
Proving Correctness via Free Theorems
The Case of the destroy/build-Rule

Janis Voigtländer

Technische Universität Dresden

PEPM’08



Short Cut Fusion [Gill et al. 1993]

Example: fromTo n m = go n

where go i = if i > m then []
else i : go (succ i)

sum [] = 0
sum (x : xs) = x + sum xs

Problem: Expressions like

sum (fromTo 1 10)

involve creating and consuming an intermediate list.

2



Short Cut Fusion [Gill et al. 1993]

Example: fromTo n m = go n

where go i = if i > m then []
else i : go (succ i)

sum [] = 0
sum (x : xs) = x + sum xs

Problem: Expressions like

sum (fromTo 1 10)

involve creating and consuming an intermediate list.

Solution: 1. Write fromTo in terms of build.
2. Write sum in terms of foldr.
3. Use the following foldr/build-rule:

foldr c n (build prod) � prod c n

2



The Dual of Short Cut Fusion [Svenningsson 2002]

Example: fromTo n m = go n

where go i = if i > m then []
else i : go (succ i)

zip [] [] = []
zip (x : xs) (y : ys) = (x , y) : zip xs ys

Problem: Expressions like

zip (fromTo 1 10) (fromTo ′a′ ′j′)

involve two intermediate lists.

3



The Dual of Short Cut Fusion [Svenningsson 2002]

Example: fromTo n m = go n

where go i = if i > m then []
else i : go (succ i)

zip [] [] = []
zip (x : xs) (y : ys) = (x , y) : zip xs ys

Problem: Expressions like

zip (fromTo 1 10) (fromTo ′a′ ′j′)

involve two intermediate lists.

Solution: 1. Write fromTo in terms of unfoldr.
2. Write zip in terms of destroy.
3. Use the following destroy/unfoldr-rule:

destroy cons (unfoldr psi e) � cons psi e

3



Why a destroy/build-Rule?

Example: fromTo n m = go n

where go i = if i > m then []
else i : go (succ i)

zip [] [] = []
zip (x : xs) (y : ys) = (x , y) : zip xs ys

Problem: What if we have

zip (fromTo 1 10) (build prod)

where the producer of the second intermediate list
cannot be expressed in terms of unfoldr?

4



Why a destroy/build-Rule?

Example: fromTo n m = go n

where go i = if i > m then []
else i : go (succ i)

zip [] [] = []
zip (x : xs) (y : ys) = (x , y) : zip xs ys

Problem: What if we have

zip (fromTo 1 10) (build prod)

where the producer of the second intermediate list
cannot be expressed in terms of unfoldr?

After fusion:
destroy (λpsi xs → zipD (λi → if i > 10 · · · ) psi 1 xs)

(build prod)
where zipD = · · ·

4



A destroy/build-Rule, How?

By the definitions,

destroy cons (build prod)

is the same as
cons match (prod (:) [])

where
data Maybe α = Nothing | Just α

match :: [α] → Maybe (α, [α])
match [] = Nothing
match (x : xs) = Just (x , xs)

5



A destroy/build-Rule, How?

By the definitions,

destroy cons (build prod)

is the same as
cons match (prod (:) [])

where
data Maybe α = Nothing | Just α

match :: [α] → Maybe (α, [α])
match [] = Nothing
match (x : xs) = Just (x , xs)

Why, then, not simply

destroy cons (build prod)
�

cons id (prod (λx xs → Just (x , xs)) Nothing) ?

5



Does it Preserve Semantics?

All we know about cons and prod are their types:

cons :: ∀β. (β → Maybe (T1, β)) → β → T2

and
prod :: ∀β. (T1 → β → β) → β → β

But that might be enough, thanks to free theorems [Wadler 1989]!

In the following, a proof sketch.

6



Where to Start?

The free theorem for

cons :: ∀β. (β → Maybe (T1, β)) → β → T2

is:

∀τ1, τ2,R ⊆ τ1 × τ2,R strict, continuous, and bottom-reflecting.

∀p :: τ1 → Maybe (T1, τ1), q :: τ2 → Maybe (T1, τ2).
(p 6= ⊥ ⇔ q 6= ⊥)

∧ (∀(x , y) ∈ R. (p x , q y) ∈ liftMaybe(lift(,)(id,R)))

⇒ ∀(z , v) ∈ R. cons p z = cons q v

7



Where to Start?

The free theorem for

cons :: ∀β. (β → Maybe (T1, β)) → β → T2

is:

∀τ1, τ2,R ⊆ τ1 × τ2,R strict, continuous, and bottom-reflecting.

∀p :: τ1 → Maybe (T1, τ1), q :: τ2 → Maybe (T1, τ2).
(p 6= ⊥ ⇔ q 6= ⊥)

∧ (∀(x , y) ∈ R. (p x , q y) ∈ liftMaybe(lift(,)(id,R)))

⇒ ∀(z , v) ∈ R. cons p z = cons q v

Recall that we want to prove

cons match (prod (:) [])
=

cons id (prod (λx xs → Just (x , xs)) Nothing)

7



Where to Start?

The free theorem for

cons :: ∀β. (β → Maybe (T1, β)) → β → T2

is:

∀τ1, τ2,R ⊆ τ1 × τ2,R strict, continuous, and bottom-reflecting.

∀p :: τ1 → Maybe (T1, τ1), q :: τ2 → Maybe (T1, τ2).
(p 6= ⊥ ⇔ q 6= ⊥)

∧ (∀(x , y) ∈ R. (p x , q y) ∈ liftMaybe(lift(,)(id,R)))

⇒ ∀(z , v) ∈ R. cons p z = cons q v

Recall that we want to prove

cons match (prod (:) [])
=

cons id (prod (λx xs → Just (x , xs)) Nothing)

7



Where to Start?

The free theorem for

cons :: ∀β. (β → Maybe (T1, β)) → β → T2

is:

∀τ1, τ2,R ⊆ τ1 × τ2,R strict, continuous, and bottom-reflecting.

∀p :: τ1 → Maybe (T1, τ1), q :: τ2 → Maybe (T1, τ2).
(p 6= ⊥ ⇔ q 6= ⊥)

∧ (∀(x , y) ∈ R. (p x , q y) ∈ liftMaybe(lift(,)(id,R)))

⇒ ∀(z , v) ∈ R. cons p z = cons q v

Recall that we want to prove

cons match (prod (:) [])
=

cons id (prod (λx xs → Just (x , xs)) Nothing)

7



Where to Start?

The free theorem for

cons :: ∀β. (β → Maybe (T1, β)) → β → T2 ,

specialized down to function level, is:

∀τ1, τ2, f :: τ1 → τ2, f strict and total.
∀p :: τ1 → Maybe (T1, τ1), q :: τ2 → Maybe (T1, τ2).

(p 6= ⊥ ⇔ q 6= ⊥)
∧ (∀x :: τ1. (p x , q (f x)) ∈ liftMaybe(lift(,)(id, f )))

⇒ ∀y :: τ1. cons p y = cons q (f y)

Recall that we want to prove

cons match (prod (:) [])
=

cons id (prod (λx xs → Just (x , xs)) Nothing)

7



Where to Start?

The free theorem for

cons :: ∀β. (β → Maybe (T1, β)) → β → T2 ,

specialized down to function level, is:

∀τ1, τ2, f :: τ1 → τ2, f strict and total.
∀p :: τ1 → Maybe (T1, τ1), q :: τ2 → Maybe (T1, τ2).

(p 6= ⊥ ⇔ q 6= ⊥)
∧ (∀x :: τ1. (p x , q (f x)) ∈ liftMaybe(lift(,)(id, f )))

⇒ ∀y :: τ1. cons p y = cons q (f y)

Recall that we want to prove

cons match (prod (:) [])
=

cons id (prod (λx xs → Just (x , xs)) Nothing)

7



Where to Start?

The free theorem for

cons :: ∀β. (β → Maybe (T1, β)) → β → T2 ,

specialized down to function level, is:

∀τ1, τ2, f :: τ1 → τ2, f strict and total.
∀p :: τ1 → Maybe (T1, τ1), q :: τ2 → Maybe (T1, τ2).

(p 6= ⊥ ⇔ q 6= ⊥)
∧ (∀x :: τ1. (p x , q (f x)) ∈ liftMaybe(lift(,)(id, f )))

⇒ ∀y :: τ1. cons p y = cons q (f y)

Recall that we want to prove

cons match (prod (:) [])
=

cons id (prod (λx xs → Just (x , xs)) Nothing)

7



Where to Start?

The free theorem for

cons :: ∀β. (β → Maybe (T1, β)) → β → T2 ,

specialized down to function level, is:

∀τ1, τ2, f :: τ1 → τ2, f strict and total.
∀p :: τ1 → Maybe (T1, τ1), q :: τ2 → Maybe (T1, τ2).

(p 6= ⊥ ⇔ q 6= ⊥)
∧ (∀x :: τ1. (p x , q (f x)) ∈ liftMaybe(lift(,)(id, f )))

⇒ ∀y :: τ1. cons p y = cons q (f y)

Recall that we want to prove

cons match (prod (:) [])
=

cons id (prod (λx xs → Just (x , xs)) Nothing)

7



How to Continue?

All we need is a function f such that:

1. f is strict and total

2. ∀x :: [T1]. (match x , id (f x)) ∈ liftMaybe(lift(,)(id, f ))

3. f (prod (:) []) = prod (λx xs → Just (x , xs)) Nothing

(Note that the condition match 6= ⊥ ⇔ id 6= ⊥ is trivially fulfilled.)

8



How to Continue?

All we need is a function f such that:

1. f is strict and total

2. ∀x :: [T1]. (match x , id (f x)) ∈ liftMaybe(lift(,)(id, f ))

3. f (prod (:) []) = prod (λx xs → Just (x , xs)) Nothing

(Note that the condition match 6= ⊥ ⇔ id 6= ⊥ is trivially fulfilled.)

The free theorem for

prod :: ∀β. (T1 → β → β) → β → β

is:

∀τ1, τ2,R ⊆ τ1 × τ2,R strict, continuous, and bottom-reflecting.

∀p :: T1 → τ1 → τ1, q :: T1 → τ2 → τ2.

(p 6= ⊥ ⇔ q 6= ⊥)
∧ (∀x :: T1. (p x 6= ⊥ ⇔ q x 6= ⊥)

∧ ∀(y , z) ∈ R. (p x y , q x z) ∈ R)
⇒ ∀(v ,w) ∈ R. (prod p v , prod q w) ∈ R

8



How to Continue?

All we need is a function f such that:

1. f is strict and total

2. ∀x :: [T1]. (match x , id (f x)) ∈ liftMaybe(lift(,)(id, f ))

3. f (prod (:) []) = prod (λx xs → Just (x , xs)) Nothing

(Note that the condition match 6= ⊥ ⇔ id 6= ⊥ is trivially fulfilled.)

The free theorem for

prod :: ∀β. (T1 → β → β) → β → β ,

specialized down to function level, is:

∀τ1, τ2, f :: τ1 → τ2, f strict and total.
∀p :: T1 → τ1 → τ1, q :: T1 → τ2 → τ2.

(p 6= ⊥ ⇔ q 6= ⊥)
∧ (∀x :: T1. (p x 6= ⊥ ⇔ q x 6= ⊥)

∧ ∀y :: τ1. f (p x y) = q x (f y))
⇒ ∀z :: τ1. f (prod p z) = prod q (f z)

8



How to Continue?

All we need is a function f such that:

1. f is strict and total

2. ∀x :: [T1]. (match x , id (f x)) ∈ liftMaybe(lift(,)(id, f ))

3. f (prod (:) []) = prod (λx xs → Just (x , xs)) Nothing

(Note that the condition match 6= ⊥ ⇔ id 6= ⊥ is trivially fulfilled.)

The free theorem for

prod :: ∀β. (T1 → β → β) → β → β ,

specialized down to function level, is:

∀τ1, τ2, f :: τ1 → τ2, f strict and total.
∀p :: T1 → τ1 → τ1, q :: T1 → τ2 → τ2.

(p 6= ⊥ ⇔ q 6= ⊥)
∧ (∀x :: T1. (p x 6= ⊥ ⇔ q x 6= ⊥)

∧ ∀y :: τ1. f (p x y) = q x (f y))
⇒ ∀z :: τ1. f (prod p z) = prod q (f z)

8



How to Continue?

All we need is a function f such that:

1. f is strict and total

2. ∀x :: [T1]. (match x , id (f x)) ∈ liftMaybe(lift(,)(id, f ))

3. f (prod (:) []) = prod (λx xs → Just (x , xs)) Nothing

(Note that the condition match 6= ⊥ ⇔ id 6= ⊥ is trivially fulfilled.)

The free theorem for

prod :: ∀β. (T1 → β → β) → β → β ,

specialized down to function level, is:

∀τ1, τ2, f :: τ1 → τ2, f strict and total.
∀p :: T1 → τ1 → τ1, q :: T1 → τ2 → τ2.

(p 6= ⊥ ⇔ q 6= ⊥)
∧ (∀x :: T1. (p x 6= ⊥ ⇔ q x 6= ⊥)

∧ ∀y :: τ1. f (p x y) = q x (f y))
⇒ ∀z :: τ1. f (prod p z) = prod q (f z)

8



How to Continue?

All we need is a function f such that:

1. f is strict and total

2. ∀x :: [T1]. (match x , id (f x)) ∈ liftMaybe(lift(,)(id, f ))

3. f (prod (:) []) = prod (λx xs → Just (x , xs)) Nothing

(Note that the condition match 6= ⊥ ⇔ id 6= ⊥ is trivially fulfilled.)

The free theorem for

prod :: ∀β. (T1 → β → β) → β → β ,

specialized down to function level, is:

∀τ1, τ2, f :: τ1 → τ2, f strict and total.
∀p :: T1 → τ1 → τ1, q :: T1 → τ2 → τ2.

(p 6= ⊥ ⇔ q 6= ⊥)
∧ (∀x :: T1. (p x 6= ⊥ ⇔ q x 6= ⊥)

∧ ∀y :: τ1. f (p x y) = q x (f y))
⇒ ∀z :: τ1. f (prod p z) = prod q (f z)

8



Almost There

All we need is a function f such that:

1. f is strict and total

2. ∀x :: [T1]. (match x , id (f x)) ∈ liftMaybe(lift(,)(id, f ))

3. ∀x :: T1, y :: [T1]. f ((:) x y) = (λx xs → Just (x , xs)) x (f y)

4. f [] = Nothing

(Note that the “6= ⊥”-conditions are again trivially fulfilled.)

9



Almost There

All we need is a function f such that:

1. f is strict and total

2. ∀x :: [T1]. (match x , id (f x)) ∈ liftMaybe(lift(,)(id, f ))

3. ∀x :: T1, y :: [T1]. f ((:) x y) = (λx xs → Just (x , xs)) x (f y)

4. f [] = Nothing

(Note that the “6= ⊥”-conditions are again trivially fulfilled.)

The last two conditions leave no room other than to consider:

f [] = Nothing
f (x : y) = Just (x , f y)

9



Almost There

All we need is a function f such that:

1. f is strict and total

2. ∀x :: [T1]. (match x , id (f x)) ∈ liftMaybe(lift(,)(id, f ))

3. ∀x :: T1, y :: [T1]. f ((:) x y) = (λx xs → Just (x , xs)) x (f y)

4. f [] = Nothing

(Note that the “6= ⊥”-conditions are again trivially fulfilled.)

The last two conditions leave no room other than to consider:

f [] = Nothing
f (x : y) = Just (x , f y)

This f is strict and total!

9



Almost There

2. ∀x :: [T1]. (match x , id (f x)) ∈ liftMaybe(lift(,)(id, f )) ?

f [] = Nothing
f (x : y) = Just (x , f y)

9



Finishing Up

We have:

liftMaybe(lift(,)(id, f )) = {(⊥,⊥), (Nothing,Nothing)} ∪
{(Just x1, Just y1) | (x1, y1) ∈ lift(,)(id, f )}

lift(,)(id, f ) = {(⊥,⊥)} ∪ {((x1, x2), (y1, y2)) | x1 = y1 ∧ f x2 = y2}

10



Finishing Up

We have:

liftMaybe(lift(,)(id, f )) = {(⊥,⊥), (Nothing,Nothing)} ∪
{(Just x1, Just y1) | (x1, y1) ∈ lift(,)(id, f )}

lift(,)(id, f ) = {(⊥,⊥)} ∪ {((x1, x2), (y1, y2)) | x1 = y1 ∧ f x2 = y2}

To establish

∀x :: [T1]. (match x , id (f x)) ∈ liftMaybe(lift(,)(id, f )) ,

we check against the definitions:

match [] = Nothing f [] = Nothing
match (x : y) = Just (x , y) f (x : y) = Just (x , f y)

10



Finishing Up

We have:

liftMaybe(lift(,)(id, f )) = {(⊥,⊥), (Nothing,Nothing)} ∪
{(Just x1, Just y1) | (x1, y1) ∈ lift(,)(id, f )}

lift(,)(id, f ) = {(⊥,⊥)} ∪ {((x1, x2), (y1, y2)) | x1 = y1 ∧ f x2 = y2}

To establish

∀x :: [T1]. (match x , id (f x)) ∈ liftMaybe(lift(,)(id, f )) ,

we check against the definitions:

match [] = Nothing f [] = Nothing
match (x : y) = Just (x , y) f (x : y) = Just (x , f y)

10



Finishing Up

We have:

liftMaybe(lift(,)(id, f )) = {(⊥,⊥), (Nothing,Nothing)} ∪
{(Just x1, Just y1) | (x1, y1) ∈ lift(,)(id, f )}

lift(,)(id, f ) = {(⊥,⊥)} ∪ {((x1, x2), (y1, y2)) | x1 = y1 ∧ f x2 = y2}

To establish

∀x :: [T1]. (match x , id (f x)) ∈ liftMaybe(lift(,)(id, f )) ,

we check against the definitions:

match [] = Nothing f [] = Nothing
match (x : y) = Just (x , y) f (x : y) = Just (x , f y)

10



Finishing Up

We have:

liftMaybe(lift(,)(id, f )) = {(⊥,⊥), (Nothing,Nothing)} ∪
{(Just x1, Just y1) | (x1, y1) ∈ lift(,)(id, f )}

lift(,)(id, f ) = {(⊥,⊥)} ∪ {((x1, x2), (y1, y2)) | x1 = y1 ∧ f x2 = y2}

To establish

∀x :: [T1]. (match x , id (f x)) ∈ liftMaybe(lift(,)(id, f )) ,

we check against the definitions:

match [] = Nothing f [] = Nothing
match (x : y) = Just (x , y) f (x : y) = Just (x , f y)

10



Finishing Up

We have:

liftMaybe(lift(,)(id, f )) = {(⊥,⊥), (Nothing,Nothing)} ∪
{(Just x1, Just y1) | (x1, y1) ∈ lift(,)(id, f )}

lift(,)(id, f ) = {(⊥,⊥)} ∪ {((x1, x2), (y1, y2)) | x1 = y1 ∧ f x2 = y2}

To establish

∀x :: [T1]. (match x , id (f x)) ∈ liftMaybe(lift(,)(id, f )) ,

we check against the definitions:

match [] = Nothing f [] = Nothing
match (x : y) = Just (x , y) f (x : y) = Just (x , f y)

10



Finishing Up

We have:

liftMaybe(lift(,)(id, f )) = {(⊥,⊥), (Nothing,Nothing)} ∪
{(Just x1, Just y1) | (x1, y1) ∈ lift(,)(id, f )}

lift(,)(id, f ) = {(⊥,⊥)} ∪ {((x1, x2), (y1, y2)) | x1 = y1 ∧ f x2 = y2}

To establish

∀x :: [T1]. (match x , id (f x)) ∈ liftMaybe(lift(,)(id, f )) ,

we check against the definitions:

match [] = Nothing f [] = Nothing
match (x : y) = Just (x , y) f (x : y) = Just (x , f y)

Done!

10



Conclusion
�

The destroy/build-rule holds unconditionally.

�
Part of the proof work was push-the-button.

�
The remainder was very much goal-driven.

�
The approach scales to other transformation rules as well.

�
Sascha Böhme implemented a great tool!

�
Go play with it:
http://linux.tcs.inf.tu-dresden.de/~voigt/ft/

11



References

A. Gill, J. Launchbury, and S.L. Peyton Jones.
A short cut to deforestation.
In Functional Programming Languages and Computer

Architecture, Proceedings, pages 223–232. ACM Press, 1993.

J. Svenningsson.
Shortcut fusion for accumulating parameters & zip-like
functions.
In International Conference on Functional Programming,

Proceedings, pages 124–132. ACM Press, 2002.

P. Wadler.
Theorems for free!
In Functional Programming Languages and Computer

Architecture, Proceedings, pages 347–359. ACM Press, 1989.

12


