xs \rightarrow Just (x, xs)$) Nothing)} \end{array}$$

The free theorem for

$$\mathit{cons} :: orall eta . \ (eta o \mathsf{Maybe} \ (\mathsf{T}_1, eta)) o eta o \mathsf{T}_2$$
 ,

specialized down to function level, is:

$$\begin{aligned} \forall \tau_1, \tau_2, f :: \tau_1 &\to \tau_2, f \text{ strict and total.} \\ \forall p :: \tau_1 &\to \mathsf{Maybe} \ (\mathsf{T}_1, \tau_1), q :: \tau_2 &\to \mathsf{Maybe} \ (\mathsf{T}_1, \tau_2). \\ (p \neq \bot \Leftrightarrow q \neq \bot) \\ \land \ (\forall x :: \tau_1. \ (p \ x, q \ (f \ x)) \in \mathsf{lift}_{\mathsf{Maybe}}(\mathsf{lift}_{(,)}(\mathsf{id}, f))) \\ \Rightarrow \forall y :: \tau_1. \ \textit{cons} \ p \ y = \textit{cons} \ q \ (f \ y) \end{aligned}$$

$$\begin{array}{l} \textit{cons match (prod (:) [])} \\ = \\ \textit{cons id (prod ($\lambda x xs \rightarrow Just (x, xs)$) Nothing)} \end{array}$$

The free theorem for

$$\mathit{cons} :: orall eta . \ (eta o \mathsf{Maybe} \ (\mathsf{T}_1, eta)) o eta o \mathsf{T}_2$$
 ,

specialized down to function level, is:

$$\begin{array}{l} \forall \tau_1, \tau_2, f :: \tau_1 \to \tau_2, f \text{ strict and total.} \\ \forall p :: \tau_1 \to \mathsf{Maybe} \ (\mathsf{T}_1, \tau_1), q :: \tau_2 \to \mathsf{Maybe} \ (\mathsf{T}_1, \tau_2). \\ (p \neq \bot \Leftrightarrow q \neq \bot) \\ \land \ (\forall x :: \tau_1. \ (p \ x, q \ (f \ x)) \in \mathsf{lift}_{\mathsf{Maybe}}(\mathsf{lift}_{(,)}(\mathsf{id}, f))) \\ \Rightarrow \forall y :: \tau_1. \ \textit{cons } p \ y = \textit{cons } q \ (f \ y) \end{array}$$

$$cons match (prod (:) []) = cons id (prod ($\lambda x \ xs \rightarrow$ Just (x, xs)) Nothing)$$

The free theorem for

$$\mathit{cons} :: orall eta . \ (eta o \mathsf{Maybe} \ (\mathsf{T}_1, eta)) o eta o \mathsf{T}_2$$
 ,

specialized down to function level, is:

$$\begin{array}{l} \forall \tau_1, \tau_2, f :: \tau_1 \to \tau_2, f \text{ strict and total.} \\ \forall p :: \tau_1 \to \mathsf{Maybe} \ (\mathsf{T}_1, \tau_1), q :: \tau_2 \to \mathsf{Maybe} \ (\mathsf{T}_1, \tau_2). \\ (p \neq \bot \Leftrightarrow q \neq \bot) \\ \land \ (\forall x :: \tau_1. \ (p \ x, q \ (f \ x)) \in \mathsf{lift}_{\mathsf{Maybe}}(\mathsf{lift}_{(,)}(\mathsf{id}, f))) \\ \Rightarrow \forall y :: \tau_1. \ \textit{cons } p \ y = \textit{cons } q \ (f \ y) \end{array}$$

$$cons match (prod (:) []) = cons id (prod ($\lambda x \ xs \rightarrow$ Just (x, xs)) Nothing)$$

The free theorem for

$$\mathit{cons} :: orall eta . \ (eta o \mathsf{Maybe} \ (\mathsf{T}_1, eta)) o eta o \mathsf{T}_2$$
 ,

specialized down to function level, is:

$$\begin{array}{l} \forall \tau_1, \tau_2, f :: \tau_1 \to \tau_2, f \text{ strict and total.} \\ \forall p :: \tau_1 \to \mathsf{Maybe} \ (\mathsf{T}_1, \tau_1), q :: \tau_2 \to \mathsf{Maybe} \ (\mathsf{T}_1, \tau_2). \\ (p \neq \bot \Leftrightarrow q \neq \bot) \\ \land \ (\forall x :: \tau_1. \ (p \ x, q \ (f \ x)) \in \mathsf{lift}_{\mathsf{Maybe}}(\mathsf{lift}_{(,)}(\mathsf{id}, f))) \\ \Rightarrow \forall y :: \tau_1. \ \textit{cons } p \ y = \textit{cons } q \ (f \ y) \end{array}$$

$$cons match (prod (:) []) = cons id (prod ($\lambda x \ xs \rightarrow$ Just (x, xs)) Nothing)$$

All we need is a function f such that:

- 1. f is strict and total
- 2. $\forall x :: [\mathsf{T}_1]. (\mathsf{match} x, \mathsf{id} (f x)) \in \mathsf{lift}_{\mathsf{Maybe}}(\mathsf{lift}_{(,)}(\mathsf{id}, f))$
- 3. $f (prod (:) []) = prod (\lambda x \ xs \rightarrow Just (x, xs))$ Nothing

(Note that the condition match $\neq \bot \Leftrightarrow id \neq \bot$ is trivially fulfilled.)

All we need is a function f such that:

- 1. f is strict and total
- 2. $\forall x :: [\mathsf{T}_1]. (\mathsf{match } x, \mathsf{id} (f x)) \in \mathsf{lift}_{\mathsf{Maybe}}(\mathsf{lift}_{(,)}(\mathsf{id}, f))$
- 3. $f (prod (:) []) = prod (\lambda x \ xs \rightarrow Just (x, xs))$ Nothing

(Note that the condition match $\neq \bot \Leftrightarrow id \neq \bot$ is trivially fulfilled.)

The free theorem for

prod ::
$$\forall \beta$$
. $(\mathsf{T}_1 \to \beta \to \beta) \to \beta \to \beta$

is:

$$\begin{aligned} \forall \tau_1, \tau_2, \mathcal{R} &\subseteq \tau_1 \times \tau_2, \mathcal{R} \text{ strict, continuous, and bottom-reflecting.} \\ \forall p :: \mathsf{T}_1 \to \tau_1 \to \tau_1, q :: \mathsf{T}_1 \to \tau_2 \to \tau_2. \\ (p \neq \bot \Leftrightarrow q \neq \bot) \\ \land (\forall x :: \mathsf{T}_1. \ (p \times \neq \bot \Leftrightarrow q \times \neq \bot) \\ \land \forall (y, z) \in \mathcal{R}. \ (p \times y, q \times z) \in \mathcal{R}) \\ \Rightarrow \forall (v, w) \in \mathcal{R}. \ (prod \ p \ v, prod \ q \ w) \in \mathcal{R} \end{aligned}$$

All we need is a function f such that:

1. f is strict and total

2. $\forall x :: [\mathsf{T}_1]$. (match x, id (f x)) $\in \mathsf{lift}_{\mathsf{Maybe}}(\mathsf{lift}_{(,)}(\mathsf{id}, f))$

3. $f (prod (:) []) = prod (\lambda x \ xs \rightarrow Just (x, xs))$ Nothing

(Note that the condition match $\neq \bot \Leftrightarrow id \neq \bot$ is trivially fulfilled.)

The free theorem for

prod ::
$$\forall \beta$$
. $(\mathsf{T}_1 o eta o eta) o eta o eta)$,

$$\begin{aligned} \forall \tau_1, \tau_2, f &:: \tau_1 \to \tau_2, f \text{ strict and total.} \\ \forall p :: \mathsf{T}_1 \to \tau_1 \to \tau_1, q :: \mathsf{T}_1 \to \tau_2 \to \tau_2. \\ (p \neq \bot \Leftrightarrow q \neq \bot) \\ \land \ (\forall x :: \mathsf{T}_1. \ (p \ x \neq \bot \Leftrightarrow q \ x \neq \bot) \\ \land \ \forall y :: \tau_1. \ f \ (p \ x \ y) = q \ x \ (f \ y)) \\ \Rightarrow \forall z :: \tau_1. \ f \ (prod \ p \ z) = prod \ q \ (f \ z) \end{aligned}$$

All we need is a function f such that:

1. f is strict and total

2. $\forall x :: [\mathsf{T}_1]$. (match x, id (f x)) $\in \mathsf{lift}_{\mathsf{Maybe}}(\mathsf{lift}_{(,)}(\mathsf{id}, f))$

3. $f(prod(:)[]) = prod(\lambda x \ xs \rightarrow Just(x, xs))$ Nothing

(Note that the condition match $\neq \bot \Leftrightarrow \mathsf{id} \neq \bot$ is trivially fulfilled.)

The free theorem for

prod :::
$$\forall \beta$$
. $(\mathsf{T}_1 o \beta o \beta) o \beta o \beta$,

$$\begin{aligned} \forall \tau_1, \tau_2, f ::: \tau_1 \to \tau_2, f \text{ strict and total.} \\ \forall p ::: \mathsf{T}_1 \to \tau_1 \to \tau_1, q ::: \mathsf{T}_1 \to \tau_2 \to \tau_2. \\ (p \neq \bot \Leftrightarrow q \neq \bot) \\ \land (\forall x ::: \mathsf{T}_1. (p \times \neq \bot \Leftrightarrow q \times \neq \bot) \\ \land \forall y ::: \tau_1. f (p \times y) = q \times (f \ y)) \\ \Rightarrow \forall z :: \tau_1. f (prod \ p \ z) = prod \ q \ (f \ z) \end{aligned}$$

All we need is a function f such that:

1. f is strict and total

2. $\forall x :: [\mathsf{T}_1]$. (match x, id (f x)) $\in \mathsf{lift}_{\mathsf{Maybe}}(\mathsf{lift}_{(,)}(\mathsf{id}, f))$

3. $f(prod(:)[]) = prod(\lambda x \ xs \rightarrow Just(x, xs))$ Nothing

(Note that the condition match $\neq \bot \Leftrightarrow \mathsf{id} \neq \bot$ is trivially fulfilled.)

The free theorem for

prod :::
$$\forall \beta$$
. $(\mathsf{T}_1 o \beta o \beta) o \beta o \beta$,

$$\begin{aligned} \forall \tau_1, \tau_2, f ::: \tau_1 \to \tau_2, f \text{ strict and total.} \\ \forall p ::: \mathsf{T}_1 \to \tau_1 \to \tau_1, q ::: \mathsf{T}_1 \to \tau_2 \to \tau_2. \\ (p \neq \bot \Leftrightarrow q \neq \bot) \\ \land (\forall x ::: \mathsf{T}_1. (p \times \neq \bot \Leftrightarrow q \times \neq \bot) \\ \land \forall y ::: \tau_1. f (p \times y) = q \times (f \ y)) \\ \Rightarrow \forall z :: \tau_1. f (prod \ p \ z) = prod \ q \ (f \ z) \end{aligned}$$

All we need is a function f such that:

1. f is strict and total

2. $\forall x :: [\mathsf{T}_1]$. (match x, id (f x)) $\in \mathsf{lift}_{\mathsf{Maybe}}(\mathsf{lift}_{(,)}(\mathsf{id}, f))$

3. $f(prod(:)[]) = prod(\lambda x \ xs \rightarrow Just(x, xs))$ Nothing

(Note that the condition match $\neq \bot \Leftrightarrow \mathsf{id} \neq \bot$ is trivially fulfilled.)

The free theorem for

prod :::
$$\forall \beta$$
. $(\mathsf{T}_1 o \beta o \beta) o \beta o \beta$,

$$\begin{aligned} \forall \tau_1, \tau_2, f ::: \tau_1 \to \tau_2, f \text{ strict and total.} \\ \forall p ::: \mathsf{T}_1 \to \tau_1 \to \tau_1, q ::: \mathsf{T}_1 \to \tau_2 \to \tau_2. \\ (p \neq \bot \Leftrightarrow q \neq \bot) \\ \land (\forall x ::: \mathsf{T}_1. (p \times \neq \bot \Leftrightarrow q \times \neq \bot) \\ \land \forall y ::: \tau_1. f (p \times y) = q \times (f \ y)) \\ \Rightarrow \forall z :: \tau_1. f (prod \ p \ z) = prod \ q \ (f \ z) \end{aligned}$$

All we need is a function f such that:

- 1. f is strict and total
- 2. $\forall x :: [T_1]. (match x, id (f x)) \in lift_{Maybe}(lift_{(,)}(id, f))$
- 3. $\forall x :: T_1, y :: [T_1]. f((:) x y) = (\lambda x xs \rightarrow \text{Just}(x, xs)) x (f y)$
- 4. *f* [] = Nothing

(Note that the " $\neq \perp$ "-conditions are again trivially fulfilled.)

All we need is a function f such that:

- 1. f is strict and total
- 2. $\forall x :: [\mathsf{T}_1]$. (match x, id (f x)) $\in \mathsf{lift}_{\mathsf{Maybe}}(\mathsf{lift}_{(,)}(\mathsf{id}, f))$
- 3. $\forall x :: T_1, y :: [T_1]. f((:) x y) = (\lambda x xs \rightarrow \text{Just}(x, xs)) x (f y)$
- 4. f[] = Nothing

(Note that the " $\neq \perp$ "-conditions are again trivially fulfilled.)

The last two conditions leave no room other than to consider:

f [] = Nothingf (x : y) = Just (x, f y)

All we need is a function f such that:

- 1. f is strict and total
- 2. $\forall x :: [T_1]. (match x, id (f x)) \in lift_{Maybe}(lift_{(,)}(id, f))$
- 3. $\forall x :: T_1, y :: [T_1]. f((:) x y) = (\lambda x xs \rightarrow \mathsf{Just}(x, xs)) x (f y)$

4. f[] = Nothing

(Note that the " $\neq \perp$ "-conditions are again trivially fulfilled.)

The last two conditions leave no room other than to consider:

$$f [] = Nothing f (x : y) = Just (x, f y)$$

This f is strict and total!

2. $\forall x :: [T_1]. (match x, id (f x)) \in lift_{Maybe}(lift_{(,)}(id, f))$?

$$f [] = Nothing f (x : y) = Just (x, f y)$$

We have:

$$\begin{aligned} \mathsf{lift}_{\mathsf{Maybe}}(\mathsf{lift}_{(,)}(\mathsf{id}, f)) &= \{(\bot, \bot), (\mathsf{Nothing}, \mathsf{Nothing})\} \cup \\ \{(\mathsf{Just} \ x_1, \mathsf{Just} \ y_1) \mid (x_1, y_1) \in \mathsf{lift}_{(,)}(\mathsf{id}, f)\} \end{aligned}$$

 $\mathsf{lift}_{(,)}(\mathsf{id},f) = \{(\bot,\bot)\} \ \cup \ \{((x_1,x_2),(y_1,y_2)) \ | \ x_1 = y_1 \land f \ x_2 = y_2\}$

We have:

$$\mathsf{lift}_{\mathsf{Maybe}}(\mathsf{lift}_{(,)}(\mathsf{id}, f)) = \{(\bot, \bot), (\mathsf{Nothing}, \mathsf{Nothing})\} \cup \\ \{(\mathsf{Just} \ x_1, \mathsf{Just} \ y_1) \mid (x_1, y_1) \in \mathsf{lift}_{(,)}(\mathsf{id}, f)\}$$

 $\mathsf{lift}_{(,)}(\mathsf{id},f) = \{(\bot,\bot)\} \cup \{((x_1,x_2),(y_1,y_2)) \mid x_1 = y_1 \land f \ x_2 = y_2\}$

To establish

 $\forall x :: [\mathsf{T}_1]. \text{ (match } x, \text{id } (f x)) \in \mathsf{lift}_{\mathsf{Maybe}}(\mathsf{lift}_{(,)}(\mathsf{id}, f)),$

we check against the definitions:

match [] = Nothing
$$f$$
 [] = Nothing
match $(x : y)$ = Just (x, y) f $(x : y)$ = Just $(x, f y)$

We have:

 $\begin{aligned} \mathsf{lift}_{\mathsf{Maybe}}(\mathsf{lift}_{(,)}(\mathsf{id}, f)) &= \{(\bot, \bot), (\mathsf{Nothing}, \mathsf{Nothing})\} \cup \\ \{(\mathsf{Just} \ x_1, \mathsf{Just} \ y_1) \mid (x_1, y_1) \in \mathsf{lift}_{(,)}(\mathsf{id}, f)\} \end{aligned}$

 $\mathsf{lift}_{(,)}(\mathsf{id},f) = \{(\bot,\bot)\} \cup \{((x_1,x_2),(y_1,y_2)) \mid x_1 = y_1 \land f \ x_2 = y_2\}$

To establish

 $\forall x :: [T_1]. (match x, id (f x)) \in lift_{Maybe}(lift_{(,)}(id, f)),$

we check against the definitions:

We have:

$$\mathsf{lift}_{\mathsf{Maybe}}(\mathsf{lift}_{(,)}(\mathsf{id}, f)) = \{(\bot, \bot), (\mathsf{Nothing}, \mathsf{Nothing})\} \cup \\ \{(\mathsf{Just} \ x_1, \mathsf{Just} \ y_1) \mid (x_1, y_1) \in \mathsf{lift}_{(,)}(\mathsf{id}, f)\}$$

 $\mathsf{lift}_{(,)}(\mathsf{id},f) = \{(\bot,\bot)\} \ \cup \ \{((x_1,x_2),(y_1,y_2)) \ | \ x_1 = y_1 \land f \ x_2 = y_2\}$

To establish

 $\forall x :: [\mathsf{T}_1]. \text{ (match } x, \text{id } (f x)) \in \mathsf{lift}_{\mathsf{Maybe}}(\mathsf{lift}_{(,)}(\mathsf{id}, f)),$

we check against the definitions:

We have:

 $\begin{aligned} \mathsf{lift}_{\mathsf{Maybe}}(\mathsf{lift}_{(,)}(\mathsf{id}, f)) &= \{(\bot, \bot), (\mathsf{Nothing}, \mathsf{Nothing})\} \cup \\ \{(\mathsf{Just} \ x_1, \mathsf{Just} \ y_1) \mid (x_1, y_1) \in \mathsf{lift}_{(,)}(\mathsf{id}, f)\} \end{aligned}$

 $\mathsf{lift}_{(,)}(\mathsf{id},f) = \{(\bot,\bot)\} \cup \{((x_1,x_2),(y_1,y_2)) \mid x_1 = y_1 \land f \ x_2 = y_2\}$

To establish

 $\forall x :: [T_1]. (match x, id (f x)) \in lift_{Maybe}(lift_{(,)}(id, f)),$

we check against the definitions:

We have:

$$\begin{aligned} \mathsf{lift}_{\mathsf{Maybe}}(\mathsf{lift}_{(,)}(\mathsf{id},f)) &= \{(\bot,\bot), (\mathsf{Nothing},\mathsf{Nothing})\} \cup \\ \{(\mathsf{Just}\ x_1,\mathsf{Just}\ y_1) \mid (x_1,y_1) \in \mathsf{lift}_{(,)}(\mathsf{id},f)\} \end{aligned}$$

 $\mathsf{lift}_{(,)}(\mathsf{id},f) = \{(\bot,\bot)\} \cup \{((x_1,x_2),(y_1,y_2)) \mid x_1 = y_1 \land f \ x_2 = y_2\}$

To establish

 $\forall x :: [T_1]. (match x, id (f x)) \in lift_{Maybe}(lift_{(,)}(id, f)),$

we check against the definitions:

We have:

$$\mathsf{lift}_{\mathsf{Maybe}}(\mathsf{lift}_{(,)}(\mathsf{id}, f)) = \{(\bot, \bot), (\mathsf{Nothing}, \mathsf{Nothing})\} \cup \\ \{(\mathsf{Just} \ x_1, \mathsf{Just} \ y_1) \mid (x_1, y_1) \in \mathsf{lift}_{(,)}(\mathsf{id}, f)\}$$

 $\mathsf{lift}_{(,)}(\mathsf{id},f) = \{(\bot,\bot)\} \cup \{((x_1,x_2),(y_1,y_2)) \mid x_1 = y_1 \land f \ x_2 = y_2\}$

To establish

 $\forall x :: [\mathsf{T}_1]. \text{ (match } x, \text{id } (f x)) \in \mathsf{lift}_{\mathsf{Maybe}}(\mathsf{lift}_{(,)}(\mathsf{id}, f)),$

we check against the definitions:

match [] = Nothing
$$f$$
 [] = Nothing
match $(x : y)$ = Just (x, y) f $(x : y)$ = Just $(x, f y)$

Done!

Conclusion

- ► The destroy/build-rule holds unconditionally.
- ▶ Part of the proof work was push-the-button.
- The remainder was very much goal-driven.
- ▶ The approach scales to other transformation rules as well.
- Sascha Böhme implemented a great tool!
- Go play with it: http://linux.tcs.inf.tu-dresden.de/~voigt/ft/

References

A. Gill, J. Launchbury, and S.L. Peyton Jones. A short cut to deforestation.

In Functional Programming Languages and Computer Architecture, Proceedings, pages 223–232. ACM Press, 1993.

J. Svenningsson.

Shortcut fusion for accumulating parameters & zip-like functions.

In International Conference on Functional Programming, Proceedings, pages 124–132. ACM Press, 2002.

P. Wadler.

Theorems for free!

In Functional Programming Languages and Computer Architecture, Proceedings, pages 347–359. ACM Press, 1989.