Proving Correctness via Free Theorems The Case of the destroy/build-Rule

Janis Voigtländer

Technische Universität Dresden

> PEPM’08

Short Cut Fusion [Gill et al. 1993]

> Example: fromTo $n m=$ go n where go $i=$ if $i>m$ then [] else $i:$ go (succ i)
>
> $\begin{aligned} \operatorname{sum}[] \quad & =0 \\ \operatorname{sum}(x: x s) & =x+\operatorname{sum} x s\end{aligned}$

Problem: Expressions like

$$
\text { sum (fromTo } 1 \text { 10) }
$$

involve creating and consuming an intermediate list.

Short Cut Fusion [Gill et al. 1993]

Example: fromTo $n m=$ go n where go $i=$ if $i>m$ then [] else i : go (succ i)

$$
\begin{array}{ll}
\operatorname{sum}[] & =0 \\
\operatorname{sum}(x: x s) & =x+\operatorname{sum} x s
\end{array}
$$

Problem: Expressions like

$$
\text { sum (fromTo } 1 \text { 10) }
$$

involve creating and consuming an intermediate list.
Solution: 1. Write fromTo in terms of build.
2. Write sum in terms of foldr.
3. Use the following foldr/build-rule:

$$
\text { foldr } \subset n \text { (build prod) } \rightsquigarrow \text { prod } \subset n
$$

The Dual of Short Cut Fusion [Svenningsson 2002]

Example: fromTo $n m=$ go n where go $i=$ if $i>m$ then []
else i : go (succ $i)$
$\begin{array}{ll}\operatorname{zip}[] \quad[] & =[] \\ \operatorname{zip}(x: x s)(y: y s) & =(x, y): \text { zip } x s \text { ys }\end{array}$
Problem: Expressions like

$$
\text { zip (fromTo } 1 \text { 10) (fromTo 'a' } \mathrm{a}^{\prime} \text { ') }
$$

involve two intermediate lists.

The Dual of Short Cut Fusion [Svenningsson 2002]

Example: fromTo $n m=$ go n
where go $i=$ if $i>m$ then [] else i : go (succ i)

$\operatorname{zip}[] \quad[]$	$=[]$
$\operatorname{zip}(x: x s)(y: y s)$	$=(x, y):$ zip xs ys

Problem: Expressions like

$$
\text { zip (fromTo } 1 \text { 10) (fromTo 'a' } \mathrm{a}^{\prime} \text { ') }
$$

involve two intermediate lists.
Solution: 1. Write fromTo in terms of unfoldr.
2. Write zip in terms of destroy.
3. Use the following destroy/unfoldr-rule: destroy cons (unfoldr psi e) \rightsquigarrow cons psi e

Why a destroy/build-Rule?

Example: fromTo $n m=$ go n where go $i=$ if $i>m$ then [] else i : go (succ i)

$$
\begin{array}{ll}
\operatorname{zip}[] & =[] \\
\operatorname{zip}(x: x s)(y: y s) & =(x, y): \operatorname{zip} x s \text { ys }
\end{array}
$$

Problem: What if we have

$$
\text { zip (fromTo } 1 \text { 10) (build prod) }
$$

where the producer of the second intermediate list cannot be expressed in terms of unfoldr?

Why a destroy/build-Rule?

Example: fromTo $n m=$ go n where go $i=$ if $i>m$ then [] else i : go (succ i)

$$
\begin{array}{ll}
\operatorname{zip}[] \quad[] & =[] \\
\operatorname{zip}(x: x s)(y: y s) & =(x, y): \text { zip } x s \text { ys }
\end{array}
$$

Problem: What if we have

$$
\text { zip (fromTo } 1 \text { 10) (build prod) }
$$

where the producer of the second intermediate list cannot be expressed in terms of unfoldr?

After fusion:
destroy $(\lambda p s i x s \rightarrow \operatorname{zipD}(\lambda i \rightarrow \mathbf{i f} i>10 \cdots) p s i 1 x s)$ (build prod)
where zipD $=\ldots$

A destroy/build-Rule, How?

By the definitions,
destroy cons (build prod)
is the same as
cons match (prod (:) [])
where

$$
\begin{aligned}
& \text { data Maybe } \alpha=\text { Nothing } \mid \text { Just } \alpha \\
& \text { match }::[\alpha] \rightarrow \text { Maybe }(\alpha,[\alpha]) \\
& \text { match }[]=\text { Nothing } \\
& \text { match }(x: x s)=\text { Just }(x, x s)
\end{aligned}
$$

A destroy/build-Rule, How?

By the definitions,
destroy cons (build prod)
is the same as
cons match (prod (:) [])
where

$$
\text { data Maybe } \alpha=\text { Nothing } \mid \text { Just } \alpha
$$

$$
\begin{aligned}
& \text { match }::[\alpha] \rightarrow \text { Maybe }(\alpha,[\alpha]) \\
& \text { match }[] \\
& \text { match }(x: x s)=\text { Nothing }
\end{aligned}
$$

Why, then, not simply
destroy cons (build prod)
cons id (prod $(\lambda x x s \rightarrow$ Just $(x, x s))$ Nothing) ?

Does it Preserve Semantics?

All we know about cons and prod are their types:

$$
\text { cons }:: \forall \beta .\left(\beta \rightarrow \text { Maybe }\left(\mathrm{T}_{1}, \beta\right)\right) \rightarrow \beta \rightarrow \mathrm{T}_{2}
$$

and

$$
\operatorname{prod}:: \forall \beta .\left(\mathrm{T}_{1} \rightarrow \beta \rightarrow \beta\right) \rightarrow \beta \rightarrow \beta
$$

But that might be enough, thanks to free theorems [Wadler 1989]!
In the following, a proof sketch.

Where to Start?

The free theorem for

$$
\text { cons }:: \forall \beta .\left(\beta \rightarrow \text { Maybe }\left(\mathrm{T}_{1}, \beta\right)\right) \rightarrow \beta \rightarrow \mathrm{T}_{2}
$$

is:
$\forall \tau_{1}, \tau_{2}, \mathcal{R} \subseteq \tau_{1} \times \tau_{2}, \mathcal{R}$ strict, continuous, and bottom-reflecting. $\forall p:: \tau_{1} \rightarrow$ Maybe $\left(\mathrm{T}_{1}, \tau_{1}\right), q:: \tau_{2} \rightarrow$ Maybe $\left(\mathrm{T}_{1}, \tau_{2}\right)$.
$(p \neq \perp \Leftrightarrow q \neq \perp)$
$\wedge\left(\forall(x, y) \in \mathcal{R} .(p x, q y) \in \operatorname{lift}_{\text {Maybe }}\left(\operatorname{lift}_{(,)}(\mathrm{id}, \mathcal{R})\right)\right)$
$\Rightarrow \forall(z, v) \in \mathcal{R}$. cons $p z=$ cons $q v$

Where to Start?

The free theorem for

$$
\text { cons }:: \forall \beta .\left(\beta \rightarrow \text { Maybe }\left(\mathrm{T}_{1}, \beta\right)\right) \rightarrow \beta \rightarrow \mathrm{T}_{2}
$$

is:
$\forall \tau_{1}, \tau_{2}, \mathcal{R} \subseteq \tau_{1} \times \tau_{2}, \mathcal{R}$ strict, continuous, and bottom-reflecting.
$\forall p:: \tau_{1} \rightarrow$ Maybe $\left(\mathrm{T}_{1}, \tau_{1}\right), q:: \tau_{2} \rightarrow$ Maybe $\left(\mathrm{T}_{1}, \tau_{2}\right)$.

$$
\begin{aligned}
& (p \neq \perp \Leftrightarrow q \neq \perp) \\
\wedge & \left(\forall(x, y) \in \mathcal{R} .(p x, q y) \in \operatorname{lift}_{\text {Maybe } \left.\left(\mathrm{lift}_{(,)}(\mathrm{id}, \mathcal{R})\right)\right)}\right. \\
\Rightarrow & \forall(z, v) \in \mathcal{R} . \text { cons } p z=\text { cons } q v
\end{aligned}
$$

Recall that we want to prove

$$
\begin{gathered}
\text { cons match (prod }(:)[]) \\
= \\
\text { cons id }(\operatorname{prod}(\lambda x x s \rightarrow \text { Just }(x, x s)) \text { Nothing })
\end{gathered}
$$

Where to Start?

The free theorem for

$$
\text { cons }:: \forall \beta .\left(\beta \rightarrow \text { Maybe }\left(\mathrm{T}_{1}, \beta\right)\right) \rightarrow \beta \rightarrow \mathrm{T}_{2}
$$

is:
$\forall \tau_{1}, \tau_{2}, \mathcal{R} \subseteq \tau_{1} \times \tau_{2}, \mathcal{R}$ strict, continuous, and bottom-reflecting.
$\forall p:: \tau_{1} \rightarrow$ Maybe $\left(\mathrm{T}_{1}, \tau_{1}\right), q:: \tau_{2} \rightarrow$ Maybe $\left(\mathrm{T}_{1}, \tau_{2}\right)$.

$$
\begin{aligned}
& (p \neq \perp \Leftrightarrow q \neq \perp) \\
\wedge & \left(\forall(x, y) \in \mathcal{R} .(p x, q y) \in \operatorname{lift}_{\text {Maybe }}\left(\text { lift }_{(,)}(\mathrm{id}, \mathcal{R})\right)\right) \\
\Rightarrow & \forall(z, v) \in \mathcal{R} . \text { cons } p z=\text { cons } q v
\end{aligned}
$$

Recall that we want to prove

$$
\begin{gathered}
\text { cons match (prod }(:)[]) \\
= \\
\text { cons id }(\operatorname{prod}(\lambda x \times s \rightarrow \text { Just }(x, x s)) \text { Nothing })
\end{gathered}
$$

Where to Start?

The free theorem for

$$
\text { cons }:: \forall \beta .\left(\beta \rightarrow \text { Maybe }\left(\mathrm{T}_{1}, \beta\right)\right) \rightarrow \beta \rightarrow \mathrm{T}_{2}
$$

is:
$\forall \tau_{1}, \tau_{2}, \mathcal{R} \subseteq \tau_{1} \times \tau_{2}, \mathcal{R}$ strict, continuous, and bottom-reflecting.
$\forall p:: \tau_{1} \rightarrow$ Maybe $\left(\mathrm{T}_{1}, \tau_{1}\right), q:: \tau_{2} \rightarrow$ Maybe $\left(\mathrm{T}_{1}, \tau_{2}\right)$.

$$
\begin{aligned}
& (p \neq \perp \Leftrightarrow q \neq \perp) \\
\wedge & \left(\forall(x, y) \in \mathcal{R} .(p x, q y) \in \operatorname{lift}_{\text {Maybe }}\left(\mathrm{lift}_{(,)}(\mathrm{id}, \mathcal{R})\right)\right) \\
\Rightarrow & \forall(z, v) \in \mathcal{R} . \text { cons } p z=\text { cons } q v
\end{aligned}
$$

Recall that we want to prove

$$
\begin{gathered}
\text { cons match (prod }(:)[]) \\
= \\
\text { cons id }(\operatorname{prod}(\lambda x x s \rightarrow \text { Just }(x, x s)) \text { Nothing })
\end{gathered}
$$

Where to Start?

The free theorem for

$$
\text { cons }:: \forall \beta .\left(\beta \rightarrow \operatorname{Maybe}\left(\mathrm{T}_{1}, \beta\right)\right) \rightarrow \beta \rightarrow \mathrm{T}_{2}
$$

specialized down to function level, is:
$\forall \tau_{1}, \tau_{2}, f:: \tau_{1} \rightarrow \tau_{2}, f$ strict and total.

$$
\begin{aligned}
\forall p: & : \tau_{1} \rightarrow \text { Maybe }\left(\mathrm{T}_{1}, \tau_{1}\right), q:: \tau_{2} \rightarrow \operatorname{Maybe}\left(\mathrm{~T}_{1}, \tau_{2}\right) . \\
& (p \neq \perp \Leftrightarrow q \neq \perp) \\
\wedge & \left(\forall x:: \tau_{1} \cdot(p x, q(f x)) \in \operatorname{lift}_{\text {Maybe }}\left(\mathrm{lift}_{(,)}(\mathrm{id}, f)\right)\right) \\
\quad \Rightarrow & \forall y:: \tau_{1} . \text { cons } p y=\text { cons } q(f y)
\end{aligned}
$$

Recall that we want to prove

$$
\begin{gathered}
\text { cons match (prod }(:)[]) \\
= \\
\text { cons id }(\operatorname{prod}(\lambda x x s \rightarrow \text { Just }(x, x s)) \text { Nothing })
\end{gathered}
$$

Where to Start?

The free theorem for

$$
\text { cons }:: \forall \beta .\left(\beta \rightarrow \operatorname{Maybe}\left(\mathrm{T}_{1}, \beta\right)\right) \rightarrow \beta \rightarrow \mathrm{T}_{2}
$$

specialized down to function level, is:
$\forall \tau_{1}, \tau_{2}, f:: \tau_{1} \rightarrow \tau_{2}, f$ strict and total.

$$
\begin{aligned}
\forall p: & : \tau_{1} \rightarrow \operatorname{Maybe}\left(\mathrm{~T}_{1}, \tau_{1}\right), q:: \tau_{2} \rightarrow \operatorname{Maybe}\left(\mathrm{~T}_{1}, \tau_{2}\right) . \\
& (p \neq \perp \Leftrightarrow q \neq \perp) \\
\wedge & \left(\forall x:: \tau_{1} \cdot(p x, q(f x)) \in \operatorname{lift}_{\text {Maybe }}\left(\mathrm{lift}_{(,)}(\mathrm{id}, f)\right)\right) \\
\Rightarrow & \forall y:: \tau_{1} . \text { cons } p y=\text { cons } q(f y)
\end{aligned}
$$

Recall that we want to prove

$$
\begin{gathered}
\text { cons match }(\operatorname{prod}(:)[]) \\
= \\
\text { cons id }(\operatorname{prod}(\lambda x \times s \rightarrow \operatorname{Just}(x, x s)) \text { Nothing })
\end{gathered}
$$

Where to Start?

The free theorem for

$$
\text { cons }:: \forall \beta .\left(\beta \rightarrow \operatorname{Maybe}\left(\mathrm{T}_{1}, \beta\right)\right) \rightarrow \beta \rightarrow \mathrm{T}_{2}
$$

specialized down to function level, is:
$\forall \tau_{1}, \tau_{2}, f:: \tau_{1} \rightarrow \tau_{2}, f$ strict and total.

$$
\begin{aligned}
\forall p: & : \tau_{1} \rightarrow \operatorname{Maybe}\left(\mathrm{~T}_{1}, \tau_{1}\right), q:: \tau_{2} \rightarrow \operatorname{Maybe}\left(\mathrm{~T}_{1}, \tau_{2}\right) . \\
& (p \neq \perp \Leftrightarrow q \neq \perp) \\
\wedge & \left(\forall x:: \tau_{1} \cdot(p x, q(f x)) \in \operatorname{lift}_{\text {Maybe }}\left(\mathrm{lift}_{(,)}(\mathrm{id}, f)\right)\right) \\
\Rightarrow & \forall y:: \tau_{1} . \text { cons } p y=\text { cons } q(f y)
\end{aligned}
$$

Recall that we want to prove

$$
\begin{gathered}
\text { cons match }(\operatorname{prod}(:)[]) \\
= \\
\text { cons id }(\operatorname{prod}(\lambda x \times s \rightarrow \operatorname{Just}(x, x s)) \text { Nothing })
\end{gathered}
$$

Where to Start?

The free theorem for

$$
\text { cons }:: \forall \beta .\left(\beta \rightarrow \operatorname{Maybe}\left(\mathrm{T}_{1}, \beta\right)\right) \rightarrow \beta \rightarrow \mathrm{T}_{2}
$$

specialized down to function level, is:
$\forall \tau_{1}, \tau_{2}, f:: \tau_{1} \rightarrow \tau_{2}, f$ strict and total.

$$
\begin{aligned}
\forall p: & : \tau_{1} \rightarrow \operatorname{Maybe}\left(\mathrm{~T}_{1}, \tau_{1}\right), q:: \tau_{2} \rightarrow \operatorname{Maybe}\left(\mathrm{~T}_{1}, \tau_{2}\right) . \\
& (p \neq \perp \Leftrightarrow q \neq \perp) \\
\wedge & \left(\forall x:: \tau_{1} \cdot(p x, q(f x)) \in \operatorname{lift}_{\text {Maybe }}\left(\mathrm{lift}_{(,)}(\mathrm{id}, f)\right)\right) \\
\Rightarrow & \forall y:: \tau_{1} . \text { cons } p y=\text { cons } q(f y)
\end{aligned}
$$

Recall that we want to prove

$$
\begin{gathered}
\text { cons match }(\operatorname{prod}(:)[]) \\
= \\
\text { cons id }(\operatorname{prod}(\lambda x \times s \rightarrow \operatorname{Just}(x, x s)) \text { Nothing })
\end{gathered}
$$

How to Continue?

All we need is a function f such that:

1. f is strict and total
2. $\forall x::\left[\mathrm{T}_{1}\right]$. (match x, id $\left.(f x)\right) \in \operatorname{lift}_{\text {Maybe }}\left(\operatorname{lift}_{(,)}(\right.$id, $\left.f)\right)$
3. $f(\operatorname{prod}(:)[])=\operatorname{prod}(\lambda x x s \rightarrow$ Just $(x, x s))$ Nothing
(Note that the condition match $\neq \perp \Leftrightarrow \mathrm{id} \neq \perp$ is trivially fulfilled.)

How to Continue?

All we need is a function f such that:

1. f is strict and total
2. $\forall x::\left[\mathrm{T}_{1}\right]$. (match x, id $\left.(f x)\right) \in \operatorname{lift}_{\text {Maybe }}\left(\operatorname{lift}_{(,)}(\mathrm{id}, f)\right)$
3. $f(\operatorname{prod}(:)[])=\operatorname{prod}(\lambda x x s \rightarrow$ Just $(x, x s))$ Nothing
(Note that the condition match $\neq \perp \Leftrightarrow \mathrm{id} \neq \perp$ is trivially fulfilled.)
The free theorem for

$$
\operatorname{prod}:: \forall \beta .\left(\mathrm{T}_{1} \rightarrow \beta \rightarrow \beta\right) \rightarrow \beta \rightarrow \beta
$$

is:
$\forall \tau_{1}, \tau_{2}, \mathcal{R} \subseteq \tau_{1} \times \tau_{2}, \mathcal{R}$ strict, continuous, and bottom-reflecting.

$$
\begin{aligned}
\forall p:: & \mathrm{T}_{1} \rightarrow \tau_{1} \rightarrow \tau_{1}, q:: \mathrm{T}_{1} \rightarrow \tau_{2} \rightarrow \tau_{2} . \\
& (p \neq \perp \Leftrightarrow q \neq \perp) \\
\wedge & \left(\forall x:: \mathrm{T}_{1} \cdot(p \times \neq \perp \Leftrightarrow q \times \neq \perp)\right. \\
& \wedge \forall(y, z) \in \mathcal{R} .(p \times y, q \times z) \in \mathcal{R}) \\
\Rightarrow & \forall(v, w) \in \mathcal{R} .(\operatorname{prod} p v, \operatorname{prod} q w) \in \mathcal{R}
\end{aligned}
$$

How to Continue?

All we need is a function f such that:

1. f is strict and total
2. $\forall x::\left[\mathrm{T}_{1}\right]$. (match x, id $\left.(f x)\right) \in \operatorname{lift}_{\text {Maybe }}\left(\operatorname{lift}_{(,)}(\mathrm{id}, f)\right)$
3. $f(\operatorname{prod}(:)[])=\operatorname{prod}(\lambda x x s \rightarrow$ Just $(x, x s))$ Nothing
(Note that the condition match $\neq \perp \Leftrightarrow \mathrm{id} \neq \perp$ is trivially fulfilled.)
The free theorem for

$$
\operatorname{prod}:: \forall \beta .\left(\mathrm{T}_{1} \rightarrow \beta \rightarrow \beta\right) \rightarrow \beta \rightarrow \beta,
$$

specialized down to function level, is:
$\forall \tau_{1}, \tau_{2}, f:: \tau_{1} \rightarrow \tau_{2}, f$ strict and total.

$$
\begin{aligned}
& \forall p:: \mathrm{T}_{1} \rightarrow \tau_{1} \rightarrow \tau_{1}, q:: \mathrm{T}_{1} \rightarrow \tau_{2} \rightarrow \tau_{2} . \\
&(p \neq \perp \Leftrightarrow q \neq \perp) \\
& \wedge\left(\forall x:: \mathrm{T}_{1} \cdot(p \times \neq \perp \Leftrightarrow q \times \neq \perp)\right. \\
&\left.\wedge \forall y:: \tau_{1} \cdot f(p \times y)=q \times(f y)\right) \\
& \Rightarrow \forall z:: \tau_{1} \cdot f(\operatorname{prod} p z)=\operatorname{prod} q(f z)
\end{aligned}
$$

How to Continue?

All we need is a function f such that:

1. f is strict and total
2. $\forall x::\left[\mathrm{T}_{1}\right]$. (match x, id $\left.(f x)\right) \in \operatorname{lift}_{\text {Maybe }}\left(\operatorname{lift}_{(,)}(\mathrm{id}, f)\right)$
3. $f(\operatorname{prod}(:)[])=\operatorname{prod}(\lambda x x s \rightarrow$ Just $(x, x s))$ Nothing
(Note that the condition match $\neq \perp \Leftrightarrow \mathrm{id} \neq \perp$ is trivially fulfilled.)
The free theorem for

$$
\operatorname{prod}:: \forall \beta .\left(\mathrm{T}_{1} \rightarrow \beta \rightarrow \beta\right) \rightarrow \beta \rightarrow \beta,
$$

specialized down to function level, is:
$\forall \tau_{1}, \tau_{2}, f:: \tau_{1} \rightarrow \tau_{2}, f$ strict and total.

$$
\begin{aligned}
& \forall p:: \mathrm{T}_{1} \rightarrow \tau_{1} \rightarrow \tau_{1}, q:: \mathrm{T}_{1} \rightarrow \tau_{2} \rightarrow \tau_{2} . \\
&(p \neq \perp \Leftrightarrow q \neq \perp) \\
& \wedge\left(\forall x:: \mathrm{T}_{1} \cdot(p \times \neq \perp \Leftrightarrow q \times \neq \perp)\right. \\
&\left.\wedge \forall y:: \tau_{1} \cdot f(p \times y)=q \times(f y)\right) \\
& \Rightarrow \forall z:: \tau_{1} . f(\operatorname{prod} p z)=\operatorname{prod} q(f z)
\end{aligned}
$$

How to Continue?

All we need is a function f such that:

1. f is strict and total
2. $\forall x::\left[\mathrm{T}_{1}\right]$. (match x, id $\left.(f x)\right) \in \operatorname{lift}_{\text {Maybe }}\left(\operatorname{lift}_{(,)}(\mathrm{id}, f)\right)$
3. $f(\operatorname{prod}(:)[])=\operatorname{prod}(\lambda x x s \rightarrow$ Just $(x, x s))$ Nothing
(Note that the condition match $\neq \perp \Leftrightarrow \mathrm{id} \neq \perp$ is trivially fulfilled.)
The free theorem for

$$
\operatorname{prod}:: \forall \beta .\left(\mathrm{T}_{1} \rightarrow \beta \rightarrow \beta\right) \rightarrow \beta \rightarrow \beta,
$$

specialized down to function level, is:
$\forall \tau_{1}, \tau_{2}, f:: \tau_{1} \rightarrow \tau_{2}, f$ strict and total.

$$
\begin{aligned}
& \forall p:: \mathrm{T}_{1} \rightarrow \tau_{1} \rightarrow \tau_{1}, q:: \mathrm{T}_{1} \rightarrow \tau_{2} \rightarrow \tau_{2} . \\
&(p \neq \perp \Leftrightarrow q \neq \perp) \\
& \wedge\left(\forall x:: \mathrm{T}_{1} \cdot(p \times \neq \perp \Leftrightarrow q x \neq \perp)\right. \\
&\left.\wedge \forall y:: \tau_{1} \cdot f(p \times y)=q \times(f y)\right) \\
& \Rightarrow \forall z:: \tau_{1} . f(\operatorname{prod} p z)=\operatorname{prod} q(f z)
\end{aligned}
$$

How to Continue?

All we need is a function f such that:

1. f is strict and total
2. $\forall x::\left[\mathrm{T}_{1}\right]$. (match x, id $\left.(f x)\right) \in \operatorname{lift}_{\text {Maybe }}\left(\operatorname{lift}_{(,)}(\mathrm{id}, f)\right)$
3. $f(\operatorname{prod}(:)[])=\operatorname{prod}(\lambda x x s \rightarrow$ Just $(x, x s))$ Nothing
(Note that the condition match $\neq \perp \Leftrightarrow \mathrm{id} \neq \perp$ is trivially fulfilled.)
The free theorem for

$$
\operatorname{prod}:: \forall \beta .\left(\mathrm{T}_{1} \rightarrow \beta \rightarrow \beta\right) \rightarrow \beta \rightarrow \beta,
$$

specialized down to function level, is:
$\forall \tau_{1}, \tau_{2}, f:: \tau_{1} \rightarrow \tau_{2}, f$ strict and total.

$$
\begin{aligned}
& \forall p:: \mathrm{T}_{1} \rightarrow \tau_{1} \rightarrow \tau_{1}, q:: \mathrm{T}_{1} \rightarrow \tau_{2} \rightarrow \tau_{2} . \\
&(p \neq \perp \Leftrightarrow q \neq \perp) \\
& \wedge\left(\forall x:: \mathrm{T}_{1} \cdot(p \times \neq \perp \Leftrightarrow q \times \neq \perp)\right. \\
&\left.\wedge \forall y:: \tau_{1} \cdot f(p \times y)=q \times(f y)\right) \\
& \Rightarrow \forall z:: \tau_{1} . f(\operatorname{prod} p z)=\operatorname{prod} q(f z)
\end{aligned}
$$

Almost There

All we need is a function f such that:

1. f is strict and total
2. $\forall x::\left[\mathrm{T}_{1}\right]$. (match x, id $\left.\left.(f x)\right) \in \operatorname{lift}_{\text {Maybe }(\operatorname{lift}}^{(,)}(\mathrm{id}, f)\right)$
3. $\forall x:: \mathrm{T}_{1}, y::\left[\mathrm{T}_{1}\right] . f((:) \times y)=(\lambda x x s \rightarrow \operatorname{Just}(x, x s)) \times(f y)$
4. $f[]=$ Nothing
(Note that the " $\neq \perp$ "-conditions are again trivially fulfilled.)

Almost There

All we need is a function f such that:

1. f is strict and total
2. $\forall x::\left[\mathrm{T}_{1}\right]$. (match x, id $\left.\left.(f x)\right) \in \operatorname{lift}_{\text {Maybe }(\operatorname{lift}}^{(,)}(\mathrm{id}, f)\right)$
3. $\forall x:: \mathrm{T}_{1}, y::\left[\mathrm{T}_{1}\right] . f((:) x y)=(\lambda x x s \rightarrow$ Just $(x, x s)) \times(f y)$
4. $f[]=$ Nothing
(Note that the " $\neq \perp$ "-conditions are again trivially fulfilled.)
The last two conditions leave no room other than to consider:

$$
\begin{array}{ll}
f[] & =\text { Nothing } \\
f(x: y) & =\text { Just }(x, f y)
\end{array}
$$

Almost There

All we need is a function f such that:

1. f is strict and total
2. $\forall x::\left[\mathrm{T}_{1}\right]$. (match x, id $\left.(f x)\right) \in \operatorname{lift}_{\text {Maybe }}\left(\operatorname{lift}_{(,)}(\right.$id,$\left.f)\right)$
3. $\forall x:: \mathrm{T}_{1}, y::\left[\mathrm{T}_{1}\right] . f((:) x y)=(\lambda x x s \rightarrow$ Just $(x, x s)) \times(f y)$
4. $f[]=$ Nothing
(Note that the " $\neq \perp$ "-conditions are again trivially fulfilled.)
The last two conditions leave no room other than to consider:

$$
\begin{array}{ll}
f[] & =\text { Nothing } \\
f(x: y) & =\text { Just }(x, f y)
\end{array}
$$

This f is strict and total!

Almost There

2. $\forall x::\left[\mathrm{T}_{1}\right]$. (match x, id $\left.(f x)\right) \in \operatorname{lift}_{\text {Maybe }}\left(\operatorname{lift}_{(,)}(\mathrm{id}, f)\right)$?

$$
\begin{array}{ll}
f[] & =\text { Nothing } \\
f(x: y) & =\text { Just }(x, f y)
\end{array}
$$

Finishing Up

We have:
$\operatorname{lift}_{\text {Maybe }}\left(\operatorname{lift}_{(,)}(\mathrm{id}, f)\right)=\{(\perp, \perp),($ Nothing, Nothing $)\} \cup$ $\left\{\left(\right.\right.$ Just x_{1}, Just $\left.y_{1}\right) \mid\left(x_{1}, y_{1}\right) \in \operatorname{lift}_{(,)}($id, $\left.f)\right\}$
$\operatorname{lift}_{(,)}(\mathrm{id}, f)=\{(\perp, \perp)\} \cup\left\{\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right) \mid x_{1}=y_{1} \wedge f x_{2}=y_{2}\right\}$

Finishing Up

We have:
$\operatorname{lift}_{\text {Maybe }}\left(\operatorname{lift}_{(,)}(\right.$id,$\left.f)\right)=\{(\perp, \perp),($ Nothing, Nothing $)\} \cup$ $\left\{\left(\right.\right.$ Just x_{1}, Just $\left.y_{1}\right) \mid\left(x_{1}, y_{1}\right) \in \operatorname{lift}_{(,)}($id, $\left.f)\right\}$
$\operatorname{lift}_{(,)}(\mathrm{id}, f)=\{(\perp, \perp)\} \cup\left\{\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right) \mid x_{1}=y_{1} \wedge f x_{2}=y_{2}\right\}$
To establish

$$
\forall x::\left[\mathrm{T}_{1}\right] .(\operatorname{match} x, \text { id }(f x)) \in \operatorname{lift}_{\text {Maybe }}\left(\operatorname{lift}_{(,)}(\mathrm{id}, f)\right),
$$

we check against the definitions:

$$
\begin{array}{llll}
\text { match [] } & =\text { Nothing } & & f[] \\
\text { match }(x: y) & =\text { Just }(x, y) & & f(x: y)=\text { Nothing } \\
\text { Just }(x, f y)
\end{array}
$$

Finishing Up

We have:
$\operatorname{lift}_{\text {Maybe }}\left(\operatorname{lift}_{(,)}(\mathrm{id}, f)\right)=\{(\perp, \perp),($ Nothing, Nothing $)\} \cup$ $\left\{\left(\right.\right.$ Just x_{1}, Just $\left.y_{1}\right) \mid\left(x_{1}, y_{1}\right) \in \operatorname{lift}_{(,)}($id, $\left.f)\right\}$
$\operatorname{lift}_{(,)}(\mathrm{id}, f)=\{(\perp, \perp)\} \cup\left\{\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right) \mid x_{1}=y_{1} \wedge f x_{2}=y_{2}\right\}$
To establish

$$
\forall x::\left[\mathrm{T}_{1}\right] .(\operatorname{match} x, \text { id }(f x)) \in \operatorname{lift}_{\text {Maybe }}\left(\operatorname{lift}_{(,)}(\mathrm{id}, f)\right),
$$

we check against the definitions:

$$
\begin{array}{llll}
\text { match [] } & =\text { Nothing } & & f[] \\
\text { match }(x: y) & =\text { Just }(x, y) & & f(x: y)=\text { Nothing } \\
\text { Just }(x, f y)
\end{array}
$$

Finishing Up

We have:
$\operatorname{lift}_{\text {Maybe }}\left(\operatorname{lift}_{(,)}(\mathrm{id}, f)\right)=\{(\perp, \perp),($ Nothing, Nothing $)\} \cup$ $\left\{\left(\right.\right.$ Just x_{1}, Just $\left.y_{1}\right) \mid\left(x_{1}, y_{1}\right) \in \operatorname{lift}_{(,)}($id, $\left.f)\right\}$
$\operatorname{lift}_{(,)}(\mathrm{id}, f)=\{(\perp, \perp)\} \cup\left\{\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right) \mid x_{1}=y_{1} \wedge f x_{2}=y_{2}\right\}$
To establish

$$
\forall x::\left[\mathrm{T}_{1}\right] .(\operatorname{match} x, \text { id }(f x)) \in \operatorname{lift}_{\text {Maybe }}\left(\operatorname{lift}_{(,)}(\mathrm{id}, f)\right),
$$

we check against the definitions:

$$
\begin{array}{llll}
\text { match [] } & =\text { Nothing } & & f[] \\
\text { match }(x: y) & =\text { Just }(x, y) & & f(x: y)=\text { Nothing } \\
\text { Just }(x, f y)
\end{array}
$$

Finishing Up

We have:
$\operatorname{lift}_{\text {Maybe }}\left(\operatorname{lift}_{(,)}(\right.$id,$\left.f)\right)=\{(\perp, \perp),($ Nothing, Nothing $)\} \cup$ $\left\{\left(\right.\right.$ Just x_{1}, Just $\left.y_{1}\right) \mid\left(x_{1}, y_{1}\right) \in \operatorname{lift}_{(,)}($id, $\left.f)\right\}$
$\operatorname{lift}_{(,)}(\mathrm{id}, f)=\{(\perp, \perp)\} \cup\left\{\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right) \mid x_{1}=y_{1} \wedge f x_{2}=y_{2}\right\}$
To establish

$$
\forall x::\left[\mathrm{T}_{1}\right] .(\operatorname{match} x, \text { id }(f x)) \in \operatorname{lift}_{\text {Maybe }}\left(\operatorname{lift}_{(,)}(\mathrm{id}, f)\right),
$$

we check against the definitions:

$$
\begin{array}{llll}
\text { match [] } & =\text { Nothing } & & f[] \\
\text { match }(x: y) & =\text { Just }(x, y) & & f(x: y)=\text { Nothing } \\
\text { Just }(x, f y)
\end{array}
$$

Finishing Up

We have:
$\operatorname{lift}_{\text {Maybe }}\left(\operatorname{lift}_{(,)}(\right.$id,$\left.f)\right)=\{(\perp, \perp),($ Nothing, Nothing $)\} \cup$ $\left\{\left(\right.\right.$ Just x_{1}, Just $\left.y_{1}\right) \mid\left(x_{1}, y_{1}\right) \in \operatorname{lift}_{(,)}($id, $\left.f)\right\}$
$\operatorname{lift}_{(,)}(\mathrm{id}, f)=\{(\perp, \perp)\} \cup\left\{\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right) \mid x_{1}=y_{1} \wedge f x_{2}=y_{2}\right\}$
To establish

$$
\forall x::\left[\mathrm{T}_{1}\right] .(\operatorname{match} x, \text { id }(f x)) \in \operatorname{lift}_{\text {Maybe }}\left(\operatorname{lift}_{(,)}(\mathrm{id}, f)\right),
$$

we check against the definitions:

$$
\begin{array}{llll}
\operatorname{match}[] & =\text { Nothing } & f[] & =\text { Nothing } \\
\text { match }(x: y) & =\text { Just }(x, y) & & f(x: y)=\text { Just }(x, f y)
\end{array}
$$

Finishing Up

We have:
$\operatorname{lift}_{\text {Maybe }}\left(\operatorname{lift}_{(,)}(\mathrm{id}, f)\right)=\{(\perp, \perp),($ Nothing, Nothing $)\} \cup$ $\left\{\left(\right.\right.$ Just x_{1}, Just $\left.y_{1}\right) \mid\left(x_{1}, y_{1}\right) \in \operatorname{lift}_{(,)}($id, $\left.f)\right\}$
$\operatorname{lift}_{(,)}(\mathrm{id}, f)=\{(\perp, \perp)\} \cup\left\{\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right) \mid x_{1}=y_{1} \wedge f x_{2}=y_{2}\right\}$
To establish

$$
\forall x::\left[\mathrm{T}_{1}\right] .(\operatorname{match} x, \text { id }(f x)) \in \operatorname{lift}_{\text {Maybe }}\left(\operatorname{lift}_{(,)}(\mathrm{id}, f)\right),
$$

we check against the definitions:

$$
\begin{array}{llll}
\text { match [] } & =\text { Nothing } & & f[] \\
\text { match }(x: y) & =\text { Just }(x, y) & & f(x: y)=\text { Nothing } \\
\text { Just }(x, f y)
\end{array}
$$

Done!

Conclusion

- The destroy/build-rule holds unconditionally.
- Part of the proof work was push-the-button.
- The remainder was very much goal-driven.
- The approach scales to other transformation rules as well.
- Sascha Böhme implemented a great tool!
- Go play with it: http://linux.tcs.inf.tu-dresden.de/~voigt/ft/

References

R A. Gill, J. Launchbury, and S.L. Peyton Jones.
A short cut to deforestation.
In Functional Programming Languages and Computer
Architecture, Proceedings, pages 223-232. ACM Press, 1993.
風 J. Svenningsson.
Shortcut fusion for accumulating parameters \& zip-like functions.
In International Conference on Functional Programming,
Proceedings, pages 124-132. ACM Press, 2002.
回 P. Wadler.
Theorems for free!
In Functional Programming Languages and Computer
Architecture, Proceedings, pages 347-359. ACM Press, 1989.

