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Abstract Free theorems establish interesting properties of parametrically polymor-

phic functions, solely from their types, and serve as a nice proof tool. For pure and

lazy functional programming languages, they can be used with very few preconditions.

Unfortunately, in the presence of selective strictness, as provided in languages like

Haskell, their original strength is reduced. In this paper we present an approach for

overcoming this weakness in specific situations. Employing a refined type system which

tracks the use of enforced strict evaluation, we rule out unnecessary restrictions that

otherwise emerge. Additionally, we provide (and implement) an algorithm determining

all refined types for a given term.

1 Introduction

Free theorems [26, 38] are a useful proof tool in lazy functional languages like Haskell

[20], in particular for verifying program transformations [6, 7, 11, 12, 31, 33, 34], but

also for other results: reduction of testing effort [2], meta-theorems about whole classes

of algorithms [4, 32], solutions to the view-update problem from databases [35, 37], and

reasoning about effectful programs [18, 36]. Initially, free theorems have been investi-

gated in the pure polymorphic lambda calculus [25], additionally taking the influence

of general recursion into account. But modern languages like Haskell and Clean [24]

extend the pure polymorphic lambda calculus not only by a fixpoint combinator; they

additionally allow forcing strictness at places selected by the programmer. Selective
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strict evaluation is in particular desirable to avoid so-called space leaks [19, Section

23.3.2]. A disadvantage of using forced strictness is the resulting weakening of relational

parametricity, the conceptual base for free theorems.

For example, in the absence of selective strictness a free theorem establishes that

every function foldl :: (α→ β → α)→ α→ [β]→ α satisfies the equation

f (foldl c n xs) = foldl c′ (f n) (map g xs) (1)

for arbitrary choices (appropriately typed) of c, c′, n, xs, and of strict f , g (f ⊥ = ⊥
and g ⊥ = ⊥) such that for every x and y, f (c x y) = c′ (f x) (g y). But the Haskell

standard library Data.List contains a function foldl ′ of the mentioned type for which

the equation can only be guaranteed to hold if additionally f is total (f x 6= ⊥ for every

x 6= ⊥). The reason is a use of forced strict evaluation, via Haskell’s strict evaluation

primitive seq , inside the definition of foldl ′ (see Section 2).

Johann and Voigtländer [13] have studied the impact of selective strictness on free

theorems in detail on a global level. For the type of foldl above, their results indicate

that in general, under the most pessimistic assumptions about uses of forced strict

evaluation inside function definitions, it is also required that g is total and that c = ⊥
iff c′ = ⊥ and for every x, c x = ⊥ iff c′ (f x) = ⊥. Only then we can uphold the given

free theorem. But for specific functions, like foldl ′, fewer conditions can be sufficient.

In fact, not alone whether selective strictness is used somewhere, but where it is used

determines the necessity and the exact nature of restrictions. So a natural question is:

How can we express detailed information about the use of seq such that we can go

with as few as possible additional restrictions put on the original free theorems? That

is the problem we solve in this paper: how to move from Johann and Voigtländer’s all-

or-nothing approach to a more localized account of the impact of selective strictness

on free theorems.

Since free theorems depend only on the type of a term, any information used has

to be part of the type signature. Hence, we track selective strictness by adding extra

information in the type of a term. Thus, we will be able to determine based on the type

whether a weakening of parametricity may arise. An attempt in this direction was al-

ready made when seq was first introduced into Haskell (version 1.3). The type class [39]

Eval was introduced to make selective strictness and the resulting limitations with re-

spect to parametricity explicit from the type. For example, foldl ′ then had the refined

type foldl ′ :: Eval α ⇒ (α → β → α) → α → [β] → α, which would allow to conclude

that f must be total (and strict, and g must be strict, and ∀x, y. f (c x y) = c′ (f x) (g y)

must hold) in order to guarantee f (foldl ′ c n xs) = foldl ′ c′ (f n) (map g xs).

The controversy about originally incorporating selective strictness into Haskell,

about putting the Eval type class in place to keep tabs on seq , and about later aban-

doning this mechanism again while retaining seq , is described by Hudak et al. [9, Section

10.3]. But even that description fails to recognize that actually the type class Eval as

once present in Haskell was not sufficient to control adverse effects of selective strictness

on parametricity. The reason is that the type class approach presumes that all necessary

restrictions can be read off from constraints on type variables. And this is not actually

always the case. Some restrictions arising from forcing strict evaluation cannot be read

off in that way (see the last paragraph of Section 2 for an example). In brief, the failure

of the original attempt at taming selective strictness is caused by the Haskell report ver-

sion 1.3 (Section 6.2.7) mandating that “Functions as well as all other built-in types are

in Eval.” This predated the insights gained by Johann and Voigtländer [13] regarding
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the special care that is required precisely for the interaction between selective strict-

ness, parametricity, and function types. One way out would be to generally forbid use

of seq on functions. But then it would not anymore be possible to write some programs

that one currently can write in Haskell. For example, it would become impossible to use

foldl ′ in a situation where α becomes instantiated to a function type. An alternative

would be to work with the type class approach, but consider function types to not in

general be in Eval, instead constraining their membership more specifically by allowing

type class restrictions on compound types1. But such an approach would lack desirable

precision. Consider a function f :: Eval (α → Int) ⇒ (α → Int) → (α → Int) → Int. It

could be of the form f = λg h→ . . . where seq is actually used only on g but not on h,

or conversely. From the proposed type signature, there is no way to tell the difference.

Due to the mentioned problems, we argue that if in a future revision of the Haskell

language it is decided to put selective strictness back under control, a new mechanism

is needed. This paper provides such a mechanism, though in practice it would of course

have to be scaled up from the calculus we study to the full language. We use a more

elaborate way of tracking selective strictness than the type class approach did. Namely,

we provide special annotations at the introduction of type variables but also at func-

tion types. This leads to a clear correspondence to the impact of seq on free theorems.

Combining the insights of Johann and Voigtländer [13] with ideas of Launchbury and

Paterson [15] regarding taming general recursion (where the type class approach actu-

ally does work to full satisfaction2), we present a calculus for which we provide refined

free theorems via a refined type system. We then develop an algorithm computing all re-

fined types for a given term. The algorithm has been implemented, and a web interface

to it is online at http://www-ps.iai.uni-bonn.de/cgi-bin/polyseq.cgi. In addition

to producing the refined types, the tool also shows the corresponding (restricted) free

theorems.

Formally, our system is an annotated type system in the terminology of [17, Sec-

tion 2]. Since the annotations do not really describe intensional information about

what takes place during evaluation of a program, we do not call it a type and effect

system [17, Section 3]. Other ingredients we use of the methodology described in the

mentioned survey article, in particular its Section 5, are shape conformant subtyping

and type inference, with constraints. Beside the references to the literature given there,

other useful background reading is [21] for type systems and associated algorithmic

techniques in general, [27] for denotational semantics, and [3, 23] for logical relations.

Also relevant is classical strictness analysis [10, 16], though we do not attempt to dis-

cover strict usage of arguments as resulting from “normal” execution, instead only

focusing on explicitly enforced strict evaluation. Recent work by Holdermans and Hage

[8] studies the interplay between these two aspects.

2 A Motivating Example

Consider the Haskell Prelude function foldl , its stricter variant foldl ′ (from the Haskell

standard library Data.List), and functions foldl ′′ and foldl ′′′ which force strict eval-

uation at rather arbitrary points, with implementations as shown in Fig. 1. Strict

evaluation is enforced via seq , which evaluates its first argument, returns the second

1 This is not allowed in the current language version Haskell 2010, but as an extension in
the Glasgow Haskell Compiler, enabled by -XFlexibleContexts.

2 We discuss their approach briefly towards the end of Section 3.

http://www-ps.iai.uni-bonn.de/cgi-bin/polyseq.cgi
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foldl c = fix
(λh n ys →

case ys of
[ ] → n
x : xs →

let n′ = c n x in h n′ xs)

foldl ′ c = fix
(λh n ys →

case ys of
[ ] → n
x : xs →

let n′ = c n x in seq n′ (h n′ xs))

foldl ′′ c = fix
(λh n ys →

seq (c n)
(case ys of

[ ] → n
x : xs → seq xs

(seq x
(let n′ = c n x in h n′ xs))))

foldl ′′′ c = seq c (fix
(λh n ys →

case ys of
[ ] → n
x : xs →

let n′ = c n x in h n′ xs))

Fig. 1 Variations of foldl with Different Uses of seq

argument if that evaluation is successful, and otherwise fails. The fixpoint combinator

fix :: (α→ α)→ α captures general recursion — fix g = g (fix g).

All four functions considered are of type (α → β → α) → α → [β] → α, and as

already mentioned the corresponding free theorem ignoring potential use of seq states

that equation (1) from the introduction holds if f and g are strict and if for every

x and y, f (c x y) = c′ (f x) (g y). Taking selective strictness into account, the

situation changes and additional preconditions arise [13]. For example, for foldl ′ the

free theorem as just stated does not hold. To see this, consider equation (1) with the

following instantiation:

f = λx→ if x then True else ⊥ g = id

c = c′ = λx y → if y then True else x n = False

xs = [False,True]

Regarding foldl everything is fine, but for the “strictified” foldl ′ we get the false state-

ment True = ⊥. The problem here is that the use of seq on n′ in the definition of foldl ′

leads to an application of seq on (c n False) in the left-hand side of equation (1) vs. an

application of seq on (c′ (f n) (g False)) in the corresponding right-hand side. By the

condition relating f , c, c′, and g, the second expression is equivalent to f (c n False).

But while for the above instantiation, (c n False) is non-⊥, its f -image is ⊥. This

results in the harmful difference between the impact of seq on the left- and right-hand

sides of equation (1) for foldl ′ with the above instantiation. To recover equivalence

here, it suffices to restrict f to be total. In fact, for foldl ′ every instantiation in which

f is total, in addition to the conditions given above, will make equation (1) true. But

if we regard the functions foldl ′′ and foldl ′′′, for which the instantiation given above

actually does not break the original free theorem, we will encounter the necessity of

further restrictions. Specifically, consider each of the following instantiations:

f = id g = t1 c = t2 c′ = t2 n = True xs = [False]

f = id g = id c = t3 c′ = t4 n = False xs = [ ]

f = id g = id c = ⊥ c′ = λx→ ⊥ n = False xs = [ ]

where t1 = λx → if x then True else ⊥, t2 = λx y → if x then True else y,

t3 = λx y → if x then True else ⊥, and t4 = λx → if x then λy → True else ⊥.

For each of these instantiations, equation (1) holds for foldl and foldl ′, but the first
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τ ::= α | [τ ] | τ → τ

t ::= x | [ ]τ | t : t | case t of {[ ]→ t; x : x→ t} | λx :: τ.t | t t | fix t | let! x = t in t

Fig. 2 Syntax of Types τ and Terms t

and the second instantiation break the equation for foldl ′′, while the last instantiation

breaks the equation for foldl ′′′. These three failures are caused by different uses of seq ,

which enforce different restrictions if we want to regain equation (1). Only the use of

seq on the list xs causes no additional restriction.

We already mentioned in the introduction that to guarantee equation (1) for all

functions of foldl ’s type (including foldl ′, foldl ′′, and foldl ′′′), we need to restrict both

f and g to be total and additionally need to require c = ⊥ iff c′ = ⊥ and for every

x, c x = ⊥ iff c′ (f x) = ⊥, in addition to the conditions from the original free

theorem. Our aim is to instead tailor the set of restrictions needed to the actual kind

of use that is made of selective strictness in a given function. Indeed, our resulting tool

(http://www-ps.iai.uni-bonn.de/cgi-bin/polyseq.cgi) will help to clarify which

seq in Fig. 1 causes which restriction (see Section 6). To reiterate that the Eval type

class mechanism of Haskell version 1.3 was not sound in terms of detecting all necessary

restrictions, note that foldl ′′′ would have incurred no Eval-constraint in its type at all,

hence no need for additional restrictions would have been discovered, but as seen above,

the use of seq on c does cause problems.

3 The Calculus and Standard Parametricity

We set out from a standard denotational semantics for a polymorphic lambda calculus,

called PolySeq, that corresponds to a small core of Haskell.

The syntax of types and terms is given in Fig. 2, where α ranges over type variables

and x ranges over term variables. We include lists as representative for algebraic data

types. General recursion is captured via a fixpoint primitive, while selective strictness

(à la seq) is provided via a strict-let construct as also found in the functional language

Clean. Note that there is no case ∀α.τ in the type grammar, and no type abstraction and

application formers in the term grammar. In fact, our calculus is simply typed but with

type variables. The technical report version [28] considers true polymorphism, including

higher-rank polymorphism, but here we simplified for the sake of presentation. All the

interesting points we want to make about our approach can still be made.

Figs. 3 and 4 give the typing axioms and rules for the calculus. Standard conven-

tions apply here. In particular, typing environments Γ are unordered sets of the form

α1, . . . , αk, x1 :: τ1, . . . , xl :: τl with distinct αi and xj , and in a typing judgement

Γ ` t :: τ all variables occurring in a τj or in τ have to be among the listed α1, . . . , αk.

For example, the standard Haskell function map can be defined as the following

term and then satisfies α, β ` map :: τ , where τ = (α→ β)→ [α]→ [β]:

fix (λm :: τ.λh :: α→ β.λl :: [α].case l of {[ ]→ [ ]β ; x : y → (h x) : (m h y)})

The denotational semantics interprets types as pointed complete partial orders (for

short, pcpos; least element always denoted ⊥). The definition in Fig. 5, assuming θ to

be a mapping from type variables to pcpos, is entirely standard. The operation lift⊥
takes a complete partial order, adds a new element ⊥ to the carrier set, defines this

new ⊥ to be below every other element, and leaves the ordering otherwise unchanged.

http://www-ps.iai.uni-bonn.de/cgi-bin/polyseq.cgi
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Γ, x :: τ ` x :: τ (Var) Γ ` [ ]τ :: [τ ] (Nil)

Γ ` t1 :: τ Γ ` t2 :: [τ ]
(Cons)

Γ ` (t1 : t2) :: [τ ]

Γ ` t :: [τ1] Γ ` t1 :: τ2 Γ, x1 :: τ1, x2 :: [τ1] ` t2 :: τ2
(Case)

Γ ` (case t of {[ ]→ t1; x1 : x2 → t2}) :: τ2

Γ, x :: τ1 ` t :: τ2
(Abs)

Γ ` (λx :: τ1.t) :: (τ1 → τ2)

Γ ` t1 :: (τ1 → τ2) Γ ` t2 :: τ1
(App)

Γ ` (t1 t2) :: τ2

Γ ` t :: (τ → τ)
(Fix)

Γ ` (fix t) :: τ

Fig. 3 Some Typing Axioms and Rules in PolySeq (and Later PolySeq*)

Γ ` t1 :: τ1 Γ, x :: τ1 ` t2 :: τ2
(SLet)

Γ ` (let! x = t1 in t2) :: τ2

Fig. 4 An Additional Typing Rule in PolySeq

[[α]]θ = θ(α)

[[[τ ]]]θ = gfp (λS.lift⊥ ({[ ]} ∪ {(a : b) | a ∈ [[τ ]]θ, b ∈ S}))
[[τ1 → τ2]]θ = lift⊥ {f : [[τ1]]θ → [[τ2]]θ}

Fig. 5 Semantics of Types

To avoid confusion, the original elements are tagged, i.e., lift⊥ S = {⊥}∪{bsc | s ∈ S}.
For list types, prior to lifting, [ ] is only related to itself, while the ordering between

“(− : −)”-values is component-wise. Also note the use of the greatest fixpoint, under

set inclusion, to capture infinite lists. The function space lifted in the definition of

[[τ1 → τ2]]θ is the one of monotonic and continuous maps between [[τ1]]θ and [[τ2]]θ,

ordered point-wise.

The semantics of terms, given in Fig. 6, is also standard. It uses λ for denoting

anonymous functions, and the following operator:

h $ a =

{
f a if h = bfc
⊥ if h = ⊥

The expression
⊔
n≥0 ([[t]]η $)n ⊥ in the definition for fix means the supremum of the

chain ⊥ v ([[t]]η $ ⊥) v ([[t]]η $ ([[t]]η $ ⊥)) · · · . Altogether, we have that if Γ ` t :: τ

and η(x) ∈ [[τ ′]]θ for every x :: τ ′ occurring in Γ , then [[t]]η ∈ [[τ ]]θ.

The key to parametricity results is the definition of a family of relations by induction

on a calculus’ type structure. The appropriate such logical relation for our current

setting is defined in Fig. 7, assuming ρ to be a mapping from type variables to binary

relations between pcpos. The operation list takes a relation R and maps it to

list R = gfp (λS.{(⊥,⊥), (b[ ]c, b[ ]c)} ∪ {(ba : bc, bc : dc) | (a, c) ∈ R, (b, d) ∈ S})

where again the greatest fixpoint is taken.

For two pcpos D1 and D2, let Rel(D1, D2) collect all relations between them that

are strict, continuous, and bottom-reflecting. Strictness and continuity are just the stan-

dard notions, i.e., membership of the pair (⊥,⊥) and closure under suprema. A relation
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[[x]]η = η(x)

[[[ ]τ ]]η = b[ ]c
[[t1 : t2]]η = b[[t1]]η : [[t2]]ηc

[[case t of {[ ]→ t1; x1 : x2 → t2}]]η =


[[t1]]η if [[t]]η = b[ ]c
[[t2]]η[x1 7→a, x2 7→b] if [[t]]η = ba : bc
⊥ if [[t]]η = ⊥

[[λx :: τ.t]]η = bλa.[[t]]η[x 7→a]c
[[t1 t2]]η = [[t1]]η $ [[t2]]η
[[fix t]]η =

⊔
n≥0 ([[t]]η $)n ⊥

[[let! x = t1 in t2]]η =

{
[[t2]]η[x 7→a] if [[t1]]η = a 6= ⊥
⊥ if [[t1]]η = ⊥

Fig. 6 Semantics of Terms

∆α,ρ = ρ(α)

∆[τ ],ρ = list ∆τ,ρ
∆τ1→τ2,ρ = {(f, g) | f = ⊥ iff g = ⊥, ∀(a, b) ∈ ∆τ1,ρ. (f $ a, g $ b) ∈ ∆τ2,ρ}

Fig. 7 Standard Logical Relation

R is bottom-reflecting if (a, b) ∈ R implies that a = ⊥ iff b = ⊥. The corresponding

explicit condition on f and g in the definition of ∆τ1→τ2,ρ in Fig. 7 serves the purpose

of ensuring that bottom-reflection is preserved throughout the logical relation. Over-

all, induction on τ gives the following important lemma, where Rel is the union of all

Rel(D1, D2).

Lemma 1 If ρ maps to relations in Rel, then ∆τ,ρ ∈ Rel.

The lemma is crucial for then proving the following theorem.

Theorem 1 (Parametricity, PolySeq) If Γ ` t :: τ , then for every θ1, θ2, ρ, η1,

and η2 such that

– for every α occurring in Γ , ρ(α) ∈ Rel(θ1(α), θ2(α)) and

– for every x :: τ ′ occurring in Γ , (η1(x), η2(x)) ∈ ∆τ ′,ρ ,

we have ([[t]]η1 , [[t]]η2) ∈ ∆τ,ρ .

Proof The proof follows [13] and is by induction over typing derivations. We only show

a few representative induction cases here. For (Abs) we have

([[λx :: τ1.t]]η1 , [[λx :: τ1.t]]η2 ) ∈ ∆τ1→τ2,ρ
⇔ (bλa.[[t]]η1[x 7→a]c, bλb.[[t]]η2[x 7→b]c) ∈ ∆τ1→τ2,ρ
⇔ ∀(a, b) ∈ ∆τ1,ρ. ([[t]]η1[x7→a], [[t]]η2[x 7→b]) ∈ ∆τ2,ρ

so the induction hypothesis suffices. For (Fix) we have

([[fix t]]η1 , [[fix t]]η2 ) ∈ ∆τ,ρ
⇔ (

⊔
n≥0 ([[t]]η1 $)n ⊥,

⊔
n≥0 ([[t]]η2 $)n ⊥) ∈ ∆τ,ρ

⇐ ∀n ≥ 0. (([[t]]η1 $)n ⊥, ([[t]]η2 $)n ⊥) ∈ ∆τ,ρ
⇐ ∀(a, b) ∈ ∆τ,ρ. ([[t]]η1 $ a, [[t]]η2 $ b) ∈ ∆τ,ρ
⇐ ([[t]]η1 , [[t]]η2 ) ∈ ∆τ→τ,ρ

and therefore the induction hypothesis suffices again. Note that we use the continuity

of ∆τ,ρ in the first implication and the strictness of ∆τ,ρ in the second implication
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here, both given by Lemma 1. For (SLet) we have to show that the values{
[[t2]]η1[x 7→a] if [[t1]]η1 = a 6= ⊥
⊥ if [[t1]]η1 = ⊥

and {
[[t2]]η2[x 7→b] if [[t1]]η2 = b 6= ⊥
⊥ if [[t1]]η2 = ⊥

are related by ∆τ2,ρ if:

– ([[t1]]η1 , [[t1]]η2) ∈ ∆τ1,ρ and

– for every (a, b) ∈ ∆τ1,ρ, ([[t2]]η1[x 7→a], [[t2]]η2[x 7→b]) ∈ ∆τ2,ρ.

By bottom-reflection of ∆τ1,ρ, which holds due to Lemma 1, it suffices to consider the

following two cases:

1. [[t1]]η1 = a 6= ⊥ and [[t1]]η2 = b 6= ⊥, in which case we are done by the known

([[t2]]η1[x 7→a], [[t2]]η2[x 7→b]) ∈ ∆τ2,ρ for every (a, b) ∈ ∆τ1,ρ,

2. [[t1]]η1 = ⊥ and [[t1]]η2 = ⊥, in which case we are done by (⊥,⊥) ∈ ∆τ2,ρ, which

holds by the strictness of ∆τ2,ρ (cf. Lemma 1 again).

The remaining cases are detailed in Appendix A of our technical report [28]. ut

If we did not have let! in the calculus, then instead of requiring strictness, con-

tinuity, and bottom-reflection of all relations, the first two would have been enough

(and the condition “f = ⊥ iff g = ⊥” in the definition of ∆τ1→τ2,ρ could have been

dropped). That would have led to the version of equation (1) from the introduction

where f and g must be strict but not necessarily total (and where c = ⊥ iff c′ = ⊥ and

c x = ⊥ iff c′ (f x) = ⊥ for every x are not required). As visible from the above proof,

strictness and continuity are already required when fix is in the calculus. Launchbury

and Paterson [15] proposed a refined type system that keeps track of uses of fix and

admits a refined notion of parametricity in which as few as possible of these condi-

tions are imposed, depending on the recorded information. Specifically, they introduce

a type class Pointed, where type variables must be explicitly constrained if they are

to be considered to be in that type class, where list types are always in Pointed, and

where a function type is in Pointed if the result type is:

Γ ` τ2 ∈ Pointed

Γ ` (τ1 → τ2) ∈ Pointed

Then, though expressed with different notation, they revise the typing rule (Fix) to

Γ ` τ ∈ Pointed Γ ` t :: (τ → τ)

Γ ` (fix t) :: τ

and similarly add Γ ` τ2 ∈ Pointed as premise to typing rule (Case). This allows them

to prove a version of Theorem 1 (for the definition of ∆ without “f = ⊥ iff g = ⊥” in

∆τ1→τ2,ρ) in which the ρ(α) need not be bottom-reflecting and need to be strict only

if α is in Pointed. Our aim is to succeed similarly for let! and bottom-reflection.

We could have tried to simultaneously keep track of fix and let!, and thus get

very fine-grained results about where any of strictness, totality/bottom-reflection, and

“f = ⊥ iff g = ⊥”-conditions are needed. For simplicity we do not do so, instead

focusing on only let! here. That is, we do not introduce Pointed and we keep the

original versions of typing rules (Fix) and (Case) from Fig. 3.
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4 Refining the Calculus and the Parametricity Theorem

If we recall the fold functions from Fig. 1 and the “seq-ignoring” version of the cor-

responding free theorem, stated in equation (1) in the introduction, we can compare

that version with the “seq-safe” version arising from Theorem 1. The safe theorem

requires f and g to be total, c = ⊥ iff c′ = ⊥, and for every x, c x = ⊥ iff

c′ (f x) = ⊥, in addition to the restrictions from the less safe theorem. Under these

combined conditions, it delivers equation (1) and additionally that foldl c = ⊥ iff

foldl c′ = ⊥, as well as that for every n, foldl c n = ⊥ iff foldl c′ (f n) = ⊥. All this

is obtained by invoking Theorem 1 as ([[foldl ]]∅, [[foldl ]]∅) ∈ ∆(α→β→α)→α→[β]→α,ρ,

unfolding a number of definitions, setting ρ(α) = {(x1, x2) | [[f ]]∅ $ x1 = x2} and

ρ(β) = {(y1, y2) | [[g]]∅ $ y1 = y2} for some f and g, and using the straightforward rela-

tionship that then list ρ(β) = {(xs1, xs2) | ([[map]]∅ $ [[g]]∅) $ xs1 = xs2}. The strictness

and totality conditions on f and g stem from the requirement that ρ(α), ρ(β) ∈ Rel

and Rel contains only relations that are strict and bottom-reflecting.3

As already motivated, the additional restrictions of the “seq-safe” over the “seq-

ignoring” version arise from different potential uses of forced strictness. That is, each

restriction is only necessary if enforced strict evaluation is used in some special way.

Hence, it is reasonable to make selective strictness (and the “places” of its use) visible

from the type of a term. In particular, the use of enforced strictness on elements of a

type should be visible for type variables and function types. Forcing evaluation on lists

is nothing to worry about, because it anyway can be simulated by a case statement.

Thus, we want to distinguish function types and type variables on whose elements

seq/let! is used from those on whose elements it is not so. More precisely, we want

to distinguish function types and type variables on whose elements forcing evaluation

is allowed from those on whose elements it is not allowed. Therefore we introduce

annotations ε and ◦ at occurrences of the type constructor→ as well as at type variables

in the typing environment. An annotation ε signifies that forcing evaluation is allowed

on the entity in question, whereas an annotation ◦ prevents the use of selective strictness

at a certain place. Recalling the example foldl ′′ from Section 2, one of its refined types

would be (α →◦ β →ε α) →ε α →ε [β] →ε α in typing environment α◦, βε. That is

actually as good as it gets, because:

– In general, for getting stronger free theorems, it is preferable to have as many type

variables as possible ◦-annotated and to whenever possible use ε on function arrows

in positive positions and ◦ on function arrows in negative positions.

– For foldl ′′, we cannot have a ◦-annotation on β, because of the seq on x.

– For foldl ′′, we cannot have a ◦-annotation on the second arrow in the function

argument type (α→ β → α), because of the seq on (c n).

For convenience, in the remainder of the paper we take ε to be the invisible annotation

and almost always drop it.4

Using the axiom system from Fig. 8 we define exactly the types on whose elements

we allow the use of selective strictness, by collecting them in the class Seqable. Having

now an explicit way to describe which types support selective strict evaluation, we can

3 Recall that in the introduction we said a function f is strict if f ⊥ = ⊥ and is total if
f x 6= ⊥ for every x 6= ⊥. Here, more formally, we use corresponding conditions involving the
$ -operator.
4 In fact, being able to do this (ε = empty) was the only motivation for choosing that

symbol. No specific motivation exists for choosing ◦, but we have to use some symbol.
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Γ ` [τ ] ∈ Seqable (C-List)

Γ ` (τ1 →ε τ2) ∈ Seqable (C-Arrow) αε, Γ ` α ∈ Seqable (C-Var)

Fig. 8 Class Membership Axioms for Seqable in PolySeq* (and Later PolySeq+)

Γ ` τ1 ∈ Seqable Γ ` t1 :: τ1 Γ, x :: τ1 ` t2 :: τ2
(SLet’)

Γ ` (let! x = t1 in t2) :: τ2

Fig. 9 Replacement for (SLet) from Fig. 4 in PolySeq*

Γ, x :: τ1 ` t :: τ2
(Abs◦)

Γ ` (λx :: τ1.t) :: (τ1 →◦ τ2)

Γ ` t1 :: (τ1 →◦ τ2) Γ ` t2 :: τ1
(App◦)

Γ ` (t1 t2) :: τ2

Γ ` t :: (τ →◦ τ)
(Fix◦)

Γ ` (fix t) :: τ

Γ ` t :: τ1 τ1 � τ2
(Sub)

Γ ` t :: τ2

Fig. 10 New Typing Rules in PolySeq* (Some are Variants of Rules from Fig. 3)

restrict the typing rule (SLet) to these types. The new rule is given in Fig. 9. The

other typing axioms and rules of PolySeq, as shown in Fig. 3, remain unchanged, but

we add ◦-annotated versions (Abs◦), (App◦), and (Fix◦), with all explicit occurrences

of → annotated by ◦. These additional rules are shown in Fig. 10, along with a last

rule required for the extended calculus, (Sub), which we explain next.

The motivation for (Sub) is that allowing the use of selective strictness does not

entail insisting on it. Consider the types (τ1 →◦ τ2) → [τ3] and (τ1 → τ2) → [τ3]. All

terms typable to the first one should be typable to the second one as well. After all, the

first type promises that we have a function producing a list of type [τ3] from a function

mapping τ1 to τ2, and that we know that inside the function this functional argument

is not forcedly evaluated (other than by possibly applying it to an argument of type

τ1, of course). Clearly, such a function is also a function producing a list of type [τ3]

from a function mapping τ1 to τ2 while being allowed to use forced evaluation on the

functional argument. It then simply makes no use of that “being allowed to”. On the

other hand, not every function of type (τ1 → τ2)→ [τ3] should be considered to be of

type (τ1 →◦ τ2)→ [τ3] as well. For example, the PolySeq-term λf :: τ1 → τ2.let! x =

f in [ ]τ3 should only be typable to (τ1 → τ2)→ [τ3] but not to (τ1 →◦ τ2)→ [τ3]. (And

annotating it to get λf :: τ1 →◦ τ2.let! x = f in [ ]τ3 should clearly make it not typable

at all.) All this is guaranteed by rule (Sub) in connection with the subtype relation

defined in Fig. 11. In the parameterized rule family (S-Arrowν,ν′)ν,ν′∈{◦,ε}, ν′6ν ,

and generally in what follows, we take {◦, ε} to be the ordered set of annotations with

◦ < ε. As a consequence, the rule family represents three rules (S-Arrowε,ε), (S-

Arrow◦,◦), and (S-Arrowε,◦), while there is no corresponding rule (S-Arrow◦,ε).
Thus, the subtyping system ensures that a Seqable supertype has only Seqable subtypes.

We can think of this as follows: the set of functions on which we do allow use of

selective strictness is a subset of the set of all functions. Together with the standard

contravariant interpretation of subtyping at function argument types — τ1 � σ1 in

(S-Arrowν,ν′)ν,ν′∈{◦,ε}, ν′6ν — we get exactly the desired behavior, in the above

example and in general.

The axiom and rule systems just described (i.e., Fig. 3 plus Figs. 8–11) set up a

new calculus PolySeq*. To take over the term and type semantics from PolySeq, we

define an annotation eraser | · |, removing all ◦-annotations when applied to a term,
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α � α (S-Var)
τ � τ ′

(S-List)
[τ ] � [τ ′]

τ1 � σ1 σ2 � τ2 (S-Arrowν,ν′)ν,ν′∈{◦,ε}, ν′6ν
(σ1 →ν σ2) � (τ1 →ν′ τ2)

Fig. 11 Subtyping Axiom and Rules in PolySeq* (and later PolySeq+)

type, or typing environment. It also allows us to establish the sets of typable terms in

PolySeq* and in PolySeq to be equivalent in the sense of the following observation.

Observation 1 If Γ , t, and τ are such that Γ ` t :: τ holds in PolySeq, then Γ `
t :: τ holds in PolySeq*. Conversely, if Γ , t, and τ are such that Γ ` t :: τ holds in

PolySeq*, then |Γ | ` |t| :: |τ | holds in PolySeq.

The point of restricting use of selective strictness to terms whose types are in

Seqable was to allow the relational interpretation of all other types to be non-bottom-

reflecting and thus to get rid of restrictions on free theorems derived from Theorem 1.

Hence, our refined parametricity theorem will not require relations ρ(α) for ◦-annotated

α to be bottom-reflecting. Moreover, we now allow the relational action for→◦ to forget

about bottom-reflection, and define it as follows:

∆τ1→◦τ2,ρ = {(f, g) | ∀(a, b) ∈ ∆τ1,ρ. (f $ a, g $ b) ∈ ∆τ2,ρ}

The other relational actions remain as in PolySeq (cf. Fig. 7).

Before we give the refined parametricity theorem for PolySeq*, we have to es-

tablish that the logical relation just defined is strict and continuous for all types and

additionally bottom-reflecting for all types in Seqable, even when assuming bottom-

reflection only for relations interpreting type variables that are ε-annotated in the

typing environment. Also, the impact of subtyping on the logical relation has to be

clarified. It turns out that a subtype relationship between two types has a very natural

interpretation as the relation corresponding to the subtype being a subset of the re-

lation corresponding to the supertype. The two lemmas to follow next establish these

facts.

For two pcpos D1 and D2, let Rel◦(D1, D2) collect all relations between them that

are strict and continuous, but not necessarily bottom-reflecting. Also, let Rel◦ be the

union of all Rel◦(D1, D2). Note that Rel is properly contained in Rel◦.

Lemma 2

1. If ρ maps to relations in Rel◦, then ∆τ,ρ ∈ Rel◦.
2. If Γ ` τ ∈ Seqable, then for every ρ such that

– for every α◦ occurring in Γ , ρ(α) ∈ Rel◦, and

– for every αε occurring in Γ , ρ(α) ∈ Rel,

we have ∆τ,ρ ∈ Rel.

Proof By induction on τ and case distinction on Γ ` τ ∈ Seqable. ut

Lemma 3 If τ1 � τ2, then ∆τ1,ρ ⊆ ∆τ2,ρ.

Proof By induction on derivation trees built from the axiom and rules from Fig. 11, the

only really interesting case being (S-Arrowε,◦), where we use that always ∆τ→τ ′,ρ ⊆
∆τ→◦τ ′,ρ.5 ut

5 . . . in contrast to ∆τ→◦τ ′,ρ ⊆ ∆τ→τ ′,ρ, which does not in general hold, justifying why
there is no rule (S-Arrow◦,ε).
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Now we can state and prove a refined parametricity theorem for PolySeq* that

gives stronger free theorems if we localize the use of selective strictness.

Theorem 2 (Parametricity, PolySeq*) If Γ ` t :: τ in PolySeq*, then for every

θ1, θ2, ρ, η1, and η2 such that

– for every α◦ occurring in Γ , ρ(α) ∈ Rel◦(θ1(α), θ2(α)),

– for every αε occurring in Γ , ρ(α) ∈ Rel(θ1(α), θ2(α)), and

– for every x :: τ ′ occurring in Γ , (η1(x), η2(x)) ∈ ∆τ ′,ρ ,

we have ([[|t|]]η1 , [[|t|]]η2) ∈ ∆τ,ρ .

Proof The proof is very similar to the one of Theorem 1. The only two really interesting

induction cases are those for (Sub) and (SLet’). The former is simply by Lemma 3.

For (SLet’) we now have to show that the values{
[[|t2|]]η1[x 7→a] if [[|t1|]]η1 = a 6= ⊥
⊥ if [[|t1|]]η1 = ⊥

and {
[[|t2|]]η2[x 7→b] if [[|t1|]]η2 = b 6= ⊥
⊥ if [[|t1|]]η2 = ⊥

are related by ∆τ2,ρ if:

– Γ ` τ1 ∈ Seqable,

– ([[|t1|]]η1 , [[|t1|]]η2) ∈ ∆τ1,ρ, and

– for every (a, b) ∈ ∆τ1,ρ, ([[|t2|]]η1[x 7→a], [[|t2|]]η2[x 7→b]) ∈ ∆τ2,ρ.

By bottom-reflection of ∆τ1,ρ, which holds due to Lemma 2(2), it suffices to consider

the following two cases:

1. [[|t1|]]η1 = a 6= ⊥ and [[|t1|]]η2 = b 6= ⊥, in which case we are done by the known

([[|t2|]]η1[x 7→a], [[|t2|]]η2[x 7→b]) ∈ ∆τ2,ρ for (a, b) ∈ ∆τ1,ρ,

2. [[|t1|]]η1 = ⊥ and [[|t1|]]η2 = ⊥, in which case we are done by (⊥,⊥) ∈ ∆τ2,ρ, which

holds by the strictness of ∆τ2,ρ (cf. Lemma 2(1)).

ut

We end this section with an example of a refined typing and the corresponding free

theorem. Recall the function foldl ′′ from Section 2 once again. As already mentioned,

it can be typed in PolySeq* to (α→◦ β → α)→ α→ [β]→ α in typing environment

α◦, β. Actually, more precisely, the annotated term

t = λc :: (α→◦ β → α).fix (λh :: (α→ [β]→ α).λn :: α.λys :: [β].

let! z = c n in

case ys of {[ ]→ n;

x : xs → let! xs ′ = xs in

let! x′ = x in

h (c n x′) xs ′})

can be typed so. We have |t| = foldl ′′ — or, since we have not explicitly given a

definition for foldl ′′ in PolySeq syntax, at least [[|t|]]η = [[foldl ′′]]η for every η. Hence,

we can apply Theorem 2 to establish conditions under which equation (1) holds for

foldl ′′. What we get is that equation (1) holds for foldl ′′ even if f is not total and
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c = ⊥ iff c′ = ⊥ does not hold, in contrast to what was required by the safe free

theorem for the completely unannotated type as stated at the beginning of the current

section. That g still needs to be total is caused by the fact that β is not ◦-annotated

and thus ρ(β) = {(y1, y2) | [[g]]∅ $ y1 = y2} ∈ Rel still needs to be bottom-reflecting,

in contrast to ρ(α) = {(x1, x2) | [[f ]]∅ $ x1 = x2} ∈ Rel◦ for the ◦-annotated α. That

we still need c x = ⊥ iff c′ (f x) = ⊥ for every x is caused by the second arrow in

the function argument type (α →◦ β → α) not being ◦-annotated, so that at some

point in the derivation of the free theorem we encounter the precondition that for every

(x1, x2) ∈ ∆α,ρ, ([[c]]∅ $ x1, [[c
′]]∅ $ x2) ∈ ∆β→α,ρ = {(p, q) | p = ⊥ iff q = ⊥, ∀(a, b) ∈

∆β,ρ. · · · }. In contrast, the condition c = ⊥ iff c′ = ⊥ disappears since the first arrow

in the mentioned function argument type is ◦-annotated, so that the corresponding

condition is “only” ([[c]]∅, [[c
′]]∅) ∈ ∆α→◦(β→α),ρ = {(p, q) | ∀(a, b) ∈ ∆α,ρ. · · · } without

“p = ⊥ iff q = ⊥”.

5 Effectively Obtaining all Permissible Types

The calculus PolySeq* enables refined typing for all terms typable in PolySeq. Our

final aim is to provide automatic type refinement for given terms with standard (i.e.,

PolySeq) typings. Hence, the intended use of PolySeq* will be to input a PolySeq

term t and to find all permissible types that t, for some concrete setting of annota-

tions in its syntactic type components (e.g., at occurrences of the empty list or in

λ-abstractions), is typable to in PolySeq*.

Unfortunately, PolySeq* is not suitable for an algorithmic use in its current form.

The rule (Sub) is in competition with all other axioms and rules (and because subtyping

is reflexive it can always be applied, thus even causing endless looping). This problem is

easily repaired by integrating subtyping into the axioms and rules directly and in return

omitting the explicit (Sub) rule. Then we get a rule system defining a terminating

algorithm able to return all types a given term t under a given typing environment Γ

is typable to.

5.1 PolySeq+ — Removing the (Sub)-Rule

The idea is to use that the subtype relation � is not only reflexive, but also transitive,

and to essentially push up the rule (Sub) through all axioms and rules from Figs. 3, 9,

and 10 (except (Sub) itself, of course; two adjacent (Sub)-rules simply merge into a

single one). For example, in PolySeq* we can always replace

Γ ` t1 :: τ Γ ` t2 :: [τ ]
(Cons)

Γ ` (t1 : t2) :: [τ ] [τ ] � τ ′
(Sub)

Γ ` (t1 : t2) :: τ ′

by

Γ ` t1 :: τ τ � τ ′′
(Sub)

Γ ` t1 :: τ ′′
Γ ` t2 :: [τ ] [τ ] � [τ ′′]

(Sub)
Γ ` t2 :: [τ ′′]

(Cons)
Γ ` (t1 : t2) :: [τ ′′]

since [τ ] � τ ′ implies τ ′ = [τ ′′] for some τ ′′ with τ � τ ′′. Hence, the rule (Cons)

can be taken over unchanged from PolySeq* to our new calculus, which we will call

PolySeq+.
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τ � τ ′
(Var’)

Γ, x :: τ ` x :: τ ′
τ � τ ′

(Nil’)
Γ ` [ ]τ :: [τ ′]

Γ ` t1 :: τ Γ ` t2 :: [τ ]
(Cons)

Γ ` (t1 : t2) :: [τ ]

Γ ` t :: [τ1] Γ ` t1 :: τ2 Γ, x1 :: τ1, x2 :: [τ1] ` t2 :: τ2
(Case)

Γ ` (case t of {[ ]→ t1; x1 : x2 → t2}) :: τ2

Γ, x :: τ1 ` t :: τ2 τ ′1 � τ1 (Abs’ν)ν∈{◦,ε}
Γ ` (λx :: τ1.t) :: τ ′1 →ν τ2

Γ ` t1 :: τ1 →ν τ2 Γ ` t2 :: τ1 (Appν)ν∈{◦,ε}
Γ ` (t1 t2) :: τ2

Γ ` t :: τ →ν τ τ � τ ′
(Fix’ν)ν∈{◦,ε}

Γ ` fix t :: τ ′

Γ ` τ1 ∈ Seqable Γ ` t1 :: τ1 Γ, x :: τ1 ` t2 :: τ2
(SLet’)

Γ ` (let! x = t1 in t2) :: τ2

Fig. 12 The Typing Rules in PolySeq+

For some of the other axioms and rules, changes are necessary. For example, in

PolySeq* we cannot replace

Γ, x :: τ1 ` t :: τ2
(Abs)

Γ ` (λx :: τ1.t) :: τ1 → τ2 τ1 → τ2 � τ ′
(Sub)

Γ ` (λx :: τ1.t) :: τ ′

by a derivation in which (Sub) has moved to the top. So instead we introduce, in

PolySeq+, new rules

Γ, x :: τ1 ` t :: τ ′2 τ ′1 � τ1
(Abs’)

Γ ` (λx :: τ1.t) :: τ ′1 → τ ′2

and

Γ, x :: τ1 ` t :: τ ′2 τ ′1 � τ1
(Abs’◦)

Γ ` (λx :: τ1.t) :: τ ′1 →◦ τ ′2

(Note that τ1 → τ2 � τ ′ means τ ′ = τ ′1 →ν′ τ ′2 for some τ ′1, τ
′
2, ν
′ with τ ′1 � τ1, τ2 � τ ′2,

and ν′ ∈ {ε, ◦}.)
The collection of all typing rules of PolySeq+ is given in Fig. 12, where for brevity

we again use parameterization of rules. The Seqable and subtyping axiom and rule sys-

tems remain unchanged (see Figs. 8 and 11). Typability in PolySeq* and in PolySeq+

are equivalent, as established next.

Lemma 4 If Γ ` t :: τ holds in PolySeq*, then Γ ` t :: τ holds in PolySeq+, and

vice versa.

Proof By induction on typing derivations. ut
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While PolySeq+ does define a terminating algorithm, there is still a high degree

of nondeterminism (namely many cases of competition between a pair of rules cor-

responding to each other, but one introducing ε, the other ◦ as annotation), which

would typically lead to backtracking in the implementation. Additionally, runs with all

possible choices of annotations on the given input Γ and t would be required to gain

all suitable refined types. Fortunately, we can do better than that. This is the topic of

the next subsection.

5.2 PolySeqC — Using Constraints and Conditional Typability

To avoid the production of many trees and several runs with different inputs, we switch

to variables as annotations in Γ , t, and τ . This in particular obviates the parameteri-

zation of rules as used in PolySeq+ to write down a whole rule family as one scheme.

Thus, we eliminate any competition between different rules, and allow the interpreta-

tion of the resulting rule system as a deterministic algorithm.

This solution is realized by the calculus PolySeqC , which will be equivalent to

PolySeq+ (and thus to PolySeq* by Lemma 4) in a sense made precise below, but

actually states conditional typability. We switch to parameterized terms, types, and

typing environments — i.e., to terms, types, and typing environments that use variables

instead of concrete ε- and ◦-annotations. In what follows, parameterized entities are

dotted to be distinguishable from concrete ones. Conditional typing judgements are

of the form 〈Γ̇ ` ṫ〉 V (C, τ̇), where C is a propositional logic formula combining

constraints, which are equations and inequations over ε, ◦, and annotation variables

(typically ν, ν′, . . . ).

For example, the two rules

Γ, x :: τ1 ` t :: τ2 τ ′1 � τ1
(Abs’◦)

Γ ` (λx :: τ1.t) :: τ ′1 →◦ τ2

and
Γ, x :: τ1 ` t :: τ2 τ ′1 � τ1

(Abs’)
Γ ` (λx :: τ1.t) :: τ ′1 → τ2

now become fused into a single one as follows:

〈Γ̇ , x :: τ̇1 ` ṫ〉V (C1, τ̇2) 〈 · � τ̇1〉V (C2, τ̇
′
1)

(AbsC)
〈Γ̇ ` λx :: τ̇1.ṫ〉V (C1 ∧ C2, τ̇

′
1 →ν τ̇2)

Here, the ν is really an object level variable: it occurs in the “produced” pair (C1 ∧
C2, τ̇

′
1 →ν τ̇2) of constraint and type, rather than being a meta level variable used

to denote two different rules in a more compact way. From the rule (AbsC) we also

see that not only the actual typing rules from Fig. 12 need to be put into conditional

form, but also other axiom and rule systems have to be changed, like the subtyping

axiom and rules from Fig. 11. Indeed, since τ̇1 may contain annotation variables, it is

not anymore possible to simply require τ ′1 � τ1 (or τ ′1 � τ̇1) as a precondition like in

rules (Abs’◦) and (Abs’) and rely on the axiom and rules from Fig. 11 for checking

it. Instead, we cater for the fact that in place of τ ′1 we will also want a parameterized

entity, along with a constraint (C2) that appropriately relates the annotation variables

in τ̇1 and τ̇ ′1. We do so by providing an auxiliary axiom and rule system later in Fig. 15.
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〈τ̇ � · 〉V (C, τ̇ ′)
(VarC)

〈Γ̇ , x :: τ̇ ` x〉V (C, τ̇ ′)

〈τ̇ � · 〉V (C, τ̇ ′)
(NilC)

〈Γ̇ ` [ ]τ̇ 〉V (C, [τ̇ ′])

〈Γ̇ ` ṫ1〉V (C1, τ̇) 〈Γ̇ ` ṫ2〉V (C2, [τ̇ ′]) 〈τ̇ = τ̇ ′〉V C3
(ConsC)

〈Γ̇ ` ṫ1 : ṫ2〉V (C1 ∧ C2 ∧ C3, [τ̇ ])

〈Γ̇ ` ṫ〉V (C1, [τ̇1]) 〈Γ̇ ` ṫ1〉V (C2, τ̇2)

〈Γ̇ , x1 :: τ̇1, x2 :: [τ̇1] ` ṫ2〉V (C3, τ̇ ′2) 〈τ̇2 = τ̇ ′2〉V C4
(CaseC)

〈Γ̇ ` case ṫ of {[ ]→ ṫ1; x1 : x2 → ṫ2}〉V (C1 ∧ C2 ∧ C3 ∧ C4, τ̇2)

〈Γ̇ , x :: τ̇1 ` ṫ〉V (C1, τ̇2) 〈 · � τ̇1〉V (C2, τ̇ ′1)
(AbsC)

〈Γ̇ ` λx :: τ̇1.ṫ〉V (C1 ∧ C2, τ̇ ′1 →ν τ̇2)

〈Γ̇ ` ṫ1〉V (C1, τ̇1 →ν τ̇2) 〈Γ̇ ` ṫ2〉V (C2, τ̇ ′1) 〈τ̇1 = τ̇ ′1〉V C3
(AppC)

〈Γ̇ ` ṫ1 ṫ2〉V (C1 ∧ C2 ∧ C3, τ̇2)

〈Γ̇ ` ṫ〉V (C1, τ̇ →ν τ̇ ′) 〈τ̇ = τ̇ ′〉V C2 〈τ̇ � · 〉V (C3, τ̇ ′′)
(FixC)

〈Γ̇ ` fix ṫ〉V (C1 ∧ C2 ∧ C3, τ̇ ′′)

〈Γ̇ ` ṫ1〉V (C1, τ̇1)

〈Γ̇ ` τ̇1 ∈ Seqable〉V C2 〈Γ̇ , x :: τ̇1 ` ṫ2〉V (C3, τ̇2)
(SLetC)

〈Γ̇ ` let! x = ṫ1 in ṫ2〉V (C1 ∧ C2 ∧ C3, τ̇2)

Fig. 13 The Conditional Typing Rules in PolySeqC

〈Γ̇ ` [τ̇ ] ∈ Seqable〉V True (C-ListC)

〈Γ̇ ` (τ̇1 →ν τ̇2) ∈ Seqable〉V (ν = ε) (C-ArrowC)

〈αν , Γ̇ ` α ∈ Seqable〉V (ν = ε) (C-VarC)

Fig. 14 The Conditional Class Membership Axioms for Seqable in PolySeqC

Similarly, when replacing the two rules (App◦) and (App) from PolySeq+ by a

single one, we need to make use of an auxiliary system stating conditional equality. After

all, typing t1 and t2 independently could lead to parameterized versions of the types

τ1 →ν τ2 and τ1 in which the “τ1-parts” differ in the naming of annotation variables. A

new auxiliary system then enforces the appropriate equalities via a constraint formula.

Overall, the typing rules for conditional typability are given in Fig. 13, and axioms

and rules of auxiliary systems for conditional class membership in Seqable, subtyping,

and equality, are shown in Figs. 14–16.

To relate conditional typability to concrete typability on concrete terms, types, and

typing environments, we define annotation substitutions % that map the parameterized

entities κ̇ to concrete ones by replacing each annotation variable by one of the concrete

annotations ε or ◦. We denote the application of an annotation substitution % to κ̇ by

κ̇%. Also, annotation substitutions can be applied to constraints C, denoted by C%. If

C% is a propositional logic sentence, we write [[C%]] for its value (either True or False).

With the help of these tools we define concrete typability in PolySeqC .
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〈α � · 〉V (True, α) (S-VarC1 ) 〈 · � α〉V (True, α) (S-VarC2 )

〈 · � σ̇1〉V (C1, τ̇1) 〈σ̇2 � · 〉V (C2, τ̇2)
(S-ArrowC1 )

〈(σ̇1 →ν σ̇2) � · 〉V (C1 ∧ C2 ∧ (ν′ 6 ν), τ̇1 →ν′ τ̇2)

〈τ̇1 � · 〉V (C1, σ̇1) 〈 · � τ̇2〉V (C2, σ̇2)
(S-ArrowC2 )

〈 · � (τ̇1 →ν′ τ̇2)〉V (C1 ∧ C2 ∧ (ν′ 6 ν), σ̇1 →ν σ̇2)

〈τ̇1 � · 〉V (C, τ̇2)
(S-ListC1 )

〈[τ̇1] � · 〉V (C, [τ̇2])

〈 · � τ̇2〉V (C, τ̇1)
(S-ListC2 )

〈 · � [τ̇2]〉V (C, [τ̇1])

Fig. 15 The Conditional Subtyping Axioms and Rules in PolySeqC

〈α = α〉V True (E-VarC)
〈τ̇1 = τ̇2〉V C

(E-ListC)
〈[τ̇1] = [τ̇2]〉V C

〈σ̇1 = τ̇1〉V C1 〈σ̇2 = τ̇2〉V C2
(E-ArrowC)

〈(σ̇1 →ν σ̇2) = (τ̇1 →ν′ τ̇2)〉V C1 ∧ C2 ∧ (ν = ν′)

Fig. 16 The Conditional Equality Axiom and Rules in PolySeqC

Definition 1 A term t is (concretely) typable to τ under Γ in PolySeqC if there exist

Γ̇ , ṫ, τ̇ , C, and %, such that Γ̇ % = Γ , ṫ% = t, τ̇ % = τ , [[C%]] = True, and 〈Γ̇ ` ṫ〉V (C, τ̇)

holds in PolySeqC .

We can now state equivalence of typability in PolySeqCand in PolySeq+.

Theorem 3 A term t is (concretely) typable to a type τ under a typing environment

Γ in PolySeqC iff Γ ` t :: τ holds in PolySeq+.

Proof Via a number of statements about the auxiliary axiom and rule systems from

Figs. 14–16, relating them to the ones from Figs. 8 and 11 and to syntactic equality of

concrete types. Ultimately, by inductions on typing derivations. Details appear in the

technical report [28]. ut

6 Putting the Theory to Use

As example of how PolySeqC can be used algorithmically for type refinement, we

again consider the function foldl ′′ from Section 2. The algorithm’s input will be the

term foldl ′′ (in the style of PolySeq, in particular with standard type signatures at

the binding occurrences of term variables) and the typing environment Γ = α, β. First,

we add pairwise distinct variable annotations, ν1, . . . , νm, at all type variables in Γ

and at all arrows in type signatures in foldl ′′. This manipulation is reflected by putting

a dot on top of foldl ′′ and of Γ :

Γ̇ = αν1 , βν2

˙foldl ′′ = λc :: (α→ν3 β →ν4 α).fix (λh :: (α→ν5 [β]→ν6 α).λn :: α.λys :: [β]. · · · )

Then, we use the typing rules of PolySeqC from bottom to top to generate a deriva-

tion tree for ˙foldl ′′ in the typing environment Γ̇ . If there is such a derivation tree (and

there is, since foldl ′′ is typable in the typing environment Γ = α, β in PolySeq and



18

since we can freely choose fresh annotation variables in different branches of the tree),

we can use it to determine C and τ̇ such that 〈Γ̇ ` ˙foldl ′′〉V (C, τ̇) holds in PolySeqC .

The parameterized type τ̇ contains variable annotations νm+1, . . . , νm+n, and C im-

poses constraints on ν1, . . . , νm+n (and possibly on other annotation variables used

only during the typing derivation). Now we determine the annotation substitutions %

for which [[C%]] = True (and which, among others, instantiate all the νm+1, . . . , νm+n).

The applications of these annotation substitutions to τ̇ and to Γ̇ provide us with all

refined types of foldl ′′, along with information about which type variables can be ◦-
annotated and which cannot. In a last step, we remove types that are not minimal in

the obtained set with respect to the subtype relation given by the axiom and rules from

Fig. 11, because these types would lead to unnecessary restrictions in the corresponding

free theorems. For foldl ′′ we end up with the single type (α→◦ β → α)→ α→ [β]→ α

and the information that α can be ◦-annotated while β cannot.

The polymorphic calculi considered so far in this paper contain only lists as al-

gebraic data type, but the extension to other polynomial (sum-of-products) types

and to base types like Int and Bool is straightforward. PolySeqC extended by inte-

gers (with addition) and Booleans (with a case-statement and if-then-else), as well as

higher-rank polymorphism, has been implemented (source code available at http://

hackage.haskell.org/package/free-theorems-seq-1.0) and made usable through

a web interface (http://www-ps.iai.uni-bonn.de/cgi-bin/polyseq.cgi). A screen-

shot of the output for foldl ′′ is shown in Fig. 17.

Let us comment on the respective outputs for all four examples from Section 2,

foldl and its strictified versions foldl ′, foldl ′′, and foldl ′′′. The respectively highlighted

parts in the free theorems produced indicate that the totality restriction on f remains

required for foldl ′, while the other additional restrictions mentioned in the first para-

graph of Section 4 disappear for it. For foldl ′′ as input, the totality restriction on f

and the restriction that c = ⊥ iff c′ = ⊥ disappear, but none of the others do, while

for foldl ′′′ only the restriction that c = ⊥ iff c′ = ⊥ remains. Regarding foldl , all

selective-strictness-related restrictions vanish.

For the sake of an example in which there is more than one minimal type, consider

the term t = λx :: ([α] → α).x in typing environment Γ = α. The minimal refined

types turn out to be ([α]→ α)→ ([α]→ α) and ([α]→◦ α)→ ([α]→◦ α) (both with

◦-annotated α in the typing environment), which are incomparable. This is caused

by the contravariance of functions. Consequences of this lack of principal typing (of

PolySeq*), and other issues, are discussed in the next, and final, section.

7 Discussion

We have just seen that PolySeq* lacks principal types, even when we are interested

only in minimal ones. As a consequence, one may wonder what to do about free the-

orems then. Typically, the free theorems for all the minimal types will each have

their raison d’être. For the example t = λx :: ([α] → α).x the one minimal type,

([α] →◦ α) → ([α] →◦ α), leads to the statement that for every strict f and every p

and q,

f ◦ p = q ◦ (map f) (a)

implies

f ◦ (t p) = (t q) ◦ (map f) (b)

http://hackage.haskell.org/package/free-theorems-seq-1.0
http://hackage.haskell.org/package/free-theorems-seq-1.0
http://www-ps.iai.uni-bonn.de/cgi-bin/polyseq.cgi
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Fig. 17 Output of the Web Interface for foldl ′′ as Input

The other minimal type, ([α]→ α)→ ([α]→ α), instead of “(a) implies (b)” leads to

the statement “(p = ⊥ iff q = ⊥) ∧ (a) implies (t p = ⊥ iff t q = ⊥) ∧ (b)”. Neither of

the two statements is stronger than the other. It is also not obvious how to combine

them into a single one. But there might be a way by using that in a certain sense

PolySeqC (rather than PolySeq*) does have principal minimal types, with symbolic

constraints on the annotation variables. For t = λx :: ([α] → α).x we can actually get

([α] →ν α) → ([α] →ν′ α) with the constraint ν′ 6 ν. Instead of instantiating and

minimizing this to the two incomparable cases ν = ν′ = ◦ and ν = ν′ = ε, we could try

to derive a more abstract free theorem that encompasses both two concrete statements

above. We have not investigated this avenue further, though.
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Staying longer on the parameterized level could also help to improve the efficiency of

our implementation. Currently, we do not do anything very smart after PolySeqC has

run: from the variable annotated type and the symbolic constraint we basically generate

all instantiations to concrete types that satisfy the constraint, and then find the minimal

types in that set of concrete types. Instead, we could try to “symbolically solve” the

constraint plus minimization condition. However, the real challenges of scaling our

solution up to a practical implementation lie elsewhere. There is a long way to go

from the calculus we have studied to a full intermediate language used in a Haskell

compiler! We do know how to incorporate term formers for type abstraction and type

application in principle (see [28]). One reviewer suggested that it might even become

necessary to add facilities for polymorphism over annotation variables inside the term

language. Also, we have only considered polynomial data types so far, but not looked

at nested and negative types. And certainly, many kinds of engineering problems would

arise when trying to adopt our refined type system in a production compiler.

In any case, we see the main benefit of our approach in understanding the some-

times quite subtle potential impact of selective strictness on functions of a given type.

It would be useful to see how far our results here can help to “repair” program transfor-

mations that are actually implemented in compilers (specifically, the Glasgow Haskell

Compiler), but suffer from the presence of selective strictness. In situations like those

discussed by Johann and Voigtländer [14], and also Voigtländer [34], how often can

refined typing with our system recover a guarantee of semantics preservation? Other

future work could be to use PolySeq* as a starting point for the automatic generation

of counterexamples to free theorems derived without taking selective strictness into ac-

count. In [30] we have already done this for general recursion by taking the type system

of Launchbury and Paterson [15], discussed briefly towards the end of Section 3 here,

as a starting point. In [30] we use the axioms and rules describing the type class Pointed

and then purposefully create (sub)terms fix (λx :: τ.x) for τ such that Γ ` τ ∈ Pointed

does not hold. Combining this with typed term generation based on intuitionistic proof

search [1, 5], we built a generator for counterexamples to free theorems derived without

even taking general recursion into account. Since the present paper does for seq what

Launchbury and Paterson [15] did for fix , our results here could provide the base for a

transfer of the counterexample generation work to the setting of selective strictness.

Finally, a natural question is whether or not selective strictness should be put under

control via the type system in a future version of Haskell (or even removed completely).

We have deliberately not taken a stand on this here. What was important to us is that

both the costs and benefits of either way should be well understood when making such

a decision.
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