
Three Complementary Approaches to
Bidirectional Programming

Nate Foster1, Kazutaka Matsuda2, and Janis Voigtländer3

1 Cornell University; jnfoster@cs.cornell.edu
2 Tohoku University; kztk@kb.ecei.tohoku.ac.jp

3 University of Bonn; jv@iai.uni-bonn.de

Abstract. This paper surveys three distinct approaches to bidirectional
programming. The first approach, syntactic bidirectionalization, takes a
program describing the forward transformation as input and calculates
a well-behaved reverse transformation. The second approach, semantic
bidirectionalization, is similar, but takes the forward transformation it-
self as input rather than a program describing it. It requires the trans-
formation to be a polymorphic function and uses parametricity and free
theorems in the proof of well-behavedness. The third approach, based
on bidirectional combinators, focuses on the use of types to ensure well-
behavedness and special constructs for dealing with alignment problems.
In presenting these approaches, we pay particular attention to use of com-
plements, which are structures that represent the information discarded
by the transformation in the forward direction.

1 Introduction

Bidirectional transformations are a mechanism for converting data from one
form to another, and vice versa. The forward transformation, often called get,
maps a source structure to a view, while the backward transformation, often
called put, maps a (possibly updated) view back to a source. The need for bidi-
rectional transformations arises in a variety of areas including data manage-
ment, software engineering, programming languages, and systems (Bancilhon
and Spyratos 1981; Benton 2005; Berdaguer et al. 2007; Bohannon et al. 2006;
Brabrand et al. 2008; Cunha et al. 2009; Czarnecki et al. 2009; Dayal and Bern-
stein 1982; Ennals and Gay 2007; Fisher and Gruber 2005; Foster et al. 2007a,
2009; Hu et al. 2008; Kawanaka and Hosoya 2006; Lutterkort 2008; Meertens
1998; Miller et al. 2001; Ramsey 2003; Schürr 1995; Stevens 2007; Xiong et al.
2007), as well as in generic programming frameworks where bidirectional trans-
formations map between user-defined and canonical representations (e.g., as a
“sum of products”) used by generic functions (Jeuring et al. 2009) or between
an interface expressed using algebraic datatypes and an implementation using
abstract datatypes (Wang et al. 2010).

In recent years, a number of programming language techniques for describing
bidirectional transformations have been proposed. These techniques offer several
advantages over the alternative—describing bidirectional transformations using

2

separate programs. First, because they make it possible to describe two trans-
formations in a single program, bidirectional programming languages eliminate
redundancy and make programs easier to maintain as formats evolve. Second,
because the semantics of these languages typically offers guarantees about how
the two transformations will operate together, they obviate the need for compli-
cated pencil-and-paper proofs.

An important consideration in the design of a bidirectional language is the
notion of what constitutes a “reasonable” pair of get and put functions. Several
criteria for this have been discussed in the literature. Most of the conditions
that have been adopted in existing languages are based on notions of correctness
developed for the database view-update problem (Bancilhon and Spyratos 1981),
but there are interesting and important variations between the semantic choices
made in different techniques.

In this article, we survey three techniques developed in the programming lan-
guage community to approach bidirectional programming. In the first two tech-
niques, originally developed by Matsuda et al. (2007) and Voigtländer (2009),
the programmer writes a program for the get function in an existing functional
language, and a bidirectionalization technique is responsible for coming up with
a suitable program for put. This can either be done using an algorithm that works
on a syntactic representation of (somehow restricted) get functions and calcu-
lates appropriate put functions, or by exploiting the (higher-order and typed)
abstractions and algorithmic methods available in the functional language itself.
The third technique uses a domain-specific language approach, as exemplified
in the series of languages developed by Foster et al. (2007b), in which a certain
class of transformations of interest is covered by providing a collection of well-
behaved get and put pairs—so called lenses—as well as systematic and sound
ways of constructing bigger lenses out of smaller ones. A type system provides
strong semantic guarantees.

All three techniques described in this paper are (ultimately) based on a notion
of complement—i.e., an explicit representation of the information discarded by
the forward transformation. The technique developed by Matsuda et al. (2007)
is fundamentally based on the classic constant-complement approach from the
database literature (Bancilhon and Spyratos 1981). The key ingredient of the
technique is a syntactic program transformation that takes a description of the
get function and produces a function that computes a complement. The orig-
inal presentation of the technique of Voigtländer (2009) was not in terms of
complements but we show in this paper, for the first time, that it can also be
formulated in terms of the constant-complement approach.1 Likewise, the par-
ticular instance of the domain-specific language approach we describe (Barbosa
et al. 2010) is presented here using a new and cleaner formulation that highlights
the role of complements in that setting.

Section 2 discusses possible notions of “reasonable” pairs of get and put func-
tions. Section 3 discusses the constant-complement approach, which is then used

1 Also, we give an improved account of a generic programming generalization of the
technique, in Section 5.4.

3

to present bidirectionalization via syntactic program transformations in Section 4
and bidirectionalization via semantic reasoning principles about polymorphic
functions in Section 5. We then present bidirectional combinators, specifically
matching lens combinators, in Section 6. We conclude with a comparative dis-
cussion and pointers to related work in Section 7.

2 Semantics

Let us begin by exploring the properties we might expect a pair of functions get
and put to obey to qualify as a well-behaved bidirectional transformation, using a
specific example to guide the discussion. Assume that the forward transformation
is the following Haskell function,

get :: forall α. [α]→ [α]
get s = let n = (length s) ‘div‘ 2 in take n s

which maps source lists (of arbitrary type) to view lists (of the same type),
omitting some of the information contained in the input, namely the second half
of the list. It should be clear that the get function is not injective, and so there
is no hope of “simply” setting up a bijection between the set of source lists and
the set of view lists. Instead, when the view (i.e., the first half of the original
list) is modified and we need to propagate the change back to the underlying
source, we must supply the put transformation with the updated view as well
as the original source:

put :: forall α. [α]→ [α]→ [α]

One tempting implementation is as follows, combining the updated view with
the list items deleted from the original source:

put v s = let n = (length s) ‘div‘ 2 in v ++ (drop n s)

But is it any good?
A natural requirement on the put function is that it should fully reflect any

changes made to the view in the underlying source. One way to express this
requirement is as a “round-tripping” law which says: if we change the view in
some way and then perform put followed by get, we should end up with the
very same modified view. In general, if S is the set of source structures, V is the
set of views, and the get and put functions have the following types,

get ∈ S → V
put ∈ V → S → S

then we want the following law to hold for every s ∈ S and v ∈ V :

get (put v s) = v (PutGet)

4

There is also another natural law that constrains round-trips in the opposite
direction. It stipulates that if the view is not modified at all, then the put function
must not change the source. This condition is captured by the following law:

put (get s) s = s (GetPut)

We will refer to a pair of get and put functions that satisfy these two laws
as a well-behaved lens.2 The concrete functions get and put shown above do
not constitute such a pair: while GetPut is satisfied, PutGet is not (e.g.,
get (put [] [a, b, c]) = get [b, c] = [b] 6= []). Further below, we will see a function
put that does complete the above get towards a well-behaved lens.

We refer to well-behaved lenses that obey the following additional law,

put v′ (put v s) = put v′ s (PutPut)

as very well-behaved. This law ensures that the put function does not have “side-
effects” on the source. It is not satisfied for the concrete function put above
either, since put [] (put [] [a, b, c]) = put [] [b, c] = [c] 6= [b, c] = put [] [a, b, c].

Note that if PutPut does hold, then together with GetPut it implies the
following equality,

put (get s) (put v s) = s

which means that updates made to the view can always be “undone.”
A natural question to ask at this point is whether for every get function, there

at least exists a corresponding put such that the two functions form a very well-
behaved lens. Unfortunately, the answer to this question is negative. To see why,
consider again the specific function get above and consider put [] [a, b, c], for an
arbitrary implementation of put. By the PutGet law, the new source produced
by evaluating this function must either be the empty list [] or a singleton list
[x] for some x. However, by the PutPut and GetPut laws we must also have
put [a] (put [] [a, b, c]) = put [a] [a, b, c] = [a, b, c]. That is, either put [a] [] =
[a, b, c] (if put [] [a, b, c] = []) or put [a] [x] = [a, b, c] (if put [] [a, b, c] = [x]),
which is impossible for arbitrary a, b, and c! (Note that polymorphism prevents
encoding b and c into x.)

To avoid such problems, many bidirectional programming languages allow
the put function to fail on certain inputs. For the example, we can provide a
partial solution by defining put to only accept inputs where the length of the
view list is half the length (rounded down if necessary) of the source list.

put :: forall α. [α]→ [α]→ [α]
put v s = let n = (length s) ‘div‘ 2

in if (length v) == n then v ++ (drop n s)
else error “Shape mismatch.”

2 The definition of lenses often includes a third function create ∈ V → S and a
law CreateGet, which is analogous to PutGet. See Section 6 for an alternative
approach.

5

This definition (still) satisfies GetPut, and satisfies weakened versions of Put-
Get and PutPut (the hypotheses test the definedness of specific function calls):

(put v s)↓
get (put v s) = v

(Partial-PutGet)

(put v s)↓
put v′ (put v s) = put v′ s

(Partial-PutPut)

We will call a get/put pair satisfying the GetPut, Partial-PutGet, and
Partial-PutPut laws a partial very well-behaved lens. Note, though, that even
in a partial lens we require the forward transformation to be a total function—
i.e., we do not allow get s = ⊥ for any s.

Summarizing the situation so far, for the given get function, there is no way
to provide a put function such that get/put is a very well-behaved lens. But it is
possible to complete it towards a partial very well-behaved lens (with the second
implementation of put just given). It is also possible to complete it towards a
(not very) well-behaved lens with the following implementation that combines
the updated view with an appropriately long prefix of the second half of the
original source (extended with undefined list items to handle cases where the
update to the view makes the list longer):

put :: forall α. [α]→ [α]→ [α]
put v s = let l = length s

k = length v
in v ++ take (k + l ‘mod‘ 2) (drop (l ‘div‘ 2) s++ repeat ⊥)

The result is not a very well-behaved lens, and not even a partial very well-
behaved lens. While GetPut and PutGet are satisfied (and so clearly Partial-
PutGet is), neither PutPut nor Partial-PutPut (which are equivalent here,
as put is total) is satisfied, since put [a] (put [] [a, b]) = put [a] [] = [a,⊥] 6=
[a, b] = put [a] [a, b].

Clearly, it is possible to abuse the admission of partiality in put, and the
preconditions in Partial-PutGet and Partial-PutPut, to at least concep-
tually always manufacture a backward transformation leading to a partial very
well-behaved lens as follows:

put v s =

{
s if v = get s
⊥ otherwise

Such a backward transformation is rather useless, so our aim in manufacturing
partial very well-behaved lenses must be to make put defined on as many inputs
as possible. For example, for the specific function get from the beginning of this
section, a slight improvement (in terms of definedness, while preserving partial
very well-behavedness) to the second implementation of put above would be
possible by weakening the condition

(length v) == n

6

to
(length v) == n || ((length v) == n− 1) && even (length s)

|| ((length v) == n+ 1) && odd (length s)

In what follows, we will encounter more examples of well-behaved lenses, very
well-behaved lenses, and partial very well-behaved lenses. Specifically, since the
approach from Section 3 is tightly tied to PutPut or at least its partial variant,
the techniques from Sections 4 and 5 always produce partial very well-behaved
lenses. The technique from Section 6, on the other hand, always delivers total put
functions, but sacrifices PutPut, thus yielding well-behaved lenses. In either
setting, it is perfectly possible that for specific examples actually (total) very
well-behaved lenses are obtained. We do not consider a notion of partial well-
behaved lens here, though such lenses feature in the combined syntactic/semantic
approach to bidirectionalization of Voigtländer et al. (2010).

3 The Constant-Complement Approach

In this section, we briefly review the constant-complement approach to view
updating (Bancilhon and Spyratos 1981) which will serve as the basis of the
bidirectionalization techniques (Matsuda et al. 2007; Voigtländer 2009) described
in Sections 4 and 5.

Intuitively, a complement is a structure that preserves the information lost
by the forward transformation. To define complements formally, we need to
introduce the concept of function tupling. Given two total functions f ∈ X → Y
and g ∈ X → Z, the tupled function 〈f, g〉 ∈ X → (Y,Z) is the function defined
as follows:

〈f, g〉 x = (f x, g x)

That is, 〈f, g〉 duplicates the input x, passes one copy to f and the other to g,
and places the results in a pair.

Definition 1. Let get ∈ S → V be a total function from S to V . A total function
res ∈ S → C computes a complement for get if and only if the tupled function
〈get, res〉 ∈ S → (V,C) is injective.

We will call res (abbreviation for “residue”) a complement function for get.
As an example to illustrate, let add :: (R,R) → R be a function defined by

add (x, y) = x+y. Then, the function fst :: (R,R)→ R defined by fst (x, y) = x
is a complement function for add. Note that the codomains of a function f and
a complement function g for f can be different. This flexibility will be useful in
Section 4 where we derive a complement function from a program defining the
forward transformation automatically.

Complements provide a simple mechanism for bidirectionalizing an exist-
ing function: given a forward transformation, provided that we can compute a
complement for it and invert the tupled function, we can obtain a very well-
behaved reverse transformation mechanically (Bancilhon and Spyratos 1981).
Let get ∈ S → V be a forward transformation function and let res ∈ S → C be a

7

complement function for it. (Note that both get and res must be total functions.)
The function put (get,res) defined by

put (get,res) v s = inv (v, res s), where inv = 〈get, res〉−1 (Upd)

is a suitable backward transformation function. That is, when combined with
get, it yields a very well-behaved lens. We have to be careful about definedness
here. There are two cases to consider:

– The function 〈get , res〉 is not only injective, but also surjective, and inv is
its (full) inverse, i.e., for every s ∈ S, v ∈ V , and c ∈ C:

inv (〈get , res〉 s) = s (LeftInv)

〈get , res〉 (inv (v, c)) = (v, c) (RightInv)

Then put (get,res) is a total function (i.e., defined for every v and s) and get
and put (get,res) constitute a very well-behaved lens—i.e., they satisfy the
GetPut, PutGet, and PutPut laws.

– The function 〈get, res〉 is not surjective, and inv is a left-inverse for it but
only a partial right-inverse. That is, for every s ∈ S, v ∈ V , and c ∈ C we
have:

inv (〈get, res〉 s) = s (LeftInv)

(inv (v, c))↓
〈get, res〉 (inv (v, c)) = (v, c)

(Partial-RightInv)

Then put (get,res) is partial, and get and put (get,res) constitute (only) a partial
very well-behaved lens—i.e., satisfy the laws GetPut, Partial-PutGet,
and Partial-PutPut.3

In either case, the fact that the complement is kept constant can be readily seen
since Upd and Partial-RightInv (or RightInv) imply:

(put (get,res) v s)↓
res (put (get,res) v s) = res s

In general, there can be many possible complement functions for a given get
function. For example, all of the functions below are valid complement functions
for add :: (R,R)→ R,

fst (x, y) = x

sub (x, y) = x− y
idpair (x, y) = (x, y)

3 For example, put(get,id) generally defines the trivial function put presented in Sec-
tion 2, which is only defined on inputs (v, s) where v = get s.

8

and lead to the following backward transformation functions:

put(add,fst) v (x, y) = (x, v − x)

put(add,sub) v (x, y) = ((v + (x− y))/2, (v − (x− y))/2)

put(add,idpair) v (x, y) =

{
(x, y) if v = x+ y
⊥ otherwise

These backward transformation functions differ in the updates that they can
handle. The first two functions handle arbitrary modifications to the view while
the last does not allow any modifications—the view v must be equal to x + y.
Bancilhon and Spyratos (1981) introduce the following preorder, under which
smaller complement functions allow a larger set of updates to be propagated
(cf., Theorem 1 below).

Definition 2. Let f ∈ S → C, g ∈ S → C ′ be total functions. The collapsing
order, �, is the preorder defined by:

f � g ⇐⇒ ∀s, s′ ∈ S. g s = g s′ ⇒ f s = f s′

Intuitively, if f � g then f collapses the domain S at least as much as g. Minimal
functions under this preorder are functions that collapse every element of the
input to a single result—i.e., constant functions. Maximal functions are those
that collapse nothing—i.e., injective functions. Among the above examples of
complement functions for add, the idpair function is greater than the others,
while fst and sub are incomparable.

Since a complement function preserves information that does not appear in
the view obtained by a forward transformation, and since the backward transfor-
mation function derived from a complement function via equation Upd forbids
any change in the information that the complement has kept, a smaller com-
plement function under the preorder � gives a better backward transformation
function, because it keeps less information. Formally, we have the following the-
orem (Bancilhon and Spyratos 1981).

Theorem 1. Let get ∈ S → V be a forward transformation and res1 ∈ S → C
and res2 ∈ S → C ′ be two complement functions for get. Then we have that

∀v ∈ V, s ∈ S. (put (get,res2) v s)↓ ⇒ put (get,res1) v s = put (get,res2) v s

if and only if res1 � res2.

Even though the preorder � helps to tell which complement is better in
terms of the definedness of put, note that it does not express everything about
the precedence between complements. Usually, there are some pragmatic reasons
to prefer one complement over another. For example, the following function,
biasedSub, is also a complement for add:

biasedSub (x, y) = 3x− y

9

The complement functions sub and biasedSub are incomparable under �. But,
it may happen that one prefers sub over biasedSub because of the simplicity of
the definition or the more intuitive update behavior. Some in the literature prefer
time- or space-efficient complement functions (Perumalla and Fujimoto 1999) but
do not care about �, while others prefer a more restricted class of complement
functions for their intended requirements (e.g., complement functions in terms
of poset morphisms for uniqueness of put (Hegner 2004)).

The general bidirectionalization framework presented in this section has been
used to bidirectionalize relational queries in the context of databases (Cos-
madakis and Papadimitriou 1984; Laurent et al. 2001; Lechtenbörger and Vossen
2003). Sections 4 and 5 present methods for deriving complement functions for
functional programs that manipulate algebraic data structures such as lists and
trees (Matsuda et al. 2007; Voigtländer 2009).

4 Syntactic Bidirectionalization

In the remainder of the paper, we review the three techniques for development
of bidirectional programs mentioned in the introduction. All three use com-
plements in some sense. We begin in this section by introducing the syntactic
bidirectionalization method originally proposed by Matsuda et al. (2007). It is
the method most obviously based on complements, as it directly constructs com-
plement functions to obtain bidirectional programs. Indeed, it precisely follows
the constant-complement approach as outlined in the previous section; it takes a
program describing a forward transformation and generates a program describ-
ing a backward transformation in three steps:

1. Derivation of a Complement Function. From a given program describing
a forward transformation f , the method syntactically derives a program
describing a complement function f res for f .

2. Tupling and Program Inversion. From the program of the forward transfor-
mation and that of the derived complement function, the method derives a
program of the partial inverse 〈f, f res〉−1 of their tupling by using a syntac-
tic tupling transformation (Hu et al. 1997) and syntactic program inversion.
The inverse is partial in the sense that it satisfies LeftInv and Partial-
RightInv from the previous section.

3. Construction of a Backward Transformation. From the programs of the com-
plement function f res and the partial inverse 〈f, f res〉−1 of the tupled func-
tion, the method constructs a program of a backward transformation us-
ing Upd. It can be optimized using syntactic fusion (Wadler 1990) or partial
evaluation. Since fusion can remove “intermediate data” produced by the
complement function, a fused backward transformation becomes monolithic
and looks more like one a programmar would write.

Since in all three steps, syntactic transformations are performed on the program
definitions of functions, the method itself is called syntactic. One of the main ad-
vantages of syntactic bidirectionalization is that we can apply program analyses

10

to obtain “better” backward transformation functions. For example, Matsuda
et al. (2007) show how to use a range analysis to produce smaller complement
functions (Section 4.4). On the other hand, even a small syntactic difference
in forward transformations may affect the bidirectionalization results, which re-
duces the predictability of the method from a user’s point of view.

4.1 Describing Forward Transformations

The input programs of the method must be given by functions in affine and
treeless form (Wadler 1990) defined by a constructor-based first-order functional
language with pattern matching. As a simple example, consider a transformation
that takes a list of pairs and returns the list containing all the first components of
those pairs. This forward transformation function can be defined in our language
as follows:

mapfst [] = []
mapfst ((a, b) : x) = a : (mapfst x)

It decomposes the input data by pattern matching and constructs new data via
data constructors.

Intuitively, being affine means that a function must not copy any data, and
being treeless means that there is no function composition. Formally, a function
is in affine form if, for any branch, every variable from the left-hand side occurs
at most once in the corresponding right-hand side,4 and a function is in treeless
form if, for any function call, all arguments are variables. A simple example of
a non-affine program is dup defined by dup x = (x, x). A simple example of a
non-treeless program is fstHd x = fst (head x) where head (x : xs) = x.

Even though the language is restricted, it has enough expressive power to
describe many useful basic functions such as head, tail, init, last, fst, snd,
zip, concat, and first-order specializations of map like mapfst. With a small
extension on patterns, it also can describe some first-order specializations of
filter (Matsuda et al. 2009).

4.2 Deriving Complement Functions

Given the function definition of a forward transformation, the method starts by
automatically deriving a small (with respect to the preorder from Definition 2)
complement function so that tupling the two functions gives an injective function.
For example, the complement function automatically derived for mapfst is as
follows:

mapfstres [] = C1

mapfstres ((a, b) : x) = C2 b (mapfstres x)

4 For simplicity, we do not consider case and let; thus, every expression in the language
must be either a variable use, a constructor application, or a function application.
Typical uses of case can be replaced by pattern matching, but typical uses of let
correspond to the creation of intermediate results, i.e., to function composition,
which is disallowed.

11

One can see that the variable b present but unused in the second defining
equation of mapfst is kept in the corresponding right-hand side of the com-
plement function, and that different constructors C1 and C2 are added to trace
which branch was taken. Also, for a function call (mapfst x), the corresponding
complement-function call (mapfstres x) occurs in the corresponding branch of
the derived program. A close look at the definition in the above example reveals
that the derived complement function actually computes the list containing all
the second components of the pairs in the input list, i.e., mapsnd (modulo con-
structor names). Hence, one can easily see that although mapfst is non-injective,
the tupled function 〈mapfst, mapfstres〉 is injective. Note that it is not surjective
onto its potential range Range(mapfst)× Range(mapfstres) as it always returns
pairs of lists with the same length. For example, there is no x such that

〈mapfst, mapfstres〉 x = ([3],C1)

Later on, we will see how this non-surjectivity leads to a non-total put function.
In general, the syntactic bidirectionalization method uses the following three

principles to derive complement functions. They are all guided by eliminating
spurious sources of non-injectivity.

– Branch Tags. Constructors are used in the complement function to trace
which branch would be taken by the forward transformation. For example,

true True = True
true False = True

leads to
trueres True = C1

trueres False = C2

– Unused Variables. Unused variables, which occur in a left-hand side of the
forward transformation but not in the corresponding right-hand side, must
be used in the complement function. For example,

fst (x, y) = x leads to fstres (x, y) = C y

– Complement Function Calls. For every function call (f x1 x2 . . . xn) in the
definition of the forward transformation, there is a corresponding call of the
complement function, (f res x1 x2 . . . xn), in the complement definition. For
example,

fstHd (x : xs) = fst x
fst (x, y) = x

leads to
fstHdres (x : xs) = C1 (fstres x) xs
fstres (x, y) = C2 y

A formal algorithm working on the syntax description of the input functions
is given in the original paper describing syntactic bidirectionalization (Matsuda
et al. 2007).

4.3 Deriving Backward Transformation Functions

After obtaining the complement function, the method generates a backward
transformation function via equation Upd, using two syntactic program trans-
formations: tupling and inversion.

12

For the example mapfst, the method first automatically derives the following
definition for the tupled function 〈mapfst, mapfstres〉:

〈mapfst, mapfstres〉 [] = ([], C1)
〈mapfst, mapfstres〉 ((a, b) : x) = (a : y, C2 b z)

where (y, z) = 〈mapfst, mapfstres〉 x

Tupling of the forward function and its derived complement function is always
possible, because they have the same recursion structure, by construction. The
formal transformation follows the approach developed by Hu et al. (1997). Note
that tupling preserves totality, because also the domain of a derived complement
function is always the same as that of the forward transformation.

Then, the method derives the partial inverse of the tupled function, basically
by exchanging the roles of left- and right-hand sides in function definitions (and
adjusting recursive calls). In the specific example, we obtain:

〈mapfst, mapfstres〉−1 ([], C1) = []

〈mapfst, mapfstres〉−1 (a : y, C2 b z) = (a, b) : x

where x = 〈mapfst, mapfstres〉−1 (y, z)

Note that 〈mapfst, mapfstres〉−1 is not defined for all elements of its potential
domain Range(mapfst)×Range(mapfstres), because, as already observed earlier,
the tupled function 〈mapfst, mapfstres〉 is not surjective onto that set. As a

consequence of the partiality of 〈mapfst, mapfstres〉−1, the put function obtained
from equation Upd:

put(mapfst,mapfstres) v s = 〈mapfst, mapfstres〉−1 (v, mapfstres s)

is only partial. For example,

put(mapfst,mapfstres) [3] [] = ⊥

To more clearly see what the derived backward transformation function
actually is, and in general to make it more efficient by eliminating interme-
diate results, we can apply the fusion/deforestation transformation of Wadler
(1990). In the example, this leads to the following definition, where we rename
put(mapfst,mapfstres) to mapfstB:

mapfstB [] [] = []
mapfstB (a : y) ((, b) : x) = (a, b) : (mapfstB y x)

That is, mapfstB is a function accepting (being defined for) a new view v and
the original source s precisely when they are of same length, then returning a
new source s′ obtained from s by replacing the first component of each pair with
the item from v at the corresponding list position. The call mapfstB v s fails if

13

the lengths of v and s differ! For example, let s be [(1,A), (2,B)]. We have:5

mapfst s = [1, 2]

mapfstB [11, 22] s = [(11,A), (22,B)]
mapfstB [11] s = ⊥
mapfstB [11, 22, 33] s = ⊥

One issue that is not visible from the above example is that syntactic in-
version is not always so easy. For 〈mapfst, mapfstres〉, exchanging the left- and
right-hand sides led to a program with non-overlapping patterns on the (new)
left-hand sides, and thus to deterministic branching. In general, though, once
we apply some of the optimizations discussed in the next subsection to make
the complement smaller, the syntactically inverted program 〈get, getres〉−1 can
require a full non-deterministic search to find, for a given pair (v, c), the unique
(if any) s′ with 〈get, getres〉 s′ = (v, c).

As already mentioned, put functions obtained by the syntactic bidirection-
alization method are non-total in general. Thus, it is important to provide a
way for users to know when put v s succeeds. To tackle this problem, Matsuda
et al. (2007) generate, given an initial source s0, an update checker represented
by a tree automaton (Comon et al. 2007) that can check for a given v whether
put v s0 will succeed, before and independent of actually executing the call to
put. The law Partial-PutPut guarantees that this tree automaton is invari-
ant under successive application of put, and thus reusable through backward
transformations.

4.4 Optimizing Complement Functions to be Small

Sometimes the complement functions obtained as in Section 4.2 are too large
(with respect to the preorder from Definition 2) to be useful—the backward
transformations obtained from them are defined for only a narrow range of ar-
guments. This subsection presents syntactic techniques for obtaining smaller
complement functions.

Removing Constructors. As an example, consider the function zip, which
transforms a pair of lists into a list of pairs, and its derived complement zipres,
given as:

zip ([], y) = []
zip (a : x, []) = []
zip (a : x, b : y) = (a, b) : (zip (x, y))

zipres ([], y) = C1 y
zipres (a : x, []) = C2 a x
zipres (a : x, b : y) = C3 (zipres (x, y))

5 Note that even though we use Haskell syntax, we assume a strict functional language
here. That is, we do not consider partially defined lists: if one item or tail is undefined,
the whole list is (as opposed to Section 2, where we considered [a,⊥] to be different
from ⊥).

14

Because the tupled function 〈zip, zipres〉 is not a surjective function onto the
product Range(zip) × Range(zipres), the backward transformation that is de-
rived, namely zipB = put(zip,zipres), is partial: it rejects any view update that
changes the length of the view. For example, let s be ([1, 2, 0], [A,B]). We have:

zip s = [(1,A), (2,B)]

zipB [(11,D), (22,E)] s = ([11, 22, 0], [D,E])
zipB [(11,D)] s = ⊥
zipB [(11,D), (22,E), (33,F)] s = ⊥

Performing range analysis, which approximates the set of results an expres-
sion can possibly evaluate to, sometimes helps us to obtain a smaller complement.
For example, we can observe that the possible evaluation results of the right-
hand side expression (a, b) : (zip (x, y)) of the third branch in the definition of
zip above do not overlap those of the first and second branches. Thus, we do
not need to use C3 in the third branch of the complement function, because even
without it the tupled function 〈zip, zipres〉 would be injective. If we do remove
it, thus creating a complement function that is smaller with respect to � than
the one above, 〈zip, zipres〉 becomes surjective onto Range(zip)×Range(zipres)
and we obtain a new, now total, backward transformation zipB = put(zip,zipres)
equivalent to the following definition:

zipB v (x, y) = (s++ r, t++ u)
where (s, t) = unzip v

r = drop m x
u = drop m y
m = min (length x) (length y)

For example, let s be ([1, 2, 0], [A,B]) again. We now have:

zip s = [(1,A), (2,B)]

zipB [(11,D), (22,E)] s = ([11, 22, 0], [D,E])
zipB [(11,D)] s = ([11, 0], [D])
zipB [(11,D), (22,E), (33,F)] s = ([11, 22, 33, 0], [D,E,F])

and similarly for s = ([1, 2], [A,B,Z]). Such behavior of zipB would probably be
the expected intuitive one to users.

Matsuda et al. (2007) use tree automata (Comon et al. 2007) to analyze the
ranges of functions. In fact, due to the restrictions imposed on the functional
language, the ranges of functions can be described in exact form this way. More-
over, a similar approach enables one to check whether a function is injective
or not in a sound and complete way; thus, the method can derive a constant
function as the complement for an injective function.

The injectivity analysis also enables us to remove calls of the corresponding
complement function for an injective function; they do not contribute to the
injectivity of the tupled functions. In addition, removing complement-function
calls sometimes creates more opportunities for applying the constructor removal
method (which only removes singleton constructors) discussed above.

15

Unifying Constructors. As another example, consider the function even,
which checks whether a given natural number is even, and its derived complement
function evenres:

even Z = True
even (S Z) = False
even (S (S x)) = even x

evenres Z = C1

evenres (S Z) = C2

evenres (S (S x)) = C3 (evenres x)

Since evenres (not even!) is an injective function, no update on a view can be
propagated back to the source by the backward transformation put(even,evenres)
obtained from the above. Moreover, it is not possible here to remove the con-
structor C3 in the third branch of the complement function, because then the
tupled function 〈even, evenres〉 would not be injective anymore. However, since
the return values of the first and the second branch of even differ, one does not
actually need different constructors C1 and C2 in the complement function. Even
if we replace the two by a single constructor, the tupled function 〈even, evenres〉
remains injective. Indeed, the following function is also a complement function
for even and smaller with respect to � than the above one:

evenres Z = C1

evenres (S Z) = C1

evenres (S (S x)) = C3 (evenres x)

Intuitively, this new definition of evenres computes bx/2c for a given natural
number x. Now that the tupled function 〈even, evenres〉 has become surjective
onto Range(even)×Range(evenres), the corresponding backward transformation
evenB = put(even,evenres) is total and is able to propagate any view changes to
source changes.

The formal way to soundly unify constructors again relies on the range anal-
ysis mentioned earlier. Criteria for making complement functions smaller by re-
moving constructors, unifying constructors, and exploiting injectivity analysis,
are incorporated into an algorithm by Matsuda et al. (2007).

4.5 Summary

Syntactic bidirectionalization (Matsuda et al. 2007) directly follows the constant-
complement approach to bidirectionalization. From a given definition of a for-
ward transformation function, the method generates the definition of a comple-
ment function and then constructs the backward transformation function based
on equation Upd. Sometimes range analysis and injectivity analysis help to ob-
tain smaller complement functions (as shown for the zip and even examples).

5 Semantic Bidirectionalization

This section presents a semantic bidirectionalization technique. The idea is to
define a higher-order function that takes the forward transformation as an argu-
ment and produces a suitable backward transformation as a result. This function

16

invokes the forward function as a subroutine but does not (indeed, cannot) oth-
erwise inspect it. Since there is no dependence on the syntactic definition of
the forward function whatsoever, and it is only used as a semantic entity, the
technique can be used with functions that have already been compiled or whose
source is otherwise not available.

The way this is done depends crucially on having suitable abstraction mecha-
nisms available in the functional language at hand. In particular, we will stipulate
that the forward transformation must be a polymorphic function, because this
will allow us to learn something about its behavior without having access to its
defining equations.

5.1 Leveraging Polymorphism

The technical mechanism we use exploits “free theorems” (Wadler 1989)—formal
statements about the behavior of functions that do not depend on their def-
initions, just their types. For example, assume that we are given a function
get :: forall α. [α]→ [α]. Since it is polymorphic, there are certain restrictions
on what the function can do. In particular, it cannot manufacture new list items
or manipulate the existing ones. Essentially, the function can only drop, move
around, or duplicate items from the input list to produce the output list. That
still leaves considerable room for the function’s behavior, but some aspects are
fixed, for example that the length of the output list only depends on the length
of the input list.

Wadler’s free theorems are a way to make explicit such constraints on the
behavior of functions imposed by their (polymorphic) type. For the above type
of get, a free theorem states that for any list l and (type-appropriate) function
h, we have

get (map h l) = map h (get l) (1)

where
map :: forall α. forall β. (α→ β)→ [α]→ [β]
map h [] = []
map h (a : as) = (h a) : (map h as)

This implies that the behavior of get must not depend on the values of the list
items, but only on positional information. This positional information can even
be observed explicitly, for example by applying get to ascending lists over integer
values. Say get is tail, then every list [0..n] is mapped to [1..n], which allows
us to see (without inspecting the syntactic definition of tail, or its suggestive
name) that the head item of the original source list is absent from the view,
hence cannot be affected by an update on the view, and hence should remain
unchanged when propagating an updated view back into the source. Even more
important, this observation can be transferred to other source lists than [0..n]
just as well, thanks to statement (1) above. In particular, that statement allows
us to establish that for every list s of the same length as [0..n], but over arbitrary

17

type, we have

get s = get (map (s !!) [0..n]) = map (s !!) (get [0..n]) (2)

where (!!) :: forall α. [α]→ Int→ α is the Haskell operator for extracting a list
item at a given index position, starting from 0.

Statement (2) means that the behavior of get is fully determined by its
behavior on initial segments of the naturals (or, if we want, by its behavior on
finite lists of distinct items). Now we “only” need to make good use of that
observation to provide an appropriate backward transformation put. We do not
insist on totality, but instead aim for a get/put pair that constitutes a partial
very well-behaved lens. The original paper by Voigtländer (2009) gives a direct
construction of the put function. Here we instead lay out its construction in
terms of complements. We consider first the case of lists as input and output.
Section 5.4 describes a generic extension that allows the technique to be used
with other structures besides lists.

5.2 Using the Constant-Complement Approach

Assume a fixed get :: forall α. [α] → [α]. What should a complement function
res look like, so that the tupled function 〈get, res〉 becomes injective? Clearly,
res needs to record all the information (about the input list) that is discarded
by get. Natural candidates are the input list length and the positions and values
in it that get discarded. For example, if get = tail, then res may record the
input list length as well as that the first item is missing from the view and what
its value was. Using statement (2), we can learn such information about which
items are missing in the view, for a concrete source s, without inspecting the
definition of get. Namely, we can apply get to the list [0..n] of same length as s,
and observe which of the values 0, . . . , n are missing from the result. If we count
from 1 instead of from 0, this idea leads to the following implementation,

res :: forall α. [α]→ (Int, IntMap α)
res s = let n = length s

t = [1..n]
g = IntMap.fromDistinctAscList (zip t s)
g′ = foldr IntMap.delete g (get t)

in (n, g′)

which uses some Haskell functions from the standard Prelude and from the
Data.IntMap module. Figure 1 gives the names and the type signatures for those
from Data.IntMap, as well as some other functions from the same module that
will be used later.

Next, we need a (partial) function inv such that for every type τ , source
s :: [τ], view v :: [τ], and complement c :: (Int, IntMap τ), the laws LeftInv
and Partial-RightInv hold. It is tempting to write something like (using the

18

fromDistinctAscList :: forall α. [(Int, α)] → IntMap α
empty :: forall α. IntMap α
insert :: forall α. Int → α→ IntMap α→ IntMap α
delete :: forall α. Int → IntMap α→ IntMap α
union :: forall α. IntMap α→ IntMap α→ IntMap α
lookup :: forall α. Int → IntMap α→ Maybe α
keys :: forall α. IntMap α→ [Int]
elems :: forall α. IntMap α→ [α]

Fig. 1. Some functions from module Data.IntMap

fromJust function from the Data.Maybe module):

inv :: forall α. ([α], (Int, IntMap α))→ [α]
inv (v, (n, g′)) = let t = [1..n]

h = fromList (zip (get t) v)
h′ = IntMap.union h g′

in map (λi→ fromJust (IntMap.lookup i h′)) t

fromList :: forall α. [(Int, α)]→ IntMap α
fromList = foldl (λm (i, b)→ IntMap.insert i b m) IntMap.empty

For get = tail and the case that inv is called with a list v of length n − 1,
with n, and with g′ representing a finite mapping with exactly {1} as domain,
h will associate the “indices” 2, . . . , n with the first, second, and so on, item of
v, and so the overall result will be the value stored for index 1 in g′ followed by
the whole of v. So far, so good for this specific example. But in general, we have
to be careful, because:

1. The function inv may be called with arguments v and n where get [1..n]
and v are not lists of the same length. In this case we would also have
that get (map (λi → · · ·) [1..n]) and v are lists of different lengths, due to
statement (1), which contradicts the requirement derived from law Partial-
RightInv that

(inv (v, (n, g′)))↓
get (inv (v, (n, g′))) = v

(Partial-RightInv-Get)

2. The function inv may be called with arguments v and n such that get [1..n]
contains duplicate items at positions where the corresponding items of v do
not agree. In this case, only one of these two items of v would be associated
with such an index (that occurred twice in get [1..n]) in h, and hence would
be used for the thus indexed position of the overall result of the call to inv,
which in turn would again cause get (inv (v, (n, g′))) to differ from v.

3. The function inv may be called with arguments n and g′ such that the
domain of g′ contains integers other than those of 1, . . . , n not occurring in

19

get [1..n], which would lead to a contradiction to the requirement derived
from law Partial-RightInv that

(inv (v, (n, g′)))↓
res (inv (v, (n, g′))) = (n, g′)

(Partial-RightInv-Res)

To alleviate all these problems, we implement (using (\\) from the Data.List
module and guard and foldM from the Control.Monad module):

inv :: forall α. Eq α⇒ ([α], (Int, IntMap α))→ [α]
inv (v, (n, g′)) = fromJust (do let t = [1..n]

let t′ = get t
guard (length t′ == length v)
h← assoc (zip t′ v)
guard (null (IntMap.keys g′ \\ (t \\ t′)))
let h′ = IntMap.union h g′

mapM (λi→ IntMap.lookup i h′) t)

assoc :: forall α. Eq α⇒ [(Int, α)]→ Maybe (IntMap α)
assoc = foldM (λm (i, b)→ checkInsert i b m) IntMap.empty

checkInsert :: forall α. Eq α⇒ Int→ α→ IntMap α→ Maybe (IntMap α)
checkInsert i b m = case IntMap.lookup i m of

Nothing→ Just (IntMap.insert i b m)
Just c → if (b == c) then Just m else Nothing

Note that we use monadic error handling, and in particular the two calls to
guard to prevent the first and third potential problems mentioned in the list
above. The second potential problem is prevented by replacing the simple call to
fromList in the previous definition of inv with a possibly failing call to assoc,
which checks that if there are duplicates in get [1..n] then the corresponding
items of v do agree, at least up to programmed (though not necessarily, semantic)
equivalence ==. This use of == leads to a slightly different type of inv than
before, namely a type class constraint Eq has to be added. Finally, note that the
last line, mapM (λi→ IntMap.lookup i h′) t, can also lead to a failure, namely if
one of 1, . . . , n occurs neither in get [1..n] nor in the domain of g′.

Now, using statement (2), actually its variant for lists starting from 1, we can
prove that law LeftInv holds for inv, get, and res, but instead of law Partial-
RightInv we can only prove a slightly weaker variant in that Partial-RightInv-
Res does hold, but instead of get (inv (v, (n, g′))) = v in Partial-RightInv-
Get only

(inv (v, (n, g′)))↓
(get (inv (v, (n, g′))) == v) = True

20

holds. We will henceforth abbreviate statements (x == y) = True to x == y,
but keep the distinction between == and =. We do assume, however, that every
instance of Eq defines an == that is reflexive, symmetric, and transitive.

Using the facts we already have, we can prove that get and

put :: forall α. Eq α⇒ [α]→ [α]→ [α]
put v s = inv (v, res s)

constitute a partial very well-behaved lens, except that we have to replace law
Partial-PutGet by the following slightly weaker variant:6

(put v s)↓
get (put v s) == v

(Partial-Eq-PutGet)

In terms of providing a suitable backward function we are done.7 It is inter-
esting, though, to inline the definitions of inv and res into that of put, because
it allows some optimization as well as connecting to the formulation (not based
on constant complements) given by Voigtländer (2009). We obtain:

put :: forall α. Eq α⇒ [α]→ [α]→ [α]
put v s = fromJust (do let n = length s

let t = [1..n]
let t′ = get t
let g = IntMap.fromDistinctAscList (zip t s)
let g′ = foldr IntMap.delete g t′

guard (length t′ == length v)
h← assoc (zip t′ v)
guard (null (IntMap.keys g′ \\ (t \\ t′)))
let h′ = IntMap.union h g′

mapM (λi→ IntMap.lookup i h′) t)

Given this, we can observe that:

– the second call to guard is superfluous, because in the context in which it
now appears it is guaranteed that the domain of g′ consists exactly of those
integers of 1, . . . , n that to not occur in get [1..n];

– no failure can happen in the line computing mapM (λi→ . . .) t, because every
element of [1..n] occurs in the domain of (exactly) one of h and g′, and thus
in the domain of h′;

6 For the typical instances of Eq used in practice, == and = totally agree, so the
difference would be immaterial. Note also that Voigtländer (2009) assumed that also
GetPut and Partial-PutPut need to be weakened to use == instead of =, which
was overly pessimistic.

7 For example, if get is the function from the beginning of Section 2, then the above
definition of put behaves exactly like the second implementation of put given in that
earlier section.

21

– indeed, the domain of h′ is exactly {1, . . . , n}, so instead of looking up the
elements [1..n], in this order, we might as well simply return all elements of
the map in the ascending order of their keys.

Hence, we can simplify as follows, while at the same time abstracting from a
fixed get to a variable one, thus providing the higher-order function alluded to
earlier (named for an abbreviation of “Bidirectionalization for Free”):

bff :: (forall α. [α]→ [α])→ (forall α. Eq α⇒ [α]→ [α]→ [α])
bff get v s = fromJust (do let t = [1..(length s)]

let t′ = get t
let g = IntMap.fromDistinctAscList (zip t s)
let g′ = foldr IntMap.delete g t′

guard (length t′ == length v)
h← assoc (zip t′ v)
let h′ = IntMap.union h g′

Just (IntMap.elems h′))

This version conceptually differs from the one originally published (Voigtländer
2009) in no essential way, except for the role of g′, which is avoided in the original
version (building h′ directly as the union of h and g, which makes a potential
difference only in terms of efficiency, either way, but not in terms of semantics).

The original paper by Voigtländer (2009) does not stop there—it goes on to
develop semantic bidirectionalization for other functions besides fully polymor-
phic functions on lists. The rest of this section reviews these generalizations.

5.3 Generalizing

One dimension of generalization is to consider functions that are not fully poly-
morphic, but may actually perform some operations on list items. For example,
the following function uses equality (or rather inequality) tests to remove dupli-
cate list items:

get :: forall α. Eq α⇒ [α]→ [α]
get [] = []
get (a : as) = a : (get (filter (a /=) as))

Unfortunately, this function is not handled by the semantic bidirectionalization
strategy described thus far. It cannot be given the type forall α. [α]→ [α], and
indeed the essential statement (2) does not hold for it.8 By working with refined
free theorems (Wadler 1989, Section 3.4) it is possible to treat get-functions of
type forall α. Eq α⇒ [α]→ [α] as well, to implement a higher-order function

bffEq :: (forall α. Eq α⇒ [α]→ [α])→ (forall α. Eq α⇒ [α]→ [α]→ [α])

8 Consider s = “abcbabcbaccba” and n = 12. Then on the one hand, get s = “abc”,
but on the other hand, map (s !!) (get [0..n]) = map (s !!) [0..n] = s.

22

and to prove that every pair get :: forall α. Eq α ⇒ [α] → [α] and put =
bffEq get satisfies the laws Partial-PutPut and Partial-Eq-PutGet and
the following variant of the law GetPut:9

put (get s) s == s

The same goes for the type class Ord capturing ordering tests (assuming that
the provided < is transitive, x < y implies x /= y, and x /= y implies x < y or
y < x), a new higher-order function

bffOrd :: (forall α. Ord α⇒ [α]→ [α])→ (forall α. Ord α⇒ [α]→ [α]→ [α])

and forward transformations like the following one:

get :: forall α. Ord α⇒ [α]→ [α]
get = (take 3) ◦ List.sort

Another dimension of generalization is to consider functions that deal with
data structures other than lists. By employing polymorphism over type con-
structor classes and type-generic programming techniques, Voigtländer (2009)
provides one implementation of each bff, bffEq, and bffOrd that applies to
functions involving a wide range of type constructors, on both the source and
the view sides. For example, the very same bff can be used to bidirectionalize
the get-function shown at the beginning of Section 2 as well as the following
function:

flatten :: forall α. Tree α→ [α]
flatten (Leaf a) = [a]
flatten (Node t1 t2) = (flatten t1) ++ (flatten t2)

where
data Tree α = Node (Tree α) (Tree α) | Leaf α

In the next subsection we give a somewhat more streamlined account of
data-type genericity for bff than originally provided by Voigtländer (2009). The
main benefit is that the new version uses only standard type constructor classes,
rather than a specifically introduced new one. As a consequence, the generic bff

is now much more readily applicable to new data types, because no instance
definitions have to be implemented by hand—the Glasgow Haskell Compiler can
automatically derive them.

5.4 Going Generic via Container Representations

Instead of bidirectionalizing functions of type forall α. [α]→ [α], we now want
to more generally treat functions of type forall α. θ α → θ′ α for some type

9 Again, Voigtländer (2009) actually assumed that also Partial-PutPut needs to
be weakened to use == instead of =, which is not necessary. But for GetPut it is
indeed necessary in the case of bffEq (and bffOrd below).

23

constructors θ and θ′. In fact, we want bff to be polymorphic over those type
constructors. Clearly, the operations we previously performed on lists now need
to be somehow generalized to other data types. For example, we previously
compared lists by their lengths, but now we have to consider more complex
shapes. Also, we previously manufactured a “template” [1..n] for every source
list s of length n, and now need to do something similar for fairly arbitrary tree
structures. Our strategy here is to reuse as much as possible of bff’s operation
on lists, by first separating other data structures into their shape and content
aspects, much like the shape calculus (Jay 1995) and container representations
(Abbott et al. 2003) do. In fact, we can largely follow a generic programming
account of these ideas due to Gibbons and Oliveira (2009) here.

The general idea of container representations is to explicitly represent, for a
given type constructor, a type of underlying shapes:

type Shape κ = . . .

as well as a type of associated positions:

type Pos κ = . . .

and to provide functions (potentially with dependent types actually more precise
than those given here):

positions :: Shape κ→ Set (Pos κ)
shape :: forall α. κ α→ Shape κ
content :: forall α. κ α→ (Pos κ→ α)
fill :: forall α. (Shape κ,Pos κ→ α)→ κ α

connected by some natural laws. If one agrees to always represent positions by
natural numbers and to use as set of positions for a given shape always a prefix
of the natural numbers, one can replace positions by a function

arity :: Shape κ→ Int

and replace Pos κ→ α by [α] in the types of content and fill:

content :: forall α. κ α→ [α]
fill :: forall α. (Shape κ, [α])→ κ α

The natural laws mentioned above then become

arity (shape x) = length (content x) (3)

and
fill (shape x, content x) = x (4)

in this formulation.10

10 Section 6 also employs this formulation.

24

With

type Shape κ = κ ()

and requiring κ to be an instance of the type constructor class Data.Traversable,
Gibbons and Oliveira (2009) give generic implementations of essentially the
latter two functions content and fill under the names runContents and
runReassemble, respectively. For our purposes, it is convenient to replace the
second of the two by a function that does not necessarily take a Shape κ = κ ()
as first argument, but actually any κ-structure. Moreover, we make this new
function decorate curried and flip its arguments. Specifically, we assume given
three functions

shape :: forall α. κ α→ κ ()
content :: forall α. κ α→ [α]
decorate :: forall α. forall β. [α]→ κ β → κ α

(eventually each implemented by relying on a “Traversable κ⇒” context), which
satisfy the laws

decorate (content x) x = x (5)

and

decorate y x = decorate y (shape x) (6)

Note that (5) is GetPut for get = content and put = decorate. Reasonable
definitions will also satisfy the corresponding Partial-PutGet, namely that
if decorate y x is defined, then content (decorate y x) = y. Together with
the above and the types, Partial-PutPut follows as well. In fact, reasonable
definitions of the above three functions let content/decorate be a partial very
well-behaved lens, with shape in the role of the chosen complement function res
for get = content, à la Section 3! However, we will only rely on the statements (5)
and (6) below.

Suitable implementations of shape, content, and decorate are given in Ap-
pendix A, and can be used to make the function bff from Section 5.2 more
generic as follows:

bff :: (Traversable κ,Traversable κ′,Eq (κ′ ()))⇒
(forall α. κ α→ κ′ α)→ (forall α. Eq α⇒ κ′ α→ κ α→ κ α)

bff get v s = fromJust (do let l = content s
let t = [1..(length l)]
let t′ = get (decorate t s)
let g = IntMap.fromDistinctAscList (zip t l)
let l′ = content t′

let g′ = foldr IntMap.delete g l′

guard (shape t′ == shape v)
h← assoc (zip l′ (content v))
let h′ = IntMap.union h g′

Just (decorate (IntMap.elems h′) s))

25

Instead of directly constructing a template [1..n] from a list, we first “reduce”
a more general data structure to its list of content items, construct a template
from that, use it to redecorate the actual data structure, and work from there.
On the view side, we again work with the separation into content and shape,
in particular constructing g′ from the content of the outcome of the subcall to
get , and instead of comparing the lengths of lists, comparing the shapes of t′

and v. In the end, instead of directly returning the elements of h′, we use them
to redecorate the actual source data structure once more, but now with (some)
items updated according to the content of v. In essence, lists provide an interface
here for enumerating, collecting, comparing, and replacing data items in a fairly
arbitrary structure, and the functions shape/content/decorate are used to go
back and forth between such arbitrary structures and lists.

We postulate that in order for the laws GetPut, Partial-Eq-PutGet, and
Partial-PutPut to hold for any functions get :: forall α. Eq α⇒ θ α→ θ′ α
and put = bff get (for θ, θ′ satisfying the type (constructor) class constraints
imposed in the type of bff above), it is enough to have (5) and (6) plus that for
every t, t′ :: θ′ (),

t = t′ ⇐⇒ t == t′

and that in fact Eq-instances are always such that data structures with the
same shape and ==-equivalent content are themselves ==-equivalent (a condi-
tion which could be formalized via shape and content). All these conditions
can reasonably be expected to hold of the implementations from Appendix A,
together with the Traversable- and Eq-instances a programmer would write (or
that the compiler would derive automatically).

For bffEq and bffOrd, a similar development is possible, though not given
here. It can be obtained by applying similar simplifications as above to their
generic versions from the original paper (Voigtländer 2009).

5.5 Summary

Semantic bidirectionalization (Voigtländer 2009) exploits the abstraction mech-
anisms—in particular, polymorphic typing—of a higher-order functional lan-
guage to implement a backward transformation function without inspecting the
syntactic form of the forward transformation. The key idea is to use the forward
transformation function as a subroutine “in simulation mode” to learn impor-
tant information about its behavior, to be used in complement generation and
tupled function inversion. Generic programming techniques allow the realization
of this approach for a wide range of data types.

6 Bidirectional Combinators

This section describes an approach to building bidirectional transformations us-
ing domain-specific bidirectional combinators. Unlike the techniques developed
in the preceding sections, which calculate a well-behaved put function from a

26

given get function (or the program describing it), the technique presented here
allows programmers to describe a pair of get and put functions simultaneously.

Using combinators has several advantages over other approaches:

– They make it easy to develop type systems that guarantee strong behavioral
properties, such as round-tripping laws and totality.

– They allow programmers to choose an appropriate put function for a given
get function (unlike approaches such as bidirectionalization, which calculate
a single put function for a particular get function).

– They are easy to extend with special constructs for dealing with issues such
as alignment (Barbosa et al. 2010; Bohannon et al. 2008), ignorable infor-
mation (Foster et al. 2008), and confidential data (Foster et al. 2009).

Of course, using combinators also has a significant disadvantage—it does not
allow programmers to describe lenses using programs in existing languages. But
often the syntax of the combinators can be designed to closely resemble familiar
languages so that this is not a major burden. Boomerang, a bidirectional lan-
guage for processing textual data, is based on combinators (Foster and Pierce
2009) as is Augeas, a language that extends Boomerang’s core constructs with
combinators for processing trees (Lutterkort 2008).

This section focuses on the special case of matching lens combinators, which
are designed to deal with the problems that come up when ordered data are
manipulated using bidirectional transformations. Lenses and their associated
behavioral laws capture important conditions on the handling of data in the
source and view. But they do not address an important issue that comes up in
many practical applications: alignment. As we have seen, the get component of a
lens may discard some of the information in the source. So to correctly propagate
updates to the view, the put function needs to combine the pieces of the view
with the corresponding pieces of the source (or complement). In particular, when
the source and view are ordered (e.g., lists, strings, XML trees, etc.), doing
this correctly requires re-aligning the pieces of each structure with each other.
Unfortunately, the laws given in Section 2 do not include any properties involving
alignment. Hence, they consider a put function that operates in the simplest
possible way—by position—to be correct.

6.1 Alignment Problems

To illustrate the problems that come up when lenses that are used with ordered
structures, consider an example where the source is a list,

s = [(“Alice”, “Anchorage, AK”), (“Bob”, “Boston, MA”),
(“Carol”, “Chicago, IL”), (“Dave”, “Detroit, MI”)]

and the view is obtained by projecting the name from each source item (mapfst
from Section 4):

v = [“Alice”, “Bob”, “Carol”, “Dave”]

27

If we modify the view by replacing “Dave” with “David”, adding “Eve” to the
beginning of the list, and deleting “Carol”, we would like the put function to
take the updated view,

v′ = [“Eve”, “Alice”, “Bob”, “David”],

together with the complement computed from the original source,

c = [“Anchorage, AK”, “Boston, MA”, “Chicago, IL”, “Detroit, MI”],

and produce a new source that reflects all three updates,

s′ = [(“Eve”, “”), (“Alice”, “Anchorage, AK”),
(“Bob”, “Boston, MA”), (“David”, “Detroit, MI”)]

using the empty string as the default city and state for “Eve”, who was newly
added.

Unfortunately, if the lens matches pieces of the view and complement by
their absolute position in each list, this is not what will happen. Instead, the
first name in the view will be matched up with the first city and state in the
complement, the second name with the second city and state, and so on, yielding
a mangled source,

s′ = [(“Eve”, “Anchorage, AK”), (“Alice”, “Boston, MA”),
(“Bob”, “Chicago, IL”), (“David”, “Detroit, MI”)]

where the city and state for “Alice” have been restored to the pair for “Eve”,
the city and state for “Bob” to the pair for “Alice”, and so on.

And yet, most existing bidirectional languages use this very strategy (Foster
et al. 2007b; Matsuda et al. 2007; Voigtländer 2009). Although it works in some
simple cases—e.g., when the source and view are unordered, or when updates
only modify items in-place—it fails dramatically in many others. Addressing
this deficiency is the goal of the matching lenses presented in this section, which
is based on papers by Bohannon et al. (2008) and Barbosa et al. (2010), but
presented here with a cleaner and streamlined semantics.

6.2 Lenses with Complements

As a first step toward matching lenses, let us generalize the standard definition
of well-behaved lenses as described in Section 2 by adding complements. Let S
be a set of source structures, V a set of views, and C a set of complements. A
basic lens on S, V , and C comprises three functions,

get ∈ S → V
res ∈ S → C
put ∈ V ×Maybe C → S

obeying the following laws for every s in S, v in V , c in C, and mc in Maybe C:

28

get s = v res s = c

put (v, Just c) = s
(GetPut)

put (v,mc) = s

get s = v
(PutGet)

We will write S
C⇐⇒ V for the set of all basic lenses on S, V , and C.

Note that the definition of basic lenses requires the put component to be a
total function. Totality is a simple, powerful condition which ensures that basic
lenses are capable of doing something reasonable with every view and every
complement, even when the view has been modified significantly. Insisting that
the put function be total is a strong constraint, especially in combination with
the other lens laws imposed. In particular, totality is often in tension with the
PutPut law:

put (v′, Just (res (put (v,mc)))) = put (v′,mc)
(PutPut)

For example, the total versions of the union and iteration operators (defined
later in this section), which are needed in many practical examples, do not obey
it. Therefore, in this section, we will not require that every lens obey PutPut.

Readers familiar with previously published descriptions of lenses may notice
some minor differences (Bohannon et al. 2008; Foster et al. 2007b):

– The put function takes a complement rather than a source, and a new func-
tion res computes a complement from a source.

– The put component takes an optional value as its second argument, instead
of having a separate create function of type V → S (see footnote 2). To map
a view to a source, one can invoke put with Nothing.

– Finally, the put function has an uncurried type: V ×Maybe C → S instead
of V → Maybe C → S. This simplifies several of the definitions that follow.

To see that these changes do not affect the semantics of lenses in any significant
way, observe that, given a “classic” lens l, we can build a basic lens as follows:

get s = l.get s
res s = s
put (v,ms) = case ms of

Just s → l.put v s
Nothing→ l.create v

The notation l.get refers to the get function of l. Similarly, given a basic lens l,
we can build a classic lens as follows:

get s = l.get s
put v s = l.put (v, Just (l.res s))
create v = l.put (v,Nothing)

29

-

+
(a) positional (b) best match (c) best non-crossing (d) actual operations

Fig. 2. Alignment strategies.

6.3 Matching Lenses

Matching lenses address the alignment problems that arise in basic lenses by sep-
arating the two tasks performed by the put function: matching up pieces of the
updated view with the corresponding pieces of the complement, and weaving
the view and complement together to produce an updated source. To achieve
this separation, they structure the complement as a pair consisting of a rigid
component and a list component. This makes it easy to realign the complement
after an update because the list can be used to supply the lens with explicit
alignment information. Matching lenses also include additional behavioral laws
that stipulate how items in the list component of the complement must be han-
dled by the put function—e.g., they require the put function to combine pieces
of the view with the corresponding pieces of the complement.

The matching lens framework can be instantiated with arbitrary heuristic
alignment strategies while still enjoying a simple and intuitive semantics. In
practice, we often use matching lenses with a variety of different strategies, such
as the heuristics depicted in Figure 2,

(a) simple positional alignment,
(b) “best match” alignment, which tries to match chunks without regard to

ordering,
(c) a variant of best-match that only considers “non-crossing” matches, like the

longest common subsequence heuristic used by diff, and
(d) edit-based alignment, which uses the actual edit operations performed by

the user (if available) to calculate the intended alignment.

Boomerang (Foster and Pierce 2009), which implements matching lenses for
textual data, supports a number of such alignment heuristics.

6.4 Structures with Chunks

Matching lenses assume that the source and view are made up of reorderable
pieces, which we will call chunks. Formally, we model structures with chunks as
containers, as defined in Section 5.4. To review, containers support the following
functions,

– shape, which computes the shape of a structure with chunks,

30

– content, which computes the contents of a structure with chunks (represented
concretely as a list),

– arity, which computes the arity of a shape, and
– fill, which computes the structure obtained by filling a shape with a given

list of chunks.

We assume that these functions satisfy some natural laws, corresponding to (3)
and (4) in Section 5.4. Many types—including pairs, sums, lists, trees, matri-
ces, etc.—can be defined as containers satisfying these laws. In this section, we
describe the container representations using standard datatypes, using a type
constructor 〈·〉 to indicate the locations of chunks. For instance, the type

Unit + 〈(Int × String)〉

where the “+” operator builds a (tagged) disjoint union and “×” builds a prod-
uct, denotes the set of structures with chunks whose shape function either returns
Inl () (which has arity 0) or Inr � (which has arity 1), and whose content func-
tion either returns the empty list [] or a singleton [(n, s)] containing a pair (n, s)
where n is an integer and s a string.

6.5 Semantics

With this notation in place, we can now define matching lenses precisely. In a
matching lens, the top-level lens processes the information in the shape of the
source and view, while a subordinate basic lens processes the chunks. To simplify
the technicalities, we will assume that chunks only appear at the top level (i.e.,
they are not nested), that the same basic lens is used to process each chunk,
and that matching lenses themselves do not delete, duplicate, or reorder chunks.
Each of these assumptions can be relaxed—see Section 6 of the original paper
by Barbosa et al. (2010) for details.

Let S and V be sets of structures with chunks, C a set of structures (“rigid

complements”), and k a basic lens in Sk
Ck⇐⇒ Vk such that the type of chunks in

S is Sk and the type of chunks in V is Vk. A matching lens l on S, C, k, and V
comprises three functions,

get ∈ S → V
res ∈ S → C × [Ck]
put ∈ V × (Maybe C × [Maybe Ck])→ S

that obey the laws shown in Figure 3 for every s and s′ in S, v and v′ in V , p
in (Maybe C × [Maybe Ck]), c in C, r in [Ck], and mr in [Maybe Ck]. We write

S
C,k⇐⇒ V for the set of all matching lenses on S, C, k, and V .
Architecturally, the most important change in a matching lens is that the

complement is structured as a pair (C × [Ck]). We call the first component of
the complement the rigid complement and the second the resource. Intuitively,
the rigid complement records any information in the source shape discarded by
the get function as it computes the view shape, while the resource records the

31

shape s = shape s′

shape (get s) = shape (get s′)
(GetShape)

shape v = shape v′

shape (put (v, p)) = shape (put (v′, p))
(PutShape)

res s = (c, r) p = (Just c,map Just r)

shape (put (get s, p)) = shape s
(GetPutShape)

shape (get (put (v, p))) = shape v
(PutGetShape)

content (get s) = map k.get (content s)
(GetContent)

(c, r) = res s

r = map k.res (content s)
(ResContent)

(,mr) = p arity (shape v) = length mr

content (put (v, p)) = map k.put (zip (content v) mr)
(PutContent)

Fig. 3. Matching lens laws.

information in the source chunks discarded by k.get as it computes the view
chunks. Structuring the complement in this way provides a uniform interface for
applying various alignment heuristics—just rearrange the list of complements in
the resource, using Nothing to handle situations where a chunk in the view is
not aligned with any source chunk. It also makes it possible to state additional
laws constraining the handling of data in the resource.

The matching lens laws are straightforward generalizations of the basic lens
laws. The first two laws, GetShape and PutShape force the lens to map sources
with identical shapes to views with identical shapes, and vice versa. The Get-
PutShape and PutGetShape laws are just the basic lens laws restricted to
shapes. The GetContent law states that the contents of the view must be
identical to the list obtained by mapping k.get over the source contents. The
ResContent law states an analogous condition for the resource produced by
the res function. Taken together, these laws capture the intuition that the top-
level matching lens should handle the processing of the source and view shape,
and use k to process their chunks. The final law, PutContent, is the most
important matching lens law. It states that if the arity of view shape is equal to
the length of the resource mr , then the contents of the source produced by the
put function must be equal to the list obtained by mapping k.put over the list
(zip (content v) mr). Note that we can always truncate the resource, or extend it
with additional Nothing items, to satisfy the condition on the arity of the shape
and length of the resource.

32

6.6 Using A Matching Lens

To see how matching lenses make it possible to use arbitrary alignment heuristics,
consider the same example we did before, where the source is a list of pairs and
the view is obtained by projecting the first component of each item:

s = [(“Alice”, “Anchorage, AK”), (“Bob”, “Boston, MA”),
(“Carol”, “Chicago, IL”), (“Dave”, “Detroit, MI”)]

v = [“Alice”, “Bob”, “Carol”, “Dave”]

Also, for the sake of the example, suppose that each item in the source and view
lists is a chunk. Given s, the res function produces the following rigid complement
and resource:

c = [�,�,�,�]
r = [“Anchorage, AK”, “Boston, MA”, “Chicago, IL”, “Detroit, MI”]

The rigid complement c records the position of the source contents, while the
resource r records the pieces of the contents not reflected in the view.

Now suppose that we modify “Dave” to “David”, delete “Carol”, and add
“Eve” to the beginning of the list, as before. But before we invoke the put
function to propagate these changes back to the source, we align the original
and updated views,

v = [“Alice”, “Bob”, “Carol”, “Dave”]
v′ = [“Eve”, “Alice”, “Bob”, “David”]

using a heuristic function. For example, we could use a heuristic that minimizes
the sum of the edit distances between contents, obtaining an alignment g between
the locations of contents in the new and old views,

Eve

Alice

Bob

David

Alice

Bob

Carol

Dave

g =

∣∣∣∣∣∣
2 7→ 1
3 7→ 2
4 7→ 4

∣∣∣∣∣∣

Formally, we represent an alignment using a partial injective mapping between
the locations of contents. That is, each location is associated with at most one
location on the other.

Next we apply the alignment to the resource, discarding and reordering com-
plements as specified in g, and inserting Nothing as the complement for any newly
created chunks in v′. In this case, realigning the resource r using the alignment
g yields the following pre-aligned resource:

realign (length (content v′))) r g = [Nothing, Just “Anchorage, AK”,
Just “Boston, MA”, Just “Detroit, MI”]

33

Note that the length of this resource is equal to the arity of the updated view.
Finally, we run put on the updated view, rigid complement, and the pre-aligned
resource. The PutContent law ensures that each complement in the re-aligned
resource is put back with the corresponding chunk in the updated view,

s′ = [(“Eve”, “”), (“Alice”, “Anchorage, AK”),
(“Bob”, “Boston, MA”), (“David”, “Detroit, MI”)]

as desired.

6.7 Coercing a Matching Lens to a Basic Lens

The steps described in the previous subsection can be packaged up into a coercion

b·c (pronounced “lower”) that takes a matching lens l in S
C,k⇐⇒ V and converts

it into a basic lens in S
S⇐⇒ V . Let align be a function that takes two views

and computes an alignment (i.e., a partial injective mapping from integers to
integers). The only requirement we impose on align to ensure that the basic lens
produced by b·c is well-behaved, is that it yield the identity alignment when
supplied with identical lists.

The lower coercion is defined in the following two boxes:

l ∈ S C,k⇐⇒ V

blc ∈ S S⇐⇒ V

get s = l.get s

res s = s

put (v,Nothing) = l.put (v, (Nothing, []))

put (v, Just s) = l.put (v, (c, realign (length (content v)) r g))
where (c, r) = l.res s

and g = align v (l.get s)

The top box states a typing rule that can be read as a lemma asserting that,

if l is a matching lens in S
C,k⇐⇒ V , then blc is a basic lens in S

S⇐⇒ V . The
bottom box defines the components of blc. The get function is just l.get. The res
function uses the whole source as the basic lens complement. The put function
takes a view v and an optional basic lens complement as arguments. If the com-
plement is Nothing, it invokes l.put with Nothing as the rigid complement and
the empty resource. If the complement is Just s, it first uses l.res to calculate
a rigid complement c and a resource r from s. Next, it uses align to calculate
a correspondence g between the locations of chunks in the updated view v and
chunks in the original view l.get s and applies the realign function, which in-
terprets the alignment g on r, discarding and reordering items as indicated in
g, and adding Nothing for unaligned chunks. To finish the job, it passes v, c,
and the pre-aligned resource (realign (length (content v)) r g) to l.put, which
computes the updated source.

34

6.8 Matching Lens Combinators

We now define matching lens combinators for a number of useful transformations
on datatypes, with typing rules that ensure the behavioral laws.

Lifting Intuitively, it should be clear that matching lenses generalize basic
lenses. This fact is witnessed by the lift operator, which takes a basic lens k as
an argument:

k ∈ A C⇐⇒ B

lift k ∈ A C,k′
⇐⇒ B

get a = k.get a
res a = (k.res a, [])
put (b, (co,)) = k.put (b, co)

The get function simply invokes k.get on the source. The res function computes
the rigid complement using k.res and produces the empty resource (as it must to
satisfy ResContent). The put function invokes k.put and ignores its resource
argument. To ensure the other matching lens laws, the typing rule for lift requires
that the source and view types must not contain chunks. (We use metavariables
A and B to range over sets of structures without chunks.) The basic lens k′

mentioned in the type of lift k can be arbitrary. Using lift, we can obtain matching
lenses versions of many useful basic lenses including the identity lens id A ∈
A

Unit⇐⇒ A, which copies elements of A in both directions; the rewriting lens A↔
{b} ∈ A A⇐⇒ {b}, which rewrites an element of A to b in the get direction and

restores the discarded A in the put direction; and the lenses π1 ∈ A×B
B⇐⇒ A

and π2 ∈ A×B
A⇐⇒ B, which project away one component of a pair in the get

direction, and restore it in the put direction.

Match Another way to lift a basic lens to a matching lens is to place it in a
chunk.

k ∈ A C⇐⇒ B

〈k〉 ∈ 〈A〉 {�},k⇐⇒ 〈B〉

get a = k.get a
res a = (�, [k.res a])
put (b, (, c :)) = k.put (b, c)
put (b, (, [])) = k.put (b,Nothing)

The lens 〈k〉 (pronounced “match k”) is perhaps the most important matching
lens. The get function invokes k.get. The res function takes a source a as an
argument and yields � as the rigid complement and [k.res a] as the resource.
The put function accesses the complement for the chunk through the resource

35

r, invoking k.put on the view and head of r if r is non-empty or Nothing if r is
empty. The elements of the source type 〈A〉 and the view type 〈B〉 have a single
shape and contents that consists of a single reorderable chunk. Also note that
the basic lens mentioned in the type of 〈k〉 is k itself.

Composition The next combinator puts two matching lenses in sequence:

l1 ∈ S
C1,k1⇐⇒ U l2 ∈ U

C2,k2⇐⇒ V C = C1 × C2 k = k1; k2

l1; l2 ∈ S
C,k⇐⇒ V

get s = l2.get (l1.get s)
res s = ((c1, c2), zip r1 r2)

where (c1, r1) = l1.res s
and (c2, r2) = l2.res (l1.get s)

put (v, (Just (c1, c2), r)) = s
where s = l1.put (u, (Just c1, r1))

and u = l2.put (v, (Just c2, r2))
and (r1, r2) = unzip (map split maybe r)

put (v, (Nothing, r)) = s
where s = l1.put (u, (Nothing, r1))

and u = l2.put (v, (Nothing, r2))
and (r1, r2) = unzip (map split maybe r)

Composition is especially interesting as a matching lens because it handles align-
ment in two sequential phases of computation. The get function applies l1.get
and l2.get in sequence. The res function applies l1.res to the source s, yielding a
rigid complement c1 and resource r1, and l2.res to l1.get s, yielding c2 and r2. It
merges the rigid complements into a pair (c1, c2) and combines the resources by
zipping them together. Note that the two resources must have the same length
by GetContent and ResContent, so zip r1 r2 loses no information. The put
function maps split maybe over the resource, unzips the result, and applies the
l2.put and l1.put functions in that order. The split maybe function is defined as
follows,

split maybe = λmc → case mc of
Nothing → (Nothing,Nothing)
Just (c1, c2)→ (Just c1, Just c2)

Because the zipped resource represents the resources generated by l1 and l2
together, rearranging the resource has the effect of pre-aligning the resources for
both phases of computation. The typing rule for the composition lens combinator
requires the view type of l1 to be identical to the source type of l2. In particular, it
requires that the chunks in these types must be identical. Intuitively, this makes
sense—the only way that the put function can reasonably translate alignments
on the view back through both phases of computation to the source is if the
chunks in the types of each lens agree.

36

Product The next combinator takes lenses l1 and l2 as arguments and pro-
duces a lens that operates on pairs.

l1 ∈ S1
C1,k⇐⇒ V1 l2 ∈ S2

C2,k⇐⇒ V2 C = C1 × C2

l1 ⊗ l2 ∈ S1 × S2
C,k⇐⇒ V1 × V2

get (s1, s2) = (l1.get s1, l2.get s2)

res (s1, s2) = ((c1, c2), r1 ++ r2)
where (c1, r1) = l1.res s1

and (c2, r2) = l2.res s2

put ((v1, v2), (Just (c1, c2), r)) = (s1, s2)
where s1 = l1.put (v1, (Just c1, r1))

and s2 = l2.put (v2, (Just c2, r2))
and (r1, r2) = (take n r, drop n r)
and n = length (content v1)

put ((v1, v2), (Nothing, r)) = (s1, s2)
where s1 = l1.put (v1, (Nothing, r1))

and s2 = l2.put (v2, (Nothing, r2))
and (r1, r2) = (take n r, drop n r)
and n = length (content v1)

The get function applies l1.get and l2.get to the components of the source pair.
The res function takes a source (s1, s2) and applies l1.res to s1 and l2.res to s2,
yielding rigid complements c1 and c2 and resources r1 and r2. It then merges
the rigid complements into a pair (c1, c2) and the resources into a single resource
r1 ++ r2. Because the same basic lens k is mentioned in the types of l1 and l2,
the resources r1, r2, and r1 ++ r2 all have type [Ck]. This is essential—it ensures
that we can freely reorder the resource and pass arbitrary portions of it to l1
and l2. It is tempting to relax this condition and allow l1 and l2 to be defined
over different basic lenses, as long as the resources produced by those lenses have
the same type. Unfortunately, this would require weakening the matching lens
laws—see the paper by Barbosa et al. (2010) for details and a concrete example.
The put function of the product lens applies the put functions of l1 and l2 to
the appropriate pieces of the view. To create the resource for the calls to put,
it splits the resource into two pieces using the number of chunks in the first
component of the view. Note that although this appears to be biased toward
the left component of the pair, it is not in the case where the resource has been
pre-aligned so that it contains the same number of items as chunks in the view.

Iteration The iteration combinator applies a lens to a list of items.

37

l ∈ S C1,k⇐⇒ V C = [C1]

l∗ ∈ [S]
C,k⇐⇒ [V]

get [s1, . . . , sn] = [l.get s1, . . . , l.get sn]

res [s1, . . . , sn] = ([c1, . . . , cn], r1 ++ . . .++ rn)
where (ci, ri) = l.res si for i ∈ {1, . . . , n}

put ([v1 . . . vn], (mc, r′0)) = [s′1, . . . , s
′
n]

where s′i =

{
l.put (vi, (Just ci, ri)) i ∈ {1, . . . ,min(n,m)}
l.put (vi, (Nothing, ri)) i ∈ {m+ 1, . . . , n}

and [c1, . . . , cm] =

{
c if mc = Just c

[] if mc = Nothing

and ri = take (length (content vi)) r
′
(i−1) for i ∈ {1, . . . , n}

and r′i = drop (length (content vi)) r
′
(i−1) for i ∈ {1, . . . , n}

The get and res components are straightforward generalizations of the corre-
sponding components of the product lens. The put function, however, is different—
it handles cases where the view and the rigid complement have different lengths.
When the rigid complement is longer, it discards the extra complements; when
the view is longer, it processes the extras using Nothing.

Union The final combinator forms the union of two matching lenses.

l1 ∈ S1
C1,k⇐⇒ V1 l2 ∈ S2

C2,k⇐⇒ V2 C = C1 + C2 compatible(V1, V2)

l1 | l2 ∈ S1 + S2
C,k⇐⇒ (V1 ∩ V2) + (V1 \ V2 + V2 \ V1)

get (Inl s1) =

{
Inl (l1.get s1) if l1.get s1 ∈ V2
Inr (Inl (l1.get s1)) if l1.get s1 6∈ V2

get (Inr s2) =

{
Inl (l2.get s2) if l2.get s2 ∈ V1
Inr (Inr (l2.get s2)) if l2.get s2 6∈ V1

res (Inl s1) = (Inl c1, r), where (c1, r) = l1.res s1
res (Inr s2) = (Inr c2, r), where (c2, r) = l2.res s2

put (Inl v, (Just (Inl c1), r)) = Inl (l1.put (v, (Just c1, r)))
put (Inl v, (Just (Inr c2), r)) = Inr (l2.put (v, (Just c2, r)))
put (Inl v, (Nothing, r)) = Inl (l1.put (v, (Nothing, r)))

put (Inr (Inl v1), (Just (Inl c1), r)) = Inl (l1.put (v1, (Just c1, r)))
put (Inr (Inl v1), (Just (Inr c2), r)) = Inl (l1.put (v1, (Nothing, r)))
put (Inr (Inl v1), (Nothing, r)) = Inl (l1.put (v1, (Nothing, r)))

put (Inr (Inr v2), (Just (Inr c2), r)) = Inr (l2.put (v2, (Just c2, r)))
put (Inr (Inr v2), (Just (Inl c1), r)) = Inr (l2.put (v2, (Nothing, r)))
put (Inr (Inr v2), (Nothing, r)) = Inr (l2.put (v2, (Nothing, r)))

38

The union combinator implements a bidirectional conditional operator on lenses.
Its get function selects one of l1.get or l2.get by testing the tag on the source. It
tags the result, injecting it into the type (V1∩V2)+(V1 \V2 +V2 \V1), which is a
disjoint union representing values in the intersection of V1 and V2 and values that
only belong to V1 or V2. Its res function is similar. It places the rigid complement
in a tagged sum, producing Inl c if the source belongs to S1 and Inr c if it belongs
to S2. It does not tag the resource however—because l1 and l2 are defined over
the same basic lens k for chunks, we can safely pass a resource computed by
l1.res to l2.put and vice versa.

The put function of the union lens first tries to select one of l1.put or l2.put
using the tag on the view, and only uses the rigid complement to disambiguate
cases where the view belongs to (V1 ∩V2). Note that because put is a total func-
tion, it needs to handle cases where the view has the form Inr (Inl v1) (i.e., v1
belongs to V1 \V2) but the complement is of the form Just (Inr c2). To satisfy the
PutGetShape law, it must invoke one of l1’s component functions, but it can-
not invoke l1.put with the rigid complement c2 because c2 does not belong to C1.
Thus, it discards c2 and uses Nothing instead. The put function arbitrarily uses
l1.put in the case where the view belongs to both V1 and V2 and the complement
is Nothing. The condition compatible(V1, V2) mentioned in the hypothesis of the
typing rule stipulates that shape, content, etc. must return identical results for
structures in the intersection V1 ∩ V2. This ensures that the type of the view is
a well-formed container.

6.9 Matching Lens Example

Let us finish this section by defining a matching lens that implements the trans-
formation from sources consisting of pairs of names and cities to views consisting
of just names. For the sake of the example, and to illustrate the use of sequential
composition, we will implement a transformation that works in two steps.

Assume that we have a basic lens delete city whose get function takes a
source string of the form “City, XY” and produces a view of the form “XY”.
Also assume that we have a type Name that describes the set of name strings.
Both of these can be easily defined in the Boomerang language. The matching
lens l1 copies the name from each item in the source list and deletes the city:

l1 = 〈id Name⊗ delete city〉∗

The basic lens inside of the match combinator in l1 uses the (basic lens version
of) the product operator to combine (id Name) and delete city. Its get function
maps the following source

s = [(“Alice”, “Anchorage, AK”), (“Bob”, “Boston, MA”),
(“Carol”, “Chicago, IL”), (“Dave”, “Detroit, MI”)]

to the view v1 by deleting the cities:

v1 = [(“Alice”, “AK”), (“Bob”, “MA”), (“Carol”, “IL”), (“Dave”, “MI”)]

39

Now consider the matching lens l2,

l2 = 〈π1〉∗

Its get function projects away the second component of each item in its source
list. Returning to the example, it takes the view v1 computed by l1 and produces
a view v2:

v2 = [“Alice”, “Bob”, “Carol”, “Dave”]

Thus, the get function for our running example is just bl1; l2c. In fact, this lens
implements the put function too. To see how put works, first consider the rigid
complement and resource computed by the res from the source s. By the defini-
tion of the sequential composition lens, these structures record the information
produced by l1.res and l2.res:

c = ([�,�,�,�], [�,�,�,�])
r = [(“Anchorage”, “AK”), (“Boston”, “MA”),

(“Chicago”, “IL”), (“Detroit”, “MI”)]

If we edit the final view v2 to v′2 by inserting “Eve”, deleting “Carol”, and
modifying “Dave” to “David”,

v′2 = [“Eve”, “Alice”, “Bob”, “David”],

and then realign the resource using an alignment such as g from Section 6.6,
which minimizes the sum of the total edit distances between aligned chunks,
then the resulting resource will contain the pre-aligned chunk complements for
both phases of computation:

realign (length (content v′2))) r g =
[Nothing, Just (“Anchorage”, “AK”),
Just (“Boston”, “MA”), Just (“Detroit”, “MI”)]

Evaluating the put function on the updated view, rigid complement, and this
resource first splits the complement into two pieces and unzips the resource.
Next, it invokes l2.put on v′2 and

c2 = [�,�,�,�]
r2 = [Nothing, Just “AK”, Just “MA”, Just “MI”]

which produces an intermediate view:

v′1 = [(“Eve”, “”), (“Alice”, “AK”),
(“Bob”, “MA”), (“David”, “MI”)]

Finally, it invokes l1.put on v′1 and

c1 = [�,�,�,�]
r1 = [Nothing, Just “Anchorage”, Just “Boston”, Just “Detroit”]

yielding the final result,

s′ = [(“Eve”, “”), (“Alice”, “Anchorage, AK”),
(“Bob”, “Boston, MA”), (“David”, “Detroit, MI”)]

as desired.

40

6.10 Summary

Matching lenses address some important problems that come up when bidirec-
tional transformations are used to manipulate ordered structures. By separating
the handling of the reorderable chunks and the rigidly ordered parts of the
source and view, they provide a framework that can be instantiated with arbi-
trary alignment heuristics. A number of useful primitives and combinators can
be interpreted as matching lenses.

7 Discussion and Related Work

This section summarizes the three techniques described in this paper and com-
pares the relative advantages and disadvantages of each approach. At the end of
the section, we briefly discuss related work on languages for describing bidirec-
tional transformations.

The first technique, syntactic bidirectionalization (Matsuda et al. 2007), con-
structs a put function from a (program describing a) get function using a com-
bination of syntactic program transformations. The overall transformation goes
in three steps:

– First, it constructs a complement function res ∈ S → C from the definition
of get ∈ S → V .

– Second, it combines get and res into a single function 〈get, res〉 ∈ S → V ×C
amd inverts that one to obtain function 〈get, res〉−1 ∈ V × C → S.

– Finally, it uses res and 〈get, res〉−1 to construct put ∈ V → S → S:

put = λv → λs→ 〈get, res〉−1 (v, res s)

By construction, the lens consisting of the get and put functions is guaranteed
to be (partially) very well-behaved. Syntactic bidirectionalization is attractive
for several reasons. Most importantly, it makes it possible to express bidirec-
tional transformations using a standard language. The programmer simply writes
the get function in a (restricted) functional language and the technique con-
structs a suitable put function automatically. Moreover, because it is based on
the constant-complement approach, the put function is guaranteed to obey the
PutPut law, in its partial form. The most significant disadvantage of syntactic
bidirectionalization is indeed that, in general, the put function is not total. This
can be mitigated, to some extent, using optimizations that produce “smaller”
complements. But the heuristics used for optimization can be unpredictable.
Another issue is that syntactic bidirectionalization produces one put function,
while in general there are many put functions that can be combined with a
given get function to form a reasonable lens—and because the transformation is
automatic, the programmer has no influence over which of them is chosen.

The second technique, semantic bidirectionalization (Voigtländer 2009), is
similar to the syntactic approach. But instead of taking a program describing
the get function as input, it takes the function itself. Besides being elegant, this

41

approach has a significant advantage: because it does not operate on the syntax
of programs, it can be used to bidirectionalize arbitrary functions, including ones
whose source code cannot be analyzed. The only condition semantic bidirection-
alization requires is that the get function be a polymorphic function. Exploiting
parametricity, the technique manufactures a put function by simulating the get
function on a canonical template and interpreting the results to infer the map-
ping from source to view (and then reverse it). Like syntactic bidirectionaliza-
tion, it guarantees that the put function will satisfy a form of PutPut, does
not guarantee that the put function will be total, and only generates a single
put function for a given get. Finally, because the put function is implemented by
simulating the behavior of get, it is not very efficient.

Recent work by (among others) two of the authors of this paper combines
the syntactic and semantic approaches to bidirectionalization in a single sys-
tem (Voigtländer et al. 2010). A prototype implementation of all three forms of
bidirectionalization—syntactic, semantic, and combined—as a web interface can
be found at the following url:

http://www-ps.iai.uni-bonn.de/cgi-bin/b18n-combined-cgi

Combining syntactic and semantic bidirectionalization allows more updates to be
handled (i.e., the put function is defined on more inputs) than in the individual
approaches. In particular, the combined approach gracefully handles updates to
the shape of the view using a mechanism based on syntactic bidirectionalization,
while it uses semantic bidirectionalization to manage the polymorphic data in
the view. The separation of shape from content is conceptually similar to the
treatment of generic data structures discussed in Section 5.4 and the structures
with chunks used in the matching lenses described in Section 6. In addition, the
combined technique allows programmers to select different put functions for a
given get by specifying a bias, which controls the handling of extra (or deleted)
data values in the view.

The third and final technique described in this paper uses domain-specific
lens combinators to describe a get and put function simultaneously (Barbosa
et al. 2010; Bohannon et al. 2008; Foster et al. 2007b). Several full-blown bidi-
rectional programming languages have been built using combinators, including
Boomerang (Foster and Pierce 2009) and Augeas (Lutterkort 2008). Unlike the
pure syntactic and semantic bidirectionalization techniques, which both follow
the constant-complement approach but produce partial put functions, lens com-
binators sacrifice the PutPut law but guarantee that put is a total function.11

The failure of the PutPut law can be easily seen in the iteration and union
lenses, which do not always preserve the complement. The combinators ensure

well-behavedness using a type system—every well-typed program in S
C⇐⇒ V

denotes a well-behaved lens on S, V , and C. An advantage of the combinator
approach is that operators are guaranteed to satisfy strong properties such as
totality, as they are derived directly from the semantics. In addition, because

11 The combined syntactic/semantic bidirectionalization technique of Voigtländer et al.
(2010) gives up both constant-complement/PutPut and totality of put.

http://www-ps.iai.uni-bonn.de/cgi-bin/b18n-combined-cgi

42

each lens combinator describes a get function and a put function, programmers
have a means to select between the possible well-behaved put functions for a
given get function. Finally, working with combinators makes it easy to extend
the language with new constructs for dealing with important issues such as
alignment, as in the matching lenses described in this paper. The existing bidi-
rectionalization techniques, even the combined approach, are limited to posi-
tional alignment. The main disadvantage of using combinators is, of course, that
it requires bidirectional transformations to be expressed using special-purpose
language constructs.

The three approaches presented in this paper are not comprehensive. Numer-
ous other techniques for describing bidirectional transformations that have been
proposed in the literature. We briefly summarize some of the most recent related
work in this area from a programming language perspective in the rest of this
section. For more comprehensive, and broader, overviews we direct interested
readers to the original paper on lens combinators (Foster et al. 2007b) and the
GRACE workshop report (Czarnecki et al. 2009).

A project by Pacheco and Cunha (2010, 2011) proposes an extensive collec-
tion of point-free generic lens combinators. The authors have implemented these
combinators as a Haskell library and investigated the issue of optimization for
lens programs using many of the same algebraic equivalences that are commonly
used to optimize programs in standard functional languages. Wang et al. (2011)
are also concerned about efficiency, and study incremental updating in a bidi-
rectional setting. Fegaras (2010) proposes a technique for propagating updates
to XML views using lineage—metadata that tracks the relationship between a
piece of the view and the pieces of the source that generated it—to guide the
translation of updates. The reliance on polymorphic type information to achieve
this correctly is closely related to what happens in the semantic bidirectional-
ization technique. Hofmann et al. (2011) describe a variant of lenses in which
the get and put functions have symmetric types S × C → V and V × C → S.
They develop a number of useful combinators in this symmetric setting. Another
recent paper by Hidaka et al. (2010) defines a bidirectional semantics for the Un-
CAL graph transformation language. The reverse semantics of the language uses
traces, which are similar to the lineage artifacts mentioned above. Finally, a pa-
per by Diskin et al. (2010) proposes a system in which the put functions take
update operations instead of whole states (of the view) as inputs. Among other
things, this approach makes it possible to solve the alignment problems described
in Section 6.1 in an elegant way.

Acknowledgments. The authors wish to thank Jeremy Gibbons and Jeremy
Siek for their comments and suggestions for improving the paper. Foster’s work
was supported in part by the ONR under grant N00014-09-1-0652. Any opinions,
findings, and recommendations expressed in this material are those of the au-
thors and do not necessarily reflect the views of the ONR. Matsuda’s work was
supported in part by Japan Society for the Promotion of Science, Grant-in-Aid
for Research Activity Start-up 22800003.

43

References

M. Abbott, T. Altenkirch, and N. Ghani. Categories of containers. In Founda-
tions of Software Science and Computation Structures, Proceedings, volume
2620 of LNCS, pages 23–38. Springer, 2003. doi: 10.1007/3-540-36576-1 2.

F. Bancilhon and N. Spyratos. Update semantics of relational views. ACM
Transactions on Database Systems, 6(4):557–575, 1981. doi: 10.1145/319628.
319634.

D.M.J. Barbosa, J. Cretin, J.N. Foster, M. Greenberg, and B.C. Pierce. Matching
lenses: Alignment and view update. In International Conference on Functional
Programming, Proceedings, volume 45(9) of SIGPLAN Notices, pages 193–204.
ACM, 2010. doi: 10.1145/1932681.1863572.

N. Benton. Embedded interpreters. Journal of Functional Programming, 15(4):
503–542, 2005. doi: 10.1017/S0956796804005398.

P. Berdaguer, A. Cunha, H. Pacheco, and J. Visser. Coupled schema trans-
formation and data conversion for XML and SQL. In Practical Aspects of
Declarative Languages, Proceedings, volume 4354 of LNCS, pages 290–304.
Springer, 2007. doi: 10.1007/978-3-540-69611-7 19.

A. Bohannon, J.A. Vaughan, and B.C. Pierce. Relational lenses: A language
for updateable views. In Principles of Database Systems, Proceedings, pages
338–347. ACM, 2006. doi: 10.1145/1142351.1142399.

A. Bohannon, J.N. Foster, B.C. Pierce, A. Pilkiewicz, and A. Schmitt.
Boomerang: Resourceful lenses for string data. In Principles of Programming
Languages, Proceedings, volume 43(1) of SIGPLAN Notices, pages 407–419.
ACM, 2008. doi: 10.1145/1328897.1328487.

C. Brabrand, A. Møller, and M.I. Schwartzbach. Dual syntax for XML languages.
Information Systems, 33(4–5):385–406, 2008. doi: 10.1016/j.is.2008.01.006.

H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S.
Tison, and M. Tommasi. Tree automata techniques and applications. Available
from http://tata.gforge.inria.fr/, 2007. Release October, 12th 2007.

S.S. Cosmadakis and C.H. Papadimitriou. Updates of relational views. Journal
of the ACM, 31(4):742–760, 1984. doi: 10.1145/1634.1887.

J. Cunha, J. Saraiva, and J. Visser. From spreadsheets to relational databases
and back. In Partial Evaluation and Program Manipulation, Proceedings,
pages 179–188. ACM, 2009. doi: 10.1145/1480945.1480972.

K. Czarnecki, J.N. Foster, Z. Hu, R. Lämmel, A. Schürr, and J.F. Terwilliger.
Bidirectional transformations: A cross-discipline perspective. GRACE meeting
notes, state of the art, and outlook. In International Conference on Model
Transformations, Proceedings, volume 5563 of LNCS, pages 260–283. Springer,
2009. doi: 10.1007/978-3-642-02408-5 19.

U. Dayal and P.A. Bernstein. On the correct translation of update operations
on relational views. ACM Transactions on Database Systems, 7(3):381–416,
1982. doi: 10.1145/319732.319740.

Z. Diskin, Y. Xiong, and K. Czarnecki. From state- to delta-based bidirectional
model transformations. In International Conference on Model Transforma-
tions, Proceedings, volume 6142 of LNCS, pages 61–76. Springer, 2010. doi:
10.1007/978-3-642-13688-7 5.

http://tata.gforge.inria.fr/

44

R. Ennals and D. Gay. Multi-language synchronization. In European Symposium
on Programming, Proceedings, volume 4421 of LNCS, pages 475–489. Springer,
2007. doi: 10.1007/978-3-540-71316-6 32.

L. Fegaras. Propagating updates through XML views using lineage tracing. In
International Conference on Data Engineering, Proceedings, pages 309–320.
IEEE, 2010. doi: 10.1109/ICDE.2010.5447896.

K. Fisher and R. Gruber. PADS: A domain-specific language for processing ad
hoc data. In Programming Language Design and Implementation, Proceedings,
volume 40(6) of SIGPLAN Notices, pages 295–304. ACM, 2005. doi: 10.1145/
1064978.1065046.

J.N. Foster and B.C. Pierce. Boomerang Programmer’s Manual, 2009. Available
from http://www.seas.upenn.edu/~harmony/.

J.N. Foster, M.B. Greenwald, C. Kirkegaard, B.C. Pierce, and A. Schmitt. Ex-
ploiting schemas in data synchronization. Journal of Computer and System
Sciences, 73(4):669–689, 2007a. doi: 10.1016/j.jcss.2006.10.024.

J.N. Foster, M.B. Greenwald, J.T. Moore, B.C. Pierce, and A. Schmitt. Com-
binators for bidirectional tree transformations: A linguistic approach to the
view-update problem. ACM Transactions on Programming Languages and
Systems, 29(3):17, 2007b. doi: 10.1145/1232420.1232424.

J.N. Foster, A. Pilkiewicz, and B.C. Pierce. Quotient lenses. In International
Conference on Functional Programming, Proceedings, volume 43(9) of SIG-
PLAN Notices, pages 383–395. ACM, 2008. doi: 10.1145/1411203.1411257.

J.N. Foster, B.C. Pierce, and S. Zdancewic. Updatable security views. In
Computer Security Foundations, Proceedings, pages 60–74. IEEE, 2009. doi:
10.1109/CSF.2009.25.

J. Gibbons and B.C.d.S. Oliveira. The essence of the iterator pattern.
Journal of Functional Programming, 19(3–4):377–402, 2009. doi: 10.1017/
S0956796809007291.

S.J. Hegner. An order-based theory of updates for closed database views. Annals
of Mathematics and Artificial Intelligence, 40(1–2):63–125, 2004. doi: 10.1023/
A:1026158013113.

S. Hidaka, Z. Hu, K. Inaba, H. Kato, K. Matsuda, and K. Nakano. Bidirec-
tionalizing graph transformations. In International Conference on Functional
Programming, Proceedings, volume 45(9) of SIGPLAN Notices, pages 205–216.
ACM, 2010. doi: 10.1145/1932681.1863573.

M. Hofmann, B.C. Pierce, and D. Wagner. Symmetric lenses. In Principles
of Programming Languages, Proceedings, volume 46(1) of SIGPLAN Notices,
pages 371–384. ACM, 2011. doi: 10.1145/1925844.1926428.

Z. Hu, H. Iwasaki, M. Takeichi, and A. Takano. Tupling calculation eliminates
multiple data traversals. In International Conference on Functional Program-
ming, Proceedings, volume 32(8) of SIGPLAN Notices, pages 164–175. ACM,
1997. doi: 10.1145/258949.258964.

Z. Hu, S.-C. Mu, and M. Takeichi. A programmable editor for develop-
ing structured documents based on bidirectional transformations. Higher-
Order and Symbolic Computation, 21(1–2):89–118, 2008. doi: 10.1007/
s10990-008-9025-5.

http://www.seas.upenn.edu/~harmony/

45

C.B. Jay. A semantics for shape. Science of Computer Programming, 25(2–3):
251–283, 1995. doi: 10.1016/0167-6423(95)00015-1.

J. Jeuring, S. Leather, J.P. Magalhães, and A. Rodriguez Yakushev. Libraries
for generic programming in Haskell. In Advanced Functional Programming
2008, Revised Lectures, volume 5832 of LNCS, pages 165–229. Springer, 2009.
doi: 10.1007/978-3-642-04652-0 4.

S. Kawanaka and H. Hosoya. biXid: a bidirectional transformation language for
XML. In International Conference on Functional Programming, Proceedings,
volume 41(9) of SIGPLAN Notices, pages 201–214. ACM, 2006. doi: 10.1145/
1160074.1159830.

D. Laurent, J. Lechtenbörger, N. Spyratos, and G. Vossen. Monotonic comple-
ments for independent data warehouses. The VLDB Journal, 10(4):295–315,
2001. doi: 10.1007/s007780100055.

J. Lechtenbörger and G. Vossen. On the computation of relational view com-
plements. ACM Transactions on Database Systems, 28(2):175–208, 2003. doi:
10.1145/777943.777946.

D. Lutterkort. Augeas—A configuration API. In Linux Symposium, Proceedings,
pages 47–56, 2008.

K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi. Bidirectional-
ization transformation based on automatic derivation of view complement
functions. In International Conference on Functional Programming, Pro-
ceedings, volume 42(9) of SIGPLAN Notices, pages 47–58. ACM, 2007. doi:
10.1145/1291220.1291162.

K. Matsuda, Z. Hu, and M. Takeichi. Type-based specialization of XML trans-
formations. In Partial Evaluation and Program Manipulation, Proceedings,
pages 61–72. ACM, 2009. doi: 10.1145/1480945.1480955.

L. Meertens. Designing constraint maintainers for user interaction,
1998. Manuscript, available from ftp://ftp.kestrel.edu/pub/papers/

meertens/dcm.ps.
R.J. Miller, M.A. Hernandez, L.M. Haas, L. Yan, C.T.H. Ho, R. Fagin, and L.

Popa. The Clio project: Managing heterogeneity. SIGMOD Record, 30(1):
78–83, 2001. doi: 10.1145/373626.373713.

H. Pacheco and A. Cunha. Generic point-free lenses. In Mathematics of Program
Construction, Proceedings, volume 6120 of LNCS, pages 331–352. Springer,
2010. doi: 10.1007/978-3-642-13321-3 19.

H. Pacheco and A. Cunha. Calculating with lenses: Optimising bidirectional
transformations. In Partial Evaluation and Program Manipulation, Proceed-
ings, pages 91–100. ACM, 2011. doi: 10.1145/1929501.1929520.

K. Perumalla and R. Fujimoto. Source-code transformations for efficient re-
versibility. Technical Report GIT-CC-99-21, College of Computing, Georgia
Tech, 1999.

N. Ramsey. Embedding an interpreted language using higher-order functions and
types. In Interpreters, Virtual Machines and Emulators, Proceedings, pages
6–14. ACM, 2003. doi: 10.1145/858570.858571.

A. Schürr. Specification of graph translators with triple graph grammars. In
Graph-Theoretic Concepts in Computer Science 1994, Proceedings, volume 903
of LNCS, pages 151–163. Springer, 1995. doi: 10.1007/3-540-59071-4 45.

ftp://ftp.kestrel.edu/pub/papers/meertens/dcm.ps
ftp://ftp.kestrel.edu/pub/papers/meertens/dcm.ps

46

P. Stevens. Bidirectional model transformations in QVT: Semantic issues
and open questions. In Model Driven Engineering Languages and Sys-
tems, Proceedings, volume 4735 of LNCS, pages 1–15. Springer, 2007. doi:
10.1007/978-3-540-75209-7 1.

J. Voigtländer. Bidirectionalization for free! In Principles of Programming Lan-
guages, Proceedings, volume 44(1) of SIGPLAN Notices, pages 165–176. ACM,
2009. doi: 10.1145/1594834.1480904.

J. Voigtländer, Z. Hu, K. Matsuda, and M. Wang. Combining syntactic and
semantic bidirectionalization. In International Conference on Functional Pro-
gramming, Proceedings, volume 45(9) of SIGPLAN Notices, pages 181–192.
ACM, 2010. doi: 10.1145/1932681.1863571.

P. Wadler. Theorems for free! In Functional Programming Languages and Com-
puter Architecture, Proceedings, pages 347–359. ACM, 1989. doi: 10.1145/
99370.99404.

P. Wadler. Deforestation: Transforming programs to eliminate trees. Theoretical
Computer Science, 73(2):231–248, 1990. doi: 10.1016/0304-3975(90)90147-A.

M. Wang, J. Gibbons, K. Matsuda, and Z. Hu. Gradual refinement: Blending
pattern matching with data abstraction. In Mathematics of Program Con-
struction, Proceedings, volume 6120 of LNCS, pages 397–425. Springer, 2010.
doi: 10.1007/978-3-642-13321-3 22.

M. Wang, J. Gibbons, and N. Wu. Incremental updates for efficient bidirectional
transformations. In International Conference on Functional Programming,
Proceedings, volume 46(9) of SIGPLAN Notices, pages 392–403. ACM, 2011.
doi: 10.1145/2034574.2034825.

Y. Xiong, D. Liu, Z. Hu, H. Zhao, M. Takeichi, and H. Mei. Towards automatic
model synchronization from model transformations. In Automated Software
Engineering, Proceedings, pages 164–173. ACM, 2007. doi: 10.1145/1321631.
1321657.

A Container Implementations

This appendix presents suitable implementations of shape, content, and decorate

using Data.Traversable:

shape :: Traversable κ⇒ forall α. κ α→ κ ()
shape = fmapDefault (const ())

content :: Traversable κ⇒ forall α. κ α→ [α]
content = foldMapDefault (λa→ [a])

decorate :: Traversable κ⇒ forall α. forall β. [α]→ κ β → κ α
decorate l t = case State.runState (unwrapMonad (traverse f t)) l

of (t′, [])→ t′

where f = WrapMonad (do (n : ns)← State.get
State.put ns
return n)

47

In addition to the Data.Traversable module (for Traversable/traverse itself, but
also the fmapDefault and foldMapDefault functions), these definitions use
several (types and) functions from the Control.Monad.State (for the State.get,
State.put, and State.runState functions) and Control.Applicative modules (for
the data constructor WrapMonad and the function unwrapMonad).

That (5) and (6) hold for the above implementations relies on laws put for-
ward by Gibbons and Oliveira (2009, Sections 5.2 and 5.3), about sequential and
parallel composition of traversals.

