
Parametricity for Haskell with
Imprecise Error Semantics?

Florian Stenger?? and Janis Voigtländer

Technische Universität Dresden
01062 Dresden, Germany

{stenger,voigt}@tcs.inf.tu-dresden.de

Abstract. Error raising, propagation, and handling in Haskell can be
imprecise in the sense that a language implementation’s choice of local
evaluation order, and optimizing transformations to apply, may influ-
ence which of a number of potential failure events hidden somewhere
in a program is actually triggered. While this has pragmatic advantages
from an implementation point of view, it also complicates the meaning of
programs and thus requires extra care when reasoning about them. The
proper semantic setup is one in which every erroneous value represents a
whole set of potential (but not arbitrary) failure causes. The associated
propagation rules are somewhat askew to standard notions of program
flow and value dependence. As a consequence, standard reasoning tech-
niques are cast into doubt, and rightly so. We study this issue in depth
for one such reasoning technique, namely the derivation of free theorems
from polymorphic types. We revise and extend the foundational notion
of relational parametricity, as well as further material required to make
it applicable.

1 Introduction

Functional languages come with a rich set of conceptual tools for reasoning about
programs. For example, structural induction and equational reasoning tell us
that the standard Haskell functions

takeWhile :: (α→ Bool)→ [α]→ [α]
takeWhile p [] = []
takeWhile p (x : y) | p x = x : takeWhile p y

| otherwise = []

and
map :: (α→ β)→ [α]→ [β]
map h [] = []
map h (x : y) = h x : map h y

? In TLCA 2009, Proc., volume 5608 of LNCS, pages 294–308. c© Springer-Verlag.
?? This author was supported by the DFG under grant VO 1512/1-1.

satisfy the following law for appropriately typed p, h, and l:

takeWhile p (map h l) = map h (takeWhile (p ◦ h) l) . (1)

But programming language reality can be a tough game, leading to unex-
pected failures of such near-obvious laws. For example, Peyton Jones et al. [5]
proposed a design for error handling based on a certain degree of impreciseness.
The major implementations GHC and Hugs have integrated this design years
ago. However, the resulting semantics breaks law (1). An instantiation show-
ing this is p = null , h = tail , and l = [[i] | i ← [1..(div 1 0)]] (or any other
immediately failing expression of type list-of-lists), where

null :: [α]→ Bool
null [] = True
null (x : y) = False

tail :: [α]→ [α]
tail [] = error “tail: empty list”
tail (x : y) = y

are standard Haskell functions as well. The problem with (1) now is that its
left-hand side yields exactly the “divide by zero”-error coming from l, whereas
its right-hand side may also yield the “tail: empty list”-error. This is so due
to the semantics of pattern-matching in the mentioned design [5]. In short, it
prescribes that when pattern-matching on an erroneous value as scrutinee, not
only are any errors associated with it propagated, but, in addition, the branches
of the pattern-match are investigated in “error-finding mode” to detect any
errors that may arise there independently of the scrutinee. This is done to give
the language implementation more freedom in arranging computations, thus
allowing more transformations on the code prior to execution. But here it means
that when takeWhile (null◦tail) encounters an erroneous value, also (null◦tail) x
is evaluated, with x bound to a special value Bad ∅ that exists only to trigger
the error-finding mode. And indeed, the application of tail on that x raises the
“tail: empty list”-error, which is propagated by null and then unioned with the
“divide by zero”-error from l. In contrast, takeWhile null on an erroneous value
does not add any further errors, because the definition of null raises none. And,
on both sides of (1), map h only ever propagates, but never introduces errors.

Thus, if we do not want to take the risk of introducing previously non-existent
errors, we cannot use (1) as a transformation from left to right, even though this
might have been beneficial (by bringing p and h together for further analysis or
for subsequent transformations potentially improving efficiency). The supposed
semantic equivalence simply does not hold. So impreciseness in the semantics has
its price, and if we are not ready to abandon the overall design (which would be
tantamount to taking away considerable freedom from language implementers),
then we must learn how to cope with it when reasoning about programs.

The above discussion regarding a concrete instantiation of p, h, and l gives
negative information only, namely that (1) may break down in some cases. It
does not provide any positive information about conditions on p, h, and l under
which (1) actually is a semantic equivalence. Moreover, it is relative to the
particular definition of takeWhile given at the very beginning, whereas laws
like (1) are often derived more generally as free theorems [7,9] from types alone,

without considering concrete definitions. In this paper, we develop the theory of
free theorems for Haskell with imprecise error semantics. This continues earlier
work [1] for Haskell with all potential error causes (including non-termination)
conflated into a single erroneous value ⊥. That earlier work indicates that, in
this setting, (1) is a semantic equivalence provided p 6= ⊥ and h is strict and
total in the sense that h ⊥ = ⊥ and for every x 6= ⊥, h x 6= ⊥. The task before
us involves finding the right generalizations of such conditions for a setting in
which not all errors are equal. Questions like the following ones arise:

– From which erroneous values should p be different?
– For strictness, is it enough that h preserves the least element ⊥, which in

the design of Peyton Jones et al. [5] denotes the union of all error causes,
including non-termination?

– Or do we need that also every other erroneous value (denoting a collection
of only some potential error causes, maybe just a singleton set) is mapped
to an erroneous one? To the same one? Or to ⊥?

– For totality, is it enough that non-⊥ values are mapped to non-⊥ values,
including possibly to non-⊥ but still erroneous values?

– Or do we need that h maps non-erroneous values only to non-erroneous ones?

We should not expect trivial answers to these questions. The two settings are
simply too different. In particular, it is worth pointing out that the failure of (1)
occurs for a very innocently-looking definition of takeWhile here. Note that
takeWhile as defined does not, by itself, introduce any errors or non-termination,
nor does it use selective strictness via Haskell’s seq-primitive. Thus, the features
that made life hard before are actually absent, and still the law breaks down.1 In
fact, were it not for the imprecise error semantics, (1) would hold for the given
definition of takeWhile as a semantic equivalence for arbitrary p, h, and l, even
ones involving ⊥ and seq in arbitrary ways and without strictness or totality
conditions. By contraposition, this indicates that genuinely new challenges are
posed by the imprecise error semantics.

Fortunately, we are not left groping in the dark. Our investigation can be
very much goal-directed by studying proof cases of the (relational) parametricity
theorem [7,9,6], which is the foundation for all free theorems, and trying to adapt
the proof to the imprecise error setting. This leads us to discover, among other
formal details and ingredients, the appropriate generalized conditions sought
above (first as restrictions on relations, then specialized to the function level).

Note that even though we do not deal with exception handling in the func-
tions for which we derive free theorems, our results are nevertheless immediately
relevant as well in the larger context of programs that do error recovery (in the
IO monad; see the description by Peyton Jones [4, Section 5.2]). Just imagine
alternately the left- or right-hand side of the offending instantiation of (1) in the

1 Indeed, Johann and Voigtländer [1] had to add rather ad-hoc occurrences of seq to
a definition of the filter -function (of same type as takeWhile) to “provoke” failures
of the corresponding standard free theorem. Here, instead, even the most natural
specification of takeWhile leads to problems.

place of the “· · · ” in the following code snippet:

Control.Exception.catch (evaluate · · ·) (λs→ if s 6= ErrorCall “tail: empty list”
then return [[42]]
else return [])

Then depending on whether the left- or right-hand side of (1) is put there,
we might observe different non-erroneous program outcomes. This is even more
severe than “just” a confusion between different erroneous values.

With the results from this paper both kinds of problems are settled. For
example, we will derive (cf. Example 1) that (1) is a true semantic equivalence
provided p and h are non-erroneous, h acts as identity on erroneous values, and
h never maps a non-erroneous value to an erroneous one. Similar fixes can be
obtained for other free theorems. The accompanying technical report [8] goes
on to establish “inequational” parametricity theorems, including one for the re-
finement order of Moran et al. [3]. Then, for example, slightly weaker conditions
than those mentioned above suffice for a variant of (1) in which the left-hand
side is only stated to semantically approximate the right-hand side. The tech-
nical report also makes some initial steps into the realm of exceptions as first
class citizens by integrating a primitive (Haskell’s mapException) that allows
manipulating already raised errors (respectively, their descriptive arguments)
from inside the language.

The work most closely related to that reported here is the recent one of Jo-
hann and Voigtländer [2], which also studies relational parametricity for a setting
in which different failure causes are semantically distinguished. However, that
earlier work does not consider the imprecise error semantics embodied in the
mentioned Haskell implementations. Rather, error treatment there is completely
deterministic, but results are given modulo a presumed, and then fixed, order on
erroneous values. It might be tempting to try to encode the “contents” of erro-
neous values in the imprecise error semantics, namely sets of error causes, into
the unstructured erroneous values of the deterministic setup. Then one could
try to choose the order on these unstructured values to agree with the reversed
subset order prescribed by Peyton Jones et al. [5] on the encoded sets. But this
approach cannot faithfully model how errors are propagated and combined in
the imprecise error semantics, e.g., by taking unions in the semantics of pattern-
matching. In fact, (1) is a semantic equivalence in the setting of Johann and
Voigtländer [2] (for the given definition of takeWhile), no matter what order on
erroneous values is chosen. This means that their formal development is funda-
mentally unsuited to make the semantic distinctions that need to be made here.

The remainder of the paper is structured as follows. Section 2 introduces
a Haskell-like calculus with imprecise error semantics. Section 3.1 recalls the
standard approach to relational parametricity. Sections 3.2 and 3.3 adapt it to
the imprecise error setting, and Section 3.4 shows how to derive revised free
theorems. Section 4 concludes with an outlook on future work.

2 Imprecise Error Semantics

We consider a polymorphic lambda-calculus that corresponds to Haskell with a
semantics that distinguishes between different causes of failure. The syntax of
types and terms is given as follows, where α ranges over type variables, x over
term variables, and n over the integers:

τ ::= α | Int | [τ] | τ → τ | ∀α.τ
t ::= x | n | t+ t | []τ | t : t | case t of {[]→ t ; x : x→ t} |

λx : τ.t | t t | Λα.t | t τ | fix | let! x = t in t | error

Note that the calculus is explicitly typed and that type abstraction and appli-
cation are explicit in the syntax as well. General recursion is captured via a
fixpoint combinator, while selective strictness (à la Haskell’s seq) is provided via
a strict-let construct. That construct’s standard semantics is to evaluate the term
bound to the term variable, independently of its use in the body term, and to
eventually return the evaluation of the latter, potentially reusing the evaluation
of the former term.

Fig. 1 gives the typing rules for the calculus.2 Standard conventions apply.
In particular, typing environments Γ take the form α1, . . . , αk, x1 : τ1, . . . , xl : τl
with distinct αi and xj , where all free variables occurring in a τj have to be
among the listed type variables. The explicit type information in the syntax of
empty lists ensures that for every Γ and t there is at most one τ with Γ ` t : τ .

Γ, x : τ ` x : τ Γ ` n : Int Γ ` []τ : [τ] Γ ` fix : ∀α.(α→ α)→ α

Γ ` t1 : Int Γ ` t2 : Int

Γ ` (t1 + t2) : Int

Γ ` t1 : τ Γ ` t2 : [τ]

Γ ` (t1 : t2) : [τ]

α, Γ ` t : τ

Γ ` (Λα.t) : ∀α.τ

Γ ` t : [τ1] Γ ` t1 : τ2 Γ, x1 : τ1, x2 : [τ1] ` t2 : τ2

Γ ` (case t of {[]→ t1 ; x1 : x2 → t2}) : τ2

Γ ` t : ∀α.τ1
Γ ` (t τ2) : τ1[τ2/α]

Γ, x : τ1 ` t : τ2

Γ ` (λx : τ1.t) : τ1 → τ2
Γ ` error : ∀α.Int→ α

Γ ` t1 : τ1 → τ2 Γ ` t2 : τ1
Γ ` (t1 t2) : τ2

Γ ` t1 : τ1 Γ, x : τ1 ` t2 : τ2

Γ ` (let! x = t1 in t2) : τ2

Fig. 1. Typing Rules.

As an example, map can be defined as the following term and then satisfies
` map : τ , where τ = ∀α.∀β.(α→ β)→ [α]→ [β]:

fix τ (λm : τ.Λα.Λβ.λh : α→ β.λl : [α].
case l of {[]→ []β ; x : y → (h x) : (m α β h y)}) .

2 Note that, to simplify the presentation, we deviate from Haskell by using integers
rather than strings as descriptive arguments for error.

We use a denotational semantics that extends the one given by Peyton Jones
et al. [5], our main extension being that we formalize the treatment of polymor-
phic types. Peyton Jones et al.’s main innovation, and the reason for calling the
semantics “imprecise”, is the use of sets of possible failure causes. Formally, let

E = {ErrorCall n | n ∈ {. . . , −2, −1, 0, 1, 2, . . .}}
and Ent = {NonTermination} ∪ E , where NonTermination and ErrorCall are de-
scriptive tags for use in the denotational semantics but without direct syntactical
counterparts in the underlying calculus. The set of all erroneous values is then
Verr = {Bad e | e ∈ P(E) ∪ {Ent}} 3 and its elements are ordered by

Bad e v Bad e′ iff e ⊇ e′ . (2)

The operation lift maps complete partial orders to so-called error-lifted cpos
(henceforth, for short, elcpos): lift S = Verr ∪{Ok s | s ∈ S}. The approximation
order on such an elcpo is given by (2) on erroneous values, by taking over the or-
der from S for non-erroneous values, and by mandating that ⊥ = Bad Ent is be-
low all, even non-erroneous, values, while otherwise erroneous and non-erroneous
values are pairwise incomparable. Illustrated as a diagram, the structure of an
elcpo is as follows:

Ok Bad

⊥

Bad e′

Bad e
e ⊇ e′

With the above definitions in place, types are interpreted as elcpos as follows,
where θ is a mapping from type variables to elcpos:

[[α]]θ = θ(α)
[[Int]]θ = lift {. . . , −2, −1, 0, 1, 2, . . .}
[[[τ]]]θ = gfp (λS.lift ({[]} ∪ {a : b | a ∈ [[τ]]θ, b ∈ S}))
[[τ1 → τ2]]θ = lift {f : [[τ1]]θ → [[τ2]]θ}
[[∀α.τ]]θ = lift {g | ∀D elcpo. (g D) ∈ [[τ]]θ[α 7→D] \Verr} .

The first four lines are consistent with a standard semantics featuring only a
single erroneous value ⊥ at every type. The complete partial order lifted in the
definition of [[Int]]θ is the flat one without ordering between integers. For list
types, prior to lifting, [] is only related to itself, while the ordering between
3 Note that if the e in a (Bad e) ∈ Verr contains NonTermination, then it must also

contain every other possible failure cause.

“− : −”-values is component-wise. Also note the use of the greatest fixpoint to
provide for infinite lists. The function space lifted in the definition of [[τ1 → τ2]]θ
is the one of monotonic and continuous maps between [[τ1]]θ and [[τ2]]θ, ordered
point-wise. The elements in the set lifted in the definition of [[∀α.τ]]θ are again
ordered point-wise (i.e., g1 v g2 iff for every elcpo D, g1 D v g2 D). Note
that, in this last line, by subtracting Verr from the possible ranges of g, we
mandate that a non-erroneous polymorphic value does not have any erroneous
instantiation. In particular, we thus exclude, as in Haskell, polymorphic values of
which the instantiation at some type is erroneous and at some other type is non-
erroneous. More specifically, an erroneous polymorphic value exhibits exactly the
same potential failing behavior in each of its instantiations. Of course, ensuring
all this also depends on the term semantics, to be considered next:4

[[x]]θ,σ = σ(x)
[[n]]θ,σ = Ok n

[[t1 + t2]]θ,σ ={
Ok (n1 + n2) if [[t1]]θ,σ = Ok n1, [[t2]]θ,σ = Ok n2

Bad (E([[t1]]θ,σ) ∪ E([[t2]]θ,σ)) otherwise

[[[]τ]]θ,σ = Ok []
[[t1 : t2]]θ,σ = Ok ([[t1]]θ,σ : [[t2]]θ,σ)
[[case t of {[]→ t1 ; x1 : x2 → t2}]]θ,σ =

[[t1]]θ,σ if [[t]]θ,σ = Ok []
[[t2]]θ,σ[x1 7→a, x2 7→b] if [[t]]θ,σ = Ok (a : b)
Bad (e ∪ E([[t1]]θ,σ) ∪ E([[t2]]θ,σ[x1 7→Bad ∅, x2 7→Bad ∅])) if [[t]]θ,σ = Bad e

[[λx : τ.t]]θ,σ = Ok (λa.[[t]]θ,σ[x 7→a])
[[t1 t2]]θ,σ = [[t1]]θ,σ $ [[t2]]θ,σ

[[Λα.t]]θ,σ =

{
Ok (λD.[[t]]θ[α7→D],σ) if [[t]]θ[α7→Verr],σ = Ok v

Bad e if [[t]]θ[α7→Verr],σ = Bad e

[[t τ]]θ,σ = [[t]]θ,σ $$ [[τ]]θ
[[fix]]θ,σ = Ok (λD.Ok (λh.

⊔
((h $)i ⊥)))

[[let! x = t1 in t2]]θ,σ =

{
[[t2]]θ,σ[x 7→Ok v] if [[t1]]θ,σ = Ok v

Bad (e ∪ E([[t2]]θ,σ[x 7→Bad ∅])) if [[t1]]θ,σ = Bad e

[[error]]θ,σ = Ok (λD.Ok (λa.

{
Bad {ErrorCall n} if a = Ok n

Bad e if a = Bad e
))

Most of the above definitions are straightforward. They use λ for denoting anony-
mous functions, and the following two operators:

h $ a =

{
f a if h = Ok f

Bad (e ∪ E(a)) if h = Bad e
, where E(a) =

{
∅ if a = Ok v

e if a = Bad e ,

4 Here σ is a mapping from term variables to values.

and

h $$ D =

{
g D if h = Ok g

Bad e if h = Bad e .

One crucial point here, taken from Peyton Jones et al. [5], is that application
of an erroneous function value incurs all potential failures of the argument as
well. We also essentially use their definitions of [[t1 + t2]]θ,σ and [[case t of {[]→
t1 ; x1 : x2 → t2}]]θ,σ, except that we do not check for overflow in the case of ad-
dition. To bring about erroneous values other than ⊥ in the first place, we have
the obvious definition of [[error]]θ,σ. The expression

⊔
((h $)i ⊥) in the defini-

tion for fix means the supremum of the chain ⊥ v h $ ⊥ v h $ (h $ ⊥) · · · . For
[[Λα.t]]θ,σ, we first need to analyze the semantics of t to sort out the exceptional
case that every D is mapped to an (actually, one and the same) erroneous value,
in which case the semantics of Λα.t should itself be that erroneous value, as
explicitly added via lift in the definition of [[∀α.τ]]θ. Due to the observed unique-
ness, it is not actually necessary to check the behavior for every D. Instead, the
test can be performed with a single, arbitrary elcpo. We choose the simplest
one, namely just Verr . If we find that we are not in the exceptional case, the
denotation is just the standard one, but appropriately tagged via Ok . Finally,
the definition of [[let! x = t1 in t2]]θ,σ follows the standard one, but similarly to
the definition of [[case t of {[] → t1 ; x1 : x2 → t2}]]θ,σ, and in line with the
operational semantics of Moran et al. [3], t2 is evaluated in “error-finding mode”
to contribute further potential failure causes in case t1 is already erroneous. Al-
together, we have that if Γ ` t : τ and σ(x) ∈ [[τ ′]]θ for every x : τ ′ occurring
in Γ , then [[t]]θ,σ ∈ [[τ]]θ.

3 Parametricity

3.1 The Standard Logical Relation

The key to parametricity results is the definition of a family of relations by
induction on a calculus’ type structure. If we were to abandon the primitive
error, and thus return to a setting without distinguishing error causes (i.e., with
only one erroneous value ⊥), then the appropriate such logical relation would be
as follows, where ρ is a mapping from type variables to binary relations between
pointed complete partial orders:

∆α,ρ = ρ(α)
∆Int,ρ = id
∆[τ],ρ = list ∆τ,ρ

∆τ1→τ2,ρ = {(f, g) | f = ⊥ iff g = ⊥, ∀(a, b) ∈ ∆τ1,ρ. (f $ a, g $ b) ∈ ∆τ2,ρ}
∆∀α.τ,ρ = {(u, v) | ∀D1, D2,R ∈ Rel(D1, D2). (u $$ D1, v $$ D2) ∈ ∆τ,ρ[α 7→R]}
We use id to denote identity relations. The operation list takes a relation R and
maps it to

list R = gfp (λS.{(⊥,⊥), (Ok [],Ok [])}
∪ {(Ok (a : b),Ok (c : d)) | (a, c) ∈ R, (b, d) ∈ S}) ,

where again the greatest fixpoint is taken. Rel(D1, D2) collects all relations be-
tween D1 and D2 that are strict, continuous, and bottom-reflecting. Strictness
and continuity are just the standard notions (i.e., membership of the pair (⊥,⊥)
and closure under suprema). A relation R is bottom-reflecting if (a, b) ∈ R im-
plies that a = ⊥ iff b = ⊥. The corresponding explicit condition on f and g in
the definition of ∆τ1→τ2,ρ serves the purpose of ensuring that bottom-reflection
is preserved throughout the logical relation.

Overall, for that ⊥-only setting, reasoning like Johann and Voigtländer [1] do
gives the following important lemma (by induction on τ), where Rel is the union
of all Rel(D1, D2). That lemma is crucial for then proving the parametricity
theorem.

Lemma 1. If ρ maps only to relations in Rel, then ∆τ,ρ ∈ Rel.

Theorem 1. If Γ ` t : τ , then for every θ1, θ2, ρ, σ1, and σ2 such that

– for every α occurring in Γ , ρ(α) ∈ Rel(θ1(α), θ2(α)), and
– for every x : τ ′ occurring in Γ , (σ1(x), σ2(x)) ∈ ∆τ ′,ρ ,

we have ([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆τ,ρ .

For reference, the proof of Theorem 1 for the setting without error, spelling
out more formally the “narrative” of Johann and Voigtländer [1], is given in
Appendix A of the accompanying technical report [8].

3.2 Towards Appropriate Restrictions on Relations

To establish an analogue of Theorem 1 for the setting including non-⊥ errors, and
their deliberately imprecise semantics, we first need to determine just the right
set of restrictions to impose on relational interpretations of types. Above, we
required strict, continuous, and bottom-reflecting relations. It seems reasonable
that continuity will still be required as we still have general recursion via the
fixpoint combinator. But for strictness and bottom-reflection, the situation is
less clear when we have more than a single erroneous value ⊥ to consider.

For example, strictness currently only states that the pair (⊥,⊥) (i.e., the
pair (Bad Ent ,Bad Ent)) should be contained in every relation. But what about
other erroneous values? Should any pair of them be related? Or only identical
ones? Or is inclusion of (⊥,⊥) actually enough?

The best way to answer such questions is to go through the proof of The-
orem 1 and see where changes in the calculus and its semantics might require
a change in the proof. In our case, it of course makes most sense to study the
impact of the new primitive error first. Recalling its typing rule, we will have
to prove that, for every θ1, θ2, ρ, σ1, and σ2 such that

– for every α occurring in Γ , ρ(α) is an appropriately restricted relation be-
tween θ1(α) and θ2(α), and

– for every x : τ ′ occurring in Γ , (σ1(x), σ2(x)) ∈ ∆τ ′,ρ,

we have ([[error]]θ1,σ1 , [[error]]θ2,σ2) ∈ ∆∀α.Int→α,ρ.
By the definition of ∆, this will require to establish that for every D1, D2,

and (appropriate) R, ([[error]]θ1,σ1 $$ D1, [[error]]θ2,σ2 $$ D2) ∈ ∆Int→α,ρ[α7→R].
Further unfolding the current definition of ∆ tells us that we will have to show
that

[[error]]θ1,σ1 $$ D1 = ⊥ iff [[error]]θ2,σ2 $$ D2 = ⊥ (3)

(or a similar statement involving also non-⊥ erroneous values) and that for every
(a, b) ∈ ∆Int,ρ[α7→R], ([[error]]θ1,σ1 $$ D1 $ a, [[error]]θ2,σ2 $$ D2 $ b) ∈ R. Tak-
ing into account that the integer type should still be interpreted by an identity
relation, and using the semantics definitions given in Section 2, the latter is the
same as requiring that for every a ∈ lift {. . . , −2, −1, 0, 1, 2, . . .}, the value{

Bad {ErrorCall n} if a = Ok n

Bad e if a = Bad e

is related to itself by R, which is equivalent to requiring that every erroneous
value is related to itself by R. Therefore, we propose to generalize the notion of
strictness as follows, with idVerr

= {(a, a) | a ∈ Verr}.
Definition 1. A relation R is error-strict if idVerr ⊆ R.

Similar questions as for strictness arise for bottom-reflection in the presence
of different failure causes. Is it enough to maintain that two related values are
either both ⊥ or else neither one of them is? Or should we generalize by requiring
that either both are erroneous or else neither one of them is? Or should we be
even more demanding by even expecting that only equal failure causes (or sets
thereof) are related?

The relevant proof case to check here is the one for the strict-let construct,
because selective strictness was what necessitated bottom-reflection in the first
place [1]. Recall the typing rule. Inside the proof of an analogue of Theo-
rem 1 by induction over typing derivations we will have to establish, for the
induction conclusion in this case, that, for θ1, θ2, ρ, σ1, and σ2 as above,
we have ([[let! x = t1 in t2]]θ1,σ1 , [[let! x = t1 in t2]]θ2,σ2) ∈ ∆τ2,ρ. The semantics
from Section 2 tells us that the two values in the relation of which we are inter-
ested here are equal to{

[[t2]]θ1,σ1[x 7→Ok v1] if [[t1]]θ1,σ1 = Ok v1

Bad (e1 ∪ E([[t2]]θ1,σ1[x 7→Bad ∅])) if [[t1]]θ1,σ1 = Bad e1

and {
[[t2]]θ2,σ2[x 7→Ok v2] if [[t1]]θ2,σ2 = Ok v2

Bad (e2 ∪ E([[t2]]θ2,σ2[x 7→Bad ∅])) if [[t1]]θ2,σ2 = Bad e2 ,

respectively. The role of bottom-reflection in the ⊥-only setting is to ensure, via
the induction hypothesis corresponding to the precondition Γ ` t1 : τ1, viz.

([[t1]]θ1,σ1 , [[t1]]θ2,σ2) ∈ ∆τ1,ρ , (4)

that the same branch is chosen in (the analogues of) the two case distinctions
above. Here the same can be achieved by introducing an auxiliary function ex-
tracting the tag of a value as follows:

T (a) =

{
Ok if a = Ok v

Bad if a = Bad e ,

and generalizing bottom-reflection in such a way that related values are always
required to have the same image under T .

This suffices in the case that [[t1]]θ1,σ1 = Ok v1 and [[t1]]θ2,σ2 = Ok v2, be-
cause we then get the desired ([[t2]]θ1,σ1[x 7→Ok v1], [[t2]]θ2,σ2[x 7→Ok v2]) ∈ ∆τ2,ρ from
(Ok v1,Ok v2) ∈ ∆τ1,ρ (cf. (4)) and the induction hypothesis corresponding to
the precondition Γ, x : τ1 ` t2 : τ2, namely that for every (b, c) ∈ ∆τ1,ρ,

([[t2]]θ1,σ1[x 7→b], [[t2]]θ2,σ2[x 7→c]) ∈ ∆τ2,ρ . (5)

However, in the case that [[t1]]θ1,σ1 = Bad e1 and [[t1]]θ2,σ2 = Bad e2, we need
to show that

(Bad (e1 ∪ E([[t2]]θ1,σ1[x 7→Bad ∅])),Bad (e2 ∪ E([[t2]]θ2,σ2[x 7→Bad ∅]))) ∈ ∆τ2,ρ , (6)

and do not yet have the means for doing so. Note that a supposed error-strictness
of ∆τ2,ρ would only allow us to conclude the desired membership if the sets
e1 ∪E([[t2]]θ1,σ1[x 7→Bad ∅]) and e2 ∪E([[t2]]θ2,σ2[x7→Bad ∅]) were equal. Revising the
notion of error-strictness to guarantee that indeed any two erroneous values are
related, independently of the sets of possible failures they represent, would risk
completely blurring any distinction between different failure causes, and thus
is not an acceptable option. Instead, the proposed generalization of bottom-
reflection is strengthened in a very natural way. Rather than just requiring that
two related values always have the same image under T , we expect the same
under E.

Definition 2. A relation R is error-reflecting if (a, b) ∈ R implies that T (a) =
T (b) and E(a) = E(b).5

Then, (4) and the assumption that ∆τ1,ρ is error-reflecting imply that in the
case [[t1]]θ1,σ1 = Bad e1 and [[t1]]θ2,σ2 = Bad e2 we even have e1 = e2. More-
over, (5) and (Bad ∅,Bad ∅) ∈ ∆τ1,ρ (cf. supposed error-strictness of ∆τ1,ρ)
give ([[t2]]θ1,σ1[x 7→Bad ∅], [[t2]]θ2,σ2[x 7→Bad ∅]) ∈ ∆τ2,ρ, and thus by supposed error-
reflection of ∆τ2,ρ, E([[t2]]θ1,σ1[x7→Bad ∅]) = E([[t2]]θ2,σ2[x7→Bad ∅]) as well, which
finally establishes (6), without having to revise the notion of error-strictness.

3.3 The New Logical Relation and its Parametricity Theorem

We have been led to focus on relations that are error-strict, continuous, and
error-reflecting. Clearly, ensuring that these restrictions are preserved will require
5 Note that E(a) = E(b) does not imply T (a) = T (b), as can be seen by taking
a = Bad ∅ and b = Ok v.

changes to the definition of ∆. For example, the operation list used in Section 3.1
does not suffice anymore, but it is easy enough to replace it as follows:

listerr R = gfp (λS.idVerr ∪ {(Ok [],Ok [])}
∪ {(Ok (a : b),Ok (c : d)) | (a, c) ∈ R, (b, d) ∈ S}) .

For the case of function types, we clearly need an appropriate replacement for
the “f = ⊥ iff g = ⊥”-condition occurring in the definition of ∆τ1→τ2,ρ. It might
seem that, to guarantee error-reflection (instead of bottom-reflection, as earlier),
we will have to require “T (f) = T (g) and E(f) = E(g)”. But actually it turns
out that requiring just “T (f) = T (g)” is enough, as then the other conjunct can
be established from relatedness of f $ a and g $ b for related a and b (see below).
For the case of polymorphic types, we clearly have to restrict the relations that
we quantify over to error-strict, continuous, and error-reflecting ones. To this
end, for given elcpos D1 and D2, let Relerr (D1, D2) collect all relations between
them that are error-strict, continuous, and error-reflecting. (Also, let Relerr be
the union of all Relerr (D1, D2).) Overall, we obtain the new logical relation
defined as follows:

∆err
α,ρ = ρ(α)

∆err
Int,ρ = id lift{...,−2,−1, 0, 1, 2, ...}

∆err
[τ],ρ = listerr ∆err

τ,ρ

∆err
τ1→τ2,ρ = {(f, g) | T (f) = T (g), ∀(a, b) ∈ ∆err

τ1,ρ. (f $ a, g $ b) ∈ ∆err
τ2,ρ}

∆err
∀α.τ,ρ = {(u, v) | ∀D1, D2,R ∈ Relerr (D1, D2).

(u $$ D1, v $$ D2) ∈ ∆err
τ,ρ[α7→R]}

Now we can state the following analogue of Lemma 1.

Lemma 2. If ρ maps only to relations in Relerr , then ∆err
τ,ρ ∈ Relerr .

The proof is mostly routine, but we briefly sketch a few interesting parts related
to the treatment of erroneous values:

– Error-strictness of ∆err
τ1→τ2,ρ follows from error-reflection of ∆err

τ1,ρ and error-
strictness of ∆err

τ2,ρ, because for every e ∈ P(E)∪ {Ent} and a, b with E(a) =
E(b), we have ((Bad e) $ a, (Bad e) $ b) ∈ idVerr

.
– Error-reflection of ∆err

τ1→τ2,ρ follows from error-strictness of ∆err
τ1,ρ and error-

reflection of ∆err
τ2,ρ, because for every e, e′ ∈ P(E) ∪ {Ent}, we have that

E((Bad e) $ (Bad ∅)) = E((Bad e′) $ (Bad ∅)) implies e = e′.
– Error-strictness of∆err

∀α.τ,ρ follows from error-strictness of∆err
τ,ρ[α7→R] for every

error-strict, continuous, and error-reflecting relationR, because for every e ∈
P(E)∪{Ent} and elcposD1 andD2, ((Bad e) $$ D1, (Bad e) $$ D2) ∈ idVerr .

– Error-reflection of ∆err
∀α.τ,ρ follows from error-reflection of ∆err

τ,ρ[α7→R] for every
error-strict, continuous, and error-reflecting relationR, because for every (er-
roneous or non-erroneous) value h in [[∀α.τ]]θ for some θ, and every elcpo D,
we have T (h $$ D) = T (h) and E(h $$ D) = E(h).

Being assured of Lemma 2 is nice, but not our ultimate goal. Rather, we want
the following analogue of Theorem 1.

Theorem 2. If Γ ` t : τ , then for every θ1, θ2, ρ, σ1, and σ2 such that

– for every α occurring in Γ , ρ(α) ∈ Relerr (θ1(α), θ2(α)), and
– for every x : τ ′ occurring in Γ , (σ1(x), σ2(x)) ∈ ∆err

τ ′,ρ ,

we have ([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆err
τ,ρ .

Of course, Lemma 2 plays an important role in the proof, in particular in the
inductive case for type application. The proof case for error was already dis-
cussed earlier, in Section 3.2. The only change necessary to what was said there
is that instead of (3) we actually need to establish that T ([[error]]θ1,σ1 $$ D1) =
T ([[error]]θ2,σ2 $$ D2). But this is straightforward from the term semantics,
which forces both tags to be Ok .

Another proof case already discussed in Section 3.2 is the one for the strict-let
construct. Clearly, it also uses Lemma 2, to deduce T ([[t1]]θ1,σ1) = T ([[t1]]θ2,σ2)
from ([[t1]]θ1,σ1 , [[t1]]θ2,σ2) ∈ ∆err

τ1,ρ and to deduce (Bad (e1∪E([[t2]]θ1,σ1[x 7→Bad ∅])),
Bad (e2 ∪E([[t2]]θ2,σ2[x 7→Bad ∅]))) ∈ ∆err

τ2,ρ from (Bad e1,Bad e2) ∈ ∆err
τ1,ρ and the

statement that for every (b, c) ∈ ∆err
τ1,ρ, ([[t2]]θ1,σ1[x 7→b], [[t2]]θ2,σ2[x 7→c]) ∈ ∆err

τ2,ρ.
Most other proof cases proceed like the corresponding ones for Theorem 1.

The two that do not, and that require Lemma 2 as well, namely those for case
and for type abstraction, are discussed in detail in the technical report [8].

3.4 Applying the New Parametricity Theorem

Having established Theorem 2, we can use it to derive free theorems that hold
with respect to the imprecise error semantics. When doing so, we typically want
to specialize relations (arising from the quantification in the definition of ∆err

∀α.τ,ρ)
to functions. To this end, the following definition is useful. The notation ∅ is used
for empty mappings from type or term variables to elcpos and values.

Definition 3. Let h be a term with ` h : τ1 → τ2. The graph of h, denoted
by G(h), is the relation {(a, b) | [[h]]∅,∅ $ a = b} ⊆ [[τ1]]∅ × [[τ2]]∅. Note that it is
actually a function, as h and a determine b.

Of course, we should restrict attention to such h for which G(h) fulfills all
necessary requirements on relations (i.e., error-strictness, continuity, and error-
reflection). Error-strictness is easily translated from a restriction on G(h) to one
on h. Continuity is a general property of functions and function application in
the underlying semantics. Half of error-reflection, in the case of functions, is
already given by error-strictness. The other half requires a guarantee that non-
erroneous arguments are mapped to non-erroneous results. Altogether, we get
the following definition and lemma.

Definition 4. A term h with ` h : τ1 → τ2 and [[h]]∅,∅ = Ok f is

– error-strict if f a = a for every a ∈ Verr , and
– error-total if T (f a) = Ok for every a ∈ [[τ1]]∅ \Verr .

An h with T ([[h]]∅,∅) = Bad is neither error-strict nor error-total.

For example, null is error-strict and error-total, while tail is neither. Also,
Haskell’s standard projection function fst is error-strict but not error-total, while
(const 42) is error-total but not error-strict.

Lemma 3. Let h be a term with ` h : τ1 → τ2. Then G(h) ∈ Relerr iff h is
error-strict and error-total.

We will only use the if-direction of this lemma, so we only sketch the proof of
that direction, and only the parts related to the treatment of erroneous values:

– Error-strictness of G(h) follows from error-strictness of h by definition of $.
– Error-reflection of G(h) follows from error-strictness and error-totality of h

by the definition of $ and because for every a ∈ [[τ1]]∅ \Verr , T (a) = Ok and
E(a) = ∅, and for every b ∈ [[τ2]]∅, T (b) = Ok implies E(b) = ∅.

One further auxiliary lemma we need has to do with a connection between G,
the function map, and listerr .

Lemma 4. Let h be a term with ` h : τ1 → τ2. Then G(map τ1 τ2 h) =
listerr G(h).

The proof (by coinduction, using the definition of listerr via a greatest fixpoint)
holds no surprises and is thus omitted here.

We now have everything at hand to derive free theorems. For illustration, we
take up the introductory example.

Example 1. Let t be a term with ` t : ∀α.(α→ Bool)→ [α]→ [α]. This requires
to extend the calculus and proofs by integrating a Boolean type and associ-
ated term-formers with appropriate typing rules, semantics, and so on. Since
the details are entirely straightforward, we omit them. By Theorem 2 we have
([[t]]∅,∅, [[t]]∅,∅) ∈ ∆err

∀α.(α→Bool)→[α]→[α],∅, where ∅ is now also used to denote the
empty mapping from type variables to relations. Using the definition of ∆err ,
we obtain that for every choice of elcpos D1, D2, relation R ∈ Relerr (D1, D2),
values p1, p2 with (p1, p2) ∈ ∆err

α→Bool,[α7→R], and l1, l2 with (l1, l2) ∈ listerr R,
([[t]]∅,∅ $$ D1 $ p1 $ l1, [[t]]∅,∅ $$ D2 $ p2 $ l2) ∈ listerr R. Let h be a term with
` h : τ1 → τ2 that is error-strict and error-total. (For the introductory exam-
ple, h = tail is neither error-strict nor error-total.) By Lemma 3 we have G(h) ∈
Relerr ([[τ1]]∅, [[τ2]]∅), so we can use it to instantiateR above. By Lemma 4 we then
have listerr R = G(map τ1 τ2 h), and thus for every choice of values p1, p2 with
(p1, p2) ∈ ∆err

α→Bool,[α 7→G(h)] and l1 ∈ [[[τ1]]]∅, [[map τ1 τ2 h]]∅,∅ $ ([[t τ1]]∅,∅ $ p1 $ l1)
= [[t τ2]]∅,∅ $ p2 $ ([[map τ1 τ2 h]]∅,∅ $ l1). The condition on p1 and p2 unfolds to
T (p1) = T (p2) and for every a ∈ [[τ1]]∅, p1 $ a = p2 $ ([[h]]∅,∅ $ a). The latter
is easy to satisfy by choosing p1 = [[λx : τ1.p (h x)]]∅,∅ and p2 = [[p]]∅,∅ for
some p with ` p : τ2 → Bool, but we need to take note of the requirement
that T ([[λx : τ1.p (h x)]]∅,∅) = T ([[p]]∅,∅), which is equivalent to T ([[p]]∅,∅) = Ok .
Altogether, we now have for every l1 ∈ [[[τ1]]]∅, [[map τ1 τ2 h]]∅,∅ $ ([[t τ1 (λx :
τ1.p (h x))]]∅,∅ $ l1) = [[t τ2 p]]∅,∅ $ ([[map τ1 τ2 h]]∅,∅ $ l1), and thus for ev-
ery term l with ` l : [τ1], [[map τ1 τ2 h (t τ1 (λx : τ1.p (h x)) l)]]∅,∅ =
[[t τ2 p (map τ1 τ2 h l)]]∅,∅ under the conditions that h is error-strict and error-
total and that T ([[p]]∅,∅) = Ok . This is the promised equivalence repair for (1).

4 Dealing with Exceptions, and Beyond

So far, we have dealt with errors as events that lead a program to fail, without
any possibility to manipulate them from inside the language itself, or to even
recover from them. The accompanying technical report [8] shows how to deal with
the Haskell primitive mapException, also discussed by Peyton Jones et al. [5].
Eventually, we want to cover full exception handling by (partially) modeling
Haskell’s IO monad.

An important move towards practical applicability would be the provision
of static analyses that can successfully check for the conditions under which
free theorems are now known to hold, so as to make them safely usable in a
Haskell compiler. Clearly, conditions like error-strictness and error-totality are
undecidable in general. But considering slightly stronger, tractable, conditions
could be good enough in practice. In particular, it should be possible to leverage
GHC’s strictness analyzer for also establishing error-strictness, and a sufficient
check for error-totality is possible using the strategy employed by Xu et al. [10],
namely symbolic evaluation plus syntactic safety, all ready for the taking in (a
branch of) GHC.

Acknowledgements. We would like to thank anonymous reviewers for their
comments and suggestions.

References

1. P. Johann and J. Voigtländer. Free theorems in the presence of seq. In POPL,
Proceedings, pages 99–110. ACM Press, 2004.

2. P. Johann and J. Voigtländer. A family of syntactic logical relations for the se-
mantics of Haskell-like languages. Information and Computation, 207(2):341–368,
2009.

3. A. Moran, S.B. Lassen, and S.L. Peyton Jones. Imprecise exceptions, Co-
inductively. In HOOTS, Proceedings, volume 26 of ENTCS, pages 122–141. El-
sevier, 1999.

4. S.L. Peyton Jones. Tackling the awkward squad: monadic input/output, concur-
rency, exceptions, and foreign-language calls in Haskell. In Marktoberdorf Summer
School 2000, Proceedings, pages 47–96. IOS Press, 2001.

5. S.L. Peyton Jones, A. Reid, C.A.R. Hoare, S. Marlow, and F. Henderson. A
semantics for imprecise exceptions. In PLDI, Proceedings, pages 25–36. ACM Press,
1999.

6. A.M. Pitts. Parametric polymorphism and operational equivalence. Mathematical
Structures in Computer Science, 10(3):321–359, 2000.

7. J.C. Reynolds. Types, abstraction and parametric polymorphism. In Information
Processing, Proceedings, pages 513–523. Elsevier, 1983.

8. F. Stenger and J. Voigtländer. Parametricity for Haskell with imprecise error
semantics. Technical Report TUD-FI08-08, Technische Universität Dresden, 2008.

9. P. Wadler. Theorems for free! In FPCA, Proceedings, pages 347–359. ACM Press,
1989.

10. D.N. Xu, S.L. Peyton Jones, and K. Claessen. Static contract checking for Haskell.
In POPL, Proceedings, pages 41–52. ACM Press, 2009.

