
Semantics and Pragmatics of

New Shortcut Fusion Rules?

Janis Voigtländer

Institut für Theoretische Informatik
Technische Universität Dresden

01062 Dresden, Germany

voigt@tcs.inf.tu-dresden.de

Abstract. We study various shortcut fusion rules for languages like
Haskell. Following a careful semantic account of a recently proposed rule
for circular program transformation, we propose a new rule that trades
circularity for higher-orderedness, and thus attains better semantic prop-
erties. This also leads us to revisit the original foldr/build-rule, as well as
its dual, and to develop variants that do not suffer from detrimental im-
pacts of Haskell’s mixed strict/nonstrict semantics. Throughout, we offer
pragmatic insights about our new rules to investigate also their relative
effectiveness, rather than just their semantic correctness.

1 Introduction

These are exciting times for enthusiasts of program transformations akin to
shortcut fusion. After the seminal paper on foldr/build-fusion [4], a number of
transformations derived from free theorems [15] have been developed over the
years, transferring the technique to other types than lists [5, 11], or investigat-
ing new transformation schemes of similar flavour [2, 10, 12]. And recently there
seems to occur another upsurge of successes in this direction. On the one hand,
completely new ideas are developed, such as the circular fusion rule in [3]. On the
other hand, existing techniques are revisited and further developed in a way that
makes them more useful in practice [1]. And with the integration of call-pattern
specialisation into GHC [8], an important building block for successful fusion
(post-processing) is falling into place. With this paper we want to continue and
nurture this trend, by advancing semantic and pragmatic aspects of existing and
new transformations.

We take our start from the pfold/buildp-rule of [3]. It is of particular interest
from a semantic viewpoint as it is, due to its use of a circular local binding,
the first transformation in the shortcut fusion family that is usable exclusively
from a lazy language. This raises questions as to how the rule interacts with the
intricacies of Haskell’s semantics surrounding ⊥, fixpoint recursion, and selective
strictness. The authors of [3] describe their reasoning as “fast and loose” in this
respect. Here we investigate those issues, and prove total and partial correctness
results for the circular pfold/buildp-rule in Haskell.
? In FLOPS 2008, Proc., volume 4989 of LNCS, pages 163–179. c© Springer-Verlag.



Guided by a folklore idea on replacing circularity by higher-orderedness, we
then propose a new scheme for pfold/buildp-fusion that not only becomes usable
again in a purely strict language, but also plays well with potentially mixed
strict/nonstrict evaluation. In fact, we are able to prove total correctness of our
new rule without any preconditions on the producer and consumer functions.

The latter is quite remarkable after the completely different experiences made
in [6] for the classical foldr/build- and its dual destroy/unfoldr-rule. It leads us to
revisit those veteran transformations and to look for potential “repairs” of their
semantic deficiencies. And in fact we can transfer some insights and come up with
new, and much better behaved, variants of foldr/build- and destroy/unfoldr-fusion.

Throughout, we stay in touch with pragmatic considerations by examining
the impact of transformations on concrete examples. This allows us to investi-
gate also the effectiveness, rather than just the correctness, of our new propos-
als. For example, we carefully weigh the circular and higher-order flavours of
pfold/buildp-fusion against each other. And in some cases such pragmatic inves-
tigations actually lead to new rule variants.

We deliberately do not focus on a single program transformation. Instead,
we report a laboratory-like experience in which working on one rule provides
potential insights on another one as well, or indeed sparks a new idea that
helps to resolve an issue existing for an at first sight somewhat unrelated fusion
problem. This mode of operation has been very fruitful, and we would like to
encourage others to push the boundaries of shortcut fusion as well.

2 Circular Shortcut Fusion

In [3] a fusion rule for circular program calculation is proposed. Even though
it is originally given for arbitrary algebraic datatypes, we consider only the list
case here. For other types the development and results would be similar.

The involved combinators are given as follows:

buildp :: (forall a. (b → a → a) → a → c → (a,z )) → c → ([b],z)
buildp g = g (:) []

pfold :: (b → a → z → a) → (z → a) → ([b],z ) → a
pfold h

1
h
2

(bs,z ) = foldr (λb a → h
1

b a z ) (h
2

z ) bs

The idea underlying buildp is that g describes the production of an abstract list
(hence the list constructor arguments) over type b, and at the same time delivers
an additional result of type z , both guided by an input parameter of type c . A
typical application of that scheme is the definition of the following function:

splitWhen :: (b → BOOL) → [b] → ([b],[b])
splitWhen p = buildp go

where go con nil bs =
case bs of

[] → (nil ,bs)
b:bs′ → if p b then (nil ,bs)

else let (xs ,ys) = go con nil bs′ in (con b xs , ys)



The idea underlying pfold is that h
1

and h
2

describe the consumption of a
list over type b by structural recursion (via the standard function foldr), but can
take an additional parameter of type z into account while doing so. A typical
application of that scheme is the definition of the following function:

pfilter :: (b → z → BOOL) → ([b],z) → [b]
pfilter p = pfold (λb bs z → if p b z then b:bs else bs) (λ_ → [])

This variant of the classical filter-function uses a binary, rather than unary, pred-
icate for selecting list elements, where the second argument of that predicate is
fixed throughout and provided as additional input alongside the input list.

The rule from [3] now tells us, in general, to replace as follows:

pfold h
1

h
2

(buildp g c) ; let (a,z ) = g (λb a → h
1

b a z ) (h
2

z ) c in a .

Note the circularity in the right-hand side, preventing use of the rule in a strict
functional language. To see the rule in action, consider the following definition:

repeatedAfter :: EQ b ⇒ (b → BOOL) → [b] → [b]
repeatedAfter p bs = pfilter elem (splitWhen p bs)

It provides a very natural specification of the following task: from the initial part
of an input list before a certain predicate holds for the first time, return those ele-
ments that are repeated afterwards. To benefit from the circular pfold/buildp-rule,
we inline the definitions of pfilter and splitWhen, apply the rule, and afterwards
perform some local optimisations as exemplified and described in more detail
in [1]. The result is the following version:

repeatedAfter′ p bs =
let

(a,z ) = go′ bs
go′ bs = case bs of

[] → ([],bs)
b:bs′ → if p b then ([],bs) else

let (xs ,ys) = go′ bs′

in (if elem b z then b:xs else xs , ys)
in a

Note that even though z and go′ are mutually defined in terms of each other,
there is no “true” circularity, as lazy evaluation can order the computation in
an appropriate, terminating way.

However, the selective strictness feature of Haskell can ruin this approach
in an unexpected way. As an (admittedly artificial) counterexample, consider
g = (λ_ nil c → seq nil (nil ,c)), c = 42, h

2
= (+1), and arbitrary (but appro-

priately typed) h1. Then pfold h1 h2 (buildp g c) is 43, while the transformed
expression let (a,z) = g (λb a → h

1
b a z ) (h

2
z) c in a does not terminate! To

see why, take into account that by inlining g , c , and h2, it is equivalent to the
truly circular let (a,z ) = seq (z+1) (z+1, 42) in a.

For classical foldr/build-fusion we know from [6] that total correctness even
in the presence of seq can be guaranteed by imposing certain restrictions on the
arguments to foldr. Trying to transfer those insights to the present setting, we



come to investigate whether h
1
⊥ ⊥ z /= ⊥ and h

2
z /= ⊥ (because the arguments

to foldr in the definition of pfold h
1

h
2

are (λb a → h
1

b a z ) and h
2

z ). But this
raises the question which z to consider here. It seems natural to consider the
second element of the pair returned by buildp g c , as that is exactly what gets
passed to pfold h1 h2 before the circular fusion rule is applied. But tempting as
this intuition is, it must be wrong! This is evidenced by the above counterex-
ample, where buildp g c = ([],42) and h

2
42 = 43 /= ⊥ (and h

1
could be chosen

arbitrarily, in particular in a way such that h1 ⊥ ⊥ 42 /= ⊥ as well), and yet we
found that applying the circular fusion rule was not semantics-preserving.

This motivates a more careful study of the latter’s semantics than is currently
available. To help us in this endeavour, we first establish an auxiliary lemma.
By convention, a function f is strict if f ⊥ = ⊥; total if f x /= ⊥ for every x /= ⊥.

Lemma 1. Let T
1
, T

2
, and T

3
be types. Let c :: T

2
and

g :: forall a. (T1 → a → a) → a → T2 → (a,T3) .

Then for every type T′, q :: T
1
→ T′ → T′, and strict and total f :: [T

1
] → T′,

(q /= ⊥ ∧ ∀ b :: T
1
. q b /= ⊥ ∧ ∀ bs :: [T

1
]. f (b:bs) = q b (f bs))

⇒ g q (f []) c = case buildp g c of (bs,z′) → (f bs, z′) .

(1)

The proof via a free theorem builds on the results from [6] and is given in the
appendix. The most important pieces to note here are the preconditions relating
to ⊥ and the strictness and totality restrictions on f . These are exactly the kind
of things that one needs to pay close attention to when trying to derive semantic
statements that remain valid for Haskell even in the presence of general recursion
and selective strictness. Note also that all Haskell types are pointed, so that, for
example, the quantification over b :: T

1
includes the case b = ⊥.

Based on Lemma 1, we can now prove the following theorem which provides
the desired preconditions for total correctness of circular pfold/buildp-fusion.

Theorem 1. Let T1, T2, T3, and T4 be types. Let c :: T2, h1 :: T1 → T4 → T3 →
T

4
, h

2
:: T

3
→ T

4
, and

g :: forall a. (T
1
→ a → a) → a → T

2
→ (a,T

3
) .

If h1 ⊥ ⊥ ⊥ /= ⊥ and h2 ⊥ /= ⊥, then

pfold h
1

h
2

(buildp g c) = let (a,z) = g (λb a → h
1

b a z) (h
2

z ) c in a .

The proof is given in the appendix. In it, the circular binding in the expression
after fusion is described by an explicit use of fixpoint recursion. This helps to
pin down why it is not enough to require h1 ⊥ ⊥ z /= ⊥ and h2 z /= ⊥ for the
second element z of the pair returned by buildp g c : since fixpoint recursion
conceptually starts from ⊥ (as in fix f =

⊔
f i ⊥; the actual definition used in the

proof calculation is fix f = f (fix f )), the circular “hunting” for z in the program
after fusion also starts out with ⊥, which might then interfere with seq. This



precisely explains the counterexample we observed earlier, and why it was not
sufficient there that h

2
42 /= ⊥.

For classical foldr/build-fusion we can avoid preconditions if settling for partial
rather than total correctness [6]. Let us see whether the same is possible here.
To that end, we need to look at “inequational” versions of the statements we
have derived so far. Typically, to any “equational” free theorem correspond two
inequational ones. For Lemma 1, one of the two variants is as follows.

Lemma 2. Let T1, T2, and T3 be types. Let c :: T2 and

g :: forall a. (T
1
→ a → a) → a → T

2
→ (a,T

3
) .

Then for every type T′, q :: T
1
→ T′ → T′, and strict f :: [T

1
] → T′,

(∀ b :: T
1
, bs :: [T

1
]. f (b:bs) w q b (f bs))

⇒ g q (f []) c v case buildp g c of (bs,z′) → (f bs, z′) .

Note that the new lemma does not require f to be total. The price to pay for this
is that the final statement only provides a semantic approximation. The reading
of “v” is that the right-hand side is at least as defined as the left-hand side.

As usual, there is also a second inequational variant. However, we have found
that it does not lead to any insight beyond what we already know from the equa-
tional setting. That is why we only give Lemma 2 here. Based on it, we can prove
(largely by mirroring the proof of Theorem 1) the following theorem which es-
tablishes partial correctness of circular pfold/buildp-fusion without preconditions.

Theorem 2. Let T1, T2, T3, and T4 be types. Let c :: T2, h1 :: T1 → T4 → T3 →
T

4
, h

2
:: T

3
→ T

4
, and

g :: forall a. (T
1
→ a → a) → a → T

2
→ (a,T

3
) .

Then

pfold h
1

h
2

(buildp g c) w let (a,z) = g (λb a → h
1

b a z) (h
2

z ) c in a .

Note that the counterexample to total correctness given earlier fits into the
picture here. There, we observed that 43 got transformed into ⊥. This certainly
agrees with the above statement.

Note also that the partial correctness result does by no means imply that
the circular fusion rule decreases definedness always when any of the precon-
ditions from Theorem 1 is violated. Indeed, the repeatedAfter-example from
earlier in this section does not suffer from any introduction of failure, even
though an investigation of the first argument to pfold in that fusion instance
shows that the first precondition from Theorem 1 is not fulfilled, given that
(if elem ⊥ ⊥ then ⊥:⊥ else ⊥) = ⊥. However, the problem is that for such con-
sumers we may not guarantee total correctness. For example, one can easily
come up with a producer whose fusion with pfilter elem does actually lead to a
decrease in definedness, so that Theorem 2 is the best one can say. In particu-
lar, it does not make sense to try to prove a somehow “better” Theorem 1 that



makes do with less strong, and therefore more practical, preconditions. There is
no circumventing the fact that there exist g of the given type that make the con-
ditions h1 ⊥ ⊥ ⊥ /= ⊥ and h2 ⊥ /= ⊥ necessary in their full, combined pessimism.
Inventing new rules, however, can make a difference.

3 Higher-Order Shortcut Fusion

It is an old idea to replace circular definitions, such as obtained from the elimi-
nation of multiple traversals, by higher-order ones. In the terminology of [7], this
is achieved by import and export of information. Thus guided, we would like to
develop a variant of pfold/buildp-fusion that is unaffected by selective (or, indeed,
full) strict evaluation. In doing so, we clearly want to preserve the advantages of
the circular fusion rule such as elimination of the intermediate list and effective
handling of the additional result produced by buildp and used by pfold. We know
from [13] that a transformation of circularity into higher-orderedness is not al-
ways possible. But for the setup we consider here, it turns out that there is a
way to achieve it for every fusion instance.

Concretely, we propose to replace as follows:

pfold h1 h2 (buildp g c)
;

case g (λb k z → h1 b (k z ) z ) (λz → h2 z) c of (k ,z) → k z .

Note that there is no circularity in the right-hand side. Indeed, our new rule is
applicable in a strict language just as well as in a lazy or mixed evaluation one.
It is higher-order in the sense that it uses a function k where the circular rule
used a value a.

To see the new rule in action, consider again the function definition for
repeatedAfter. After inlining the definitions of pfilter and splitWhen, applying the
higher-order fusion rule, and performing local optimisations as mentioned earlier,
the result now is the following version:

repeatedAfter′′ p bs =
case

let go′ bs = case bs of
[] → (λz → [], bs)
b:bs′ → if p b then (λz → [], bs)

else
let (xs ,ys) = go′ bs′

in (λz → if elem b z then b:(xs z) else xs z , ys)
in go′ bs

of (k ,z ) → k z

Another interesting instance is the counterexample we used earlier to demon-
strate the weaknesses of the circular fusion rule: g = (λ_ nil c → seq nil (nil ,c)),
c = 42, and h2 = (+1). For the higher-order fusion rule this poses no problems
at all: after fusion, we still get 43 as result.



In order to see whether such positive outcome is obtained for every fusion
instance, we investigate total correctness of the new rule. We can reuse Lemma 1
to this purpose. Indeed, based on it, we can prove the following theorem.

Theorem 3. Let T
1
, T

2
, T

3
, and T

4
be types. Let c :: T

2
, h

1
:: T

1
→ T

4
→ T

3
→

T4, h2 :: T3 → T4, and

g :: forall a. (T1 → a → a) → a → T2 → (a,T3) .

Then

pfold h
1

h
2

(buildp g c)
=

case g (λb k z → h1 b (k z ) z ) (λz → h2 z) c of (k ,z) → k z .

We omit further proof details here. In fact, we will do so also for the remaining
theorems in this paper. Suffice it to say that they can all be proved using the
general goal-directed approach presented in [14].

Analysing why total correctness without preconditions holds in Theorem 3
leads to the realization that seq simply cannot do any harm in the presence of the
“extra” lambda-abstractions that prevent g from encountering a ⊥-value when
combining its arguments, even though h

1
and/or h

2
might very well contain or

produce such values. The need to preserve those protective lambda-abstractions
also means that it is not safe to perform eta-reduction of (λz → h

2
z ) to h

2
. In-

deed, eta-reduction is not valid in Haskell with seq and should not be performed
by any compiler.

That the above theorem establishes total correctness unconditionally is a
much more satisfying situation than with circular pfold/buildp-fusion. However,
from a pragmatic, rather than semantic, viewpoint the picture is not quite as
clear. Consider, for example, the following function definition:

greaterThanMinAfter :: ORD b ⇒ (b → BOOL) → [b] → [b]
greaterThanMinAfter p bs = pfilter (λb bs′ → b > minimum bs′) (splitWhen p bs)

After inlining the definitions of pfilter and splitWhen, applying the higher-order
fusion rule, and performing the usual local optimisations, we obtain from it a ver-
sion greaterThanMinAfter′ whose function body differs from that of repeatedAfter′′

seen earlier in this section only in that the third-last line looks as follows:

in (λz → if b > minimum z then b:(xs z ) else xs z , ys)

But precisely this line exposes an issue that we might want to improve on.
Namely, we see that minimum z will be computed repeatedly for comparison
against all elements of bs until p holds for the first time. There is no apparent
way how to avoid this recomputation, even though it is actually the case for given
arguments p and bs to greaterThanMinAfter′ that whenever program evaluation
reaches this expression, the value of z is the same. But it would simply require
too advanced a flow analysis from the compiler to automatically detect this.
Similar observations regarding a loss of sharing for shortcut fusion rules were
made in [10].



Closer analysis of the above issue reveals that it occurs whenever the consum-
ing pfold would actually be better served with an image, under some function h,
of the second element of the pair returned by the producing buildp, rather than
with that second element itself. This insight leads us to establish the following
slight variation of Theorem 3.

Theorem 4. Let T
1
, T

2
, T

3
, T′

3
, and T

4
be types. Let c :: T

2
, h :: T′

3
→ T

3
,

h1 :: T1 → T4 → T3 → T4, h2 :: T3 → T4, and

g :: forall a. (T1 → a → a) → a → T2 → (a,T′

3) .

Then

case buildp g c of (bs,z′) → pfold h
1

h
2

(bs, h z′)
=

case g (λb k z → h1 b (k z ) z ) (λz → h2 z ) c of (k ,z ) → k (h z ) . (2)

Note that this theorem again gives total correctness without any preconditions.
Unfortunately, it is not as readily applicable for fusion as our earlier results,
because the left-hand side is not a simple combination of a producer- and a
consumer-combinator. This is easily remedied, though. We can define variants
of the original combinators as follows:

buildp′ :: (forall a. (b → a → a) → a → c → (a,z′)) → c → (z′ → z ) → ([b],z )
buildp′ g c h = case g (:) [] c of (bs,z′) → (bs, h z′)

pfold′ :: (b → a → z → a) → (z → a) → (z′ → z ) → ([b],z′) → a
pfold′ h

1
h
2

h (bs,z′) = let z = h z′ in foldr (λb a → h
1

b a z ) (h
2

z ) bs

Then Theorem 4 tells us that we can semantics-preservingly replace either of
pfold h1 h2 (buildp′ g c h) and pfold′ h1 h2 h (buildp g c) by (2) or, indeed, replace
as follows:

pfold′ h1 h2 h′ (buildp′ g c h)
;

case g (λb k z → h
1

b (k z ) z ) (λz → h
2

z) c of (k ,z) → k (h′ (h z )) .

The new combinators provide us with the means to define a variant of
greaterThanMinAfter that after applying one of the just given semantics-preserving
rules leads to a version greaterThanMinAfter′′ which avoids repeated computa-
tion with minimum by having a function body that differs from the one of
repeatedAfter′′ only in that the three final lines look as follows:

in (λz → if b > z then b:(xs z ) else xs z , ys)
in go′ bs

of (k ,z ) → k (minimum z )

Note that all the rules proposed in this section are also applicable in a purely
strict language. There, however, they can increase (though never decrease) the
definedness of a program. Consider, for example, the rule proposed last. If h

1
is a

nonterminating expression, then the left-hand side pfold′ h
1

h
2

h′ (buildp′ g c h)
is nonterminating as well. But the corresponding right-hand side might very well
be terminating, for example if g does not use its first argument.



4 Circular versus Higher-Order Fusion

Having observed that extra effort may be needed to prevent a certain loss of shar-
ing when performing higher-order pfold/buildp-fusion, it should be interesting, by
way of comparison, to see whether the same issue exists for the original, circular
rule as well. So consider, again, the function definition for greaterThanMinAfter.
After inlining the definitions of pfilter and splitWhen, applying the circular fusion
rule leads to a version greaterThanMinAfter′′′ whose function body differs from
that of repeatedAfter′ seen in Section 2 only in that the next-to-last line looks as
follows:

in (if b > minimum z then b:xs else xs , ys)

In contrast to what we had with higher-order fusion, the z is now not locally
lambda-bound. In fact, it is not local to the go′-function at all. This means
that the full laziness transformation [9], to some extent implemented also in
GHC, can effectively avoid recomputations of minimum z by floating that whole
expression out. Then, a better degree of sharing is achieved than in higher-order
fusion prior to introducing extra combinators and rules. However, recall that for
circular fusion one cannot guarantee total correctness unrestrictedly. And indeed,
the first argument to pfold in the greaterThanMinAfter-example does not satisfy
the first precondition from Theorem 1. So the potential for better sharing here
is bought by having to settle for only a partial correctness guarantee, or total
correctness under conditions that cannot in general be checked automatically by
a compiler.

In case full laziness is not implemented in the compiler, or does not “fire”,
good sharing can be recovered for circular fusion just as it was for higher-order
fusion in the previous section, by giving appropriate rules for the generalised com-
binators pfold′ and buildp′. Note however, that in the absence of full laziness even
the original program before any fusion might suffer from a lack of sharing. For
example, an expression pfilter (λb bs′ → b > minimum bs′) (bs,z ) is, by the def-
initions, the same as foldr (λb a → if b > minimum z then b:a else a) [] bs. Here
only full laziness can prevent minimum z from being calculated repeatedly. This
reinstates that pragmatics can be as important as semantics when designing and
studying program transformations.

5 Variations of Classical Shortcut Fusion

That the higher-order version of pfold/buildp-fusion turned out to be totally
correct without any preconditions is rather pleasing, and raises the question
whether a similar “repair” is also possible for classical foldr/build-fusion from [4].

Recall that build is defined as follows:

build :: (forall a. (b → a → a) → a → a) → [b]
build g = g (:) []

and that classical shortcut fusion lets us replace as follows:

foldr h
1

h
2

(build g) ; g h
1

h
2
.



As first observed in [12], this transformation is not totally correct in Haskell
(while in [6] we have seen that it is partially correct, and totally correct un-
der the preconditions that h1 ⊥ ⊥ /= ⊥ and h2 /= ⊥). As mentioned earlier, the
reason that total correctness without preconditions could be proved in Theo-
rem 3 (and 4) is that seq could not do any harm there due to the omnipresent
lambda-abstractions. This motivates to consider also, for example, the following
rule:

foldr h
1

h
2

(build g) ; g (λb k z → h
1

b (k z )) (λz → h
2
) () .

Note the use of () :: () as proxy value. Total correctness is established by the
following theorem.

Theorem 5. Let T1 and T2 be types. Let h1 :: T1 → T2 → T2, h2 :: T2, and

g :: forall a. (T
1
→ a → a) → a → a .

Then

foldr h
1

h
2

(build g) = g (λb k z → h
1

b (k z )) (λz → h
2
) () .

The theorem provides a totally correct foldr/build-rule without preconditions.
But what about the pragmatics of transformation? Consider the archetypical
example for foldr/build-fusion:

upTo :: INT → [INT]
upTo n = build (go 1)

where go i con nil = if i>n then nil else con i (go (i+1) con nil )

sum :: [INT] → INT

sum = foldr (+) 0

sumTo :: INT → INT

sumTo n = sum (upTo n)

Inlining the definitions of sum and upTo into that of sumTo and applying the rule
suggested above leads to the following version:

sumTo′ n = go′ 1 () where go′ i = if i>n then λz → 0 else λz → i+(go′ (i+1) z )

It is apparent here that all the z will always be bound to the proxy value ().
But there is little hope that the compiler is smart enough to transform this
“plumbing” away. Similar issues appear for variations on the theme of employing
higher-orderedness to make foldr/build-fusion unconditionally totally correct.

However, there is an alternative. As noted earlier, the essential role of the
lambda-abstractions is to protect g from undesired encounters with ⊥. But the
same feat can be achieved without resorting to higher-orderedness. In fact, we
propose a variant that is a kind of “defunctionalisation” of the above idea. To
this end, we introduce the following datatype (purposefully not a newtype, in
which case we would get J ⊥ = ⊥, contrary to what we want):

data J a = J {unJ :: a}



Then we propose to replace as follows:

foldr h1 h2 (build g) ; unJ (g (λb a → J (h1 b (unJ a))) (J h2)) .

This is justified by the following theorem which establishes unconditional total
correctness.

Theorem 6. Let T
1

and T
2

be types. Let h
1

:: T
1
→ T

2
→ T

2
, h

2
:: T

2
, and

g :: forall a. (T1 → a → a) → a → a .

Then

foldr h
1

h
2

(build g) = unJ (g (λb a → J (h
1

b (unJ a))) (J h
2
)) .

If we use this new rule to transform the sumTo-example from above, we get the
following version:

sumTo′′ n = unJ (go′ 1) where go′ i = if i>n then J 0 else J (i+(unJ (go′ (i+1))))

This again uses extra plumbing, now through the J type. However, there exists
a very simple idea of eliminating that. In [8], specialisation of functions for
constructor-call-patterns is proposed, with an existing implementation in GHC.
The paper also discusses an extension to specialisation for function-call-patterns.
Assume this were applied above by introducing a new local function unJ′ such
that unJ′ i always corresponds to unJ (go′ i ). This would give:

sumTo′′′ n = unJ′ 1 where unJ′ i = unJ (if i>n then J 0 else J (i+(unJ′ (i+1))))

and finally, applying standard optimisations implemented in GHC:

sumTo′′′′ n = unJ′ 1 where unJ′ i = if i>n then 0 else i+(unJ′ (i+1))

This is the version we ultimately want to see after foldr/build-fusion, and in fact
do get to see after standard foldr/build-fusion à la [4] as well, but now it was
obtained going only through perfectly safe transformations, rather than relying
on the original fusion rule that may or may not be totally correct in a given
situation. And the heuristics required for an implementation along the lines
of [8] would be very simple: we can always try to specialise unJ for a function
call occurring in its argument, assuming that J is a private datatype of the
compiler so that unJ is introduced only during shortcut fusion as above.

At least as interesting as the example above is one where the standard
foldr/build-rule actually breaks. Consider the following function:

lastEvenOrEmpty :: [INT] → [INT]
lastEvenOrEmpty bs =

build (λcon nil → foldl′ (λa b → if even b then con b nil else a) nil bs)

It uses the standard Haskell function foldl′ to return, in a singleton list, the last
even element from an integer list provided as input. If no even element exists,
the empty list is returned. To allow eventual fusion, the output list is abstracted
over via build. Consider further the following function, relying on the above to
return the last even element without packaging it in a list:



lastEven :: [INT] → INT

lastEven bs = head (lastEvenOrEmpty bs)

Here head is another standard Haskell function, defined via foldr as follows:1

head :: [b] → b
head = foldr (λb _ → b) (error “Prelude.head: empty list”)

Applying the original foldr/build-rule leads to the following version of lastEven:

lastEven′ bs = foldl′ (λa b → if even b then b else a) (error “...”) bs

Surprisingly, computing lastEven′ [1,2] leads to a runtime error, even though
lastEven [1,2] = 2. Actually, an occurrence of seq inside the definition of foldl′:

foldl′ :: (a → b → a) → a → [b] → a
foldl′ f = go

where
go a bs = case bs of

[] → a
b:bs′ → let a′ = f a b in seq a′ (go a′ bs′)

has caused foldr/build-fusion to go wrong, in line with the observation that the
rule is in general only partially correct.2

How, then, about our new rule that according to Theorem 6 is totally correct?
Applying it to lastEven and afterwards inlining the definition of foldl′ leads to
the following version:

lastEven′′ bs = unJ (go (J (error “Prelude.head: empty list”)) bs)
where

go a bs = case bs of
[] → a
b:bs′ → let a′ = (if even b then J b else a) in seq a′ (go a′ bs′)

Here the J-constructors prevent unwarranted encounters of seq with ⊥, so that
we still have, for example, lastEven′′ [1,2] = 2. Moreover, a clever compiler per-
forming call-pattern specialisation of go for J as implemented in [8], as well as the
proposed specialisation of unJ for a fixed function-call-pattern, should be able to
transform the above into essentially the following definition without plumbing:

lastEven′′′ bs = unJ′ (error “Prelude.head: empty list”) bs
where

unJ′ a bs = case bs of
[] → a
b:bs′ → let e = even b in seq e (unJ′ (if e then b else a) bs′)

This is safe and effective fusion in the presence of seq!

1 Actually, head is defined by direct pattern matching in the standard Haskell prelude.
However, GHC features a specialised head/build-rule whose effect is exactly the same
as that of the general foldr/build-rule in combination with the formulation of head in
terms of foldr as given here.

2 Clearly, without that occurrence of seq, and thus with foldl instead of its strictified
version foldl′, we would have obtained lastEven′ [1,2] = 2.



For comparison, if we had sticked with the higher-order approach, Theorem 5
would have led us from lastEven to the following version:

lastEven′′′′ bs = go (λz → error “Prelude.head: empty list”) bs ()
where

go a bs =
case bs of

[] → a
b:bs′ → let a′ = (if even b then λz → b else a) in seq a′ (go a′ bs′)

This is just as safe as lastEven′′ (and lastEven′′′) above, but seems to offer fewer
possibilities for optimising the plumbing away.

6 Variation of the Dual of Classical Shortcut Fusion

Having dealt with classical foldr/build-fusion so successfully, we turn to its dual
from [10], trying to tame the impact of seq on that transformation as well. Recall
that the relevant combinators are defined as follows:
unfoldr :: (c → MAYBE (b,c)) → c → [b]
unfoldr psi c = case psi c of

NOTHING → []
JUST (b,c′) → b:(unfoldr psi c′)

destroy :: (forall c . (c → MAYBE (b,c)) → c → a) → [b] → a
destroy g = g (λbs → case bs of {[] → NOTHING; b:bs′ → JUST (b,bs′)})

The destroy/unfoldr-rule tells us to replace as follows:

destroy g (unfoldr psi c) ; g psi c .

But in [6] we found that there are several semantic problems with this rule in
Haskell. Even in the absence of seq it is no semantic equivalence, as the right-
hand side might be more defined than the left-hand side. And in the presence
of seq the even worse situation can occur that there is a decrease of definedness
from left to right.

Based on the ideas from the previous section, we can provide a repair now.
In fact, the following theorem holds, in the statement of which we use fmap from
Haskell’s FUNCTOR type class for brevity.

Theorem 7. Let T
1
, T

2
, and T

3
be types. Let c :: T

2
, psi :: T

2
→ MAYBE (T

1
,T

2
),

and

g :: forall c . (c → MAYBE (T1,c)) → c → T3 .

Then

destroy g (unfoldr psi c) v g (fmap (fmap J) . psi . unJ) (J c) .

Note that the theorem has no extra preconditions. It thus recovers, for Haskell
including seq, the situation that existed for the original destroy/unfoldr-rule in
the absence of seq.



To evaluate the new destroy/unfoldr-rule’s pragmatic worth, we again consider
the sumTo-example, but this time with components expressed as follows:

upTo n = unfoldr psiUT 1 where psiUT i = if i>n then NOTHING else JUST (i , i+1)

sum = destroy g where g psi c = case psi c of
NOTHING → 0
JUST (b,c′) → b+(g psi c′)

Inlining these two definitions into that of sumTo and applying the rule suggested
by Theorem 7 leads to the following version:

sumTo′ n = g′ (J 1)
where g′ c = let i = unJ c in if i>n then 0 else i+(g′ (J (i+1)))

To optimise this further, we do not even need an extension of the technique
from [8]. Instead, the version of call-pattern specialisation as currently imple-
mented in GHC suffices to give the following version:

sumTo′′ n = g′′ 1 where g′′ i = if i>n then 0 else i+(g′′ (i+1))

Again, the “safety net” that was introduced during fusion to cope with poten-
tially malicious uses of seq could be eliminated completely afterwards.

It would be interesting to see whether one can proceed similarly for stream
fusion as recently proposed in [1]. This transformation is essentially derived from
destroy/unfoldr-fusion and also suffers from interaction with seq. In particular,
the authors of [1] remain rather vague on strictness issues as related to seman-
tic correctness. A repair here would immediately benefit the safety of Haskell
programs under the stream fusion optimisation scheme.

7 Discussion

During the course of this paper, we have studied various shortcut fusion rules.
Our main contributions are a total correctness result for circular pfold/buildp-
fusion under appropriate preconditions (Theorem 1), a corresponding partial
correctness result without any preconditions (Theorem 2), an unconditionally
totally correct higher-order pfold/buildp-fusion rule (Theorem 3), a variation of
the latter scheme with improved sharing (Theorem 4), two unconditionally to-
tally correct foldr/build-fusion rules (Theorems 5 and 6), an unconditionally safely
approximating destroy/unfoldr-fusion rule (Theorem 7), as well as pragmatic in-
sights about the relative effectiveness of our new rules.

To put the many rules in perspective, a few comparisons seem in place. First
of all, the three flavours “parameter-passing fusion”, “classical fusion”, and “dual
of classical fusion” address different kinds of consumer/producer-pairs, so there
is no best choice among them. Below that level of distinction, however, some
observations can be made.

One lesson we have learnt is that the variants pfold′ and buildp′ of pfold and
buildp, respectively, are more robust with respect to sharing computation on
the parameter being passed around. Independently of the correctness issue, the
decision whether to prefer circular or higher-order fusion for this setting could



be largely influenced by the relative impact of these two strategies on efficiency.
Preliminary measurements indicate that both are about on a par, but more
systematic experimentation might provide new insights here.

For classical fusion and its dual, we have proposed two alternative strategies
to improve semantic properties, in particular to prevent a decrease in program
definedness via transformation. Of these, we clearly favour the approach via
the datatype J over the approach via extra lambda-abstractions. The reason
is that we then see better potential for automatic subsequent removal of the
plumbing introduced to prevent undesirable encounters between seq and ⊥. Even
for the J-approach, the situation is not yet fully satisfactory. While for our
destroy/unfoldr-example standard constructor-call-pattern specialisation suffices,
the kind of post-processing required in the foldr/build-setting was more ad-hoc.
Hopefully, a more general solution can be found here. Otherwise, it is unclear
how the better behaviour in semantic regards will weigh up against pragmatic
efficiency risks. Does correctness really trump performance?

The story of new fusion rules does not end here. One reviewer proposal was
to apply the J-approach also to circular pfold/buildp-fusion. In fact, the rule

pfold h1 h2 (buildp g c)
;

let (a,z ) = g (λb a → J (h1 b (unJ a) z )) (J (h2 z )) c in unJ a

can be shown unconditionally totally correct by a relatively straightforward
adaptation of the proof in Appendix A.2, and a variant for pfold′ and buildp′

is possible as well. However, post-processing becomes even more of a problem
here. Already for the repeatedAfter-example from Section 2 the above rule leads
to a transformed program for which it is considerably more difficult to conceive
of a successful plumbing-removal than for the examples seen in Sections 5 and 6.

Acknowledgements. I thank the anonymous reviewers for their detailed com-
ments and suggestions, most of which I have tried to follow up on.

References

1. D. Coutts, R. Leshchinskiy, and D. Stewart. Stream fusion: From lists to streams
to nothing at all. In International Conference on Functional Programming, Pro-

ceedings, pages 315–326. ACM Press, 2007.
2. F. Domı́nguez and A. Pardo. Program fusion with paramorphisms. In Mathemat-

ically Structured Functional Programming, Proceedings, Electronic Workshops in
Computing. British Computer Society, 2006.

3. J.P. Fernandes, A. Pardo, and J. Saraiva. A shortcut fusion rule for circular pro-
gram calculation. In Haskell Workshop, Proceedings, pages 95–106. ACM Press,
2007.

4. A. Gill, J. Launchbury, and S.L. Peyton Jones. A short cut to deforestation.
In Functional Programming Languages and Computer Architecture, Proceedings,
pages 223–232. ACM Press, 1993.



5. P. Johann. A generalization of short-cut fusion and its correctness proof. Higher-

Order and Symbolic Computation, 15(4):273–300, 2002.

6. P. Johann and J. Voigtländer. The impact of seq on free theorems-based program
transformations. Fundamenta Informaticae, 69(1–2):63–102, 2006.

7. A. Pettorossi and M. Proietti. Importing and exporting information in program
development. In Partial Evaluation and Mixed Computation, Proceedings, pages
405–425. North-Holland, 1987.

8. S.L. Peyton Jones. Call-pattern specialisation for Haskell programs. In Interna-

tional Conference on Functional Programming, Proceedings, pages 327–337. ACM
Press, 2007.

9. S.L. Peyton Jones and D. Lester. A modular fully-lazy lambda lifter in Haskell.
Software Practice and Experience, 21(5):479–506, 1991.

10. J. Svenningsson. Shortcut fusion for accumulating parameters & zip-like functions.
In International Conference on Functional Programming, Proceedings, pages 124–
132. ACM Press, 2002.

11. A. Takano and E. Meijer. Shortcut deforestation in calculational form. In Func-

tional Programming Languages and Computer Architecture, Proceedings, pages
306–313. ACM Press, 1995.

12. J. Voigtländer. Concatenate, reverse and map vanish for free. In International

Conference on Functional Programming, Proceedings, pages 14–25. ACM Press,
2002.

13. J. Voigtländer. Using circular programs to deforest in accumulating parameters.
Higher-Order and Symbolic Computation, 17(1–2):129–163, 2004.

14. J. Voigtländer. Proving correctness via free theorems: The case of the
destroy/build-rule. In Partial Evaluation and Semantics-Based Program Manipu-

lation, Proceedings, pages 13–20. ACM Press, 2008.

15. P. Wadler. Theorems for free! In Functional Programming Languages and Com-

puter Architecture, Proceedings, pages 347–359. ACM Press, 1989.

A Proofs Appendix

A.1 Proof of Lemma 1

Proof. The “equational” free theorem derived from the type of g is that for every
choice of types T and T′, strict and total f :: T → T′, and arbitrary p :: T1 → T →
T and q :: T

1
→ T′ → T′,

((p /= ⊥ ⇔ q /= ⊥)
∧ ∀ b :: T

1
. (p b /= ⊥ ⇔ q b /= ⊥) ∧ ∀ bs :: T. f (p b bs) = q b (f bs))

⇒ ∀ u :: T, c :: T2.
(g p u c , g q (f u) c) ∈ {(⊥,⊥)} ∪ {((bs,z ),(bs′,z′)) f bs = bs′ ∧ z = z′}

We instantiate T = [T
1
], p = (:), and u = [], observe that then p /= ⊥ and p b /= ⊥

for every b :: T1, and use the definition of buildp. This gives that if the precon-
dition (1) holds, then for every c :: T

2
,

(buildp g c , g q (f []) c) ∈ {(⊥,⊥)} ∪ {((bs,z ),(bs′,z′)) f bs = bs′ ∧ z = z′}.

The lemma follows easily from this. ut



A.2 Proof of Theorem 1

We need the following auxiliary lemma.

Lemma 3. Let T1, T3, and T4 be types. Let h1 :: T1 → T4 → T3 → T4, h2 :: T3 →
T

4
, bs :: [T

1
], and z′ :: T

3
. Then

fst (fix (λ ˜(_,z ) → (foldr (λb a → h
1

b a z ) (h
2

z ) bs, z′)))

is equivalent to

foldr (λb a → h1 b a z′) (h2 z′) bs .

Proof. Let exp = fix (λ ˜(_,z ) → (foldr (λb a → h
1

b a z ) (h
2

z ) bs, z′)). It is easy
to see that exp is equivalent to

(λz → (foldr (λb a → h1 b a z ) (h2 z ) bs, z′)) (snd exp) .

This implies that fst exp is equivalent to

foldr (λb a → h
1

b a (snd exp)) (h
2

(snd exp)) bs ,

while snd exp is equivalent to z ′. The lemma follows easily from these facts. ut

Now we can prove Theorem 1.

Proof. For every z :: T3, Lemma 1 with T′ = T4, q = (λb a → h1 b a z ), and
f = foldr (λb a → h

1
b a z) (h

2
z ) gives

g (λb a → h
1

b a z ) (h
2

z) c
=

case buildp g c of (bs,z′) → (foldr (λb a → h1 b a z ) (h2 z) bs, z′) .

Note that the assumptions on h1 and h2 are equivalent to the requirement that
the chosen f is strict and total for every z :: T

3
.

We express

let (a,z ) = g (λb a → h1 b a z ) (h2 z ) c in a

via explicit fixpoint recursion as follows:

fst (fix (λ ˜(_,z ) → g (λb a → h
1

b a z ) (h
2

z ) c)) .

By the above, this is equivalent to

fst (fix (λ ˜(_,z ) → case buildp g c of
(bs ,z′) → (foldr (λb a → h1 b a z) (h2 z ) bs, z′))) .

The subexpression buildp g c is either equivalent to ⊥ or to (bs,z ′) for some fixed
bs and z′. In both cases, the full expression is equivalent to

case buildp g c of (bs,z′) → foldr (λb a → h
1

b a z′) (h
2

z′) bs .

If buildp g c = ⊥, then this equivalence holds by fst (fix (λ_ → ⊥)) = ⊥. Other-
wise, it follows from Lemma 3. By the definition of pfold we finally get equivalence
to pfold h

1
h
2

(buildp g c). ut


