
Taming Selective Strictness

Daniel Seidel∗ and Janis Voigtländer
Technische Universität Dresden, 01062 Dresden, Germany
{seideld,voigt}@tcs.inf.tu-dresden.de

Abstract: Free theorems establish interesting properties of parametrically polymor-
phic functions, solely from their types, and serve as a nice proof tool. For pure and
lazy functional programming languages, they can be used with very few precondi-
tions. Unfortunately, in the presence of selective strictness, as provided in languages
like Haskell, their original strength is reduced. In this paper we present an approach
for restrengthening them. By a refined type system which tracks the use of strict eval-
uation, we rule out unnecessary restrictions that otherwise emerge from the general
suspicion that strict evaluation may be used at any point. Additionally, we provide an
implemented algorithm determining all refined types for a given term.

1 Introduction

Free theorems [Wad89] are a useful proof tool in lazy functional languages like Haskell,
in particular for verifying program transformations [GLP93, Joh03, Voi08b], but also for
other interesting results [Voi08a, Voi09a, Voi09b]. Initially, free theorems have been in-
vestigated in the pure polymorphic lambda calculus, additionally taking the influence of
general recursion into account. But modern languages like Haskell and Clean extend the
pure polymorphic lambda calculus not only by a fixpoint combinator; they additionally al-
low selective strictness. Selective strict evaluation is in particular desirable to avoid space
leaks that are otherwise likely to arise in lazy languages. A disadvantage is the weakening
of relational parametricity, and hence the free theorems based on it.

Consider the well-known Haskell Prelude function foldl , its strict variant foldl ′ (in the
Haskell standard library Data.List), and functions foldl ′′ and foldl ′′′ which force strict
evaluation at rather arbitrary points, with implementations as shown in Figure 1. Strict
evaluation is expressed via seq , which evaluates its first argument, returns the second
argument if that evaluation is successful, and otherwise fails. The fixpoint combinator
fix :: ∀α.(α→ α)→ α expresses general recursion.

All four functions are of type ∀α.∀β.(α → β → α) → α → [β] → α, and the corre-
sponding free theorem, ignoring potential strict evaluation, states that

f (foldl c n xs) = foldl c′ (f n) (map g xs) (1)

for appropriately typed c, c′, n, xs and strict f , g such that ∀x, y. f (c x y) = c′ (f x) (g y).
∗This author was supported by the DFG under grant VO 1512/1-1.

foldl c = fix
(λh n ys →

case ys of
[] → n
x : xs →
let n′ = c n x in h n′ xs)

foldl ′ c = fix
(λh n ys →

case ys of
[] → n
x : xs →

let n′ = c n x in seq n′ (h n′ xs))

foldl ′′ c = fix
(λh n ys →

seq (c n)
(case ys of
[] → n
x : xs → seq xs
(seq x
(let n′ = c n x in h n′ xs))))

foldl ′′′ c = seq c (fix
(λh n ys →

case ys of
[] → n
x : xs →

let n′ = c n x in h n′ xs))

Figure 1: Variants of foldl with Different Uses of seq

Taking strict evaluation into account, the situation changes and additional preconditions
become necessary. For example, for the Haskell function foldl ′ the free theorem as stated
above does not hold.

Consider equation (1) with the instantiations

f = λx→ if x then True else ⊥ g = id
c = c′ = λx y → if y then True else x n = False
xs = [False,True] .

Regarding foldl everything is fine, but for the strict foldl ′ we get True = ⊥. In that case,
to require equivalence it suffices to restrict f to be total (f x 6= ⊥ for every x 6= ⊥), but if
we regard the functions foldl ′′ and foldl ′′′, for which the just given instantiation does not
break the free theorem, we will encounter the necessity of further restrictions. Consider
each of the following instantiations:

f = id g = t1 c = t2 c′ = t2 n = True xs = [False]
f = id g = id c = t3 c′ = t4 n = False xs = []
f = id g = id c = ⊥ c′ = λx→ ⊥ n = False xs = []

where t1 = λx → if x then True else ⊥, t2 = λx y → if x then True else y,
t3 = λx y → if x then True else ⊥ and t4 = λx→ if x then λy → True else ⊥.

For each of these instantiations equation (1) holds for foldl and foldl ′, but the first and
the second instantiation break the equation for foldl ′′, while the last instantiation breaks
the equation for foldl ′′′. All three failures are caused by different uses of seq , which
force different restrictions. Only the strict evaluation of the list xs causes no additional
restriction.

Hence, we see that not whether strict evaluation is used somewhere, far more where it is
used determines the necessity and the quality of restrictions. So a natural question is as

follows: How can we express detailed information about the use of strict evaluation such
that we can reduce the restrictions on free theorems?

Since free theorems depend only on the type of a term, the information has to be part of the
type signature. Hence, we track strict evaluation in the type of a term and thus will be able
to determine based on the type whether strictness-caused semantic changes, and hence
weakening of parametricity, may arise. It was already attempted to do so when seq was
first introduced into Haskell (version 1.3). The type class Eval was introduced to make
strict evaluation and the resulting limitations with respect to parametricity explicit from
the type. But the type class approach presumes that all necessary restrictions can be read
off from constraints on type variables. And this is not actually the case for all restrictions
arising from selective strict evaluation. For example, foldl ′′′ from Figure 1 would incur
no Eval-constraint at all, but as seen above, the use of seq on c does cause problems. The
(so far unrecognized) failure of the original attempt at taming selective strictness is caused
by the Haskell report version 1.3 (Section 6.2.7) mandating that “Functions as well as all
other built-in types are in Eval.” This predated the insights gained in [JV04] regarding
the special care that is required precisely for the interaction between selective strictness,
parametricity, and function types. Even if we consider function types to not in general
be in Eval, and instead constrain their membership more specifically by allowing type
class restrictions on compound types1, the problems of the type class approach remain.
Consider a function f :: Eval (α → Int) ⇒ (α → Int) → (α → Int) → Int. It could
be of the form f = λg h → . . . where seq is actually used only on g but not on h, or
conversely. From the proposed type signature, there is no way to tell the difference.

To avoid these problems, we make a different choice for tracking selective strictness.
Namely, we provide special annotations at quantification over type variables but also at
function types. This leads to a clear correspondence to the impact of strict evaluation on
free theorems. Combining the insights of [JV04] with ideas of [LP96] regarding taming
general recursion, we present a calculus that allows for refined free theorems via a re-
fined type system. We then develop an algorithm computing all refined types for a given
term. The algorithm has been implemented, and a web interface to it is online at http:
//linux.tcs.inf.tu-dresden.de/˜seideld/cgi-bin/polyseq.cgi.

2 Standard Parametricity

We start from a standard denotational semantics for a polymorphic lambda calculus that
corresponds to Haskell. Towards the end of this section we describe the notion of relational
parametricity for that calculus. We are then on a par with the relevant results of [JV04].

The syntax of types and terms is given by

τ ::= α | [τ] | τ → τ | ∀α.τ
t ::= x | []τ | t : t | case t of {[]→ t ; x : x→ t} |

λx :: τ.t | t t | Λα.t | tτ | fix t | let! x = t in t

1This is not allowed in Haskell 98, but as an extension in GHC, enabled by -XFlexibleContexts.

http://linux.tcs.inf.tu-dresden.de/~seideld/cgi-bin/polyseq.cgi
http://linux.tcs.inf.tu-dresden.de/~seideld/cgi-bin/polyseq.cgi

Γ, x :: τ ` x :: τ (VAR) Γ ` []τ :: [τ] (NIL)

Γ ` t1 :: τ Γ ` t2 :: [τ]
(CONS)

Γ ` (t1 : t2) :: [τ]

Γ ` t :: [τ1] Γ ` t1 :: τ2 Γ, x1 :: τ1, x2 :: [τ1] ` t2 :: τ2
(LCASE)

Γ ` (case t of {[]→ t1 ; x1 : x2 → t2}) :: τ2

Γ, x :: τ1 ` t :: τ2 (ABS)
Γ ` (λx :: τ1.t) :: (τ1 → τ2)

α,Γ ` t :: τ
(TABS)

Γ ` (Λα.t) :: (∀α.τ)

Γ ` t1 :: (τ1 → τ2) Γ ` t2 :: τ1
(APP)

Γ ` (t1 t2) :: τ2

Γ ` t :: (τ → τ)
(FIX)

Γ ` (fix t) :: τ

Figure 2: Typing Rules in PolySeq (and later PolySeq*), Part 1

Γ ` t :: (∀α.τ1)
(TAPP)

Γ ` (tτ2) :: τ1[τ2/α]
Γ ` t1 :: τ1 Γ, x :: τ1 ` t2 :: τ2 (SLET)

Γ ` (let! x = t1 in t2) :: τ2

Figure 3: Typing Rules in PolySeq, Part 2

where α ranges over type variables, and x over term variables. We include lists as repre-
sentative for algebraic data types. Note that the calculus is explicitly typed and that type
abstraction and application are explicit in the syntax as well. General recursion is cap-
tured via a fixpoint primitive, while selective strictness (à la seq) is provided via a strict-let
construct as also found in the functional language Clean.

Figures 2 and 3 give the typing rules for the calculus. Standard conventions apply here.
In particular, typing environments Γ take the form α1, . . . , αk, x1 :: τ1, . . . , xl :: τl with
distinct αi and xj , where all free variables occurring in a τj have to be among the listed
type variables.

For example, the standard Haskell function map can be defined as the following term and
then satisfies ` map :: τ , where τ = ∀α.∀β.(α→ β)→ [α]→ [β]:

fix (λm :: τ.Λα.Λβ.λh :: α→ β.λl :: [α].
case l of {[]→ []β ; x : y → (h x) : ((mα)β h y)}) .

The denotational semantics interprets types as pointed complete partial orders (for short,
pcpos; least element always denoted ⊥). The definition in Figure 4, assuming θ to be
a mapping from type variables to pcpos, is entirely standard. The operation lift⊥ takes
a complete partial order, adds a new element ⊥ to the carrier set, defines this new ⊥ to
be below every other element, and leaves the ordering otherwise unchanged. To avoid
confusion, the original elements are tagged, i.e., lift⊥ S = {⊥} ∪ {bsc | s ∈ S}. For
list types, prior to lifting, [] is only related to itself, while the ordering between “− : −”-
values is component-wise. Also note the use of the greatest fixpoint to provide for infinite
lists. The function space lifted in the definition of [[τ1 → τ2]]θ is the one of monotonic and

[[α]]θ = θ(α)
[[[τ]]]θ = gfp (λS.lift⊥ ({[]} ∪ {(a : b) | a ∈ [[τ]]θ, b ∈ S}))
[[τ1 → τ2]]θ = lift⊥ {f : ([[τ1]]θ → [[τ2]]θ)}
[[∀α.τ]]θ = {g | ∀D pcpo. (g D) ∈ [[τ]]θ[α7→D]}

Figure 4: Semantics of Types

[[x]]θ,σ = σ(x)
[[[]τ]]θ,σ = b[]c
[[t1 : t2]]θ,σ = b[[t1]]θ,σ : [[t2]]θ,σc
[[case t of {[]→ t1 ; x1 : x2 → t2}]]θ,σ =

[[t1]]θ,σ if [[t]]θ,σ = b[]c
[[t2]]θ,σ[x1 7→a, x2 7→b] if [[t]]θ,σ = ba : bc
⊥ if [[t]]θ,σ = ⊥

[[λx :: τ.t]]θ,σ = bλa.[[t]]θ,σ[x 7→a]c

[[t1 t2]]θ,σ = [[t1]]θ,σ $ [[t2]]θ,σ
[[Λα.t]]θ,σ = λD.[[t]]θ[α 7→D],σ

[[tτ]]θ,σ = [[t]]θ,σ [[τ]]θ
[[fix t]]θ,σ =

⊔
n≥0 ([[t]]θ,σ $)n ⊥

[[let! x = t1 in t2]]θ,σ ={
[[t2]]θ,σ[x 7→a] if [[t1]]θ,σ = a 6= ⊥
⊥ if [[t1]]θ,σ = ⊥

Figure 5: Semantics of Terms

continuous maps between [[τ1]]θ and [[τ2]]θ, ordered point-wise. Finally, polymorphic types
are interpreted as sets of functions from pcpos to values restricted as in the last line of
Figure 4, and again ordered point-wise (i.e., g1 v g2 iff for every pcpo D, g1 D v g2 D).

The semantics of terms in Figure 5 is also standard. It uses λ for denoting anonymous
functions, and the following operator:

h $ a =

{
f a if h = bfc
⊥ if h = ⊥ .

The expression
⊔
n≥0 ([[t]]θ,σ $)n ⊥ in the definition for fix means the supremum of the

chain ⊥ v ([[t]]θ,σ $ ⊥) v ([[t]]θ,σ $ ([[t]]θ,σ $ ⊥)) · · · . Altogether, we have that if Γ ` t ::
τ and σ(x) ∈ [[τ ′]]θ for every x :: τ ′ occurring in Γ, then [[t]]θ,σ ∈ [[τ]]θ.

The key to parametricity results is the definition of a family of relations by induction on
a calculus’ type structure. The appropriate such logical relation for our current setting is
defined in Figure 6, assuming ρ to be a mapping from type variables to binary relations
between pcpos. The operation list takes a relationR and maps it to

list R = gfp (λS.{(⊥,⊥), (b[]c, b[]c)} ∪ {(ba : bc, bc : dc) | (a, c) ∈ R, (b, d) ∈ S}) ,

where again the greatest fixpoint is taken. For two pcposD1 andD2, Rel(D1, D2) collects
all relations between them that are strict, continuous, and bottom-reflecting. Strictness and
continuity are just the standard notions, i.e., membership of the pair (⊥,⊥) and closure un-
der suprema. A relationR is bottom-reflecting if (a, b) ∈ R implies that a = ⊥ iff b = ⊥.
The corresponding explicit condition on f and g in the definition of ∆τ1→τ2,ρ serves the
purpose of ensuring that bottom-reflection is preserved throughout the logical relation.

∆α,ρ = ρ(α)
∆[τ],ρ = list ∆τ,ρ

∆τ1→τ2,ρ = {(f, g) | f = ⊥ iff g = ⊥, ∀(a, b) ∈ ∆τ1,ρ. (f $ a, g $ b) ∈ ∆τ2,ρ}
∆∀α.τ,ρ = {(u, v) | ∀D1, D2 pcpos,R ∈ Rel(D1, D2).(u D1, v D2) ∈ ∆τ,ρ[α7→R]}

Figure 6: Standard Logical Relation

Overall, induction on τ gives the following important lemma, where Rel is the union of
all Rel(D1, D2).

Lemma 2.1 If ρ maps only to relations in Rel , then ∆τ,ρ ∈ Rel .

The lemma is crucial for then proving the following theorem [SV09, Appendix A].

Theorem 2.2 (Parametricity) If Γ ` t :: τ , then for every θ1, θ2, ρ, σ1, and σ2 such that

• for every α occurring in Γ, ρ(α) ∈ Rel(θ1(α), θ2(α)) and

• for every x :: τ ′ occurring in Γ, (σ1(x), σ2(x)) ∈ ∆τ ′,ρ ,

we have ([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆τ,ρ .

3 Refining the Calculus

If we recall the fold functions from the introduction and the “seq-ignoring” version of the
corresponding free theorem, stated in equation (1), we can compare that version with the
“seq-safe” version arising from Theorem 2.2. The safe theorem requires f and g to be
total, c = ⊥ iff c′ = ⊥, and for every x, c x = ⊥ iff c′ (f x) = ⊥, in addition to the
restrictions from the less safe theorem.

As already mentioned in the introduction and also apparent from the proof of Theorem 2.2,
these additional restrictions arise from different potential uses of strict evaluation and are
each respectively only necessary if strict evaluation is used at a special place. Hence, it
is reasonable to make strict evaluation (and the place of its use) visible from the type of
a term. In particular, the use of strict evaluation on elements of a type should be visible
for type variables and function types. Strict evaluation on lists is nothing to worry about,
because it anyway can be simulated by a case statement. Thus, we want to distinguish
function types and type variables whose elements are strictly evaluated from those whose
elements are not, or more precisely whose elements are (are not) allowed to be strictly
evaluated. Therefore we introduce marks ε and ◦ at occurrences of the type constructor
→ as well as at type variables in the typing environment. A mark ε signifies that strict
evaluation is allowed on the entity in question, whereas a mark ◦ prevents the use of strict
evaluation at a certain place. We also need to keep track of the distinction for type variables
when they get quantified. This is achieved by introducing two different quantifiers, ∀ε and

∀◦. Recalling the example foldl ′′ from the introduction, one of its refined types would be
∀◦α.∀εβ.(α→◦ β →ε α)→ε α→ε [β]→ε α.

Using the rule system in Figure 7 we define exactly the types whose elements we allow to
be strictly evaluated, by collecting them in the class Seqable. Note that (C-TABSν)ν∈{◦,ε}
represents two rules. The maybe surprising αε in the premise of (C-TABS◦) lets trivial
cases like ∀◦α.α be in Seqable. Since that type is inhabited only by ⊥, a term using strict
evaluation on an element of it can always be replaced by fix id itself. Hence, we do not
care to prevent, or keep track of, that particular use of strict evaluation.

Having an explicit way to describe which types support selective strict evaluation, we
can restrict the typing rules (SLET) and (TAPP) to these types. For convenience, in the
remainder of the paper we take ε to be the invisible mark and drop it. The new rules are as
follows:

Γ ` τ2 ∈ Seqable Γ ` t :: (∀α.τ1)
(TAPP’)

Γ ` (tτ2) :: τ1[τ2/α]

Γ ` τ1 ∈ Seqable Γ ` t1 :: τ1 Γ, x :: τ1 ` t2 :: τ2 (SLET’)
Γ ` (let! x = t1 in t2) :: τ2

The other typing rules of PolySeq, shown in Figure 2, remain unchanged, but we add
◦-marked versions (ABS◦), (APP◦), (TABS◦), (FIX◦), and (TAPP◦), with all explicit oc-
currences of type variables in the typing environment, as well as all explicit occurrences of
→ and ∀, marked by ◦. This extension is straightforward and we show only an example:

Γ ` t :: (∀◦α.τ1)
(TAPP◦)

Γ ` (tτ2) :: τ1[τ2/α]

The last rule required for the extended calculus is

Γ ` t :: τ1 τ1 � τ2 (SUB)
Γ ` t :: τ2

and it needs some explanation. The motivation for it is a subtype relation. Consider the
types (τ1 →◦ τ2) → [τ3] and (τ1 → τ2) → [τ3]. All terms typable to the first one will
be typable to the second one as well. But, for example, the PolySeq-term λf :: τ1 →
τ2.let! x = f in [] is only typable to the second one. So whether or not strict evaluation
is allowed at arguments of a function determines the direction of the subtype relationship.
The subtyping system presented in Figure 8 goes a bit further and restricts the relation thus
that a Seqable supertype has only Seqable subtypes. We can think of this as follows: the
set of functions on which we do allow strict evaluation is a subtype of the set of functions
on which we do not. The rules are written as parameterized rule families, where {◦, ε} is
the ordered set of marks with ◦ < ε.

The rule systems just described set up a new calculus PolySeq*. The definition of a mark
eraser | · |, removing all ◦-marks when applied to a term, type, or typing environment,
enables us to take over the term and type semantics from PolySeq by using [[| · |]], and also
allows us to prove the set of typable terms in PolySeq* and PolySeq to be equivalent in
the sense of the following lemma.

Γ ` [τ] ∈ Seqable (C-LIST) Γ ` (τ1 →ε τ2) ∈ Seqable (C-ARROW)

αε ∈ Γ (C-VAR)
Γ ` α ∈ Seqable

αε,Γ ` τ ∈ Seqable (C-TABSν)ν∈{◦,ε}
Γ ` (∀αν .τ) ∈ Seqable

Figure 7: Class Membership Rules for Seqable in PolySeq*

α � α (S-VAR)

τ1 � σ1 σ2 � τ2 (S-ARROWν,ν′)ν,ν′∈{◦,ε}, ν′6ν
(σ1 →ν σ2) � (τ1 →ν′ τ2)

τ1 � τ2 (S-ALLν,ν′)ν,ν′∈{◦,ε}, ν6ν′

(∀να.τ1) � (∀ν′α.τ2)
τ � τ ′

(S-LIST)
[τ] � [τ ′]

Figure 8: Subtyping Rules in PolySeq*

Lemma 3.1 If Γ, t, and τ are such that Γ ` t :: τ in PolySeq, then Γ ` t :: τ in PolySeq*.
Conversely, if Γ, t, τ are such that Γ ` t :: τ in PolySeq*, then |Γ| ` |t| :: |τ | in PolySeq.

The main reason for restricting strict evaluation to terms whose types are in Seqable was
to allow the relational interpretation of all other types to be non-bottom-reflecting and thus
to get rid of the resulting restrictions on free theorems. Hence, we allow the relational
actions for→◦ and ∀◦ to forget about bottom-reflection, and define them as

∆τ1→◦τ2,ρ = {(f, g) | ∀(a, b) ∈ ∆τ1,ρ. (f $ a, g $ b) ∈ ∆τ2,ρ} ,
∆∀◦α.τ,ρ = {(u, v) | ∀D1, D2 pcpos,R ∈ Rel◦(D1, D2).(u D1, v D2) ∈ ∆τ,ρ[α7→R]} ,

where Rel◦(D1, D2) is the set of all strict and continuous (not necessarily bottom-reflect-
ing) relations between the pcpos D1 and D2. The other relational actions remain as in
PolySeq (cf. Figure 6).

The resulting logical relation is strict and continuous for all types and additionally bottom-
reflecting for all types in Seqable, even when assuming bottom-reflection only for relations
interpreting type variables that are ε-marked in the typing environment. This enables us to
state a refined parametricity theorem for PolySeq* that allows for stronger free theorems
if we localize the use of strict evaluation.

Theorem 3.2 (Parametricity) If Γ ` t :: τ in PolySeq*, then for every θ1, θ2, ρ, σ1, and
σ2 such that

• for every α◦ occurring in Γ, ρ(α) ∈ Rel◦(θ1(α), θ2(α)),

• for every αε occurring in Γ, ρ(α) ∈ Rel(θ1(α), θ2(α)), and

• for every x :: τ ′ occurring in Γ, (σ1(x), σ2(x)) ∈ ∆τ ′,ρ ,

we have ([[|t|]]θ1,σ1 , [[|t|]]θ2,σ2) ∈ ∆τ,ρ .

The proof is very similar to the standard proof of Theorem 2.2, and is given in [SV09,
Theorem 3.8]. Where needed, membership in the Seqable-class assures bottom-reflection.
Since the subtype relation of two types guarantees also that the logical relations of these
types are subsets of each other, i.e. τ1 � τ2 ⇒ ∆τ1,ρ ⊆ ∆τ2,ρ for each appropriate ρ, the
inductive case for the (SUB) rule is easily proved.

If we regard foldl ′′ from the introduction with the refined type ∀◦α.∀β.(α→◦ β → α)→
α → [β] → α once again, Theorem 3.2 tells us that equation (1) holds for foldl ′′ even if
f is not total and c = ⊥ iff c′ = ⊥ does not hold, in contrast to what was required by the
free theorem for the completely unmarked type as stated at the beginning of the current
section.

4 PolySeqC — Obtaining all Permissible Types

The calculus PolySeq* allows refined typing for all terms typable in PolySeq. The fi-
nal aim is to provide automatic type refinement for given terms with standard (PolySeq)
typings. Hence, the intended use of PolySeq* will be to input a PolySeq term t, in par-
ticular without (ε- or) ◦-marks, and to find either all, or better all minimal (in the sense of
strongest free theorems, which corresponds to the minimal logical relations) permissible
types that t, for some concrete setting of marks in its syntactic type components (e.g., at
occurrences of the empty list or in λ-abstractions), is typable to in PolySeq*. Or, more
generally, the same setting with given t closed under a (fixed up to ε- vs. ◦-marks) given
typing environment Γ has to be handled.

Unfortunately, PolySeq* is not suitable for an algorithmic use in its current form. The
rule (SUB) is in competition with all other rules, and because subtyping is reflexive it
can always be applied and thus cause endless looping. This problem is easily repaired by
integrating subtyping into the rules directly and in return omitting the explicit (SUB) rule.
Then we have a rule system defining a terminating algorithm able to return all types a given
term t under a given typing environment Γ is typable to. But there will still be ambiguity
between typing derivations, since sometimes we have the choice between two rules, one
introducing ε, the other ◦ as mark, which makes backtracking necessary. Additionally,
runs with all possible choices of marks on the given input Γ and t would be required to
gain all suitable refined types.

Alternatively, avoiding the production of many trees and several runs with different inputs,
we can switch to variables as marks in Γ and t. This will in particular obviate the parame-
terization of rules as used in PolySeq* to write down a whole rule family as one scheme.
Thereby, we eliminate any competition between different rules, allowing the interpretation
of the resulting rule system as a deterministic algorithm.

This solution is realized by the calculus PolySeqC , which is equivalent to PolySeq* in
a sense made precise below, but actually states conditional typability. We switch to pa-
rameterized terms, types, and typing environments that use variables instead of concrete
ε- and ◦-marks. In what follows, parameterized entities are dotted to be distinguishable
from concrete ones. The conditional typing rules are of the form 〈Γ̇ ` ṫ〉V (C, τ̇), where

C is a propositional logic formula combining constraints on mark variables ν. The typ-
ing rules for conditional typability are given in Figure 9, and rules of auxiliary systems
stating conditional class membership in Seqable, subtyping, and equality, are shown in
Figures 10–12. To relate conditional typability to concrete typability on concrete terms,
types, and typing environments, we define mark replacements % that map the parameter-
ized entities κ̇ to concrete ones by replacing each mark variable by one (and for different
occurrences of the same variable, the same) of the concrete marks ε or ◦. We denote the
application of a mark replacement % to κ̇ by κ̇%. Furthermore, mark replacements can be
applied to constraints C, denoted by C%. By convention, if C% is a propositional logic
sentence, it is identified with its value, i.e. either True or False.

With the help of these tools we define concrete typability in PolySeqC .

Definition 4.1 A term t is (concretely) typable to τ under Γ in PolySeqC if there exist Γ̇,
ṫ, τ̇ , C, and %, such that Γ̇% = Γ, ṫ% = t, τ̇% = τ , C% = True, and 〈Γ̇ ` ṫ〉 V (C, τ̇) in
PolySeqC .

We can now state equivalence of typability in PolySeq* and PolySeqC . The proof can be
found in [SV09, Lemma 4.1 and Theorem 5.3].

Theorem 4.2 A term t is (concretely) typable to a type τ under a typing environment Γ in
PolySeqC iff it is typable to τ under Γ in PolySeq*.

As example of how PolySeqC can be used algorithmically for type refinement, we again
consider the function foldl ′′ from the introduction. The algorithm’s input will be the term
foldl ′′ (in the style of PolySeq, in particular with standard type annotations at the bind-
ing occurrences of term variables). Since foldl ′′ is closed, the initial typing environment
is empty. First, we add pairwise distinct variable marks, ν1, . . . , νm, at all ∀-quantifiers
and arrows in type annotations in foldl ′′. This manipulation is reflected by putting a dot
on top of foldl ′′. Then, we use the typing rules of PolySeqC backwards to generate a
derivation tree for ˙foldl ′′ in the empty typing environment. If there is such a derivation
tree (and since foldl ′′ is typable in PolySeq, there is), we can use it to determine C and
τ̇ such that 〈 ` ˙foldl ′′〉 V (C, τ̇) in PolySeqC . The parameterized type τ̇ contains vari-
able marks νm+1, . . . , νm+n, and C imposes constraints on ν1, . . . , νm+n (and possibly
on other mark variables used only during the typing derivation). Now we determine the
mark replacements % for which C% is True (and which, among others, instantiate all the
νm+1, . . . , νm+n). The applications of these mark replacements to τ̇ provide us all refined
types of foldl ′′. In a last step, we remove types that are not minimal in this set with respect
to the subtype relation given by the rules from Figure 8, because these types would lead
to unnecessary restrictions in the corresponding free theorems. For foldl ′′ we end up with
the single, already known type ∀◦α.∀β.(α →◦ β → α) → α → [β] → α, but now it has
been generated automatically.

For the sake of an example in which there is more than one minimal type, consider the term
t = Λα.λx :: ([α] → α).x. Its minimal refined types are ∀◦α.(([α] → α) → ([α] → α))
and ∀◦α.(([α]→◦ α)→ ([α]→◦ α)), which are incomparable.

〈τ̇ � · 〉V (C, τ̇ ′)
(VARC)

〈Γ̇, x :: τ̇ ` x〉V (C, τ̇ ′)

〈τ̇ � · 〉V (C, τ̇ ′)
(NILC)

〈Γ̇ ` []τ̇ 〉V (C, [τ̇ ′])

〈Γ̇ ` ṫ1〉V (C1, τ̇) 〈Γ̇ ` ṫ2〉V (C2, [τ̇ ′]) 〈τ̇ = τ̇ ′〉V C3
(CONSC)

〈Γ̇ ` ṫ1 : ṫ2〉V (C1 ∧ C2 ∧ C3, [τ̇])

〈Γ̇ ` ṫ〉V (C1, [τ̇1]) 〈Γ̇ ` ṫ1〉V (C2, τ̇2)

〈Γ̇, x1 :: τ̇1, x2 :: [τ̇1] ` ṫ2〉V (C3, τ̇
′
2) 〈τ̇2 = τ̇ ′2〉V C4

(LCASEC)
〈Γ̇ ` case ṫ of {[]→ ṫ1 ; x1 : x2 → ṫ2}〉V (C1 ∧ C2 ∧ C3 ∧ C4, τ̇2)

〈Γ̇, x :: τ̇1 ` ṫ〉V (C1, τ̇2) 〈 · � τ̇1〉V (C2, τ̇
′
1)

(ABSC)
〈Γ̇ ` λx :: τ̇1.ṫ〉V (C1 ∧ C2, τ̇

′
1 →ν τ̇2)

〈Γ̇ ` ṫ1〉V (C1, τ̇1 →ν τ̇2) 〈Γ̇ ` ṫ2〉V (C2, τ̇
′
1) 〈τ̇1 = τ̇ ′1〉V C3

(APPC)
〈Γ̇ ` ṫ1 ṫ2〉V (C1 ∧ C2 ∧ C3, τ̇2)

〈αν , Γ̇ ` ṫ〉V (C, τ̇)
(TABSC)

〈Γ̇ ` Λα.ṫ〉V (C,∀να.τ̇)

〈Γ̇ ` τ̇2 ∈ Seqable〉V C1 〈Γ̇ ` ṫ〉V (C2,∀να.τ̇1) 〈τ̇1[τ̇2/α] � · 〉V (C3, τ̇3)
(TAPPC)

〈Γ̇ ` ṫτ̇2〉V (((ν = ε)⇒ C1) ∧ C2 ∧ C3, τ̇3)

〈Γ̇ ` ṫ〉V (C1, τ̇ →ν τ̇ ′) 〈τ̇ = τ̇ ′〉V C2 〈τ̇ � · 〉V (C3, τ̇
′′)

(FIXC)
〈Γ̇ ` fix ṫ〉V (C1 ∧ C2 ∧ C3, τ̇

′′)

〈Γ̇ ` ṫ1〉V (C1, τ̇1) 〈Γ̇ ` τ̇1 ∈ Seqable〉V C2 〈Γ̇, x :: τ̇1 ` ṫ2〉V (C3, τ̇2)
(SLETC)

〈Γ̇ ` let! x = ṫ1 in ṫ2〉V (C1 ∧ C2 ∧ C3, τ̇2)

Figure 9: Conditional Typing Rules in PolySeqC

〈Γ̇ ` [τ̇] ∈ Seqable〉V True (C-LISTC)

〈Γ̇ ` (τ̇1 →ν τ̇2) ∈ Seqable〉V (ν = ε) (C-ARROWC)

αν ∈ Γ̇
(C-VARC)

〈Γ̇ ` α ∈ Seqable〉V (ν = ε)

〈αε, Γ̇ ` τ̇ ∈ Seqable〉V C
(C-TABSC)

〈Γ̇ ` (∀αν .τ̇) ∈ Seqable〉V C

Figure 10: Conditional Class Membership Rules for Seqable in PolySeqC

〈α � · 〉V (True, α) (S-VARC1) 〈 · � α〉V (True, α) (S-VARC2)

〈 · � σ̇1〉V (C1, τ̇1) 〈σ̇2 � · 〉V (C2, τ̇2)
(S-ARROWC

1)
〈(σ̇1 →ν σ̇2) � · 〉V (C1 ∧ C2 ∧ (ν′ 6 ν), τ̇1 →ν′ τ̇2)

〈τ̇1 � · 〉V (C1, σ̇1) 〈 · � τ̇2〉V (C2, σ̇2)
(S-ARROWC

2)
〈 · � (τ̇1 →ν′ τ̇2)〉V (C1 ∧ C2 ∧ (ν′ 6 ν), σ̇1 →ν σ̇2)

〈τ̇1 � · 〉V (C, τ̇2)
(S-ALLC1)

〈(∀να.τ̇1) � · 〉V (C ∧ (ν 6 ν′),∀ν′α.τ̇2)

〈 · � τ̇2〉V (C, τ̇1)
(S-ALLC2)

〈 · � (∀ν′α.τ̇2)〉V (C ∧ (ν 6 ν′),∀να.τ̇1)

〈τ̇ � · 〉V (C, τ̇ ′)
(S-LISTC1)〈[τ̇] � · 〉V (C, [τ̇ ′])

〈 · � τ̇ ′〉V (C, τ̇)
(S-LISTC2)〈 · � [τ̇ ′]〉V (C, [τ̇])

Figure 11: Conditional Subtyping Rules in PolySeqC

〈α = α〉V True (E-VARC)

〈σ̇1 = τ̇1〉V C1 〈σ̇2 = τ̇2〉V C2
(E-ARROWC)

〈(σ̇1 →ν σ̇2) = (τ̇1 →ν′ τ̇2)〉V (C1 ∧ C2 ∧ (ν = ν′))

〈τ̇1 = τ̇2〉V C
(E-ALLC)

〈(∀να.τ̇1) = (∀ν′α.τ̇2)〉V (C ∧ (ν = ν′))

〈τ̇ = τ̇ ′〉V C
(E-LISTC)〈[τ̇] = [τ̇ ′]〉V C

Figure 12: Conditional Equality Rules in PolySeqC

5 Implementation

The polymorphic calculi considered so far in this paper contain only lists as algebraic
data type, but the extension to other algebraic data types and base types like Int and Bool
is straightforward. PolySeqC extended by integers (with addition) and Booleans (with
a case-statement) has been implemented and made usable through a web interface2. To
facilitate more natural input, some syntactic sugar has been added. The web interface
accepts closed terms according to the following grammar:

t ::= x | n | True | False | []τ | t : t | case t of {[]→ t ; x : x→ t} | t+ t |
case t of {True→ t ;False→ t} | case t of {False→ t ;True→ t} |
if t then t else t | let x = t in t | λx :: τ.t | t t | Λα.t | tτ |
fix t | let! x = t in t | seq t t

with x ranging over term variables and n ranging over the integers. Any type annotations
τ in the input term must be standard type annotations (like in PolySeq) of the form given
by the grammar τ ::= α | [τ] | τ → τ | ∀α.τ | Int | Bool, where α ranges over type
variables. The let-construct is non-recursive (like let!), and only there to enable easy
switching between presence and absence of strict evaluation. For input, the ASCII syntax
is -> for →, \ for λ, /\ for Λ, and forall for ∀, and type subscripts are entered as
_{. . .}.

The implementation returns all minimal (in the sense of minimal logical relation) refined
types (with mark εwritten as e, and ◦written as n) the term is typable to in the refined type
system. Additionally, it presents the corresponding free theorems, as well as the theorem
for the standard type. The interesting parts of the theorems, namely those being related to
selective strictness, are highlighted in the web interface output. A screenshot of the output
for foldl ′′ is shown in Figure 13.

Let us comment on the respective outputs for all four initial examples, foldl and its strict
versions foldl ′, foldl ′′, and foldl ′′′. The respectively highlighted parts in the produced
free theorems point out that the totality restriction on f remains required for foldl ′, while
the other additional restrictions mentioned in the first paragraph of Section 3 disappear.
For foldl ′′ as input, the totality restriction on f and the restriction that c = ⊥ iff c′ = ⊥
disappear, but none of the others do, while for foldl ′′′ only the restriction that c = ⊥ iff
c′ = ⊥ remains. Regarding foldl , all selective-strictness-related restrictions vanish.3

6 Conclusion

The refined type system we developed and the possibility to automatically retype stan-
dardly typed terms to refined types, allow a fine-grained analysis of the influence of se-
lective strict evaluation on free theorems, depending on its concrete use in a term. An
essential difference to classical strictness analysis [Myc80, Hug86] is that we do not at-

2http://linux.tcs.inf.tu-dresden.de/˜seideld/cgi-bin/polyseq.cgi
3The remaining highlighted parts in this case represent a strengthening of the theorem, not a restriction.

http://linux.tcs.inf.tu-dresden.de/~seideld/cgi-bin/polyseq.cgi

Figure 13: Output of the Web Interface for foldl ′′ as Input

tempt to discover strict usage of arguments as resulting from “normal” execution, but only
focus on explicitly enforced strict evaluation.

The calculus PolySeq considered, especially with the straightforward extension to alge-
braic data types and base types described in Section 5, is quite close to real-world lazy
functional programming languages like Haskell. This permits to apply the refined free
theorems for correctness proofs of transformations in such languages. For example, what
is often referred to as the fusion property for foldl , namely the specialization of equa-
tion (1) to g = λx → x, is (without additional restrictions) a direct consequence of the
free theorem for foldl ’s refined type. On the other hand, the refined theorems help to easily
figure out incorrect assumptions, such as that the same fusion property holds for foldl ′.

References

[GLP93] A. Gill, J. Launchbury, and S.L. Peyton Jones. A short cut to deforestation. In Functional
Programming Languages and Computer Architecture, Proceedings, pages 223–232. ACM
Press, 1993.

[Hug86] R.J.M. Hughes. Strictness detection in non-flat domains. In Programs as Data Objects
1985, Proceedings, volume 217 of LNCS, pages 112–135. Springer-Verlag, 1986.

[Joh03] P. Johann. Short cut fusion is correct. Journal of Functional Programming, 13(4):797–
814, 2003.

[JV04] P. Johann and J. Voigtländer. Free Theorems in the Presence of seq. In Principles of
Programming Languages, Proceedings, pages 99–110. ACM Press, 2004.

[LP96] J. Launchbury and R. Paterson. Parametricity and Unboxing with Unpointed Types. In
European Symposium on Programming, Proceedings, volume 1058 of LNCS, pages 204–
218. Springer-Verlag, 1996.

[Myc80] A. Mycroft. The Theory and Practice of Transforming Call-by-need into Call-by-value.
In Colloque International sur la Programmation, Proceedings, volume 83 of LNCS, pages
269–281. Springer-Verlag, 1980.

[SV09] D. Seidel and J. Voigtländer. Taming Selective Strictness. Technical Report TUD-FI09-
06, Technische Universität Dresden, 2009. http://wwwtcs.inf.tu-dresden.
de/˜voigt/TUD-FI09-06.pdf.

[Voi08a] J. Voigtländer. Much Ado about Two: A Pearl on Parallel Prefix Computation. In Princi-
ples of Programming Languages, Proceedings, pages 29–35. ACM Press, 2008.

[Voi08b] J. Voigtländer. Semantics and Pragmatics of New Shortcut Fusion Rules. In Functional
and Logic Programming, Proceedings, volume 4989 of LNCS, pages 163–179. Springer-
Verlag, 2008.

[Voi09a] J. Voigtländer. Bidirectionalization for Free! In Principles of Programming Languages,
Proceedings, pages 165–176. ACM Press, 2009.

[Voi09b] J. Voigtländer. Free Theorems Involving Type Constructor Classes. In International Con-
ference on Functional Programming, Proceedings. ACM Press, 2009.

[Wad89] P. Wadler. Theorems for free! In Functional Programming Languages and Computer
Architecture, Proceedings, pages 347–359. ACM Press, 1989.

http://wwwtcs.inf.tu-dresden.de/~voigt/TUD-FI09-06.pdf
http://wwwtcs.inf.tu-dresden.de/~voigt/TUD-FI09-06.pdf

	1 Introduction
	2 Standard Parametricity
	3 Refining the Calculus
	4 PolySeqC --- Obtaining all Permissible Types
	5 Implementation
	6 Conclusion

