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Abstract

Types play an important role both in reasoning about Haskell and for its
implementation. For example, the Glasgow Haskell Compiler performs certain
fusion transformations that are intended to improve program efficiency and
whose semantic justification is derived from polymorphic function types. At
the same time, GHC adopts a scheme of error raising, propagation, and han-
dling which is nondeterministic in the sense that there is some freedom as to
which of a number of potential failure events hidden somewhere in a program
is actually triggered. Implemented for good pragmatic reasons, this scheme
complicates the meaning of programs and thus necessitates extra care when
reasoning about them. In particular, since every erroneous value now rep-
resents a whole set of potential (but not arbitrary) failure causes, and since
the associated propagation rules are askew to standard notions of program
flow and value dependence, some standard laws suddenly fail to hold. This
includes laws derived from polymorphic types, popularized as free theorems
and at the base of the mentioned kind of fusion. We study this interaction
between type-based reasoning and imprecise errors by revising and extending
the foundational notion of relational parametricity, as well as further material
required to make it applicable. More generally, we believe that our devel-
opment and proofs help direct the way for incorporating further and other
extensions and semantic features that deviate from the “naive” setting in
which reasoning about Haskell programs often takes place.

∗This author was supported by the DFG under grant VO 1512/1-1.



Section 1 Introduction

1 Introduction

Functional languages come with a rich set of conceptual tools for reasoning about
programs. For example, structural induction and equational reasoning tell us that
the standard Haskell functions

takeWhile :: (α→ Bool)→ [α]→ [α]
takeWhile p [ ] = [ ]
takeWhile p (x : y) | p x = x : takeWhile p y

| otherwise = [ ]

and
map :: (α→ β)→ [α]→ [β]
map h [ ] = [ ]
map h (x : y) = h x : map h y

satisfy the following law for appropriately typed p, h, and l:

takeWhile p (map h l) = map h (takeWhile (p ◦ h) l) , (1)

where ◦ is function composition.
But programming language reality can be a tough game, leading to unexpected

failures of such near-obvious laws. For example, Peyton Jones et al. (1999) propose
a design for error handling based on a certain degree of impreciseness. The major
implementations GHC and Hugs (as well as one distribution of the language Clean)
have integrated this design years ago. However, the attendant semantics betrays
law (1) to be wrong. An instantiation showing this is p = null , h = tail , and
l = [[i] | i ← [1..(div 1 0)]] (or any other immediately failing expression of type
list-of-lists), where

null :: [α]→ Bool
null [ ] = True
null (x : y) = False

tail :: [α]→ [α]
tail [ ] = error “tail: empty list”
tail (x : y) = y

are standard Haskell functions as well. The problem with (1) now is that its left-hand
side yields exactly the “divide by zero”-error coming from l, whereas its right-hand
side may also yield the “tail: empty list”-error. This is so due to the semantics of
pattern-matching in the design of Peyton Jones et al. (1999) (and also Moran et al.
(1999)). In short, it prescribes that when pattern-matching on an erroneous value
as scrutinee, not only are any errors associated with it propagated, but also are the
branches of the pattern-match investigated in “error-finding mode” to detect any
errors that may arise there independently of the scrutinee. This is done in order
to give the language implementation more freedom in arranging computations, thus
allowing more transformations on the code prior to execution. But here it means
that when takeWhile (null ◦ tail) encounters an erroneous value, also (null ◦ tail) x
is evaluated, with x bound to a special value Bad ∅ that exists only to trigger the
error-finding mode. And indeed, the application of tail on that x raises the “tail:
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empty list”-error, which is propagated by null and then unioned with the “divide by
zero”-error from l. In contrast, takeWhile null on an erroneous value does not add
any further errors, because the definition of null raises none. And, on both sides
of (1), map h only ever propagates, but never introduces errors.

Thus, if we do not want to take the risk of introducing previously nonexistent
errors, we cannot use (1) as a transformation from left to right, even though this
might have been beneficial (by bringing p and h together for further analysis or for
subsequent transformations potentially improving efficiency). The supposed seman-
tic equivalence simply does not hold. Note that this does not necessarily mean that
for a given language implementation we will always, or ever, see different errors on
the left- and right-hand sides of (1). After all, for the example instantiation above
the semantics prescribes that the right-hand side may yield either of the two errors
in question, so for a given interpreter or compiler it might very well happen that al-
ways the same as on the left-hand side appears. But that would be pure coincidence
on which we cannot rely. If all the guarantee we have is that the language implemen-
tation builds on the semantics of Peyton Jones et al. (1999), then we have to accept
that the arbitration between the two potential errors may in principle vary with set
of flags, time of day, phase of the moon, and so on. Impreciseness in the semantics
has its price, and if we are not ready to abandon the overall design (which would
be tantamount to taking away considerable freedom from language implementers),
then we better learn how to cope with it when reasoning about programs.

The above discussion regarding a concrete instantiation of p, h, and l gives
negative information only, namely that (1) may break down in some cases. It does
not provide any positive information about conditions on p, h, and l under which (1)
actually is a semantic equivalence. Moreover, it is relative to the particular definition
of takeWhile given at the very beginning, whereas laws like (1) are often derived
more generally as free theorems (Reynolds 1983; Wadler 1989) from types alone,
without considering concrete definitions. In this paper we undertake to develop the
theory of free theorems for Haskell with imprecise error semantics. This continues
earlier work by Johann and Voigtländer (2004) for Haskell with all potential error
causes (including nontermination) conflated into a single erroneous value ⊥. That
earlier work gives that in this setting (1) is a semantic equivalence provided p 6= ⊥
and h is strict and total in the sense that h ⊥ = ⊥ and for every x 6= ⊥, h x 6= ⊥.
The task before us involves finding the right generalizations of such conditions for
a setting in which not all errors are equal. Questions like the following ones arise:

• From which erroneous values should p be different?

• For strictness, is it enough that h preserves the least element ⊥, which in
the design of Peyton Jones et al. (1999) denotes the union of all error causes,
including nontermination?

• Or do we need that also every other erroneous value (denoting a collection of
only some potential error causes, maybe just a singleton set) is mapped to an
erroneous one? To the same one? Or to ⊥?
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Section 1 Introduction

• For totality, is it enough that “non-⊥ goes to non-⊥”?

• Does this allow “non-⊥ goes to non-⊥ but erroneous”?

• Or do we need “nonerroneous goes to nonerroneous”?

It is not to be expected that the answers are trivial to come by. The two settings are
simply too different. This is also evidenced by the failure of an inequational variant
of (1) which is given by the results of Johann and Voigtländer (2004) and in which
strictness of h suffices to guarantee that the right-hand side is at least as defined as
the left-hand side, without further conditions on p or h. Most Haskell programmers,
even when aware of the imprecise error semantics, would probably agree that tail is
a strict function. The immediate pattern-match makes it so. And yet, we saw above
an instantiation with h = tail in which the right-hand side is less defined (due to
more potential errors) than the left-hand side. Finally, it is worth pointing out that
the failures of (1) and its inequational variant occur for a very innocently-looking
definition of takeWhile here. Note that it does not, by itself, introduce any errors or
nontermination, nor does it use selective strictness via Haskell’s seq-primitive. Thus,
the features that made life hard1 in the setting of Johann and Voigtländer (2004) are
actually absent, and still the laws break down. In fact, were it not for the imprecise
error semantics, (1) would hold for the given definition of takeWhile as a semantic
equivalence for arbitrary p, h, and l, even ones involving ⊥ and seq in arbitrary ways
and without strictness or totality conditions. By contraposition, this indicates that
distinguishing different failure causes and treating them the imprecision-through-
sets-of-errors way poses genuinely new challenges.

Fortunately, we are not left groping in the dark. Our investigation can be very
much goal-directed by studying proof cases of the (relational) parametricity theorem,
which is the foundation for all free theorems, and trying to adapt the proof to the
imprecise error setting. This leads us to discover, among other formal details and
ingredients, the appropriate generalized conditions sought above (first as restrictions
on relations, then specialized to the function level). In fact, we think that beside
the results we provide for the imprecise error setting, this paper can also serve as
a guide on how to go about extending relational parametricity to new language
features and semantic designs in general. We establish both equational and inequa-
tional parametricity theorems, including one for the refinement order of Moran et al.
(1999). And while we do not deal with error recovery through exception handling
in the IO monad, we will make some initial steps into the realm of exceptions as
first class citizens by integrating a primitive (Haskell’s mapException) that allows
manipulating already raised errors (respectively, their descriptive arguments) from
inside the language.

1Indeed, Johann and Voigtländer (2004) had to add rather ad-hoc occurrences of seq to a defi-
nition of the filter -function (of same type as takeWhile) in order to “provoke” failures of the cor-
responding standard free theorem. Here, instead, even the most natural specification of takeWhile
leads to problems.
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Also note that even though we do not allow the full power of exception handling
in the functions for which we derive free theorems, our results are nevertheless
immediately relevant as well in the larger context of programs that do error recovery
in the IO monad. Just imagine alternatively the left- or right-hand side of the
offending instantiation of (1) in the place of the “· · · ” in the following code snippet:

Control.Exception.catch (evaluate · · · ) (λs→ if s 6= ErrorCall “tail: empty list”
then return [[42]]
else return [ ])

Then depending on whether the left- or right-hand side of (1) is put there, we might
observe different nonerroneous program outcomes. This is even more severe than
“just” a confusion between different erroneous values.

With the results from this paper both kinds of problems are settled. For example,
we will derive (cf. Example 4.9) that (1) is a true semantic equivalence provided p
and h are nonerroneous, h acts as identity on erroneous values, and h never maps
a nonerroneous value to an erroneous one. Slightly weaker conditions suffice for an
inequational variant (cf. Example 5.10). And similar fixes exist for all the other free
theorems we love and treasure.

2 Standard Parametricity

We start out from a standard denotational semantics for a polymorphic lambda-
calculus that corresponds to Haskell without distinguishing error causes, i.e., with
only one erroneous value ⊥.

The syntax of types and terms is given in Figure 1, where α ranges over type
variables, x over term variables, and n over the integers. We include integers and
lists as representatives for numeric types and algebraic datatypes, and addition as
an exemplary numeric operation. Note that the calculus is explicitly typed and that
type abstraction and application are explicit in the syntax as well. General recursion
is captured via a fixpoint combinator, while selective strictness (à la seq) is provided
via a strict-let construct.

τ ::= α | Int | [τ ] | τ → τ | ∀α.τ
t ::= x | n | t+ t | [ ]τ | t : t | case t of {[ ]→ t ; x : x→ t} |

λx : τ.t | t t | Λα.t | t τ | fix | let! x = t in t

Figure 1: Syntax of Types τ and Terms t.

Figure 2 gives the typing rules for our calculus. Standard conventions apply here.
In particular, typing environments Γ take the form α1, . . . , αk, x1 : τ1, . . . , xl : τl with
distinct αi and xj, where all free variables occurring in a τj have to be among the
listed type variables.
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Section 2 Standard Parametricity

Γ, x : τ ` x : τ Γ ` n : Int Γ ` [ ]τ : [τ ] Γ ` fix : ∀α.(α→ α)→ α

Γ ` t1 : Int Γ ` t2 : Int

Γ ` (t1 + t2) : Int

Γ ` t1 : τ Γ ` t2 : [τ ]

Γ ` (t1 : t2) : [τ ]

α,Γ ` t : τ

Γ ` (Λα.t) : ∀α.τ

Γ ` t : [τ1] Γ ` t1 : τ2 Γ, x1 : τ1, x2 : [τ1] ` t2 : τ2

Γ ` (case t of {[ ]→ t1 ; x1 : x2 → t2}) : τ2

Γ ` t : ∀α.τ1

Γ ` (t τ2) : τ1[τ2/α]

Γ, x : τ1 ` t : τ2

Γ ` (λx : τ1.t) : τ1 → τ2

Γ ` t1 : τ1 → τ2 Γ ` t2 : τ1

Γ ` (t1 t2) : τ2

Γ ` t1 : τ1 Γ, x : τ1 ` t2 : τ2

Γ ` (let! x = t1 in t2) : τ2

Figure 2: Typing Rules.

For example, the function map can be defined as the following term and then
satisfies ` map : τ , where τ = ∀α.∀β.(α→ β)→ [α]→ [β]:

fix τ (λm : τ.Λα.Λβ.λh : α→ β.λl : [α].
case l of {[ ]→ [ ]β ; x : y → (h x) : (m α β h y)}) .

The denotational semantics interprets types as pointed complete partial orders
(for short, pcpos ; least element always denoted ⊥). The definition in Figure 3,
assuming θ to be a mapping from type variables to pcpos, is entirely standard. The
operation lift⊥ takes a complete partial order, adds a new element ⊥ to the carrier
set, defines this new ⊥ to be below every other element, and leaves the ordering
otherwise unchanged. To avoid confusion, the original elements are tagged, i.e.,

lift⊥ S = {⊥} ∪ {bsc | s ∈ S} .

The complete partial order lifted in the definition of [[Int]]θ is the flat one without
ordering between integers. For list types, prior to lifting, [ ] is only related to itself,
while the ordering between “− : −”-values is component-wise. Also note the use of
the greatest fixpoint to provide for infinite lists.2 The function space lifted in the
definition of [[τ1 → τ2]]θ is the one of monotonic and continuous maps between [[τ1]]θ
and [[τ2]]θ, ordered point-wise. Finally, polymorphic types are interpreted as sets of
functions from pcpos to values restricted as in the last line of Figure 3, and again
ordered point-wise (i.e., g1 v g2 iff for every pcpo D, g1 D v g2 D).

The semantics of terms in Figure 4 is also standard. It uses λ for denoting
anonymous functions, and the following operator:

h $ a =

{
f a if h = bfc
⊥ if h = ⊥ .

2There is no distinction between gfp and lfp if we right away demand a pcpo, not just a set,
satisfying S = lift⊥ ({[ ]} ∪ {a : b | a ∈ [[τ ]]θ, b ∈ S}.

6



[[α]]θ = θ(α)

[[Int]]θ = lift⊥ {. . . , −2, −1, 0, 1, 2, . . .}
[[[τ ]]]θ = gfp (λS.lift⊥ ({[ ]} ∪ {a : b | a ∈ [[τ ]]θ, b ∈ S}))
[[τ1 → τ2]]θ = lift⊥ {f : [[τ1]]θ → [[τ2]]θ}
[[∀α.τ ]]θ = {g | ∀D pcpo. (g D) ∈ [[τ ]]θ[α 7→D]}

Figure 3: Standard Semantics of Types.

[[x]]θ,σ = σ(x)

[[n]]θ,σ = bnc

[[t1 + t2]]θ,σ =

{
bn1 + n2c if [[t1]]θ,σ = bn1c, [[t2]]θ,σ = bn2c
⊥ otherwise

[[[ ]τ ]]θ,σ = b[ ]c
[[t1 : t2]]θ,σ = b[[t1]]θ,σ : [[t2]]θ,σc

[[case t of {[ ]→ t1 ; x1 : x2 → t2}]]θ,σ =


[[t1]]θ,σ if [[t]]θ,σ = b[ ]c
[[t2]]θ,σ[x1 7→a, x2 7→b] if [[t]]θ,σ = ba : bc
⊥ if [[t]]θ,σ = ⊥

[[λx : τ.t]]θ,σ = bλa.[[t]]θ,σ[x 7→a]c
[[t1 t2]]θ,σ = [[t1]]θ,σ $ [[t2]]θ,σ

[[Λα.t]]θ,σ = λD.[[t]]θ[α 7→D],σ

[[t τ ]]θ,σ = [[t]]θ,σ [[τ ]]θ

[[fix]]θ,σ = λD.bλh.
⊔

((h $)i ⊥)c

[[let! x = t1 in t2]]θ,σ =

{
[[t2]]θ,σ[x 7→a] if [[t1]]θ,σ = a 6= ⊥
⊥ if [[t1]]θ,σ = ⊥

Figure 4: Standard Semantics of Terms.

The expression
⊔

((h $)i ⊥) in the definition for fix means the supremum of the chain
⊥ v h $ ⊥ v h $ (h $ ⊥) · · · . Altogether, we have that if Γ ` t : τ and σ(x) ∈ [[τ ′]]θ
for every x : τ ′ occurring in Γ, then [[t]]θ,σ ∈ [[τ ]]θ.

The key to parametricity results is the definition of a family of relations by
induction on a calculus’ type structure. The appropriate such logical relation for
our current setting is defined in Figure 5, assuming ρ to be a mapping from type
variables to binary relations between pcpos. We use idD to denote the identity
relation on the pcpo D. The operation list takes a relation R and maps it to

list R = gfp (λS.{(⊥,⊥), (b[ ]c, b[ ]c)} ∪ {(ba : bc, bc : dc) | (a, c) ∈ R, (b, d) ∈ S}) ,

where again the greatest fixpoint is taken. For two pcpos D1 and D2, Rel(D1, D2)
collects all relations between them that are strict, continuous, and bottom-reflecting.
Strictness and continuity are just the standard notions, i.e., membership of the pair
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Section 2 Standard Parametricity

∆α,ρ = ρ(α)

∆Int,ρ = id lift⊥{...,−2,−1, 0, 1, 2, ...}

∆[τ ],ρ = list ∆τ,ρ

∆τ1→τ2,ρ = {(f, g) | f = ⊥ iff g = ⊥, ∀(a, b) ∈ ∆τ1,ρ. (f $ a, g $ b) ∈ ∆τ2,ρ}
∆∀α.τ,ρ = {(u, v) | ∀D1, D2 pcpos,R ∈ Rel(D1, D2). (u D1, v D2) ∈ ∆τ,ρ[α 7→R]}

Figure 5: Standard Logical Relation.

(⊥,⊥) and closure under suprema. A relation R is bottom-reflecting if (a, b) ∈ R
implies that a = ⊥ iff b = ⊥. The corresponding explicit condition on f and g in
the definition of ∆τ1→τ2,ρ serves the purpose of ensuring that bottom-reflectingness
is preserved throughout the logical relation. Overall, reasoning like Johann and
Voigtländer (2004) gives the following important lemma (by induction on τ), where
Rel is the union of all Rel(D1, D2).

Lemma 2.1. If ρ maps only to relations in Rel , then ∆τ,ρ ∈ Rel as well.

The lemma is crucial for then proving the following parametricity theorem.

Theorem 2.2. If Γ ` t : τ , then for every θ1, θ2, ρ, σ1, and σ2 such that

• for every α occurring in Γ, ρ(α) ∈ Rel(θ1(α), θ2(α)), and

• for every x : τ ′ occurring in Γ, (σ1(x), σ2(x)) ∈ ∆τ ′,ρ ,

we have ([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆τ,ρ .

One peculiarity of the semantic setup considered so far is that the type semantics
of all except the polymorphic types are lifted. That is, the complete partial order
interpretations of all other types are not just pointed, i.e., contain a least element ⊥,
but actually lifted, i.e., all non-⊥ elements are explicitly tagged with b−c. That we
do not need to lift the interpretation of polymorphic types has to do with the fact
that type abstraction and application are implicit in surface Haskell and carry no
computational content. In other words, there is no difference in Haskell between
Λα.⊥ and ⊥, while there is a difference between λx : τ.⊥ and ⊥ (with regard
to selective strictness). That is why [[τ1 → τ2]]θ is lifted in Figure 3, why [[λx :
τ.t]]θ,σ and [[t1 t2]]θ,σ involve b−c and $ in Figure 4, and why ∆τ1→τ2,ρ requires the
“f = ⊥ iff g = ⊥”-condition in Figure 5, while [[∀α.τ ]]θ is not lifted, [[Λα.t]]θ,σ and
[[t τ ]]θ,σ are defined more directly, and ∆∀α.τ,ρ requires no extra condition, and yet
Lemma 2.1 holds (and so does, ultimately, Theorem 2.2).

For preparing the development in the next section, though, it would be more
beneficial if all the cases of the type semantics were homogeneous in their lifting be-
havior. This is indeed possible without disrupting the overall approach and results.
Figure 6 collects the necessary adaptations to Figures 3–5, explained in some more
detail below. One important thing to note is that the adapted semantics is truly
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[[∀α.τ ]]θ = lift⊥ {g | ∀D pcpo. (g D) ∈ [[τ ]]θ[α 7→D] \ {⊥}}

[[Λα.t]]θ,σ =

{
bλD.[[t]]θ[α 7→D],σc if [[t]]θ[α 7→{⊥}],σ 6= ⊥
⊥ if [[t]]θ[α 7→{⊥}],σ = ⊥

[[t τ ]]θ,σ = [[t]]θ,σ $$ [[τ ]]θ

[[fix]]θ,σ = bλD.bλh.
⊔

((h $)i ⊥)cc
∆∀α.τ,ρ = {(u, v) | ∀D1, D2 pcpos,R ∈ Rel(D1, D2).

(u $$ D1, v $$ D2) ∈ ∆τ,ρ[α 7→R]}

Figure 6: Adaptations for Explicit Lifting at Polymorphic Types.

equivalent to the standard one from a user’s perspective, i.e., with respect to which
terms of the calculus are equated or found to be in an approximation relationship.

For [[∀α.τ ]]θ, we explicitly add a new ⊥ via lift⊥, while at the same time excluding,
via a refined condition, the least element already present in {g | ∀D pcpo. (g D) ∈
[[τ ]]θ[α 7→D]}. Actually, the additional condition that for every pcpo D, (g D) 6= ⊥,
excludes more than just the least g. It excludes every g that maps any D to ⊥, not
just the single g that maps every D to ⊥. But this is fine, given that it is actually
impossible to define a polymorphic value in Haskell (or as a term in our calculus) of
which the instantiation at some type is ⊥ and at some other type is non-⊥. This is
justified by Lemma 7.17 of Voigtländer and Johann (2007) and also the type-erasing
operational semantics of Johann and Voigtländer (2008).

For [[Λα.t]]θ,σ, we need to analyze the semantics of t to sort out the exceptional
case that everyD is mapped to⊥, in which case the semantics of Λα.t should itself be
the ⊥ explicitly added via lift⊥. By the observation made in the previous paragraph,
it is not actually necessary to check the behavior for every D. Instead, the test can
be performed with a single, arbitrary pcpo. We choose the simplest one, namely
just {⊥}. If we find that we are not in the exceptional case, the denotation is just
as before, but appropriately lifted via b−c. A simple lifting also deals with [[fix]]θ,σ.

For adapting [[t τ ]]θ,σ and ∆∀α.τ,ρ, we simply use an operator in the spirit of $:

h $$ D =

{
g D if h = bgc
⊥ if h = ⊥ .

Overall, the adaptations leave Lemma 2.1 and Theorem 2.2, as well as their
proofs, intact. Only for reference, the proof of Theorem 2.2 for the revised setting,
and spelling out more formally the “narrative” of Johann and Voigtländer (2004),
is given in Appendix A.

3 Imprecise Error Semantics

We now want to treat different failure causes as semantically different, rather than
conflating them into a single erroneous value ⊥. To this end, we add a new term-
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former to the syntax from Figure 1:

t ::= · · · | error ,

and a new typing rule to the derivation system from Figure 2:

Γ ` error : ∀α.Int→ α .

Note that, deviating from Haskell, we use integers rather than strings as descriptive
arguments to error. Of course, this is not an essential difference, and only done
here for the sake of simplicity.

Our treatment of errors shall be that of Peyton Jones et al. (1999) and Moran
et al. (1999). In particular, we will use, and embellish, the denotational semantics
given by Peyton Jones et al. (1999), our main extension being that they do not
explicitly describe how to deal with polymorphic types. Their main innovation, and
the reason for calling the semantics “imprecise”, is the use of sets of possible failure
causes. Formally, let

E = {ErrorCall n | n ∈ {. . . , −2, −1, 0, 1, 2, . . .}} (2)

and
Ent = {NonTermination} ∪ E ,

where NonTermination and ErrorCall are (for now) only descriptive tags for use in
the denotational semantics, but without direct syntactical counterparts in the un-
derlying calculus. The set of all erroneous values is then

Verr = {Bad e | e ∈ P(E) ∪ {Ent}}

and its elements are ordered by

Bad e v Bad e′ iff e ⊇ e′ . (3)

Peyton Jones et al. (1999) then replace the standard operation lift⊥ by

lifterr S = Verr ∪ {Ok s | s ∈ S} .

The approximation order on such error-lifted complete partial orders (henceforth,
for short, elcpos) is given by (3) on erroneous values, by taking over the order
from S for nonerroneous values, and by mandating that ⊥ = Bad Ent is below all,
even nonerroneous, values, while otherwise erroneous and nonerroneous values are
pairwise incomparable.

With these definitions in place, the first four lines of Figure 7 should hold no
surprises, as they are in complete analogy to Figure 3. Of course, we now assume
that θ maps to elcpos only. The last line of Figure 7 is in analogy to the first
one of Figure 6. By subtracting Verr from the possible ranges of g, we mandate
that a nonerroneous polymorphic value does not have any erroneous instantiation,
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[[α]]errθ = θ(α)

[[Int]]errθ = lifterr {. . . , −2, −1, 0, 1, 2, . . .}
[[[τ ]]]errθ = gfp (λS.lifterr ({[ ]} ∪ {a : b | a ∈ [[τ ]]errθ , b ∈ S}))
[[τ1 → τ2]]errθ = lifterr {f : [[τ1]]errθ → [[τ2]]errθ }
[[∀α.τ ]]errθ = lifterr {g | ∀D elcpo. (g D) ∈ [[τ ]]errθ[α 7→D] \ Verr}

Figure 7: Error Semantics of Types.

and thus in particular again exclude (as in Haskell) polymorphic values of which the
instantiation at some type is erroneous and at some other type is nonerroneous. More
specifically, we also expect that an erroneous polymorphic value exhibits exactly the
same potential failing behavior in each of its instantiations. Of course, ensuring all
this also depends on the term semantics, to be considered next.

Some of the definitions in Figure 8 are directly taken over from Figure 4, modulo
lifting via Ok rather than via b−c, and thus need not be further discussed here. The
definitions of [[t1 t2]]errθ,σ and [[fix]]errθ,σ are as in Figures 4 and 6, respectively, but use
the following variant of the operator $:

h $ a =

{
f a if h = Ok f

Bad (e ∪ E(a)) if h = Bad e ,

where

E(a) =

{
∅ if a = Ok v

e if a = Bad e .

The crucial point here, taken over from Peyton Jones et al. (1999), is that application
of an erroneous function value incurs all potential failures of the argument as well.
Also essentially taken over are the definitions of [[t1 + t2]]errθ,σ and [[case t of {[ ] →
t1 ; x1 : x2 → t2}]]errθ,σ , except that we do not check for overflow in the case of
addition. To bring about erroneous values other than ⊥ in the first place, we have
the obvious definition of [[error]]errθ,σ . The definitions of [[Λα.t]]errθ,σ and [[t τ ]]errθ,σ follow
the corresponding ones in Figure 6, but with the following variant of the operator $$:

h $$ D =

{
g D if h = Ok g

Bad e if h = Bad e .

Finally, the definition of [[let! x = t1 in t2]]errθ,σ follows the one in Figure 4, but
similarly to the definition of [[case t of {[ ]→ t1 ; x1 : x2 → t2}]]errθ,σ , and in line with
the operational semantics of Moran et al. (1999), t2 is evaluated in “error-finding
mode” to contribute further potential failure causes in case t1 is already erroneous.

4 Parametricity for Imprecise Error Semantics

To establish an analogue of Theorem 2.2 for the imprecise error semantics, we first
need to determine just the right set of restrictions to impose on relational inter-

11



Section 4 Parametricity for Imprecise Error Semantics

[[x]]errθ,σ = σ(x)

[[n]]errθ,σ = Ok n

[[t1 + t2]]errθ,σ ={
Ok (n1 + n2) if [[t1]]errθ,σ = Ok n1, [[t2]]errθ,σ = Ok n2

Bad (E([[t1]]errθ,σ) ∪ E([[t2]]errθ,σ)) otherwise

[[[ ]τ ]]
err
θ,σ = Ok [ ]

[[t1 : t2]]errθ,σ = Ok ([[t1]]errθ,σ : [[t2]]errθ,σ)

[[case t of {[ ]→ t1 ; x1 : x2 → t2}]]errθ,σ =
[[t1]]errθ,σ if [[t]]errθ,σ = Ok [ ]

[[t2]]errθ,σ[x1 7→a, x2 7→b] if [[t]]errθ,σ = Ok (a : b)

Bad (e ∪ E([[t1]]errθ,σ) ∪ E([[t2]]errθ,σ[x1 7→Bad ∅, x2 7→Bad ∅])) if [[t]]errθ,σ = Bad e

[[λx : τ.t]]errθ,σ = Ok (λa.[[t]]errθ,σ[x 7→a])

[[t1 t2]]errθ,σ = [[t1]]errθ,σ $ [[t2]]errθ,σ

[[Λα.t]]errθ,σ =

{
Ok (λD.[[t]]errθ[α 7→D],σ) if [[t]]errθ[α 7→Verr ],σ = Ok v

Bad e if [[t]]errθ[α 7→Verr ],σ = Bad e

[[t τ ]]errθ,σ = [[t]]errθ,σ $$ [[τ ]]errθ
[[fix]]errθ,σ = Ok (λD.Ok (λh.

⊔
((h $)i ⊥)))

[[let! x = t1 in t2]]errθ,σ =

{
[[t2]]errθ,σ[x 7→Ok v] if [[t1]]errθ,σ = Ok v

Bad (e ∪ E([[t2]]errθ,σ[x 7→Bad ∅])) if [[t1]]errθ,σ = Bad e

[[error]]errθ,σ = Ok (λD.Ok (λa.

{
Bad {ErrorCall n} if a = Ok n

Bad e if a = Bad e
))

Figure 8: Error Semantics of Terms.
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pretations of types. So far, we required strict, continuous, and bottom-reflecting
relations. It seems reasonable that continuity will still be required, as we still have
to provide for general recursion via the fixpoint combinator. But for strictness and
bottom-reflectingness, the situation is less clear, as we now have more than a single
erroneous value ⊥ to consider.

For example, strictness currently only states that the pair (⊥,⊥), i.e. the pair
(Bad Ent ,Bad Ent), should be contained in every relation. But what about other
erroneous values? Should any pair of them be related? Or only identical ones? Or
is inclusion of (⊥,⊥) actually enough?

The best way to answer such questions is to go through the proof of Theorem 2.2
and see where changes in the calculus and its semantics might require a change in
the proof. In our case, it of course makes the most sense to first study the impact
of the new primitive error. Recall that its typing rule is as follows:

Γ ` error : ∀α.Int→ α .

So we will have to prove that for every θ1, θ2, ρ, σ1, and σ2 such that

• for every α occurring in Γ, ρ(α) is an appropriately restricted relation between
θ1(α) and θ2(α), and

• for every x : τ ′ occurring in Γ, (σ1(x), σ2(x)) ∈ ∆τ ′,ρ,

we have ([[error]]errθ1,σ1
, [[error]]errθ2,σ2

) ∈ ∆∀α.Int→α,ρ.
Apparently, by Figure 6, this will require to establish that for every (appropriate)

D1, D2, and R,

([[error]]errθ1,σ1
$$ D1, [[error]]errθ2,σ2

$$ D2) ∈ ∆Int→α,ρ[α 7→R] .

Further unfolding the current definition of ∆, now via Figure 5, tells us that we will
have to show that

[[error]]errθ1,σ1
$$ D1 = ⊥ iff [[error]]errθ2,σ2

$$ D2 = ⊥ (4)

(or a similar statement involving also non-⊥ erroneous values?), and that for every
(a, b) ∈ ∆Int,ρ[α 7→R],

([[error]]errθ1,σ1
$$ D1 $ a, [[error]]errθ2,σ2

$$ D2 $ b) ∈ R .

Taking into account that the integer type should still be interpreted by an identity
relation, and using the semantics definitions given in Section 3, the latter is the
same as requiring that for every a ∈ lifterr {. . . , −2, −1, 0, 1, 2, . . .}, the value{

Bad {ErrorCall n} if a = Ok n

Bad e if a = Bad e
(5)

is related to itself by R, which is equivalent to requiring that every erroneous value
is related to itself by R. Therefore, we propose to generalize the notion of strictness
as follows.

13



Section 4 Parametricity for Imprecise Error Semantics

Definition 4.1. A relation R is error-strict if idVerr ⊆ R.

Similar questions as for strictness arise for bottom-reflectingness in the presence
of different failure causes. Is it enough to maintain that two related values are either
both ⊥ or none of them is? Or should we generalize to requiring that either both are
erroneous or none of them is? Or should we be more demanding by even expecting
that only equal failure causes (or sets thereof) are related?

The relevant proof case to check here is the one for the strict-let construct,
because selective strictness was what necessitated bottom-reflectingness in the first
place (Johann and Voigtländer 2004). Recall that the typing rule is as follows:

Γ ` t1 : τ1 Γ, x : τ1 ` t2 : τ2

Γ ` (let! x = t1 in t2) : τ2

.

Inside the proof of an analogue of Theorem 2.2 by induction over typing derivations
we will have to establish, for the induction conclusion in this case, that for θ1, θ2, ρ,
σ1, and σ2 as above,

([[let! x = t1 in t2]]errθ1,σ1
, [[let! x = t1 in t2]]errθ2,σ2

) ∈ ∆τ2,ρ .

The semantics from Section 3 tells us that the two values in the relation of which
we are interested here are equal to{

[[t2]]errθ1,σ1[x 7→Ok v1] if [[t1]]errθ1,σ1
= Ok v1

Bad (e1 ∪ E([[t2]]errθ1,σ1[x 7→Bad ∅])) if [[t1]]errθ1,σ1
= Bad e1

(6)

and {
[[t2]]errθ2,σ2[x 7→Ok v2] if [[t1]]errθ2,σ2

= Ok v2

Bad (e2 ∪ E([[t2]]errθ2,σ2[x 7→Bad ∅])) if [[t1]]errθ2,σ2
= Bad e2 ,

(7)

respectively. The role of bottom-reflectingness in the ⊥-only setting is to ensure,
via the induction hypothesis corresponding to the precondition Γ ` t1 : τ1, namely

([[t1]]errθ1,σ1
, [[t1]]errθ2,σ2

) ∈ ∆τ1,ρ , (8)

that the same branch is chosen in (the analogues of) the two case distinctions above.
Here the same can be achieved by introducing an auxiliary function extracting the
tag of a value as follows:

T (a) =

{
Ok if a = Ok v

Bad if a = Bad e ,

and generalizing bottom-reflectingness in such a way that related values are always
required to have the same image under T .
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But does this suffice? For the case that [[t1]]errθ1,σ1
= Ok v1 and [[t1]]errθ2,σ2

= Ok v2,
yes, because we then get the desired

([[t2]]errθ1,σ1[x 7→Ok v1], [[t2]]errθ2,σ2[x 7→Ok v2]) ∈ ∆τ2,ρ

from (Ok v1,Ok v2) ∈ ∆τ1,ρ (cf. (8)) and the induction hypothesis corresponding to
the precondition Γ, x : τ1 ` t2 : τ2, namely that for every (b, c) ∈ ∆τ1,ρ,

([[t2]]errθ1,σ1[x 7→b], [[t2]]errθ2,σ2[x 7→c]) ∈ ∆τ2,ρ . (9)

However, in the case that [[t1]]errθ1,σ1
= Bad e1 and [[t1]]errθ2,σ2

= Bad e2, we need to
show that

(Bad (e1 ∪ E([[t2]]errθ1,σ1[x 7→Bad ∅])),Bad (e2 ∪ E([[t2]]errθ2,σ2[x 7→Bad ∅]))) ∈ ∆τ2,ρ , (10)

and do not yet have the means for doing so. Note that a supposed error-strictness
of ∆τ2,ρ would only allow us to conclude the desired membership if the sets e1 ∪
E([[t2]]errθ1,σ1[x 7→Bad ∅]) and e2 ∪ E([[t2]]errθ2,σ2[x 7→Bad ∅]) were equal. Revising the notion
of error-strictness to guarantee that indeed any two erroneous values are related,
independently of the sets of possible failures they represent, would risk completely
blurring any distinction between different failure causes, and thus is no option.
Instead, the proposed generalized notion of bottom-reflectingness is strengthened in
a very natural way. Rather than just requiring that two related values always have
the same image under T , we expect the same to be true under E.

Definition 4.2. A relation R is error-reflecting if (a, b) ∈ R implies that
T (a) = T (b) and E(a) = E(b).3

Then, (8) and the assumption that ∆τ1,ρ is error-reflecting imply that in the case
[[t1]]errθ1,σ1

= Bad e1 and [[t1]]errθ2,σ2
= Bad e2 we even have e1 = e2. Moreover, (9) and

(Bad ∅,Bad ∅) ∈ ∆τ1,ρ (cf. supposed error-strictness of ∆τ1,ρ) give

([[t2]]errθ1,σ1[x 7→Bad ∅], [[t2]]errθ2,σ2[x 7→Bad ∅]) ∈ ∆τ2,ρ ,

and thus by supposed error-reflectingness of ∆τ2,ρ,

E([[t2]]errθ1,σ1[x 7→Bad ∅]) = E([[t2]]errθ2,σ2[x 7→Bad ∅])

as well, which finally establishes (10), without having to revise the notion of error-
strictness.

The above considerations lead us to focus on relations that are error-strict, con-
tinuous, and error-reflecting. Clearly, ensuring that these restrictions are preserved
will require changes to the definition of ∆. For example, the operation list used

3Note that E(a) = E(b) does not imply T (a) = T (b), due to Bad ∅.
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in Figure 5 will not suffice anymore (besides using the wrong kind of tagging: b−c
vs. Ok). But it is easy enough to replace it as follows:

listerr R = gfp (λS.idVerr ∪ {(Ok [ ],Ok [ ])}
∪ {(Ok (a : b),Ok (c : d)) | (a, c) ∈ R, (b, d) ∈ S}) .

For the case of function types, we clearly need an appropriate replacement for the
“f = ⊥ iff g = ⊥”-condition occurring in the definition of ∆τ1→τ2,ρ. It might seem
that in order to guarantee error-reflectingness (instead of bottom-reflectingness, as
earlier) we now have to require “T (f) = T (g) and E(f) = E(g)”. But actually it
turns out that requiring just “T (f) = T (g)” is enough, as then the other conjunct
can be established from relatedness of f $ a and g $ b for related a and b (see below).
For the case of polymorphic types, we clearly have to restrict the quantified-over
relations to error-strict, continuous, and error-reflecting ones. To this end, for given
elcpos D1 and D2, let Rel err(D1, D2) collect all relations between them that are
error-strict, continuous, and error-reflecting. (Also, let Rel err be the union of all
Rel err(D1, D2).) Overall, we obtain the new logical relation defined in Figure 9.
Comparing it to the first four definitions in Figure 5 and the last definition in
Figure 6, note that it uses the versions of $ and $$ from Section 3 rather than those
from Section 2. We get the following analogue of Lemma 2.1.

Lemma 4.3. If ρ maps only to relations in Rel err , then ∆err
τ,ρ ∈ Rel err as well.

The proof is mostly routine, but we briefly sketch a few interesting parts related to
the treatment of erroneous values:

• Error-strictness of ∆err
τ1→τ2,ρ follows from error-reflectingness of ∆err

τ1,ρ
and error-

strictness of ∆err
τ2,ρ

, because for every e ∈ P(E) ∪ {Ent} and a, b with E(a) =
E(b),

((Bad e) $ a, (Bad e) $ b) ∈ idVerr .

• Error-reflectingness of ∆err
τ1→τ2,ρ follows from error-strictness of ∆err

τ1,ρ
and error-

reflectingness of ∆err
τ2,ρ

, because for every e, e′ ∈ P(E) ∪ {Ent},

E((Bad e) $ (Bad ∅)) = E((Bad e′) $ (Bad ∅))

implies e = e′.

• Error-strictness of ∆err
∀α.τ,ρ follows from error-strictness of ∆err

τ,ρ[α7→R] for every
error-strict, continuous, and error-reflecting relation R, because for every e ∈
P(E) ∪ {Ent} and elcpos D1 and D2,

((Bad e) $$ D1, (Bad e) $$ D2) ∈ idVerr .

• Error-reflectingness of ∆err
∀α.τ,ρ follows from error-reflectingness of ∆err

τ,ρ[α 7→R] for
every error-strict, continuous, and error-reflecting relationR, because for every
(erroneous or nonerroneous) value h in [[∀α.τ ]]errθ for some θ, and every elcpo D,
T (h $$ D) = T (h) and E(h $$ D) = E(h).
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∆err
α,ρ = ρ(α)

∆err
Int,ρ = id lifterr{...,−2,−1, 0, 1, 2, ...}

∆err
[τ ],ρ = listerr ∆err

τ,ρ

∆err
τ1→τ2,ρ = {(f, g) | T (f) = T (g), ∀(a, b) ∈ ∆err

τ1,ρ
. (f $ a, g $ b) ∈ ∆err

τ2,ρ
}

∆err
∀α.τ,ρ = {(u, v) | ∀D1, D2 elcpos,R ∈ Rel err(D1, D2).

(u $$ D1, v $$ D2) ∈ ∆err
τ,ρ[α 7→R]}

Figure 9: Logical Relation for Imprecise Error Semantics.

Being assured of Lemma 4.3 is nice, but not our ultimate goal in this section. Rather,
we want the following analogue of Theorem 2.2.

Theorem 4.4. If Γ ` t : τ , then for every θ1, θ2, ρ, σ1, and σ2 such that

• for every α occurring in Γ, ρ(α) ∈ Rel err(θ1(α), θ2(α)), and

• for every x : τ ′ occurring in Γ, (σ1(x), σ2(x)) ∈ ∆err
τ ′,ρ ,

we have ([[t]]errθ1,σ1
, [[t]]errθ2,σ2

) ∈ ∆err
τ,ρ .

Of course, Lemma 4.3 plays an important role in the proof, in particular in the
inductive case for type application. The proof case for error was already discussed
at the beginning of this section. The only change necessary to what was said there
is that instead of (4) we actually need to establish that T ([[error]]errθ1,σ1

$$ D1) =
T ([[error]]errθ2,σ2

$$ D2). But this is straightforward from the term semantics, which
forces both tags to be Ok .

Another proof case already given earlier in this section is the one for the strict-let
construct. Clearly, it uses Lemma 4.3 as well, to deduce T ([[t1]]errθ1,σ1

) = T ([[t1]]errθ2,σ2
)

from ([[t1]]errθ1,σ1
, [[t1]]errθ2,σ2

) ∈ ∆err
τ1,ρ

and to deduce

(Bad (e1 ∪ E([[t2]]errθ1,σ1[x 7→Bad ∅])),Bad (e2 ∪ E([[t2]]errθ2,σ2[x 7→Bad ∅]))) ∈ ∆err
τ2,ρ

from (Bad e1,Bad e2) ∈ ∆err
τ1,ρ

and the statement that for every (b, c) ∈ ∆err
τ1,ρ

,
([[t2]]errθ1,σ1[x 7→b], [[t2]]errθ2,σ2[x 7→c]) ∈ ∆err

τ2,ρ
.

Two further proof cases also require Lemma 4.3, namely the one for case and
the one for type abstraction. For the former one, we refer to Section 5 (where the
corresponding, slightly more elaborate “inequational” proof case is discussed). For
the latter one, consider

α,Γ ` t : τ

Γ ` (Λα.t) : ∀α.τ
.

To establish

([[Λα.t]]errθ1,σ1
, [[Λα.t]]errθ2,σ2

) ∈ ∆err
∀α.τ,ρ , (11)

17



Section 4 Parametricity for Imprecise Error Semantics

we first analyze the values [[t]]errθ1[α 7→Verr ],σ1
and [[t]]errθ2[α 7→Verr ],σ2

. By the induction
hypothesis corresponding to the precondition α,Γ ` t : τ they are related by
∆err
τ,ρ[α 7→idVerr ], which implies

T ([[t]]errθ1[α 7→Verr ],σ1
) = T ([[t]]errθ2[α 7→Verr ],σ2

)

and
E([[t]]errθ1[α 7→Verr ],σ1

) = E([[t]]errθ2[α 7→Verr ],σ2
)

by Lemma 4.3. So either

[[t]]errθ1[α7→Verr ],σ1
= [[t]]errθ2[α 7→Verr ],σ2

= Bad e

for some e ∈ P(E) ∪ {Ent}, or

T ([[t]]errθ1[α 7→Verr ],σ1
) = T ([[t]]errθ2[α 7→Verr ],σ2

) = Ok .

In the first case, we have [[Λα.t]]errθ1,σ1
= [[Λα.t]]errθ2,σ2

= Bad e by the term semantics,
and thus ([[Λα.t]]errθ1,σ1

, [[Λα.t]]errθ2,σ2
) ∈ ∆err

∀α.τ,ρ by Lemma 4.3. In the second case, (11)
follows from the definitions of [[Λα.t]]errθ1,σ1

, [[Λα.t]]errθ2,σ2
, and ∆err

∀α.τ,ρ and the fact that
for every pair of elcpos D1, D2 and R ∈ Rel err(D1, D2),

([[t]]errθ1[α 7→D1],σ1
, [[t]]errθ2[α 7→D2],σ2

) ∈ ∆err
τ,ρ[α 7→R] ,

which is another instance of the induction hypothesis corresponding to the precon-
dition α,Γ ` t : τ . All other proof cases proceed like the corresponding ones for
Theorem 2.2, up to very minor and obvious changes related to the different kinds of
tagging.

Having established Theorem 4.4, we can use it to derive free theorems that hold
with respect to the imprecise error semantics. When doing so, we typically want to
specialize relations (arising from the quantification in the definition of ∆err

∀α.τ,ρ) to
functions. To this end, the following definition is useful. The notation ∅ is used for
empty mappings from type or term variables to elcpos and values, respectively.

Definition 4.5. Let h be a term with ` h : τ1 → τ2. The graph of h, denoted by
G(h), is the relation

{(a, b) | [[h]]err∅,∅ $ a = b} ⊆ [[τ1]]err∅ × [[τ2]]err∅ .

Note that it is actually a function, as h and a determine b.

Of course, we should restrict attention to such h for which G(h) fulfills all necessary
requirements on relations, i.e., error-strictness, continuity, and error-reflectingness.
Error-strictness is easily translated from a restriction on G(h) to one on h. Conti-
nuity is a general property of functions and function application in the underlying
semantics. Half of error-reflectingness, in the case of functions, is already given by
error-strictness. The other half requires to ensure that nonerroneous arguments are
mapped to nonerroneous results. Altogether, we get the following definition and
lemma.
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Definition 4.6. A term h with ` h : τ1 → τ2 and [[h]]err∅,∅ = Ok f is

• error-strict if f a = a for every a ∈ Verr , and

• error-total if T (f a) = Ok for every a ∈ [[τ1]]err∅ \ Verr .

An h with T ([[h]]err∅,∅ ) = Bad is neither error-strict nor error-total.

For example, null is error-strict and error-total, while tail is neither of both. Also,
Haskell’s standard projection function fst is error-strict but not error-total, while
(const 42) is error-total but not error-strict.

Lemma 4.7. Let h be a term with ` h : τ1 → τ2. Then G(h) ∈ Rel err iff h is
error-strict and error-total.

We will only use the if-direction of this lemma, so we only sketch the proof of that
direction, and only the parts related to the treatment of erroneous values:

• Error-strictness of G(h) follows from error-strictness of h by the definition of $
from Section 3.

• Error-reflectingness of G(h) follows from error-strictness and error-totality of h
by the definition of $ and because for every a ∈ [[τ1]]err∅ \Verr , T (a) = Ok and
E(a) = ∅, and for every b ∈ [[τ2]]err∅ , T (b) = Ok implies E(b) = ∅.

One further auxiliary lemma we need has to do with a connection between G, the
function map, and listerr .

Lemma 4.8. Let h be a term with ` h : τ1 → τ2. Then G(map τ1 τ2 h) =
listerr G(h).

The proof (by coinduction, using the definition of listerr via a greatest fixpoint)
holds no surprises and is thus omitted here.

We now have everything at hand to derive free theorems. For illustration, we
take up the introductory example.

Example 4.9. Let t be a term with ` t : ∀α.(α → Bool) → [α] → [α]. Of course,
this first requires to extend the calculus and proofs by integrating a Boolean type
and associated term-formers with appropriate typing rules, semantics, and so on.
Since the details are entirely straightforward, we omit them here. By Theorem 4.4
we have

([[t]]err∅,∅ , [[t]]
err
∅,∅ ) ∈ ∆err

∀α.(α→Bool)→[α]→[α],∅ ,

where ∅ is now also used to denote the empty mapping from type variables to
relations. Using the definition of ∆err , we obtain that for every choice of elcpos
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D1, D2, relation R ∈ Rel err(D1, D2), values p1, p2 with (p1, p2) ∈ ∆err
α→Bool,[α7→R], and

l1, l2 with (l1, l2) ∈ listerr R,

([[t]]err∅,∅ $$ D1 $ p1 $ l1, [[t]]
err
∅,∅ $$ D2 $ p2 $ l2) ∈ listerr R .

Let h be a term with ` h : τ1 → τ2 that is error-strict and error-total. By Lemma 4.7
we have G(h) ∈ Rel err([[τ1]]err∅ , [[τ2]]err∅ ), so we can use it to instantiate R above. By
Lemma 4.8 we then have listerr R = G(map τ1 τ2 h), and thus for every choice of
values p1, p2 with (p1, p2) ∈ ∆err

α→Bool,[α 7→G(h)] and l1 ∈ [[[τ1]]]err∅ ,

[[map τ1 τ2 h]]err∅,∅ $ ([[t]]err∅,∅ $$ [[τ1]]err∅ $ p1 $ l1)

=
[[t]]err∅,∅ $$ [[τ2]]err∅ $ p2 $ ([[map τ1 τ2 h]]err∅,∅ $ l1) .

The condition on p1 and p2 unfolds to T (p1) = T (p2) and

∀(a, b) ∈ G(h). (p1 $ a, p2 $ b) ∈ id lifterr{False,True} ,

i.e., to T (p1) = T (p2) and for every a ∈ [[τ1]]err∅ ,

p1 $ a = p2 $ ([[h]]err∅,∅ $ a) .

The latter is easy to satisfy by choosing p1 = [[λx : τ1.p (h x)]]err∅,∅ and p2 = [[p]]err∅,∅
for some p with ` p : τ2 → Bool, but we need to take note of the requirement that
T ([[λx : τ1.p (h x)]]err∅,∅ ) = T ([[p]]err∅,∅ ), i.e., T ([[p]]err∅,∅ ) = Ok .

Altogether, we now have for every l1 ∈ [[[τ1]]]err∅ ,

[[map τ1 τ2 h]]err∅,∅ $ ([[t]]err∅,∅ $$ [[τ1]]err∅ $ [[λx : τ1.p (h x)]]err∅,∅ $ l1)

=
[[t]]err∅,∅ $$ [[τ2]]err∅ $ [[p]]err∅,∅ $ ([[map τ1 τ2 h]]err∅,∅ $ l1) ,

and thus for every term l with ` l : [τ1],

[[map τ1 τ2 h (t τ1 (λx : τ1.p (h x)) l)]]err∅,∅ = [[t τ2 p (map τ1 τ2 h l)]]
err
∅,∅

under the conditions that h is error-strict and error-total and that T ([[p]]err∅,∅ ) = Ok .
This is the promised equivalence repair for (1).

5 Going Inequational

As mentioned in the introduction, Johann and Voigtländer (2004) consider an in-
equational version of parametricity to get (weaker) free theorems under weaker pre-
conditions. Their key step is that of moving to an asymmetric logical relation by
requiring all relations to be closed under left-composition with the approximation
order.
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Definition 5.1. Let R be a relation between elcpos. Then v ; R denotes the rela-
tion {(a, b) | ∃c. a v c, (c, b) ∈ R} between the same elcpos, and R is left-closed if
v ; R = R.

For base types like Int, one simply chooses the corresponding approximation order as
relational interpretation. For algebraic datatypes like lists, explicit left-composition
of the “structural lifting” (as obtained via list or listerr) with v suffices. To de-
termine what to do about function and polymorphic types, and in particular what
further restrictions on relations are necessary, the best strategy is again to step
through the proof cases of a desired inequational variant of Theorem 4.4.

For the case of error, we arrive via reasoning very much like at the beginning of
Section 4 at a point where we have to show that for every a, b ∈ lifterr {. . . , −2, −1, 0,
1, 2, . . .} with a v b, the values (5) and{

Bad {ErrorCall n} if b = Ok n

Bad e if b = Bad e
(12)

are related. The only difference to earlier, namely that a and b might be different,
comes from the change in interpreting Int by the approximation order rather than the
identity relation. It is easy to see that requiring error-strictness and left-closedness of
the relation in question already suffices to guarantee that the two values in question
are indeed contained in it.4

Regarding error-reflectingness, we hope for a weakening of the restriction thanks
to our move to an asymmetric setting, just as Johann and Voigtländer (2004) broke
the symmetry to avoid full bottom-reflectingness. To determine just the right weak-
ening, we reconsider the proof case for the strict-let construct. Again similarly to
Section 4, we have to investigate the relation between values (6) and (7). If the first
branch is chosen in both case distinctions, then the proof can proceed as before. If
the second branch is chosen in both case distinctions, then we would also proceed
as in Section 4, except that thanks to left-closedness we are now satisfied even with

e1 ∪ E([[t2]]errθ1,σ1[x 7→Bad ∅]) ⊇ e2 ∪ E([[t2]]errθ2,σ2[x 7→Bad ∅])

rather than expecting their equality. As a consequence, we could weaken the
“E(a) = E(b)”-condition in Definition 4.2 to “E(a) ⊇ E(b)”. It remains to dis-
cuss how to deal with the potential for choosing different branches in the two case
distinctions. Before, we completely prevented this via the “T (a) = T (b)”-condition
in Definition 4.2. Now, breaking the symmetry, we want to allow one of the two
over-cross situations, but not the other. In particular, due to the nature of left-
closedness, we should prevent the situation where the first branch is chosen in the
first case distinction, but the second branch in the second one. Given the known

4The only possible cases for a, b ∈ lifterr {. . . , −2, −1, 0, 1, 2, . . .} with a v b are as follows:
(i) a = b = Ok n, (ii) a = ⊥ and b = Ok n, and (iii) a = Bad e and b = Bad e′ with e ⊇ e′. In
each of these cases, (5) and (12) give erroneous values in an approximation relationship.
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Section 5 Going Inequational

relatedness of [[t1]]errθ1,σ1
and [[t1]]errθ2,σ2

by an induction hypothesis akin to (8) in Sec-
tion 4, this can be achieved by at least requiring “T (a) 4 T (b)”, where 4 is the
total order corresponding to the strict total order Bad ≺ Ok . Finally, for the other
over-cross situation [[t1]]errθ1,σ1

= Bad e1 and [[t1]]errθ2,σ2
= Ok v2, we have to establish

the relatedness of Bad (e1 ∪ E([[t2]]errθ1,σ1[x 7→Bad ∅])) and [[t2]]errθ2,σ2[x 7→Ok v2]. If e1 = Ent ,
then it follows from

• the assumed left-closedness of every relation,

• the fact that then Bad (e1 ∪ E([[t2]]errθ1,σ1[x7→Bad ∅])) equals ⊥ and thus approxi-

mates [[t2]]errθ1,σ1[x 7→Bad e1], and

• the relatedness of [[t2]]errθ1,σ1[x 7→Bad e1] and [[t2]]errθ2,σ2[x 7→Ok v2] (by induction hypothe-

ses akin to (8) and (9)).

If instead e1 ∈ P(E), then there is no general way to establish the desired relatedness,
so we have to rule out this particular case as well. Overall, we arrive at the following
definition.

Definition 5.2. A relation R is error-approximating if (a, b) ∈ R implies that
T (a) 4 T (b), E(a) ⊇ E(b), and a ∈ Verr \ {⊥} ⇒ T (b) = Bad .

Note that an equivalent definition would be to require for every (a, b) ∈ R that
T (a) 4 T (b) and T (a) = Bad ⇒ a v b, provided we allow ourselves the slight
abuse of notation to use v between an erroneous value from one elcpo and an
arbitrary value from another elcpo.

From now on, we use Relv to denote error-strict, continuous, left-closed, and
error-approximating relations. The task still left towards establishing inequational
parametricity for the imprecise error semantics is to adapt (possibly weaken) the
“T (f) = T (g)”-condition from the definition of ∆err

τ1→τ2,ρ in Figure 9, so as to pre-
serve this new set of restrictions. Clearly, due to the left-closedness requirement, we
cannot longer insist on equality of the tags of f and g in all cases, because if any
pair of functions (f, g) is in the relation, then (⊥, g) must be so as well, regardless of
T (g), and we do not necessarily have T (⊥) = T (g). On the other hand, requiring
just T (f) 4 T (g) would not be enough, as we could then not guarantee that the
resulting relational interpretation of a function type always satisfies the last con-
dition from Definition 5.2. It turns out that the right decision is to still require
T (f) = T (g), but only when f 6= ⊥.

Overall, our inequational logical relation is defined as in Figure 10. The proof of
the following lemma is sufficiently similar to the one of Lemma 4.3 that we do not
elaborate further on it.

Lemma 5.3. If ρ maps only to relations in Relv, then ∆vτ,ρ ∈ Relv as well.
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∆vα,ρ = ρ(α)

∆vInt,ρ = vlifterr{...,−2,−1, 0, 1, 2, ...}

∆v[τ ],ρ = v ; (listerr ∆vτ,ρ)

∆vτ1→τ2,ρ = {(f, g) | f 6= ⊥ ⇒ T (f) = T (g), ∀(a, b) ∈ ∆vτ1,ρ. (f $ a, g $ b) ∈ ∆vτ2,ρ}
∆v∀α.τ,ρ = {(u, v) | ∀D1, D2 elcpos,R ∈ Relv(D1, D2).

(u $$ D1, v $$ D2) ∈ ∆vτ,ρ[α 7→R]}

Figure 10: Inequational Logical Relation.

Finally, the following parametricity theorem holds.

Theorem 5.4. If Γ ` t : τ , then for every θ1, θ2, ρ, σ1, and σ2 such that

• for every α occurring in Γ, ρ(α) ∈ Relv(θ1(α), θ2(α)), and

• for every x : τ ′ occurring in Γ, (σ1(x), σ2(x)) ∈ ∆vτ ′,ρ ,

we have ([[t]]errθ1,σ1
, [[t]]errθ2,σ2

) ∈ ∆vτ,ρ .

Most of the proof cases not already discussed (earlier in this section, or in the
previous section for the slightly simpler equational setting) are quite straightforward.
We choose to elaborate on the one for case, mainly because the corresponding term
semantics belongs to the more intricate aspects of the imprecise error semantics.
Recall the following typing rule:

Γ ` t : [τ1] Γ ` t1 : τ2 Γ, x1 : τ1, x2 : [τ1] ` t2 : τ2

Γ ` (case t of {[ ]→ t1 ; x1 : x2 → t2}) : τ2

.

To establish

([[case t of {[ ]→ t1 ; x1 : x2 → t2}]]errθ1,σ1
,

[[case t of {[ ]→ t1 ; x1 : x2 → t2}]]errθ2,σ2
) ∈ ∆vτ2,ρ ,

we analyze the values [[t]]errθ1,σ1
and [[t]]errθ2,σ2

. By induction hypothesis they are related

by ∆v[τ1],ρ = v ; (listerr ∆vτ1,ρ), so we only have to consider the following five cases:

• [[t]]errθ1,σ1
= Ok [ ] and [[t]]errθ2,σ2

= Ok [ ], in which case the desired statement is
equivalent to the induction hypothesis

([[t1]]errθ1,σ1
, [[t1]]errθ2,σ2

) ∈ ∆vτ2,ρ , (13)

• [[t]]errθ1,σ1
= ⊥ and [[t]]errθ2,σ2

= Ok [ ], in which case we have to show (⊥, [[t1]]errθ2,σ2
) ∈

∆vτ2,ρ, which follows from (13) by left-closedness of ∆vτ2,ρ (cf. Lemma 5.3),
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• [[t]]errθ1,σ1
= Ok (a : b) and [[t]]errθ2,σ2

= Ok (c : d) with (a, c) ∈ v ; ∆vτ1,ρ and

(b, d) ∈ v ; (listerr ∆vτ1,ρ) = ∆v[τ1],ρ, in which case the desired statement follows

by left-closedness of ∆vτ1,ρ (cf. Lemma 5.3 again) from the induction hypothesis

that for every (a, c) ∈ ∆vτ1,ρ and (b, d) ∈ ∆v[τ1],ρ,

([[t2]]errθ1,σ1[x1 7→a, x2 7→b], [[t2]]errθ2,σ2[x1 7→c, x2 7→d]) ∈ ∆vτ2,ρ , (14)

• [[t]]errθ1,σ1
= ⊥, [[t]]errθ2,σ2

= Ok (c : d), and there exist a and b with (a, c) ∈ ∆vτ1,ρ
and (b, d) ∈ listerr ∆vτ1,ρ ⊆ ∆v[τ1],ρ, in which case we have to show

(⊥, [[t2]]errθ2,σ2[x1 7→c, x2 7→d]) ∈ ∆vτ2,ρ ,

which follows from (14) by left-closedness of ∆vτ2,ρ, and

• [[t]]errθ1,σ1
= Bad e1 and [[t]]errθ2,σ2

= Bad e2 with e1 ⊇ e2, in which case the desired
statement follows by error-strictness and left-closedness of ∆vτ2,ρ from

Bad (e1 ∪ E([[t1]]errθ1,σ1
) ∪ E([[t2]]errθ1,σ1[x1 7→Bad ∅, x2 7→Bad ∅]))

v
Bad (e2 ∪ E([[t1]]errθ2,σ2

) ∪ E([[t2]]errθ2,σ2[x1 7→Bad ∅, x2 7→Bad ∅])) ,

which follows from e1 ⊇ e2, (13), (14), error-strictness of ∆vτ1,ρ and ∆v[τ1],ρ, and

error-approximation of ∆vτ2,ρ.

To use Theorem 5.4 for deriving inequational free theorems, we again need a way to
bring functions into play where originally general relations are quantified. Due to
the asymmetry we have introduced, the graph notion from Definition 4.5 is replaced
by two variants now.

Definition 5.5. Let h be a term with ` h : τ1 → τ2. The right-graph of h, denoted
by Gright(h), is the relation

{(a, b) | [[h]]err∅,∅ $ a v b} ⊆ [[τ1]]err∅ × [[τ2]]err∅ ,

while the left-graph of h, denoted by Gleft(h), is the relation

{(a, b) | a v [[h]]err∅,∅ $ b} ⊆ [[τ2]]err∅ × [[τ1]]err∅ .

Note that both Gright(h) and Gleft(h) are left-closed by definition (in the former case
due to monotonicity of (λa.[[h]]err∅,∅ $ a)). Of course, we also need them to fulfill the
other relevant restrictions. For right-graphs, we obtain the following lemma.

Lemma 5.6. Let h be a term with ` h : τ1 → τ2. Then Gright(h) ∈ Relv iff h
is error-strict and error-total.
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Again we will only use the if-direction, the proof of which is similar as in the case
of Lemma 4.7.

For left-graphs, it turns out that a slight weakening of error-totality suffices.

Definition 5.7. A term h with ` h : τ1 → τ2 is error-pretotal if [[h]]err∅,∅ = Ok f
and for every a ∈ [[τ1]]err∅ \ Verr , f a = ⊥ or T (f a) = Ok .

Lemma 5.8. Let h be a term with ` h : τ1 → τ2. Then Gleft(h) ∈ Relv iff h is
error-strict and error-pretotal.

We only show here how error-approximation of Gleft(h) follows from error-strictness
and error-pretotality of h. Let [[h]]err∅,∅ = Ok f and (a, b) ∈ Gleft(h), i.e., a v f b.
Then we have:

• T (a) 4 T (b), because T (b) = Bad implies f b = b by error-strictness, thus
a v b, and hence T (a) = Bad as well,

• E(a) ⊇ E(b), because either T (b) = Ok , in which case E(b) = ∅, or T (b) =
Bad , in which case as above a v b, and

• if a ∈ Verr \ {⊥}, then T (b) = Bad , because otherwise, by error-pretotality,
f b = ⊥ or T (f b) = Ok , both of which would contradict a ∈ Verr \ {⊥} by
a v f b.

We also get two statements in the spirit of Lemma 4.8, with routine proofs.

Lemma 5.9. Let h be a term with ` h : τ1 → τ2. Then Gleft(map τ1 τ2 h) =
v ; (listerr Gleft(h)). Moreover, if h is error-strict, then Gright(map τ1 τ2 h) =
v ; (listerr Gright(h)).

To see the inequational setup in action, we reconsider the introductory example,
respectively, Example 4.9.

Example 5.10. By Theorem 5.4 we have

([[t]]err∅,∅ , [[t]]
err
∅,∅ ) ∈ ∆v∀α.(α→Bool)→[α]→[α],∅ .

Using the definition of ∆v, we obtain that for every choice of elcpos D1, D2, relation
R ∈ Relv(D1, D2), values p1, p2 with (p1, p2) ∈ ∆vα→Bool,[α 7→R], and l1, l2 with (l1, l2) ∈
v ; (listerr R),

([[t]]err∅,∅ $$ D1 $ p1 $ l1, [[t]]
err
∅,∅ $$ D2 $ p2 $ l2) ∈ v ; (listerr R) .

Let h be a term with ` h : τ1 → τ2. If h is error-strict and error-total, then by
Lemma 5.6, Gright(h) ∈ Relv([[τ1]]err∅ , [[τ2]]err∅ ), so we can use Gright(h) to instantiate
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R above. Continuing with Lemma 5.9 instead of Lemma 4.8, we can then proceed
essentially as in Example 4.9 and eventually conclude

[[map τ1 τ2 h (t τ1 (λx : τ1.p (h x)) l)]]err∅,∅ v [[t τ2 p (map τ1 τ2 h l)]]
err
∅,∅

under exactly the same conditions, in particular also T ([[p]]err∅,∅ ) = Ok , under which
we even showed equivalence there.

More interestingly, though, we can also use Lemma 5.8 to obtain an appropriate
instantiation for R above. So let h be error-strict and error-pretotal. Then we have
Gleft(h) ∈ Relv([[τ2]]err∅ , [[τ1]]err∅ ), and by Lemma 5.9,

v ; (listerr Gleft(h)) = Gleft(map τ1 τ2 h) ,

and thus for every choice of values (p1, p2) ∈ ∆vα→Bool,[α 7→Gleft (h)] and l2 ∈ [[[τ1]]]err∅ ,

[[t]]err∅,∅ $$ [[τ2]]err∅ $ p1 $ ([[map τ1 τ2 h]]err∅,∅ $ l2)

v
[[map τ1 τ2 h]]err∅,∅ $ ([[t]]err∅,∅ $$ [[τ1]]err∅ $ p2 $ l2) .

The condition on p1 and p2 unfolds to p1 6= ⊥ ⇒ T (p1) = T (p2) and

∀(a, b) ∈ Gleft(h). (p1 $ a, p2 $ b) ∈ vlifterr{False,True} ,

the latter being equivalent to, for every a ∈ [[τ2]]err∅ and b ∈ [[τ1]]err∅ ,

a v [[h]]err∅,∅ $ b⇒ p1 $ a v p2 $ b .

This is easy to satisfy by choosing p1 = [[p]]err∅,∅ and p2 = [[λx : τ1.p (h x)]]err∅,∅ for
some p with ` p : τ2 → Bool, but we need to take note of the requirement that
[[p]]err∅,∅ 6= ⊥ ⇒ T ([[p]]err∅,∅ ) = T ([[λx : τ1.p (h x)]]err∅,∅ ), i.e., [[p]]err∅,∅ 6= ⊥ ⇒ T ([[p]]err∅,∅ ) = Ok .

Altogether, we get for every term l with ` l : [τ1],

[[t τ2 p (map τ1 τ2 h l)]]
err
∅,∅ v [[map τ1 τ2 h (t τ1 (λx : τ1.p (h x)) l)]]err∅,∅

under the conditions that h is error-strict and error-pretotal, and [[p]]err∅,∅ = ⊥ or
T ([[p]]err∅,∅ ) = Ok .

A simple instantiation differentiating this from the purely equational result in
Example 4.9 is as follows. Let

id = Λα.λx : α.x
t = Λα.λf : α→ Bool.let! x = f in id [α]
τ1 = τ2 = Int
p = fix (Int→ Bool) (id (Int→ Bool))
h = id Int
l = [ ]Int .

Then we have [[t τ2 p (map τ1 τ2 h l)]]
err
∅,∅ = ⊥ but on the other hand

[[map τ1 τ2 h (t τ1 (λx : τ1.p (h x)) l)]]err∅,∅ = Ok [ ] .
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∆∼
@
α,ρ = ρ(α)

∆∼
@

Int,ρ = ∼@ lifterr{...,−2,−1, 0, 1, 2, ...}

∆∼
@

[τ ],ρ = ∼@ ; (listerr ∆∼
@
τ,ρ)

∆∼
@
τ1→τ2,ρ = {(f, g) | T (f) = T (g), ∀(a, b) ∈ ∆∼

@
τ1,ρ. (f $ a, g $ b) ∈ ∆∼

@
τ2,ρ}

∆∼
@

∀α.τ,ρ = {(u, v) | ∀D1, D2 elcpos,R ∈ Rel∼@(D1, D2).

(u $$ D1, v $$ D2) ∈ ∆∼
@

τ,ρ[α 7→R]}

Figure 11: Logical Relation for Refinement.

6 Treating Refinement

Instead of semantic equivalence or approximation, Moran et al. (1999) consider a
refinement order. The motivation is to be more liberal than equivalence, by allowing
to relate two erroneous values the second of which represents a smaller error set
than the first of which does, but at the same time less liberal than approximation,
by not allowing to relate ⊥ to a nonerroneous value. Of course, this basic idea
extends to complex values, e.g., the singleton list values Ok (⊥ : (Ok [ ])) and
Ok ((Ok 42) : (Ok [ ])) are not related. The refinement order ∼@ is simply defined
like v, except that when lifting via lifterr , we do not put ⊥ in relation with any
Ok s.

When aiming for a refinement version of relational parametricity, essentially all
we need to do is to replace v by ∼@ throughout the development in the previous sec-
tion (but not in the term semantics for fix in Figure 8). In particular, Definition 5.1
is modified in the obvious way to yield a variant of left-closedness for ∼@. To adapt
Definition 5.2, we consider the remark given below it. Replacing v by ∼@ there, we
are led to require that for every (a, b) ∈ R, T (a) 4 T (b) and T (a) = Bad ⇒ a ∼@ b.
By the definition of ∼@, this can be simplified as follows.

Definition 6.1. A relation R is error-refining if (a, b) ∈ R implies that T (a) =
T (b) and E(a) ⊇ E(b).

We use Rel∼@ to denote error-strict, continuous, ∼@-left-closed, and error-refining
relations. Figure 11 should hold few surprises now. The only subtlety to note is
that the definition for the function type case corresponds to the one from Figure 9
rather than to the one from Figure 10 as for all others. The reason is precisely the
move from error-approximation to error-refinement.

Such mixing of cases from the equational setting of Section 4 and the inequa-
tional one of Section 5 extends also to the proof of the parametricity theorem. With
the above definitions, a preservation lemma in the style of Lemma 5.3 (or Lem-
mas 2.1, 4.3) is straightforwardly established. Then we get the following theorem.

27



Section 7 Dealing with Exceptions

Theorem 6.2. If Γ ` t : τ , then for every θ1, θ2, ρ, σ1, and σ2 such that

• for every α occurring in Γ, ρ(α) ∈ Rel∼@(θ1(α), θ2(α)), and

• for every x : τ ′ occurring in Γ, (σ1(x), σ2(x)) ∈ ∆∼
@

τ ′,ρ ,

we have ([[t]]errθ1,σ1
, [[t]]errθ2,σ2

) ∈ ∆∼
@
τ,ρ .

We do not elaborate on the proof, except for noting that all proof cases are like
those for Theorem 4.4 or 5.4 or blends thereof.

Of course, it is also possible to replay the definition of left- and right-graphs of
functions, study appropriate restrictions for them, and so on. But since it turns out
that for the particular case of our introductory example this does not give results
beyond those obtained in Example 4.9 (i.e., we get two-way refinement under the
same conditions under which we already showed equivalence there), we stop here for
the moment.

7 Dealing with Exceptions

So far, we have dealt with errors as events that lead a program to fail, without any
possibility to manipulate them from inside the language itself, or to even recover
from them. While full exception handling, which in Haskell happens in the IO
monad, is out of the scope of the present paper, we undertake some steps in the
proper direction by discussing how to deal with the Haskell primitive mapException,
also discussed by Peyton Jones et al. (1999).

First of all, we need an algebraic datatype for representing exceptions as (non-
erroneous) values. Simplifying the corresponding Haskell type a bit, we add

τ ::= · · · | Exception

t ::= · · · | NonTermination | ErrorCall

to the syntax from Figure 1, as well as the new typing rules

Γ ` NonTermination : Exception Γ ` ErrorCall : Int→ Exception

to the derivation system from Figure 2. Instead of error, we introduce the primitive
throw with typing rule

Γ ` throw : ∀α.Exception→ α .

Since the type semantics of Exception naturally is the lifting of the set (approxi-
mation-ordered in the obvious way) containing NonTermination and ErrorCall a for
every a from the type semantics of Int, we also get a slightly different collection of er-
roneous values. Namely, instead of (2), E now contains all ErrorCall a with a either
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[[NonTermination]]errθ,σ = Ok NonTermination

[[ErrorCall]]errθ,σ = Ok (λa.Ok (ErrorCall a))

[[throw]]errθ,σ = Ok (λD.Ok (λa.


⊥ if a = Ok NonTermination

Bad {ErrorCall b} if a = Ok (ErrorCall b)

Bad e if a = Bad e

))

[[mapException]]errθ,σ =

Ok (λD.Ok (λh.Ok (λa.


Ok v if a = Ok v

⊥ if a = ⊥
Bad

⋃
v∈e

E([[throw]]errθ,σ
$$ D $ (h $ (Ok v)))

if a = Bad e

with e ∈ P(E)

)))

Figure 12: Additions for Error Semantics of Terms with Advanced Primitives.

being itself an erroneous value or being Ok n for n ∈ {. . . , −2, −1, 0, 1, 2, . . .}.
As a consequence of having erroneous values Bad e with e containing objects like
ErrorCall (Bad e′), we need a slightly more sophisticated definition of the approxi-
mation (pre-)order. Namely, when comparing erroneous values a and b, instead of
checking E(a) ⊇ E(b) as in (3), we have to check whether

NonTermination ∈ E(b)⇒ NonTermination ∈ E(a)
∧ ∀ (ErrorCall c) ∈ E(b). ∃ (ErrorCall d) ∈ E(a). d v c .

(15)

Similarly, when checking such sets for equality, we now actually check (15) and its
reverse.

Finally, the new primitive mapException with typing rule

Γ `mapException : ∀α.(Exception→ Exception)→ α→ α

takes an exceptions-to-exceptions function and a further argument of arbitrary type
and uses the former to transform every exception potentially appearing as a result
of the latter, while preserving potential nontermination and leaving nonerroneous
values completely unchanged. Note that mapException really needs to be added
as a primitive, because the described behavior cannot otherwise be realized in our
calculus (or in Haskell).

Of course, the term semantics from Figure 8, minus the definition for error,
needs to be adapted now. The definitions to be added, carefully crafted to agree
with the actual behavior of the primitives in Haskell, are shown in Figure 12. The
most interesting case is in the last line, describing how mapException shall deal
with a non-⊥ erroneous value in its second argument. For the sake of brevity, our
definition there refers to the definition for throw. Clearly, this indirection could be
avoided by simple inlining.

Having introduced the syntax and semantics of the extended calculus, we can
now turn to relational parametricity. The changes necessary to the developments in
Sections 4–6 are as follows:
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• Each of Figures 9–11 gets an additional definition for ∆···Exception,ρ, where the
right-hand side, in turn, is an identity, approximation, and refinement relation,
respectively.

• In Definitions 5.2 and 6.1, “E(a) ⊇ E(b)” is replaced by (15).

And that is it. In particular, Theorems 4.4, 5.4, and 6.2 (as well as the consecutive
developments leading to the results in Examples 4.9 and 5.10) remain valid. Of the
new proof cases to investigate, the ones for the data constructors NonTermination
and ErrorCall are straightforward, while the ones for throw are very similar to the
earlier ones for error. We sketch only the case for mapException in the proof of
Theorem 4.4 (the corresponding ones for Theorems 5.4 and 6.2 being only slightly
more involved). To establish that for every pair of elcpos D1, D2 and relation
R ∈ Rel err(D1, D2),

m1 = [[mapException]]errθ1,σ1
$$ D1

and
m2 = [[mapException]]errθ2,σ2

$$ D2

are related by
∆err

(Exception→Exception)→α→α,ρ[α 7→R] ,

first note that T (m1) = T (m2). So it remains to show that for every (h1, h2) ∈
∆err

Exception→Exception,ρ[α 7→R], (m1 $ h1,m2 $ h2) ∈ ∆err
α→α,ρ[α 7→R], i.e.,

T (m1 $ h1) = T (m2 $ h2)

and for every (a1, a2) ∈ R,

(m1 $ h1 $ a1,m2 $ h2 $ a2) ∈ R .

By the definition of the term semantics for mapException and by error-reflecting-
ness of R, this reduces to showing that:

• for every a1 = Ok v1 and a2 = Ok v2 with (a1, a2) ∈ R, (Ok v1,Ok v2) ∈ R,

• (⊥,⊥) ∈ R, and

• for a1 = Bad e1 and a2 = Bad e2 with e1 = e2 ∈ P(E),

(Bad
⋃
v∈e1

E([[throw]]errθ1,σ1
$$ D1 $ (h1 $ (Ok v))),

Bad
⋃
v∈e2

E([[throw]]errθ2,σ2
$$ D2 $ (h2 $ (Ok v)))) ∈ R .

The first requirement is trivial, while the second one holds by error-strictness of R.
For the third one, recall that (h1, h2) ∈ ∆err

Exception→Exception,ρ[α 7→R] and thus for every

v ∈ e1 (= e2), h1 $ (Ok v) = h2 $ (Ok v). Given this, the desired statement follows
from the definition of the term semantics for throw (in particular its disregard of
the concrete elcpo D1 or D2 supplied as argument) and error-strictness of R.

Extending the results in this paper to Haskell’s catch and try (which replace the
getException-primitive of Peyton Jones et al. (1999)) is the natural next step in our
research.
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8 Related Work

The work most closely related to ours here is that of Johann and Voigtländer (2008),
who also study relational parametricity for a setting in which different failure causes
are semantically distinguished. However, they do not work with the imprecise error
semantics embodied in Haskell. Rather, their error treatment is completely deter-
ministic, but results are given modulo a presumed, and then fixed, order on erroneous
values. It might be tempting to try and encode the “contents” of erroneous values
in the imprecise error semantics, namely sets of error causes, into the unstructured
erroneous values of the setup in Johann and Voigtländer (2008), and to choose the
order on these unstructured values to agree with the reversed subset order, as used
in (3), on the encoded sets. But this approach cannot faithfully model how errors are
propagated and combined in the imprecise error semantics, e.g., by taking unions
in the term semantics for case. In fact, it is unclear whether or how the formal
development of Johann and Voigtländer (2008) can be adapted for integration of an
“error-finding mode”.

At the outset of this paper, we gave an example of how the imprecise error se-
mantics impacts seemingly standard laws. Since this example was in no way specific
to relational parametricity as a sole way of establishing the equivalence in ques-
tion for the given definition of takeWhile, it is natural to ask about the impact
of imprecise error semantics on other reasoning techniques, in particular structural
induction. Recently, Filinski and Støvring (2007) established rigid induction as a
generalized principle dealing with a range of computational effects, starting with
partiality à la ⊥. It should be interesting to investigate how imprecise error seman-
tics fits in there.
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A Proof of Theorem 2.2

The proof is by induction over typing derivations with respect to the system from
Figure 2.

The cases Γ, x : τ ` x : τ , Γ ` n : Int, and Γ ` [ ]τ : [τ ] are immediate.

In the case
Γ ` t1 : Int Γ ` t2 : Int

Γ ` (t1 + t2) : Int
,

we have to show
([[t1 + t2]]θ1,σ1 , [[t1 + t2]]θ2,σ2) ∈ ∆Int,ρ ,

which is equivalent to showing that the values{
bn1 + n2c if [[t1]]θ1,σ1 = bn1c, [[t2]]θ1,σ1 = bn2c
⊥ otherwise

and {
bn′1 + n′2c if [[t1]]θ2,σ2 = bn′1c, [[t2]]θ2,σ2 = bn′2c
⊥ otherwise

are equal. But this follows from [[t1]]θ1,σ1 = [[t1]]θ2,σ2 and [[t2]]θ1,σ1 = [[t2]]θ2,σ2 , which in
turn follow from the induction hypotheses ([[t1]]θ1,σ1 , [[t1]]θ2,σ2) ∈ ∆Int,ρ and ([[t2]]θ1,σ1 ,
[[t2]]θ2,σ2) ∈ ∆Int,ρ.

Similarly, in the case

Γ ` t1 : τ Γ ` t2 : [τ ]

Γ ` (t1 : t2) : [τ ]
,
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we have
([[t1 : t2]]θ1,σ1 , [[t1 : t2]]θ2,σ2) ∈ ∆[τ ],ρ

⇔ (b[[t1]]θ1,σ1 : [[t2]]θ1,σ1c, b[[t1]]θ2,σ2 : [[t2]]θ2,σ2c) ∈ list ∆τ,ρ

⇔ ([[t1]]θ1,σ1 , [[t1]]θ2,σ2) ∈ ∆τ,ρ, ([[t2]]θ1,σ1 , [[t2]]θ2,σ2) ∈ ∆[τ ],ρ ,

so the induction hypotheses suffice.

In the case

Γ ` t : [τ1] Γ ` t1 : τ2 Γ, x1 : τ1, x2 : [τ1] ` t2 : τ2

Γ ` (case t of {[ ]→ t1 ; x1 : x2 → t2}) : τ2

,

we have to show that the values
[[t1]]θ1,σ1 if [[t]]θ1,σ1 = b[ ]c
[[t2]]θ1,σ1[x1 7→a, x2 7→b] if [[t]]θ1,σ1 = ba : bc
⊥ if [[t]]θ1,σ1 = ⊥

and 
[[t1]]θ2,σ2 if [[t]]θ2,σ2 = b[ ]c
[[t2]]θ2,σ2[x1 7→c, x2 7→d] if [[t]]θ2,σ2 = bc : dc
⊥ if [[t]]θ2,σ2 = ⊥

are related by ∆τ2,ρ. Since ([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆[τ1],ρ = list ∆τ1,ρ by induction hy-
pothesis, we only have to consider the following three cases:

• [[t]]θ1,σ1 = b[ ]c and [[t]]θ2,σ2 = b[ ]c, in which case the induction hypothesis
([[t1]]θ1,σ1 , [[t1]]θ2,σ2) ∈ ∆τ2,ρ suffices,

• [[t]]θ1,σ1 = ba : bc and [[t]]θ2,σ2 = bc : dc with (a, c) ∈ ∆τ1,ρ and (b, d) ∈
list ∆τ1,ρ = ∆[τ1],ρ, in which case the induction hypothesis that for every such
a, b, c, and d,

([[t2]]θ1,σ1[x1 7→a, x2 7→b], [[t2]]θ2,σ2[x1 7→c, x2 7→d]) ∈ ∆τ2,ρ ,

suffices, and

• [[t]]θ1,σ1 = ⊥ and [[t]]θ2,σ2 = ⊥, in which case we have to show (⊥,⊥) ∈ ∆τ2,ρ,
which follows from strictness of ∆τ2,ρ (cf. Lemma 2.1).

In the case
Γ, x : τ1 ` t : τ2

Γ ` (λx : τ1.t) : τ1 → τ2

,

we have
([[λx : τ1.t]]θ1,σ1 , [[λx : τ1.t]]θ2,σ2) ∈ ∆τ1→τ2,ρ

⇔ (bλa.[[t]]θ1,σ1[x 7→a]c, bλb.[[t]]θ2,σ2[x 7→b]c) ∈ ∆τ1→τ2,ρ
⇔ ∀(a, b) ∈ ∆τ1,ρ. ([[t]]θ1,σ1[x 7→a], [[t]]θ2,σ2[x7→b]) ∈ ∆τ2,ρ ,
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so the induction hypothesis suffices.

In the case
Γ ` t1 : τ1 → τ2 Γ ` t2 : τ1

Γ ` (t1 t2) : τ2

,

we have
([[t1 t2]]θ1,σ1 , [[t1 t2]]θ2,σ2) ∈ ∆τ2,ρ

⇔ ([[t1]]θ1,σ1 $ [[t2]]θ1,σ1 , [[t1]]θ2,σ2 $ [[t2]]θ2,σ2) ∈ ∆τ2,ρ

⇐ ([[t2]]θ1,σ1 , [[t2]]θ2,σ2) ∈ ∆τ1,ρ,
∀(a, b) ∈ ∆τ1,ρ. ([[t1]]θ1,σ1 $ a, [[t1]]θ2,σ2 $ b) ∈ ∆τ2,ρ

⇐ ([[t2]]θ1,σ1 , [[t2]]θ2,σ2) ∈ ∆τ1,ρ,
([[t1]]θ1,σ1 , [[t1]]θ2,σ2) ∈ ∆τ1→τ2,ρ ,

so the induction hypotheses suffice.

In the case
α,Γ ` t : τ

Γ ` (Λα.t) : ∀α.τ
,

we have to show that the values{
bλD1.[[t]]θ1[α 7→D1],σ1c if [[t]]θ1[α 7→{⊥}],σ1 6= ⊥
⊥ if [[t]]θ1[α 7→{⊥}],σ1 = ⊥

and {
bλD2.[[t]]θ2[α 7→D2],σ2c if [[t]]θ2[α 7→{⊥}],σ2 6= ⊥
⊥ if [[t]]θ2[α 7→{⊥}],σ2 = ⊥

are related by ∆∀α.τ,ρ. By induction hypothesis, [[t]]θ1[α 7→{⊥}],σ1 and [[t]]θ2[α7→{⊥}],σ2 are
related by ∆τ,ρ[α 7→{(⊥,⊥)}], so by bottom-reflectingness of the latter (cf. Lemma 2.1)
we know that either both are non-⊥ or both are ⊥. In the latter case, our proof obli-
gation reduces to (⊥,⊥) ∈ ∆∀α.τ,ρ, which holds by strictness of ∆∀α.τ,ρ (cf. Lemma 2.1
again). In the former case, it reduces to

(bλD1.[[t]]θ1[α 7→D1],σ1c, bλD2.[[t]]θ2[α 7→D2],σ2c) ∈ ∆∀α.τ,ρ
⇔ ∀D1, D2 pcpos,R ∈ Rel(D1, D2). ([[t]]θ1[α 7→D1],σ1 , [[t]]θ2[α 7→D2],σ2) ∈ ∆τ,ρ[α 7→R] ,

so (another invocation of) the induction hypothesis suffices.

In the case
Γ ` t : ∀α.τ1

Γ ` (t τ2) : τ1[τ2/α]
,

we have

([[t τ2]]θ1,σ1 , [[t τ2]]θ2,σ2) ∈ ∆τ1[τ2/α],ρ

⇔ ([[t]]θ1,σ1 $$ [[τ2]]θ1 , [[t]]θ2,σ2 $$ [[τ2]]θ2) ∈ ∆τ1,ρ[α 7→∆τ2,ρ]

⇐ ∀D1, D2 pcpos,R ∈ Rel(D1, D2). ([[t]]θ1,σ1 $$ D1, [[t]]θ2,σ2 $$ D2) ∈ ∆τ1,ρ[α 7→R]

⇔ ([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆∀α.τ1,ρ ,
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so the induction hypothesis suffices. Note that the equivalence

∆τ1[τ2/α],ρ = ∆τ1,ρ[α 7→∆τ2,ρ] ,

used in the first step above, holds by an easy induction on τ1. Also note that the
consecutive step uses ∆τ2,ρ ∈ Rel , as justified by Lemma 2.1.

In the case
Γ ` fix : ∀α.(α→ α)→ α ,

we have

([[fix]]θ1,σ1 , [[fix]]θ2,σ2) ∈ ∆∀α.(α→α)→α,ρ
⇔ (bλD1.bλh1.

⊔
((h1 $)i ⊥)cc, bλD2.bλh2.

⊔
((h2 $)i ⊥)cc) ∈ ∆∀α.(α→α)→α,ρ

⇔ ∀D1, D2 pcpos,R ∈ Rel(D1, D2).
(bλh1.

⊔
((h1 $)i ⊥)c, bλh2.

⊔
((h2 $)i ⊥)c) ∈ ∆(α→α)→α,ρ[α 7→R]

⇔ ∀D1, D2 pcpos,R ∈ Rel(D1, D2).
∀(h1, h2) ∈ ∆α→α,ρ[α 7→R]. (

⊔
((h1 $)i ⊥),

⊔
((h2 $)i ⊥)) ∈ R .

The precondition (h1, h2) ∈ ∆α→α,ρ[α 7→R] implies that for every (a, b) ∈ R, also
(h1 $ a, h2 $ b) ∈ R. Together with strictness and continuity of R, this gives the
desired statement.

Finally, in the case

Γ ` t1 : τ1 Γ, x : τ1 ` t2 : τ2

Γ ` (let! x = t1 in t2) : τ2

,

we have to show that the values{
[[t2]]θ1,σ1[x 7→a] if [[t1]]θ1,σ1 = a 6= ⊥
⊥ if [[t1]]θ1,σ1 = ⊥

and {
[[t2]]θ2,σ2[x7→b] if [[t1]]θ2,σ2 = b 6= ⊥
⊥ if [[t1]]θ2,σ2 = ⊥

are related by ∆τ2,ρ. By the induction hypothesis ([[t1]]θ1,σ1 , [[t1]]θ2,σ2) ∈ ∆τ1,ρ and
bottom-reflectingness of ∆τ1,ρ (cf. Lemma 2.1) we only have to consider the following
two cases:

1. [[t1]]θ1,σ1 = a 6= ⊥ and [[t1]]θ2,σ2 = b 6= ⊥, in which case the induction hypothesis
that for every (a, b) ∈ ∆τ1,ρ,

([[t2]]θ1,σ1[x 7→a], [[t2]]θ2,σ2[x 7→b]) ∈ ∆τ2,ρ ,

suffices, and

2. [[t1]]θ1,σ1 = ⊥ and [[t1]]θ2,σ2 = ⊥, in which case we have to show (⊥,⊥) ∈ ∆τ2,ρ,
which follows from strictness of ∆τ2,ρ (cf. Lemma 2.1 again).

This completes the proof.
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