
Journal of Functional Programming
http://journals.cambridge.org/JFP

Additional services for Journal of Functional Programming:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

Enhancing semantic bidirectionalization via shape
bidirectionalizer plug-ins

JANIS VOIGTLÄNDER, ZHENJIANG HU, KAZUTAKA MATSUDA and MENG WANG

Journal of Functional Programming / Volume 23 / Issue 05 / September 2013, pp 515 - 551
DOI: 10.1017/S0956796813000130, Published online: 14 October 2013

Link to this article: http://journals.cambridge.org/abstract_S0956796813000130

How to cite this article:
JANIS VOIGTLÄNDER, ZHENJIANG HU, KAZUTAKA MATSUDA and MENG WANG (2013).
Enhancing semantic bidirectionalization via shape bidirectionalizer plug-ins. Journal of Functional
Programming, 23, pp 515-551 doi:10.1017/S0956796813000130

Request Permissions : Click here

Downloaded from http://journals.cambridge.org/JFP, IP address: 131.220.9.166 on 31 Oct 2013

JFP 23 (5): 515–551, 2013. c© Cambridge University Press 2013

doi:10.1017/S0956796813000130 First published online 14 October 2013
515

Enhancing semantic bidirectionalization via
shape bidirectionalizer plug-ins

J A N I S V O I G T L Ä N D E R
University of Bonn, 53113 Bonn, Germany
(e-mail:)jv@informatik.uni-bonn.de)

Z H E N J I A N G H U
National Institute of Informatics, Tokyo 101-8430, Japan

(e-mail:)hu@nii.ac.jp)

K A Z U T A K A M A T S U D A
University of Tokyo, Tokyo 113-0033, Japan

(e-mail:)kztk@is.s.u-tokyo.ac.jp)

M E N G W A N G
Chalmers University of Technology, 412 96 Gothenburg, Sweden

(e-mail:)wmeng@chalmers.se)

Abstract

Matsuda et al. (Matsuda, K., Hu, Z., Nakano, K., Hamana, M. & Takeichi, M. (2007) Bidirec-
tionalization transformation based on automatic derivation of view complement functions. In Pro-
ceedings of the International Conference on Functional Programming. ACM Press, pp. 47–58) and
Voigtländer (Voigtländer, J. (2009) Bidirectionalization for free! In Proceedings of Principles of Pro-
gramming Languages. ACM Press, pp. 165–176) have introduced two techniques that given a source-
to-view function provide an update propagation function mapping an original source and an updated
view back to an updated source, subject to standard consistency conditions. Previously, we developed
a synthesis of the two techniques, based on a separation of shape and content aspects (Voigtländer,
J., Hu, Z., Matsuda, K. & Wang, M. (2010) Combining syntactic and semantic bidirectionalization.
In Proceedings of the International Conference on Functional Programming. ACM Press, pp. 181–
192). Here we carry that idea further, reworking the technique of Voigtländer such that any shape
bidirectionalizer (based on the work of Matsuda et al. (2007) or not) can be used as a plug-in, to
good effect. We also provide a data-type-generic account, enabling wider reuse, including the use of
pluggable bidirectionalization itself as a plug-in.

1 Introduction

Bidirectionalization is the task of, given some function get :: τ1 → τ2, producing a function
put :: τ1 → τ2 → τ1 such that if get maps an original source s to an original view v, and
v is somehow changed into an updated view v′, then put applied to s and v′ produces an
updated source s′ in a meaningful way.

516 J. Voigtländer et al.

s

s′

v

v′
put����

Update

��

get ��

Such get/put-pairs, called bidirectional transformations, play an important role in various
application areas such as databases, file synchronization, structured editing, and model
transformation. Czarnecki et al. (2009) survey relevant techniques and open problems.
Functional programming approaches have had an important impact, with several ideas
and solutions springing from this part of the programming languages field in particular
(Bohannon et al., 2006, 2008; Foster et al., 2007, 2008, 2012; Matsuda et al., 2007, 2009;
Hu et al., 2008; Voigtlander, 2009, 2012; Hidaka et al., 2010; Pacheco & Cunha, 2010;
Pacheco et al., 2012; Wang et al., 2011, 2013; Matsuda & Wang, 2013).

Automatic bidirectionalization is one approach to obtaining suitable get/put-pairs; others
are domain-specific languages or more ad hoc programming techniques. Two different
flavors of bidirectionalization have been proposed: syntactic and semantic. Syntactic bidi-
rectionalization (Matsuda et al., 2007) works on a syntactic representation of (somehow
restricted) get-functions and synthesizes appropriate definitions for put-functions algorith-
mically. Semantic bidirectionalization (Voigtländer, 2009) does not inspect the syntactic
definitions of get-functions at all, but instead provides a single definition of put, parameter-
ized over get as a semantic object that does the job by invoking get in a kind of ‘simulation
mode’.

Both syntactic and semantic bidirectionalization have their strengths and weaknesses.
Syntactic bidirectionalization depends heavily on syntactic restraints exercised when im-
plementing the get-function. Basically, the technique of Matsuda et al. (2007) can only deal
with programs in a custom first-order language subject to certain restrictions concerning
variable use and nested function calls. Semantic bidirectionalization, in contrast, provides
very easy access to bidirectionality within a general-purpose language, liberated from the
syntactic corset as to how to write functions of interest. The price to pay for this in the case
of the approach of Voigtländer (2009) is that it works for polymorphic functions only, and
in the original form is unable to deal with view updates that change the shape of a data
structure. The syntactic approach, on the other hand, is successful for many such shape-
changing updates, and can deal with non-polymorphic functions.

Voigtländer et al. (2010) developed an approach for combining syntactic and semantic
bidirectionalization. The resulting technique inherits the limitations in program coverage
from both techniques, but gains improved updateability: more (s,v′) pairs can successfully
be mapped to a suitable s′ by put (see the next section for a more formal conceptualization).
Specifically, semantic bidirectionalization now gets a chance to deal with shape-changing
updates, and the combined technique is superior to syntactic bidirectionalization on its own
in many cases (and actually never worse than the better of the two original techniques). The
combination strategy we pursued was essentially motivated by combining the specialties of
the two approaches. Semantic bidirectionalization’s specialty is to employ polymorphism
to deal with the content elements of data structures in a very lightweight way. In fact,
in the original technique, the shape and content aspects of a data structure are completely

Enhancing semantic bidirectionalization via shape bidirectionalizer plug-ins 517

separated, updates affecting the shape are completely outlawed, arbitrary updates to content
elements can be simply absorbed, and by recombining original shape with updated content
the desired update consistency is guaranteed. Syntactic bidirectionalization’s specialty is
to have a more refined, and case-by-case, notion of what updates, including updates on the
shape aspect, can be permitted. But it turns out that content elements often get in the way.
In fact, by having to deal with both shape and content, at the same time, in the key step
of syntactic bidirectionalization (namely ‘view complement derivation’), updateability is
hampered. In our combined approach we divided the labor: semantic bidirectionalization
deals with content only, syntactic bidirectionalization deals with shape only. As a result,
the reach of semantic bidirectionalization is expanded beyond shape-preserving updates,
and syntactic bidirectionalization is invoked on a more specialized kind of program, on
which it can yield better results, benefitting both.

In the current paper, we carry the idea further: since the combined approach essentially
treats syntactic bidirectionalization as a black box, we can consider it as a completely
external component, and indeed replace it by other approaches (than that of Matsuda
et al. (2007)) for obtaining bidirectional transformations on shapes. Any such approach
can be ‘plugged into’ the semantic technique (after suitable dissection/refactoring of the
latter). We develop the details and consider some such plug-ins, including (in Section 5.3)
of course the specific use case of combining the techniques of Matsuda et al. (2007)
and Voigtländer (2009), thus covering the results of Voigtländer et al. (2010). We also
generalize from lists (to which case the development of Voigtländer et al. (2010) was
restricted) to more general data types (in Section 7). As a bonus, this enables a kind of
bootstrapping in which pluggable bidirectionalization is itself used as a plug-in.

2 Consistency conditions and language setup

To explain what we mean by improved updateability, we have to elaborate on the phrase
‘in a meaningful way’ in the first sentence of the Introduction, and on ‘suitable’ at the start
of its second paragraph. So, when is a get/put-pair ‘good’? How should s, v, v′, and s′ in
get s ≡ v and put s v′ ≡ s′ be related? One natural requirement is that if v ≡ v′, then s ≡ s′,
or, put differently,

put s (get s) ≡ s . (1)

Another requirement to expect is that s′ and v′ should be related in the same way as s and
v are, or, again expressed as a round-trip property,

get (put s v′) ≡ v′ . (2)

These are the standard consistency conditions (Bancilhon & Spyratos, 1981) known as
GetPut and PutGet (Foster et al., 2007). But the latter of the two is often too hard to
satisfy in practice. For fixed get, it can be impossible to provide a put-function fulfilling
Equation (2) for every choice of s and v′, simply because v′ may not even be in the range
of get. One solution is to make the put-function partial and to only expect the PutGet law
to hold in case put s v′ is actually defined. Of course, a trivially consistent put-function we
could then always come up with is the one for which put s v′ is only defined if get s≡ v′ and
which simply returns s then. Clearly, this choice would satisfy both Equations (1) and (2),

518 J. Voigtländer et al.

but would be utterly useless in terms of updateability. The very idea that v and v′ can be
different in the original scenario would be countermanded.

So our evaluation criteria for ‘goodness’ are that get/put should satisfy Equation (1), that
they should satisfy Equation (2) whenever put s v′ is defined, and that put s v′ should be
actually defined on a big part of its potential domain, indeed preferably for all s and v′ of
appropriate type. That measure, simply comparing the sizes of the applicability domains of
put, is somewhat coarse, but we will also discuss finer distinctions (i.e., concerning what
two different put-functions map a given (s,v′) pair to) later.

Since our emphasis is on the updateability inherent in a get/put-pair, we make the
partiality of put explicit in the type (and make the function itself total) via optionality
of the return value, using the data type definition

data Maybe α = Nothing | Just α

The following definition formulates the consistency conditions for this setting.

Definition 1. Let τ1 and τ2 be types. Let functions get :: τ1 → τ2 and put :: τ1 → τ2 →
Maybe τ1 be given. We say that put is consistent for get if:

• For every s :: τ1, put s (get s) ≡ Just s.
• For every s,s′ :: τ1 and v′ :: τ2, if put s v′ ≡ Just s′, then get s′ ≡ v′.

We work in Haskell (Peyton Jones, 2003) with a few GHC extensions, almost: one
deviation we make is that we assume that the type Int is replaced, throughout the language,
by a type Nat, discarding all negative integers. In particular, the function length on lists
will have type [α] → Nat instead of [α] → Int, and we assume we are given a variant
Data.NatMap of standard module Data.IntMap. We use ≡ for semantic equivalence, but
specialize notation to = for natural numbers. All functions, from now on, are assumed to
be total, except where partiality is explicitly mentioned.

3 The original semantic bidirectionalization technique

We briefly introduce the technique of Voigtländer (2009). For the moment, we only con-
sider the case of lists, and throughout, only parametrically polymorphic functions to bidi-
rectionalize (no ad hoc polymorphism). So we consider functions get :: [α] → [α].

The intuition underlying the method of Voigtländer (2009) is that put can gain infor-
mation about the get-function by applying it to suitable inputs. The key is that get is
polymorphic over the element type α . This entails that its behavior does not depend on any
concrete list elements, but only on positional information, and this positional information
can be observed explicitly by applying get to lists with fixed distinct elements. Particularly
convenient are ascending lists over the natural numbers. Say get is tail, then every list
[1, . . . ,n] is mapped to [2, . . . ,n], which allows put to see that the head element of the
original source is absent from the view, hence cannot be affected by an update on the view,
and hence should remain unchanged when propagating an updated view back into the
source. And this observation can be transferred to other source lists than [1, . . . ,n] just as
well, even to lists over non-number types, thanks to parametric polymorphism (Strachey,
2000; Reynolds, 1983). Specifically, it is easy to derive from a ‘free theorem’ (Wadler,

Enhancing semantic bidirectionalization via shape bidirectionalizer plug-ins 519

1989) that for every get :: [α] → [α] and every list s, over arbitrary type, it holds that with
n = length s and t′ ≡ get [1 . .n],

length (get s) = length t′ (3)

as well as for every 1 � j � length (get s),

(get s) !! (j−1) ≡ s !! ((t′ !! (j−1))−1) . (4)

(Note that !!, Haskell’s operator for indexing into lists, starts counting from 0, hence the
occurrences of −1.) Putting the above as a picture:

[1, . . . ,n] [t ′1, . . . , t
′
m]

get ��

[s1, . . . ,sn] [st ′1
, . . . ,st ′m

]
get

��

implies��

(where [t ′1, . . . , t
′
m] could be the empty list, just as [1 . .n] ≡ [1, . . . ,n] could be).

Let us further consider the tail example as in the middle of the previous paragraph. First,
put should find out to what element in an original source s each element in an updated
view v′ corresponds. Assume s has length n. Then by applying tail to the same-length
list [1 . .n], put learns that the original view from which v′ was obtained by updating had
length n−1, and also to what element in s each element in that original view corresponded.
Being conservative, the original semantic bidirectionalization method will only accept v′ if
it has retained that length n−1. For then, we also know directly the associations between
elements in v′ and positions in the original source. Now, to produce the updated source,
we can go over all positions in [1 . .n] and fill each with the associated value from v′. For
positions for which there is no corresponding value in v′, because these positions were
omitted when applying tail to [1 . .n], we can look up the correct value in s rather than in
v′. For the concrete example, this will only concern position 1, for which we naturally take
over the head element from s (also see the picture below).

Actually, ‘going over all positions in [1 . .n] and filling each with the associated value
from v′ (or from s if non-existent in v′)’ can be a problematic task: what if two values in v′

would associate with the same index position (as could easily happen if instead of tail we
have a get-function that duplicates some of its list elements)? Ignoring that difficulty for the
moment (but coming back to it soon in Section 4.1), the above strategy works for general
get. In short, given s, produce a ‘template’ t ≡ [1 . .n] of the same length, together with an
association g between natural numbers in that template and the corresponding values in s.
Then apply get to t and produce a further association h by matching this template view t′

with the updated proper value view v′. Combine the two associations into a single one h′,
giving precedence to h whenever a natural numbers template index is found in both h and
g (or first reduce g to g′ by discarding all entries for index values that occur in get [1 . .n];
h and g′ will then have disjoint domains and together exactly cover {1, . . . ,n}). Finally,
produce an updated source by filling all positions in [1 . .n] with their associated values
according to h′. So for s ≡ [s1, . . . ,sn] and v′ ≡ [x1, . . . ,xm], set put s v′ ≡ Just [y1, . . . ,yn],
where yi ≡ x j if i = t ′j (with get [1 . .n] ≡ [t ′1, . . . , t

′
m]), and yi ≡ si otherwise. On the tail

520 J. Voigtländer et al.

example:

[s1, . . . ,sn]

[s1,x1, . . . ,xn−1]

[s2, . . . ,sn]

[x1, . . . ,xn−1]
put����

Update

��

tail ��

(5)

since tail [1 . .n] ≡ [2 . .n] and hence 2 = t ′1, 3 = t ′2, . . . , n = t ′n−1, and 1 �= t ′j for all j.
The above strategy (plus proper handling of get-functions that duplicate list elements)

is what Voigtländer (2009) implements (for the special case get :: [α] → [α]). We recall
the corresponding Haskell definitions, reformulating just a bit by writing the higher-order
bff -function1 that turns get into put in monadic style (Wadler, 1992) to provide for more
convenient error handling.2 The type class constraints Eq are for ensuring that list entries
(of abstract type α) can be compared for equality using ==, as needed in assoc.3

bff ::Monad μ ⇒ (∀α.[α] → [α]) → (∀α.Eq α ⇒ [α] → [α] → μ [α])
bff get s v′ = do let n = length s

let t = [1 . .n]
let g = NatMap.fromDistinctAscList (zip t s)
let t′ = get t
let g′ = foldr NatMap.delete g t′

h ← assoc t′ v′

let h′ = NatMap.union h g′

return (map (fromJust ◦flip NatMap.lookup h′) t)
assoc :: (Monad μ,Eq α) ⇒ [Nat] → [α] → μ (NatMap α)
assoc [] [] = return NatMap.empty
assoc (i : is) (b : bs) = do m ← assoc is bs

case NatMap.lookup i m of
Nothing → return (NatMap.insert i b m)
Just c → if b==c

then return m
else fail "Update violates equality."

assoc = fail "Update changes the length."

We use (here and later) some functions from an assumed module Data.NatMap. Their type
signatures, which should provide sufficient documentation, are given as follows4:

fromDistinctList :: [(Nat,α)] → NatMap α
fromDistinctAscList :: [(Nat,α)] → NatMap α
empty ::NatMap α
insert ::Nat → α → NatMap α → NatMap α
delete ::Nat → NatMap α → NatMap α
union ::NatMap α → NatMap α → NatMap α
lookup ::Nat → NatMap α → Maybe α

1 The name bff is an abbreviation of the paper title ‘Bidirectionalization for Free!’.
2 We will only ever specialize μ to Maybe in the paper, but when running the code it is convenient to be able to

(even silently) use an arbitrary monad. For example, just running examples in the interpreter can directly use
the IO monad and thus give unwrapped outputs – unless there is a failure, of course. Monads in Haskell are
not plain monads; they include a fail method. In the Maybe monad, we have fail s = Nothing.

3 Note that == is programmed equality, not in general semantic equivalence ≡.
4 The function fromDistinctAscList can assume that its argument has Nat keys in ascending order, and thus can

work more efficiently than plain fromDistinctList.

Enhancing semantic bidirectionalization via shape bidirectionalizer plug-ins 521

Actually, Voigtländer (2009), and also Voigtländer et al. (2010), use slight variants
(conceptually) of bff above where g′ ≡ g, i.e., the line let g′ = foldr NatMap.delete
g t′ is not present. The variation to use the reduced g′ comes from Foster et al. (2012).
This version is semantically equivalent to the earlier versions (since NatMap.union is
assumed to be left-biased for natural numbers occurring as keys in both its input maps), but
a difference appears when one starts to refactor bff to deal with view updates that change
the shape. Then, in this paper from Section 4.4 onwards, the choice of g′ versus g becomes
relevant. We will return to this discussion there, after Theorem 6.

The following theorem is essentially (up to the different way of expressing partiality of
put ≡ bff get) what is proved by Voigtländer (2009) in his Theorems 1 and 2, based on
the key statements (3) and (4).

Theorem 1. Let get :: [α]→ [α] and let τ be a type that is an instance of the type class Eq

in such a way that the definition given for == makes it reflexive, symmetric, and transitive.

• For every s :: [τ], bff get s (get s) ::Maybe [τ] ≡ Just s.

• For every s,v′,s′ :: [τ], if bff get s v′ ::Maybe [τ] ≡ Just s′, then get s′==v′.

Corollary 1. Let get :: [α] → [α] and let τ be a type that is an instance of Eq in such a
way that the definition given for == agrees with ≡. Then

bff get :: [τ] → [τ] → Maybe [τ]

is consistent (in the sense of Definition 1) for get :: [τ] → [τ].

Applying semantic bidirectionalization is very easy. We simply call bff with the get-
function we want to bidirectionalize. The following two examples will also be used for
later discussions.

Running Example 1. Assume our get-function is such that it sieves a list to keep only
every second element, as exemplified with the following calls:

s "" "a" "ab" "abc" "abcd" "abcde" [1,2,3,4,5]
get1 s "" "" "b" "b" "bd" "bd" [2,4]

Then here are the results of a few representative calls to bff get1 (the results of the relevant
calls to get1 are all the same):

s get1 s v′ bff get1 s v′

"abcd" "bd" "x" Nothing

"abcd" "bd" "xy" Just "axcy"

"abcd" "bd" "xyz" Nothing

"abcde" "bd" "x" Nothing

"abcde" "bd" "xy" Just "axcye"

"abcde" "bd" "xyz" Nothing

We see (and indeed it holds in general) that bff get1 s v′ fails if and only if length (get1 s) �=
length v′. If it succeeds, it mixes the elements of s and v′ in an appropriate fashion. In a
similar fashion as earlier for the tail example, see (5), the behavior here (specifically, the

522 J. Voigtländer et al.

last but one line of the second table above) can be explained as follows:

[s1, . . . ,s5]

[s1,x1,s3,x2,s5]

[s2,s4]

[x1,x2]
put����

Update

��

get1 ��

(6)

due to get1 [1 . .5] ≡ [2,4] and hence 2 = t ′1, 4 = t ′2, and 1,3,5 �= t ′j for all j.

Running Example 2. Assume our get-function is such that it keeps every element of a list
except for the last one, e.g.:

s "" "a" "ab" "abc" "abcd" "abcde" [1,2,3,4,5]
get2 s "" "" "a" "ab" "abc" "abcd" [1,2,3,4]

Again, semantic bidirectionalization allows no view updates that change the shape, so
bff get2 s v′ will only be successful if length (get2 s) = length v′, e.g.:

s get2 s v′ bff get2 s v′

"" "" "" Just ""

"" "" "x" Nothing

"a" "" "" Just "a"

"a" "" "x" Nothing

"ab" "a" "" Nothing

"ab" "a" "x" Just "xb"

"ab" "a" "xy" Nothing

"abc" "ab" "x" Nothing

"abc" "ab" "xy" Just "xyc"

4 Refactoring semantic bidirectionalization to enable ‘plug-ins’

In order to motivate our next moves, let us consider the case bff get1 "abcde" "xyz"

≡ Nothing from Example 1 in the previous section. What makes

[s1, . . . ,s5]

?

[s2,s4]

[x1,x2,x3]
put����

Update

��

get1 ��

fail, in contrast to (6), is that we cannot simply (as there) set put [s1, . . . ,s5] [x1,x2,x3]
≡ Just [y1, . . . ,y5] with the yi appropriately chosen from among the si and x j. After all,
no such choice(s) will ever make get1 [y1, . . . ,y5] ≡ [x1,x2,x3] true, as the second of our
consistency conditions would demand (cf. Definition 1). The problem is that length n = 5
on the input side does not fit length m = 3 on the (updated) output side. If, however, from

Enhancing semantic bidirectionalization via shape bidirectionalizer plug-ins 523

n = 5 and m = 3 we could deduce an appropriate choice of length for the updated input
list, say n′ = 6 (or alternatively, n′ = 7), then we could set the desired s′ to [y1, . . . ,y6] with
yi ≡ x j if i = t ′j, where get1 [1 . .6] ≡ [t ′1, t

′
2, t

′
3], and yi ≡ si otherwise.5

Determining n′ – given get, n, and m – can be considered as a separate problem, which is
not solved (or solvable) by the semantic bidirectionalization technique itself. The idea now,
already of Voigtländer et al. (2010), is to outsource this separate problem. If we abstract
from the concrete list elements, instead considering (in the case of the above example) the
following problem on the shape level:

[·, ·, ·, ·, ·]

?

[·, ·]

[·, ·, ·]
put ′����

Update

��

get′1 ��

then maybe we are in better luck. Indeed, Voigtländer et al. (2010) showed that the syntactic
bidirectionalization technique of Matsuda et al. (2007) can profit from such abstraction,
and successfully generate put′ (on the shape level) even in cases where it fails to generate
(an as useful) put for the original problem. Next, we show how to go about this separation
of concerns in general, and to prepare integration of arbitrary shape bidirectionalizer plug-
ins (that of Matsuda et al. (2007) or others). But beforehand, there is one more issue to
consider.

The issue is that we have not yet discussed here, although of course we did so in the
original work on semantic bidirectionalization (Voigtländer, 2009, in detail at the end of
Section 2 and start of Section 3), whether/how to deal with get-functions that duplicate
input list elements. Here we shall shortly outlaw any duplication of list elements. Formally,
we will consider only functions get :: [α] → [α] such that for every n :: Nat, get [1 . .n]
contains no duplicates. We call such a function semantically affine. The property will
clearly be fulfilled if get’s syntactic definition is affine (i.e., if no variable occurs more than
once on a single right-hand side), but it can also hold in other cases. In the next section we
explain why we need this restriction; the reader less interested in the theoretical argument
may want to skip that and go directly to Section 4.2. On the practical side, the restriction
to semantically affine get-functions does not cost us all too much additionally in terms of
reducing reach. In particular, the syntactic bidirectionalization technique of Matsuda et al.
(2007), with which we combine semantic bidirectionalization in Section 5.3 as one chief
result (Voigtländer et al., 2010) of our overall approach, is itself already unable to deal with
syntactically non-affine functions.

4.1 Semantic bidirectionalization and duplication of list elements

So how can semantic bidirectionalization deal with get-functions that duplicate input list
elements? First of all, this issue is exactly what leads to the somewhat complicated

5 If we were to, alternatively, choose n′ = 7, then some default value would have to be brought into play, because
for i = 7 there is no x j with 7 = t ′j , but also no s7.

524 J. Voigtländer et al.

definition of assoc in the previous section and to the references to Eq and == in the
function definitions and in Theorem 1 and Corollary 1. More specifically, the need arises
because we want to ensure that bff satisfies some form of the PutGet law (ultimately,
expressed as the second of the two points stated in Theorem 1). The problem for bff is
to come up with an s′ such that

length (get s′) = length v′

and for every 1 � j � length (get s′), ideally

(get s′) !! (j−1) ≡ v′ !! (j−1) ,

though we would actually be content with == instead of ≡. What do we have to go by
for proving these two statements? Well, of course Equations (3) and (4), applied to s′. For
length (get s′) = length v′, Equation (3) already does half the job, leaving us with the proof
obligation

length t′ = length v′ . (7)

But this equality is ensured if the assoc-call on t′ and v′ inside bff succeeded (and only
then do we have to prove anything about s′ at all, cf. the exact formulation of the second
point stated in Theorem 1). For (get s′) !! (j− 1) ≡ v′ !! (j− 1), Equation (4) looks quite
useful, leaving us with the proof obligation

s′ !! ((t′ !! (j−1))−1) ≡ v′ !! (j−1) , (8)

where n = length s′ and t′ ≡ get [1 . .n]. And indeed, the fact that when filling up s′ in the
last line of the definition of bff , lookup for index positions that are elements of t′ leads to
lookup in h – which was obtained through associating, by position, elements of t′ and of v′ –
seems to indicate that we are fine. But, actually Equation (8) is treacherous as a ‘definition’
(implemented in bff) for elements of s′ at positions corresponding to elements of t′. It is not
actually well-defined in general! What if there are j and j′ such that t′ !!(j−1) = t′ !!(j′−1)?
Then Equation (8) tries to ‘assign’ two potentially different values v′ !! (j−1) and v′ !! (j′ −
1) to the same position of s′. The assoc-function as given in the previous section prevents
this from happening, at the price of additionally performing equality checks (using ==).

As a concrete example, consider a function get that maps every singleton list s to s++s
(and all other lists to [], say). Let us look at a specific case s = "a", and suppose the view
"aa" is updated to "bc". Should we take this as suggesting a replacement of ’a’ by ’b’

or by ’c’, i.e., do we want bff get "a" "bc" to be Just "b" or Just "c"? Neither makes
sense, since neither get "b" nor get "c" is "bc". So the only possibility for bff is to return
Nothing.

Restricting to semantically affine get-functions is not just the easiest way out of the
complications described above. At a deeper level, it is really fundamental to a successful
separate treatment of shapes as we have in mind. If the problem of coming up, for given
v′ (and s), with an s′ such that get s′ equals v′ is to be decomposed in such a way that we
first try to determine the length of s′ from only the length of v′ (and that of s), then we
cannot afford to have to be concerned about the inner structure of get [1 . .n] (or actually of
get [1 . .n′] for some new n′ potentially different from n = length s) in order to eventually
make sense of Equation (8). Instead, we should only have to be concerned about the shape
aspects, as in the other proof obligation (7). And indeed, if given the length of v′ (and that
of s) we manage to find an n′ such that Equation (7) holds for t′ ≡ get [1 . .n′], then only

Enhancing semantic bidirectionalization via shape bidirectionalizer plug-ins 525

under the semantic affineness assumption will we be guaranteed – no matter how v′ looks
internally – to be able to fill the list positions of s′ (of length n′) in such a way that get s′

equals v′. This is because Equation (8) is not only sufficient but actually necessary, and as
soon as t′ contains duplicates an adversary could come up with list elements for v′ such
that s′ cannot exist (not even after replacing ≡ by == in Equation (8); assuming the type
of elements of v′ has at least two non-equal values).

4.2 Specializing semantic bidirectionalization to semantically affine get-functions

We define

bff affine ::Monad μ ⇒ (∀α.[α] → [α]) → (∀α.[α] → [α] → μ [α])

like bff (but note the different type), except that the call to assoc is replaced by a call, with
the same arguments, to the following function, not performing any equality checks:

assoc′ ::Monad μ ⇒ [Nat] → [α] → μ (NatMap α)
assoc′ [] [] = return NatMap.empty
assoc′ (i : is) (b : bs) = do m ← assoc′ is bs

return (NatMap.insert i b m)
assoc′ = fail "Update changes the length."

The proof of the following theorem is very similar to that of Theorem 1, additionally using
semantic affineness of get in a straightforward way.

Theorem 2. Let get :: [α] → [α] be semantically affine. For every type τ ,

bff affine get :: [τ] → [τ] → Maybe [τ]

is consistent for get :: [τ] → [τ].

But semantic affineness gives us more. It rules out one important cause (namely potential
equality mismatch in v′) for a potential failure of view update. As a consequence, we can
now formulate a sufficient condition for a successful update.

Definition 2. We say that a function put :: [τ] → [τ] → Maybe [τ] (for some type τ) is
fixed-shape-friendly for get :: [τ] → [τ] if for every s,v′ :: [τ], if length (get s) = length v′,
then put s v′ ≡ Just s′ for some s′ :: [τ].

Note that the original bff get :: [τ] → [τ] → Maybe [τ] from Section 3 is not in general
fixed-shape-friendly for get-functions that are not semantically affine. On the other hand,
bff affine get :: [τ]→ [τ]→Maybe [τ] is not even generally consistent for get-functions that
are not semantically affine. But when we do restrict get-functions to be semantically affine,
we have consistency by the above theorem, and can moreover prove the following one.

Theorem 3. Let get :: [α] → [α] be semantically affine. For every type τ ,

bff affine get :: [τ] → [τ] → Maybe [τ]

is fixed-shape-friendly for get :: [τ] → [τ].

For the proof, we basically just observe that the last defining equation of assoc′ will never
be reached if the argument lists are of the same length.

526 J. Voigtländer et al.

We can also give a negative statement about updateability (which also holds for the bff
from Section 3, of course).

Theorem 4. Let get :: [α] → [α]. For every type τ and s,v′ :: [τ], if length (get s) �=
length v′, then bff affine get s v′ ::Maybe [τ] ≡ Nothing.

For the proof, we observe that the last defining equation of assoc′ (or assoc) is reached if
the argument lists are of different lengths.

4.3 Decomposing to expose the shape aspect

We refactor bff affine to make the treatment of shapes (list lengths) more explicit. To that
end, we first define a function sputnaive, depending on get :: [α] → [α], as follows:

sputnaive ::Monad μ ⇒ (∀α.[α] → [α]) → (Nat → Nat → μ Nat)
sputnaive get ls lv′ = if length (get [1 . . ls])== lv′

then return ls
else fail "Update changes the length."

Using that function, we then define bff refac as follows:

bff refac ::Monad μ ⇒ (∀α.[α] → [α]) → (∀α.[α] → [α] → μ [α])
bff refac get s v′ = do let n = length s

let t = [1 . .n]
let g = NatMap.fromDistinctAscList (zip t s)
let g′ = foldr NatMap.delete g (get t)
n′ ← sputnaive get n (length v′)
let t = [1 . .n′]
let h = NatMap.fromDistinctList (zip (get t) v′)
let h′ = NatMap.union h g′

return (map (fromJust ◦flip NatMap.lookup h′) t)

The refactoring consists of

• making the check for equal length of get [1 . .(length s)] and v′, otherwise performed
inside assoc′, explicit, and outsourcing it to sputnaive, and

• realizing that once this check was successful, the role of assoc′ can be taken over by
zip and NatMap.fromDistinctList.

Note that the second local binding for t inside bff refac shadows the earlier one, but that
actually the two values bound will be identical here, since due to the behavior of sputnaive,
if the second binding is reached at all, then n′ will be identical to n. (That will change in
the next section.)

The following lemma establishes that the above refactoring is indeed correct, and thus
transports the (good and bad) properties of bff affine to bff refac.

Lemma 1. Let get :: [α] → [α]. For every type τ and s,v′ :: [τ], we have

bff affine get s v′ ::Maybe [τ] ≡ bff refac get s v′ ::Maybe [τ] .

Corollary 2. Let get :: [α] → [α] be semantically affine. For every type τ ,

bff refac get :: [τ] → [τ] → Maybe [τ]

is consistent for get :: [τ] → [τ].

Enhancing semantic bidirectionalization via shape bidirectionalizer plug-ins 527

Corollary 3. Let get :: [α] → [α] be semantically affine. For every type τ ,

bff refac get :: [τ] → [τ] → Maybe [τ]

is fixed-shape-friendly for get :: [τ] → [τ].

Corollary 4. Let get :: [α] → [α]. For every type τ and s,v′ :: [τ], if length (get s) �=
length v′, then bff refac get s v′ ::Maybe [τ] ≡ Nothing.

The motivation for our refactoring above is that we make explicit, in sputnaive, what
happens on the shape level, namely that only updated views with the same length as the
original view can be accepted, and that the length of the source will never be changed. By
‘playing’ with sputnaive, or rather replacing it, we can change that behavior.

4.4 Enabling ‘plug-ins’

The key idea in the previous section is abstraction: from lists to list lengths (generally, from
data structures to their shapes). We can define a function shapify as follows:

shapify :: (∀α.[α] → [α]) → (Nat → Nat)
shapify get n = length (get [1 . .n])

Actually, one can often directly derive, from get, a simple syntactic definition for a function
sget semantically equivalent to shapify get. That will be an important point in Section 5.3.
But for the moment, we simply take the above definition.

Next, we assume that some function sput is given, with the following type:

sput ::Nat → Nat → Maybe Nat ,

and that sput is consistent for shapify get. Of course, sput ≡ sputnaive get is always a valid
choice, but for many get-functions there will be better alternatives!

We now define bff plug as below. There are three differences from bff refac: instead of
calling out to sputnaive get, we call out to an (additional, besides get) function argument
sput (that is again itself a function), we generate an error message in case that sput fails
(previously this was done directly in sputnaive), and we drop the fromJust from the last
(return-) line. The latter change introduces an extra Maybe-type constructor in the output
list type, and is done to deal with list positions for which no data is known, neither from
the original source nor from the updated view,

bff plug ::Monad μ ⇒ (∀α .[α] → [α]) → (Nat → Nat → Maybe Nat)
→ (∀α .[α] → [α] → μ [Maybe α])

bff plug get sput s v′ = do let n = length s

let t = [1 . .n]
let g = NatMap.fromDistinctAscList (zip t s)
let g′ = foldr NatMap.delete g (get t)
n′ ← case sput n (length v′) of

Nothing → fail "Could not handle shape change."

Just n′ → return n′

let t = [1 . .n′]
let h = NatMap.fromDistinctList (zip (get t) v′)
let h′ = NatMap.union h g′

return (map (flip NatMap.lookup h′) t)

528 J. Voigtländer et al.

Note that now the second local binding for t, shadowing the first one, can really yield
a different list because it is no longer given that n′ is identical to n. Also at this point,
it becomes relevant that we assume NatMap.union to be left-biased for natural numbers
occurring as keys in both its input maps. That is important to guarantee precedence of
h over g′ for positions of the output list that are represented in the domain of both h
(comprising all natural numbers that occur in get [1 . .n′]) and g′ (comprising all natural
numbers that occur in [1 . .n] but not in get [1 . .n]).

The proof of the following theorem is then very similar to that of Theorem 1, but, of
course, in addition uses the assumption about the relationship between sput and shapify get.

Theorem 5. Let get :: [α] → [α] be semantically affine. Let sput be consistent for shapify
get. Let τ be a type.

• For every s :: [τ], bff plug get sput s (get s) :: Maybe [Maybe τ] ≡ Just (map
Just s).

• For every s,v′ :: [τ] and s′ :: [Maybe τ], if

bff plug get sput s v′ ::Maybe [Maybe τ] ≡ Just s′ ,

then get s′ ≡ map Just v′.

The following theorem can also be shown to hold.

Theorem 6. Let get :: [α] → [α] be semantically affine. Let sput be consistent for shapify
get. For every type τ and s,v′ :: [τ], if length (get s) = length v′, then bff plug get sput s v′ ::
Maybe [Maybe τ] ≡ Just (map Just s′) for some s′ :: [τ].

The proof is basically by observing that if we have length (get s) = length v′, then also
shapify get (length s) = length v′, and thus, by consistency of sput for shapify get, inside
the bff plug-definition n′ will be successfully assigned the value n, and subsequently every
index position from t will lead to a successful lookup in h′, because h covers all such
positions that also occur in get t while g′ covers exactly all the rest.

Neither Theorem 5 nor Theorem 6 says anything about when a Nothing can become
manifest for the ‘inner’ Maybe in the result type of bff plug get sput s v′. This is so because
such Nothing-values can only appear on the updated source side, and only if the shape was
changed. We already mentioned earlier that bff plug uses the extra Maybe type constructor to
deal with positions in the output list for which no data is known, neither from the original
source nor from the updated view. Let us discuss this in a bit more detail now, also returning
to the discussion of the ‘choice of g′ versus g’ as promised directly after introducing bff in
Section 3. (The reader less interested in the subtleties may want to skip over directly to the
paragraph before Corollary 5.)

So what happens with bff plug get sput s v′ if v′ does not have the same length as get s?
Then n′ will be different from n in bff plug, and when going through the index positions from
t ≡ [1 . .n′] to create s′, some positions might not be found in the domain of h′. Obviously
(since the domain of h′ is the union of the domains of h and g′), this will happen exactly
for all natural numbers from ‘set’ S′ = [1 . .n′] that occur neither in V ′ = get [1 . .n′] (the
domain of h) nor in, with S = [1 . .n] and V = get [1 . .n], S \\V (the domain of g′, com-
puted using the ‘set difference’ operator \\). We may picture the setup/connections here as

Enhancing semantic bidirectionalization via shape bidirectionalizer plug-ins 529

follows (although we will never have reason to actually compute put [1 . .n] (get [1 . .n′])):

[1 . .n]

[1 . .n′]

get [1 . .n]

get [1 . .n′]����
��

��

So, following the above observations about the domains of h′, h, and g′, all positions of s′

that correspond to a natural number from

X = S′ \\(V ′ ∪(S \\V))

will be filled with Nothing. Justifiedly so? Well, first of all, it is ensured that this will not
happen for positions that correspond, after performing get, to elements/positions of v′.6

Moreover, for various elements of X , namely for all elements of

Y = S′ \\(V ′ ∪ S) ,

it is hardly conceivable what Just-value to provide for them. After all, Y will only be non-
empty if n′ >n, i.e., the update on the view (shape) triggered an update on the source that
forced it to become longer, and any element of Y will be a position for which we have no
meaningful way to pick an element from the original source (precisely because it will be a
position beyond the length n of the original source) and for which we also cannot justify
picking an element from the updated view (because it will be a position not occurring in
V ′, hence not corresponding to an element of the view list).

But one doubt may remain: what about elements of V ∩ S′ \\V ′? This set is obtained
as the difference X \\ Y (taking into account that S ⊇ V). So the elements in question are
exactly the positions for which – since they appear in X – we assign Nothing in s′ even
though they do not appear in Y . For them, it might seem tempting to lookup a value in g,
which would correspond to accessing a position of the original source s (which after all
has length n, so we are guaranteed to find some value). Indeed, that is exactly what we did
previously (Voigtländer et al., 2010, by not having the line let g′ = foldr NatMap.delete g t′

in bff and bff plug, instead using g′ ≡ g). But morally it is actually wrong: we would
fill a position in the updated source for which we have no support from the updated
view, with a value from the original view. This seems too arbitrary. After all, the get-
function will have a ‘reason’ for omitting that position when going from a source of
length n′ to a corresponding view. If at all attempting to fill the position with an element
from the situation before any update happens, we should attempt to explain it from the
original source, not from the original view. If we are unable to do so, we are better off
returning Nothing. We will again consider this issue, based on a concrete example –
materializing the difference in this respect between what we did previously and what we
do in this paper – toward the end of Section 5.1.

6 This, which is guaranteed by V ′ being covered by h, is reflected in the second point stated in Theorem 5, which
implies that all elements of get s′ are Just-values. Of course, that point does not prevent other positions of s′

from containing Nothing-values.

530 J. Voigtländer et al.

Instead of producing Just- and Nothing-values, it is usually more convenient to simply
use a default value for positions in the output list for which no data is known, neither from
the original source nor from the updated view. Hence, we define a function dbff as follows:

dbff ::Monad μ ⇒ (∀α.[α] → [α]) → (Nat → Nat → Maybe Nat)
→ (∀α.α → [α] → [α] → μ [α])

dbff get sput d s v′ = do s′ ← bff plug get sput s v′

return (map (λcase {Nothing → d;Just y → y}) s′)

The following two statements are then relatively direct consequences of Theorems 5 and 6.

Corollary 5. Let get :: [α]→ [α] be semantically affine. Let sput be consistent for shapify
get. For every type τ and d :: τ ,

dbff get sput d :: [τ] → [τ] → Maybe [τ]

is consistent for get :: [τ] → [τ].

Corollary 6. Let get :: [α]→ [α] be semantically affine. Let sput be consistent for shapify
get. For every type τ and d :: τ ,

dbff get sput d :: [τ] → [τ] → Maybe [τ]

is fixed-shape-friendly for get :: [τ] → [τ]. (Moreover, the default value d is not actually
used in dbff get sput d s v′ if length (get s) = length v′.)

It is important to note that no general negative statement like Theorem 4 or Corollary 4
holds for dbff (or for bff plug). It all depends on the argument sput! If we find a good sput
that is consistent for shapify get, then dbff get sput will also be good for get. This is where
we can now plug in arbitrary ‘shape bidirectionalizers’.

5 Some concrete ‘plug-ins’

5.1 Manual shape-bidirectionalization

In principle, a reasonable stance to take is that the programmer, who has programmed get,
should also provide sput. After all, the programmer can be often expected to have a very
good idea of how shape-changing updates should be dealt with.

Running Example 1 (continued, with manual provision of sput). Recall that get1 sieves
a list to keep only every second element. On the shape level this means to halve the length
of the list, so an intuitive backward transformation seems to be to double the length of any
provided updated view list:

sput ::Nat → Nat → Maybe Nat

sput ls lv′ = Just (2∗ lv′)

But this violates the condition that sput should be consistent for shapify get1. Indeed,
sput ls (shapify get1 ls) ≡ Just ls does not hold for any odd natural number ls. After all,
shapify get1 is not exact halving, but actually halving with truncation. A natural remedy is
to refine sput as follows:

Enhancing semantic bidirectionalization via shape bidirectionalizer plug-ins 531

sput ::Nat → Nat → Maybe Nat

sput ls lv′ = Just (2∗ lv′ + ls ‘mod‘ 2)

Then sput is consistent for shapify get1, and can thus be used as follows, with the guarantees
from Corollaries 5 and 6:

s get1 s v′ dbff get1 sput ’ ’ s v′

"abcd" "bd" "x" Just "ax"

"abcd" "bd" "xy" Just "axcy"

"abcd" "bd" "xyz" Just "axcy z"

"abcd" "bd" "xyzv" Just "axcy z v"

"abcde" "bd" "x" Just "axc"

"abcde" "bd" "xy" Just "axcye"

"abcde" "bd" "xyz" Just "axcyez "

"abcde" "bd" "xyzv" Just "axcyez v "

Note that when length (get1 s) �= length v′, dbff get1 sput ’ ’ s v′ extends – making use
of the default value – or shrinks the source list by a number of elements that is a multiple
of two. All updates can now be successfully handled, much in contrast to earlier, when
we used bff get1 instead of dbff get1 sput ’ ’. The moderate price to pay is that the
programmer has to come up with sput.

Running Example 2 (continued, with manual provision of sput). Recall that get2 keeps
every element of a list except for the last one, and maps the empty list to itself. On the shape
level this means that shapify get2 maps 0 to 0, and every positive number to its predecessor.
One possible choice for a consistent sput is thus:

sput ::Nat → Nat → Maybe Nat

sput 0 0 = Just 0
sput ls lv′ | ls >0 ∨ lv′ >0 = Just (lv′ +1)

With it, we get:

s get2 s v′ dbff get2 sput ’ ’ s v′

"" "" "" Just ""

"" "" "x" Just "x "

"" "" "xy" Just "xy "

"a" "" "" Just "a"

"a" "" "x" Just "x "

"ab" "a" "" Just " "

"ab" "a" "x" Just "xb"

"ab" "a" "xy" Just "xy "

"abc" "ab" "" Just " "

"abc" "ab" "x" Just "x "

"abc" "ab" "xy" Just "xyc"

"abc" "ab" "xyz" Just "xyz "

This is better than what we saw for this example in Section 3, but still not perfect, since at
some places the default value gets used where intuitively a specific value from the source

532 J. Voigtländer et al.

list (namely the last element of s) would be appropriate instead. We will return to this
aspect in Section 6.

A related issue is that in the above table we see a manifest effect of the ‘choice of g′

versus g’ issue that was already mentioned after introducing bff in Section 3 and that was
discussed after Theorem 6 in Section 4.4. Had we concerning that choice proceeded as
previously (Voigtländer et al., 2010) , we would have got dbff get2 sput ’ ’ "ab" "" ≡
Just "a", dbff get2 sput ’ ’ "abc" "" ≡ Just "a", and dbff get2 sput ’ ’ "abc" "x" ≡
Just "xb", but those ’a’ and ’b’ have no business appearing in the updated sources, since
they are not (even) the last elements of the respective original sources.

It is worth pointing out that when writing sput, the programmer may well profit from a
structured/combinator-based approach such as generic point-free lenses (Pacheco & Cunha,
2010). Where writing get using the point-free combinators is hard (due to having to worry
about the projection of elements and the inventing of them in the backward direction), writ-
ing sget (and thus, due to the lens framework, immediately also sput) using the combinators
could be much simpler.

5.2 Shape-bidirectionalization by search

Another viable option is to discover appropriate new source shapes by search. Specifically,
one can change the last line of the definition of sputnaive in Section 4.3 to

else return (head [ls′ | ls′ ← [0 . .], length (get [1 . . ls′]) == lv′])

(which may of course lead to non-termination that is unavoidable in general) and use that
version to obtain (partial function) sput from get. Actually, thanks to semantic affineness
of get, it is sufficient to start the search for ls′ (after ls itself has been ruled out7) at lv′ , i.e.,
one can replace [0 . .] by [lv′ . .] above, or equivalently have altogether (and specialized to
the Maybe monad, but nevertheless still returning a non-total sput in general):

sputsearch :: (∀α.[α] → [α]) → (Nat → Nat → Maybe Nat)
sputsearch get ls lv′ = Just (head [ls′ | ls′ ← ls : ([lv′ . .] \\ [ls]),

length (get [1 . . ls′])== lv′])

One could even give the user some control over the ‘perfect updateability’ achieved using
pure search, enabling them to provide guidance via heuristics expressed as reorderings of
the candidate list [lv′ . .]. Here we instead only consider the most basic search approach on
our two running examples.

Running Example 1 (with search instead of manual provision of sput). Applying
sputsearch to get1 yields a function semantically equivalent to the following one:

sput ::Nat → Nat → Maybe Nat

sput ls lv′ = if ls ‘div‘ 2== lv′ then Just ls else Just (2∗ lv′)

It is (by construction) consistent for shapify get1, and behaves like the second sput given
for this example in Section 5.1, except when ls is odd and lv′ is not its (truncated) half.

7 We always need to check ls first, to guarantee the first of our consistency conditions (cf. Definition 1).

Enhancing semantic bidirectionalization via shape bidirectionalizer plug-ins 533

Concretely, this implies that (only) the following lines change compared with the corre-
sponding input/output table from Section 5.1.

s get1 s v′ dbff get1 (sputsearch get1) ’ ’ s v′

"abcde" "bd" "x" Just "ax"

"abcde" "bd" "xyz" Just "axcyez"

"abcde" "bd" "xyzv" Just "axcyez v"

Running Example 2 (with search instead of manual provision of sput). Applying
sputsearch to get2 yields a function semantically equivalent to the following one:

sput ::Nat → Nat → Maybe Nat

sput ls 0 | ls � 1 = Just ls
sput ls 0 | ls >1 = Just 0
sput lv′ | lv′ >0 = Just (lv′ +1)

It differs from the one given for this example in Section 5.1 exactly when ls >1 and lv′ = 0,
so that we get changed behavior as follows:

s get2 s v′ dbff get2 (sputsearch get2) ’ ’ s v′

"ab" "a" "" Just ""

"abc" "ab" "" Just ""

5.3 Combining syntactic and semantic bidirectionalization

The search approach from the previous section is attractive in its simplicity, and works
reasonably well for our two running examples, but it is certainly not a panacea. Besides
possible concerns about its efficiency in finding solutions, there is the problem that even
if there is no solution (appropriate source shape for a given update configuration) at all,
that fact will not be discovered (by leading to return value Nothing) in finite time. Also,
formally legitimate updates found by search may be less meaningful to the user than ones
obtained from more ‘intelligent’ or ‘intuition-guided’ shape bidirectionalizers. One pos-
sibility of the latter kind is to employ an existing bidirectionalization approach (Matsuda
et al., 2007) based on constant complements (Bancilhon & Spyratos, 1981).

The basic idea of Matsuda et al.’s (2007) technique is that for a function

get :: τ1 → τ2

one finds a function

compl :: τ1 → τ3

such that the pairing of the two,

paired :: τ1 → (τ2,τ3)
paired s = (get s,compl s)

is an injective function. Given a ‘partial inverse’ inv :: (τ2,τ3) → Maybe τ1 of paired,
satisfying the requirements that

534 J. Voigtländer et al.

• for every s :: τ1,

inv (paired s) ≡ Just s ,

and
• for every s′ :: τ1, v′ :: τ2, and c :: τ3, if inv (v′,c) ≡ Just s′, then

paired s′ ≡ (v′,c) ,

one obtains that

put :: τ1 → τ2 → Maybe τ1
put s v′ = inv (v′,compl s)

is consistent for get.
The approach of Matsuda et al. (2007) is to perform all the above by syntactic program

transformations. For a certain class of programs, they give an algorithm that automatically
derives compl from get in such a way that paired is indeed injective. Then instead of the
definition for paired above they produce one using a tupling transformation (Pettorossi,
1977) that avoids the two independent traversals of s with get and compl. They syntacti-
cally invert paired to obtain inv (although they make inv implicitly a partial function, not
explicitly in the type as above), and subsequently fuse the computations of inv and compl
in the definition of put, again using a syntactic transformation (Wadler, 1990).

We illustrate the syntactic approach based on our two running examples.

Running Example 1 (syntactically). The function alluded to in the first running example,
sieving a list to keep only every second element, could have been defined as follows:

get1 :: [α] → [α]
get1 [] = []
get1 [x] = []
get1 (x : y : zs) = y : (get1 zs)

That function definition fulfills the syntactic prerequisites imposed by Matsuda et al. (2007).
They are (necessary8 and sufficient): that functions must be first-order, must be affine (i.e.,
no variable occurs more than once on a single right-hand side), and that there must be no
function call with anything else than variables in its arguments.

Given the above function definition, the following complement function is automatically
derived9:

data Compl α = C1 | C2 α | C3 α (Compl α)
compl :: [α] → Compl α
compl [] = C1
compl [x] = C2 x
compl (x : y : zs) = C3 x (compl zs)

8 At least for the original method of Matsuda et al. (2007). Later work (Matsuda et al., 2009, in Japanese) relaxes
the restrictions somewhat.

9 Matsuda et al. (2007) work in an untyped language, so they have no need to explicitly introduce the data type
Compl, but as we formulate our ideas in Haskell, we will be careful to introduce appropriate types as we go
along.

Enhancing semantic bidirectionalization via shape bidirectionalizer plug-ins 535

Tupling of get1 and compl gives the following definition for the paired function:

paired :: [α] → ([α],Compl α)
paired [] = ([] ,C1)
paired [x] = ([] ,C2 x)
paired (x : y : zs) = (y : v,C3 x c)

where (v,c) = paired zs

Syntactic inversion, (here) basically just exchanging left- and right-hand sides, plus intro-
duction of monadic error propagation, gives:

inv ::Monad μ ⇒ ([α],Compl α) → μ [α]
inv ([] ,C1) = return []
inv ([] ,C2 x) = return [x]
inv (y : v,C3 x c) = do zs ← inv (v,c)

return (x : y : zs)
inv = fail "Update violates complement."

Finally,

put ::Monad μ ⇒ [α] → [α] → μ [α]
put s v′ = inv (v′,compl s)

can be fused to:

put ::Monad μ ⇒ [α] → [α] → μ [α]
put [] [] = return []
put [x] [] = return [x]
put (x : y : zs) (y′ : v′) = do zs′ ← put zs v′

return (x : y′ : zs′)
put = fail "Update violates complement."

Note that, just as was the case for the original semantic bidirectionalization technique here,
put s v′ fails if and only if length (get1 s) �= length v′. Indeed, bff get1 (from Example 1 in
Section 3) and the above put are semantically equivalent (at type [τ] → [τ] → Maybe [τ],
for τ that is an instance of Eq).

Running Example 2 (syntactically). The function alluded to in the second running ex-
ample, keeping every element of a list except for the last one, could have been defined as
follows10:

get2 :: [α] → [α]
get2 [] = []
get2 [x] = []
get2 (x : y : zs) = x : (get′ y zs)
get′ :: α → [α] → [α]
get′ x [] = []
get′ x (y : zs) = x : (get′ y zs)

10 A helper function get′ is used to prevent a function call with an argument that is not a variable.

536 J. Voigtländer et al.

Table 1. Comparing bidirectionalization methods for the get-function from Example 2

Semantic Syntactic Combined

s get2 s v′ bff get2 s v′ put s v′ dput1 ’ ’ s v′ dput2 ’ ’ s v′

"" "" "" Just "" Just "" Just "" Just ""
"" "" "x" Nothing Nothing Just "x " Nothing
"" "" "xy" Nothing Nothing Just "xy " Nothing
"a" "" "" Just "a" Just "a" Just "a" Just "a"
"a" "" "x" Nothing Nothing Nothing Just "x "

"ab" "a" "" Nothing Nothing Just "" Just " "

"ab" "a" "x" Just "xb" Just "xb" Just "xb" Just "xb"
"ab" "a" "xy" Nothing Just "xyb" Just "xy " Just "xy "

"abc" "ab" "" Nothing Nothing Just "" Just " "

"abc" "ab" "x" Nothing Just "xc" Just "x " Just "x "

"abc" "ab" "xy" Just "xyc" Just "xyc" Just "xyc" Just "xyc"
"abc" "ab" "xyz" Nothing Just "xyzc" Just "xyz " Just "xyz "

For that function definition, the syntactic approach produces the following complement
function:

data Compl α = C1 | C2 α | C3 α
compl :: [α] → Compl α
compl [] = C1
compl [x] = C2 x
compl (x : y : zs) = compl′ y zs
compl′ :: α → [α] → Compl α
compl′ x [] = C3 x
compl′ x (y : zs) = compl′ y zs

Tupling, inversion, and fusion (not spelled out here in detail) ultimately give functions put
and (helper) put′ such that put s v′ succeeds if and only if length (get2 s) and length v′ are
equal or both greater than zero. In contrast, we have seen in Section 3 that the original se-
mantic bidirectionalization technique (again) allows no view updates that change the shape
here, i.e., bff get2 s v′ is only successful if length (get2 s) = length v′. A few representative
calls and their results are given in Table 1.

From the examples considered, we see that the syntactic bidirectionalization technique
of Matsuda et al. (2007) and the original (non-plugged) semantic bidirectionalization tech-
nique of Voigtländer (2009) can agree or disagree in terms of updateability. Actually, it
seems that for programs that can be handled by both, the syntactic technique on its own is
never worse than the original semantic technique on its own. Interestingly, the method of
choice for improvement over both, proposed by Voigtländer et al. (2010) and recollected
in this paper, is to defer the syntactic technique to the role of a plug-in (basically as a black
box), with the technique of Voigtländer (2009) in the master role.

Specifically, for functions get that are polymorphic and at the same time satisfy the syn-
tactic restrictions imposed by Matsuda et al.’s (2007) technique, we can use that technique

Enhancing semantic bidirectionalization via shape bidirectionalizer plug-ins 537

for deriving sput from an explicit syntactic definition for a function sget (independent of,
but derived from, get) that is semantically equivalent to shapify get.

Running Example 1 (with syntactic technique as plug-in). We have seen above in the
current section and in Section 3 that for the function get1 in question, both syntactic and
(the original version of) semantic bidirectionalization on their own lead to quite limited
updateability: both put s v′ and bff get1 s v′ only succeed if length (get1 s) = length v′.

On the other hand, by combining the two techniques, we can proceed as follows. The
sget ‘corresponding to’ get1, as obtained via a straightforward syntactic transformation
from the definition of get1 given earlier in this section, looks as follows:

sget ::Nat → Nat

sget 0 = 0
sget 1 = 0
sget n | n � 2 = (sget (n−2))+1

For it, the syntactic bidirectionalization method of Matsuda et al. (2007) produces the
following complement function:

data SCompl = SC1 | SC2
scompl ::Nat → SCompl

scompl 0 = SC1
scompl 1 = SC2
scompl n | n � 2 = scompl (n−2)

Note that the move from [α] to Nat in get1 �→ sget has made the complement function
much simpler: no collection of any variables (as was necessary in the definition of compl, to
make up for the dropping of variables in the definition of get1), and no constructor around
the recursive call. (All this, thanks to explicit optimization effort embedded in Matsuda
et al.’s (2007) transformation to ‘make the complement smaller’.) The advantage is that a
simpler/smaller complement function means better updateability of the ultimately obtained
put-function. Here tupling, inversion, and fusion give:

sput ::Nat → Nat → Maybe Nat

sput 0 0 = return 0
sput 1 0 = return 1
sput ls 0 | ls � 2 = sput (ls −2) 0
sput ls lv′ | lv′ � 1 = do ls′ ← sput ls (lv′ −1)

return (ls′ +2)

which is equivalent to the (desirable) sput-function provided for get1 ‘by hand’ in Sec-
tion 5.1! So by using bff plug get1 sput, or dbff get1 sput ’ ’, with this sput we enjoy good
and intuitive updateability without requiring manual intervention.

Running Example 2 (with syntactic technique as plug-in). We have seen further
above in the current section and in Section 3 that for the function get2 in question the
updateability achieved by syntactic bidirectionalization is that put s v′ succeeds whenever
length (get2 s) and length v′ are equal or both greater than zero, while the original semantic

538 J. Voigtländer et al.

technique is only successful if length (get2 s) = length v′. Let us analyze how the combi-
nation of the two techniques fares.

The move from [α] to Nat yields:

sget ::Nat → Nat

sget 0 = 0
sget 1 = 0
sget n | n � 2 = (sget′ (n−2))+1
sget′ ::Nat → Nat

sget′ 0 = 0
sget′ n | n � 1 = (sget′ (n−1))+1

Note that regarding the helper function get′ (from earlier in this section) one argument
becomes superfluous. Indeed, when moving from [α] to Nat, there is no role to play
anymore for content elements of type α .

The automatic view complement generation of Matsuda et al. (2007) yields either of
the two functions scompl1/scompl2 for sget (with data SCompl = SC1 | SC2 | SC3) which
differ only in their last defining equation:

scompl1 ::Nat → SCompl

scompl1 0 = SC1
scompl1 1 = SC2
scompl1 n | n � 2 = SC1

and

scompl2 ::Nat → SCompl

scompl2 0 = SC1
scompl2 1 = SC2
scompl2 n | n � 2 = SC2

while for sget′, one obtains the following complement function:

scompl′ ::Nat → SCompl

scompl′ 0 = SC3
scompl′ n | n � 1 = SC3

Tupling, inversion, and fusion ultimately give two choices sput1 and sput2, for scompl1 and
scompl2. Let us compare the results of combining syntactic and semantic bidirectionaliza-
tion, i.e., the now two possible functions dbff get2 sput1 and dbff get2 sput2, to the results
of either only (the original version of) semantic or only syntactic bidirectionalization, i.e.,
to bff get2 à la Section 3 and to put from the continuation of Example 2 further above in the
current section. Table 1 shows a few representative calls and their results, where dput1 ≡
dbff get2 sput1 and dput2 ≡ dbff get2 sput2. By our coarse measure, comparing the sizes
of the applicability domains of put-functions, the combined technique is better than either
of the two original techniques. However, some skepticism is appropriate regarding results
like those for s = "ab" and v′ = "xy" here: all put-functions except the one obtained by
the purely semantic technique map that (s,v′) pair to some s′, but the put-function obtained

Enhancing semantic bidirectionalization via shape bidirectionalizer plug-ins 539

using the purely syntactic technique certainly makes the best choice concerning what that
s′ should be. We discuss this aspect further in the next section.11

6 Explicit bias

Through the numbering scheme of our ‘template sources’ via [1 . .n] for a concrete source
of length n, there is a certain bias that manifests itself when an update changes the length of
the view. For example, while it is nice that in the continuation of Example 2 in Section 5.1
(and also in Section 5.2; and similarly for dput1 in Section 5.3/Table 1) we have

dbff get2 sput ’ ’ "" "x" ≡ Just "x "

and

dbff get2 sput ’ ’ "" "xy" ≡ Just "xy "

(in contrast to the completely semantically obtained bff get2 and the completely syntacti-
cally obtained put, which both give Nothing in both cases; cf. Table 1), it is disappointing
that

dbff get2 sput ’ ’ "ab" "xy" ≡ Just "xy "

(instead of Just "xyb"). The reason for this is simple: The use of [1 . .n] and [1 . .n′] in the
definition of bff plug in Section 4.4 means that when the updated source becomes shorter
than the original source, then it is the elements toward the rear of the original source
that become discarded; while if the updated source becomes longer, then again positions
toward the rear of the new source will be considered to be ‘additional’ and thus will be
filled with the default value. So there is an implicit assumption that shape-changing updates
will always happen in such a way that the corresponding insertions or deletions affect the
end of the source list, rather than its front or other elements.

There is an easy remedy for the observed phenomenon. If we simply replace the lines

let t = [1 . .n]

and

let t = [1 . .n′]

in the definition of bff plug by

let t = reverse [1 . .n]

and

let t = reverse [1 . .n′]

respectively, then Theorems 5 and 6 – and thus Corollaries 5 and 6 – continue to hold, but
instead of a rear update (insertion/deletion) bias, there is now a front update bias.

11 Orthogonally, there would be more to say, and is said by Voigtländer et al. (2010), about updateability solely
in terms of applicability domains. In particular, Section 7 of that paper contains examples showing how by
involving additional syntactic transformations (Giesl, 2000; Giesl et al., 2007) one can extend applicability
further. Also note that, by virtue of the plug-in approach, we will directly profit from further (independent)
improvements of the syntactic bidirectionalization technique itself.

540 J. Voigtländer et al.

For example, the table in the continuation of Example 2 in Section 5.1 (the interesting
subset thereof; all other entries remain unchanged) now becomes:

s get2 s v′ dbff get2 sput ’ ’ s v′

"" "" "x" Just "x "

"" "" "xy" Just "xy "

"a" "" "x" Just "xa"

"ab" "a" "" Just "b"

"ab" "a" "xy" Just "xyb"

"abc" "ab" "" Just "c"

"abc" "ab" "x" Just "xc"

"abc" "ab" "xyz" Just "xyzc"

The entries that have changed are shaded above. Only where no (last element) value from
the original source list is available do we still use a default value in the updated source.
One could argue that in this specific case all the changes are for the better, but in general it
is desirable to be able to influence what bias is used.

Making the bias explicit, and thus putting it under the potential control of the user, is
easily possible by defining a further variation of bff plug:

type Bias = Nat → [Nat]
bff bias ::Monad μ ⇒ (∀α.[α] → [α]) → (Nat → Nat → Maybe Nat)

→ Bias → (∀α.[α] → [α] → μ [Maybe α])
bff bias get sput bias s v′ = do let n = length s

let t = bias n
let g = NatMap.fromDistinctList (zip t s)
let g′ = foldr NatMap.delete g (get t)
n′ ← case sput n (length v′) of

Nothing → fail "..."
Just n′ → return n′

let t = bias n′

let h = NatMap.fromDistinctList (zip (get t) v′)
let h′ = NatMap.union h g′

return (map (flip NatMap.lookup h′) t)

as well as:

bdbff ::Monad μ ⇒ (∀α.[α] → [α]) → (Nat → Nat → Maybe Nat)
→ Bias → (∀α.α → [α] → [α] → μ [α])

bdbff get sput bias d s v′ = do s′ ← bff bias get sput bias s v′

return (map (λcase {Nothing → d;Just y → y}) s′)

The only formal requirement that we impose on a proper bias :: Bias, ensuring that ana-
logues of Theorems 5 and 6 and of Corollaries 5 and 6 continue to hold, is that for every
n :: Nat, bias n should return a list that is a permutation of [1 . .n]. Then we in particular
obtain the following two corollaries.

Enhancing semantic bidirectionalization via shape bidirectionalizer plug-ins 541

Corollary 7. Let get :: [α]→ [α] be semantically affine. Let sput be consistent for shapify
get. Let bias ::Bias be proper (in the way just described). For every type τ and d :: τ ,

bdbff get sput bias d :: [τ] → [τ] → Maybe [τ]

is consistent for get :: [τ] → [τ].

Corollary 8. Let get :: [α]→ [α] be semantically affine. Let sput be consistent for shapify
get. Let bias ::Bias be proper. For every type τ and d :: τ ,

bdbff get sput bias d :: [τ] → [τ] → Maybe [τ]

is fixed-shape-friendly for get :: [τ] → [τ]. (Moreover, the default value d is not actually
used in bdbff get sput bias d s v′ if length (get s) = length v′.)

Some good examples for bias are:

rear ::Bias

rear n = [1 . .n]
front ::Bias

front n = reverse [1 . .n]
middle ::Bias

middle n = [1,3 . .n]++(reverse [2,4 . .n])
borders ::Bias

borders n = (reverse [1,3 . .n])++[2,4 . .n]

Some examples for the get-function from Example 1 (with sput as given in Section 5.1
and automatically obtained in Section 5.3), illustrating the effects of different bias strate-
gies, are given in Table 2, where bdput ≡ bdbff get1 sput.

The beneficial effects, still for the case of the get-function from Example 1, might
become even more apparent when also looking at cases where the data values in the source
and view lists are not disjoint, as in Table 3. The simple hints about which bias to apply
when reflecting specific updated views back to the source level are quite effective.

7 Going generic

Up to here, we have only considered the case of lists by applying bidirectionalization to
functions get :: [α] → [α]. On the other hand, both the syntactic bidirectionalization tech-
nique of Matsuda et al. (2007) and the original (non-plugged) semantic bidirectionalization
technique of Voigtländer (2009) are already able to work on other data structures than lists.
In this section we catch up to such a more generic setting by showing how bff plug can
be made suitably polymorphic over the type constructors on the input and output sides
of get-functions. We do this in a similar way as the reformulation by Foster et al. (2012,
Section 5.4) of the generic version of the original semantic bidirectionalization technique,
namely by using explicit separations of data structures into their shape and content aspects,
in the spirit of the shape calculus (Jay, 1995) and container representations (Abbott et al.,
2003). Specifically, we start by introducing an abstraction for types that can hold shapes
of members of other types, in the sense in which Nat has served as the type of shapes for

542
J.Voigtländer

etal.

Table 2. Comparing bias strategies for our combined technique on the get-function from Example 1

s get1 s v′ bdput rear ’ ’ s v′ bdput front ’ ’ s v′ bdput middle ’ ’ s v′ bdput borders ’ ’ s v′

"abcd" "bd" "x" Just "ax" Just "cx" Just "ax" Just " x"

"abcd" "bd" "xyz" Just "axcy z" Just " xaycz" Just "ax ycz" Just " x y z"

"abcd" "bd" "xyzv" Just "axcy z v" Just " x yazcv" Just "ax y zcv" Just " xaycz v"

"abcde" "bd" "x" Just "axc" Just "cxe" Just "axe" Just " x "

"abcde" "bd" "xyz" Just "axcyez " Just " xaycze" Just "axcy ze" Just " x y z "

"abcde" "bd" "xyzv" Just "axcyez v " Just " x yazcve" Just "axcy z ve" Just " xayczev "

"abcde" "bd" "xyzvw" Just "axcyez v w " Just " x y zavcwe" Just "axcy z v we" Just " x y z v w "

Enhancing semantic bidirectionalization via shape bidirectionalizer plug-ins 543

Table 3. More update bias examples for get1 from Example 1

bias s get1 s v′ bdput bias ’ ’ s v′

rear "abcd" "bd" "x" Just "ax"
rear "abcde" "bd" "x" Just "axc"
front "abcd" "bd" "x" Just "cx"
front "abcde" "bd" "x" Just "cxe"
middle "abcd" "bd" "x" Just "ax"
middle "abcde" "bd" "x" Just "axe"
borders "abcd" "bd" "x" Just " x"

borders "abcde" "bd" "x" Just " x "

rear "abcd" "bd" "bdx" Just "abcd x"

rear "abcd" "bd" "bdxy" Just "abcd x y"

rear "abcde" "bd" "bdx" Just "abcdex "

rear "abcde" "bd" "bdxy" Just "abcdex y "

front "abcd" "bd" "xbd" Just " xabcd"

front "abcd" "bd" "xybd" Just " x yabcd"

front "abcde" "bd" "xbd" Just " xabcde"

front "abcde" "bd" "xybd" Just " x yabcde"

middle "abcd" "bd" "bxd" Just "ab xcd"

middle "abcd" "bd" "bxyd" Just "ab x ycd"

middle "abcde" "bd" "bxd" Just "abcx de"

middle "abcde" "bd" "bxyd" Just "abcx y de"

borders "abcd" "bd" "xbdy" Just " xabcd y"

borders "abcde" "bd" "xbdy" Just " xabcdey "

borders "abcde" "bd" "xybdzv" Just " x yabcdez v "

lists. The way we set up this here is as a type class whose only operation is one that tells
us how many element positions are associated with a given shape:

class ShapeT σ where
arity :: σ → Nat

For example, for the shape type Nat the number of positions is the given natural number
itself:

instance ShapeT Nat where
arity n = n

Given a shape type, we can express that some data structure type is shaped accordingly,
by providing functions for separating a data structure into shape and content and for
reassembling a data structure from shape and content. The interface is as follows12:

class ShapeT σ ⇒ Shaped σ κ | κ → σ where
shape :: κ α → σ
content :: κ α → [α]
fill :: (σ , [α]) → κ α

12 The functional dependency annotation ‘| κ → σ ’ serves to resolve ambiguities and reduce the need for type
annotations. It imposes the constraint that the data structure type always uniquely determines the underlying
shape type so that in particular the output type of any application shape x already follows from the type of x.

544 J. Voigtländer et al.

and we expect some natural laws to hold. The notion of position numbers must be consis-
tent with how many content elements are actually extracted from a data structure of a given
shape: arity (shape x) = length (content x). The separation of a data structure into shape
and content must be faithful, i.e., reassembly must be possible: fill (shape x,content x) ≡ x.
Moreover, if a data structure is put together from some shape and some content, then each
of the two aspects must be respected: shape (fill (sh, l)) ≡ sh and content (fill (sh, l)) ≡ l.
Of course, the latter two properties can only be expected if sh and l actually fit together,
i.e., if arity sh = length l. Indeed, we will only ever apply fill to such (sh, l)-combinations.

To describe that lists are shaped over Nat, in precisely the way used in this paper so
far, we can simply express that the shape of a list is its length, its content is itself, and
reassembly is equally straightforward:

instance Shaped Nat [] where
shape l = length l
content l = l
fill (n, l) | (n== length l) = l

It is easy to see that the laws mentioned above all hold for this instance.
For the sake of an example for another data structure type than lists, consider the fol-

lowing data type definition:

data Tree α = Leaf α | Branch (Tree α) (Tree α)

One possibility for expressing the shape of a tree is to use a simpler tree with all content
elements erased, or rather overwritten with a trivial element. Using the unit type (), whose
only value is also denoted by (), the following ShapeT instance makes available this notion
of shape tree along with the appropriate arity-function:

instance ShapeT (Tree ()) where
arity (Leaf ()) = 1
arity (Branch t1 t2) = arity t1 +arity t2

The other operations are also relatively straightforward recursive traversals:

instance Shaped (Tree ()) Tree where
shape (Leaf) = Leaf ()
shape (Branch t1 t2) = Branch (shape t1) (shape t2)
content (Leaf a) = [a]
content (Branch t1 t2) = content t1 ++content t2
fill (s, l) = case go s l of (t, []) → t

where go (Leaf ()) l = (Leaf (head l), tail l)
go (Branch s1 s2) l = (Branch t1 t2, l

′′)
where (t1, l

′) = go s1 l
(t2, l

′′) = go s2 l′

One can again establish that the required laws all hold. More generally, it is possible to
provide suitable instances of this kind (i.e., κ () as shape type for some κ) for a whole
range of traversable data structures in a generic fashion (Gibbons & Oliveira, 2009).

Enhancing semantic bidirectionalization via shape bidirectionalizer plug-ins 545

Given the generic setup, we can now make our contribution from the previous sections
data-type-polymorphic. Let us start with the shapify-function. It previously had the type
shapify::(∀α.[α]→ [α])→ (Nat→Nat) and definition shapify get n = length (get [1 . .n]).
Now we can provide a generic version:

shapify :: (Shaped σ κ,Shaped σ ′ κ ′) ⇒ (∀α.κ α → κ ′ α) → (σ → σ ′)
shapify get sh = shape (get (fill (sh, [1 . .(arity sh)])))

in which lists on the input and output sides of get have been replaced by some shaped
types (type constructors κ and κ ′) and as a result, instead of a function from Nat to Nat,
we obtain a function between the corresponding shape types (σ and σ ′). For example, if
get has type Tree α → [α], then shapify get has type Tree ()→Nat. The implementation of
the generic shapify-function follows the same idea as the list-specific one, namely to apply
get to a template structure built according to the given original shape (and with irrelevant
content), and to extract the resulting shape at the end. But instead of doing so in an ad
hoc fashion by direct list construction and consumption, only the interface provided by
ShapeT and Shaped is used. The same principle guides the implementation of a data-type-
polymorphic version of bff plug:

bff plug :: (Monad μ ,Shaped σ κ ,Functor κ ,Shaped σ ′ κ ′) ⇒
(∀α .κ α → κ ′ α) → (σ → σ ′ → Maybe σ)
→ (∀α .κ α → κ ′ α → μ (κ (Maybe α)))

bff plug get sput s v′ = do let sh = shape s

let n = arity sh
let t = fill (sh, [1 . .n])
let g = NatMap.fromDistinctAscList (zip [1 . .n] (content s))
let g′ = foldr NatMap.delete g (content (get t))
sh′ ← case sput sh (shape v′) of

Nothing → fail "Could not handle shape change."

Just sh′ → return sh′

let t = fill (sh′, [1 . .(arity sh′)])
let h = NatMap.fromDistinctList (zip (content (get t)) (content v′))
let h′ = NatMap.union h g′

return (fmap (flip NatMap.lookup h′) t)

Instead of constructing a template [1 . .n] from a list, we abstract a more general data struc-
ture to its shape, construct a template list from that, use it to ‘redecorate’ the original data
structure, and work from there, using the list of content items separately when constructing
g. On the view side, we again work with the separation into content and shape, in particular
constructing g′ from the content of the outcome of the subcall to get (and we apply similar
adaptations for constructing h later on), and instead of applying sput to the lengths of lists,
applying it to the shapes of s and v′. We create the second t, shadowing the first one, from
the new shape (rather than just new list length), and in the end traverse it with fmap instead
of the list-specific map-function. The latter explains why the type signature for bff plug
demands a suitable Functor instance for κ . The same is true in the case of dbff , which now
has type

dbff :: (Monad μ ,Shaped σ κ,Functor κ,Shaped σ ′ κ ′) ⇒
(∀α.κ α → κ ′ α) → (σ → σ ′ → Maybe σ)
→ (∀α.α → κ α → κ ′ α → μ (κ α))

and definition exactly as before, just with map replaced by fmap.

546 J. Voigtländer et al.

It is easy to see (by comparing definitions) that the generic functions bff plug, shapify,
and dbff reduce to their list-specific versions given earlier when accordingly applied, since
with the ShapeT/Shaped-instances set up for the list case, essentially arity ≡ id, shape ≡
length, content ≡ id, and fill ≡ snd. Of course, the real worth is that now we can apply the
functions at other types than lists as well. For example, we can use bff plug or dbff for a get
that operates on Trees, and call out to an sput derived using the technique of Matsuda et al.
(2007) from sget semantically equivalent to shapify get (and thus simpler than get itself).
The two examples we will instead be looking at here are a bit more mundane, but serve
well to illustrate some interesting aspects regarding the generic setup we have established
now.

Example 3. Assume we want to bidirectionalize the function length :: [α] → Nat. It is
a bit of an extreme case, since the output side has no content elements, instead only a
monomorphic value. Nevertheless, the task should in principle be doable, and there are
also some reasonable expectations what the bidirectionalized function might do (probably
cutting off a source list at some point if the updated view is a natural number smaller than
the original source list length, and extending the list appropriately in the opposite case).

A small technical problem is that the type [α] → Nat cannot be directly seen as κ α →
κ ′ α for some instances of κ and κ ′, precisely because Nat is just a monomorphic type,
not a polymorphic type constructor applied to α . This is easily overcome, though, using an
auxiliary type constructor definition:

newtype Const α β = Const α

and then actually bidirectionalizing the following function:

get3 :: [α] → Const Nat α
get3 = Const◦ length

Now the question is what shape type to introduce for the type constructor Const Nat,
i.e., which σ to choose so that one can give reasonable definitions of functions arity ::
σ → Nat, shape :: Const Nat α → σ , content :: Const Nat α → [α], and fill :: (σ , [α]) →
Const Nat α . It makes sense to consider σ to be Nat itself, although we should be careful
not to reuse the interpretation of Nat as shapes for lists from earlier on. After all, the
situation is quite different here, as we can see by focusing on content. No value of a type
Const Nat α can ever contain any α-values, so content should never return a non-empty list
here. Accordingly, arity should always return 0, in contrast to arity ≡ id ::Nat→Nat from
the earlier instance. On the other hand, we cannot simply use a trivial type for σ , since the
natural number stored in a value of a type Const Nat α must not be lost completely when
separating shape and content. In fact, conceptually it should be preserved in the notion
of shape. So the appropriate notion of shape here is a natural number, but it should be
represented using a different (though isomorphic) type than Nat itself. One convenient
way to proceed is to use the unit type () again, as follows:

instance ShapeT (Const Nat ()) where
arity (Const n) = 0

instance Shaped (Const Nat ()) (Const Nat) where
shape (Const n) = Const n

Enhancing semantic bidirectionalization via shape bidirectionalizer plug-ins 547

content (Const n) = []
fill (Const n, []) = Const n

It is easy to see that the required laws all hold.
What now about sget ≡ shapify get3 ::Nat→ Const Nat ()? Since get3 maps a list to its

length, and the shape of a list is also its length, and the shape of a Const Nat α is simply
the embedded natural number rewrapped with Const, we have that sget is simply Const as
well, in particular it is injective and surjective! This makes the task of bidirectionalizing
sget very simple since for forward functions that are injective and surjective, there is always
only one appropriate backward function, namely the one which ignores the original source
and applies the inverse of the forward function to the updated view. Here this means:

sput ::Nat → Const Nat () → Maybe Nat

sput (Const n) = Just n

Had we invested into a generic version of the search approach from Section 5.2 as well,
we could even have avoided the manual provision of sput here, instead obtaining the same
function simply as sputsearch sget.13 One way or the other, we obtain

put3 ::Monad μ ⇒ [α] → Const Nat α → μ [Maybe α]
put3 = bff plug get3 sput

that behaves exactly as desired. In fact, if we use a default value and encapsulate the Const-
wrapping for convenience:

put′ ::Monad μ ⇒ α → [α] → Nat → μ [α]
put′ d s v′ = dbff get3 sput d s (Const v′)

we obtain results like these:

s get3 s v′ put′ ’ ’ s v′

"abc" Const 3 2 Just "ab"

"abc" Const 3 4 Just "abc "

Example 4. A well-known ‘challenge problem’ for bidirectionalization approaches is a
function that takes a list of pairs and applies a projection to each pair, e.g., the function
map snd :: [(α,β)] → [β] in Haskell. If a list of (α,β)-pairs is mapped to just the β -
components, and the resulting list of β s is shortened or extended, what should happen
concerning the (superfluous or missing) αs? These shape changes are neither successfully
handled by the syntactic bidirectionalization technique of Matsuda et al. (2007) nor by the
non-plugged semantic bidirectionalization technique of Voigtländer (2009). Let us see how
our new approach fares. (We will solve the shape-updatability, but not the more challenging
aspect of potential realignment of αs and β s.)

At first glance, it might seem as if there is not much data-type-genericity to this ex-
ample, since it is all about lists. However, the type [(α,β)] is actually more interesting.

13 Since sget is injective and surjective, a data-type-generic version of sputsearch working by enumeration of
possible inputs would be guaranteed to succeed and end up with sput behaving exactly like the manually
given one here.

548 J. Voigtländer et al.

In particular, when abstracting it to a shape type, we cannot simply use a list length as
notion of shape. Instead, when abstracting away the αs, any reasonable notion of shape
must incorporate the β s, and vice versa. To be able to express abstraction from just one of
the two element types, we again need a bit of wrapping via an extra type constructor, like
with Const in Example 3. We define:

newtype PairList α β = PairList [(α,β)]

and then consider:

get4 ::PairList α β → [β]
get4 (PairList l) = map snd l

We need a shape type for the type constructor PairList α (since this will be κ here, while
κ ′ will be []). As motivated above, we need to preserve all αs, and indeed, the following
are very natural definitions (and satisfy all required laws):

instance ShapeT [α] where
arity = length

instance Shaped [α] (PairList α) where
shape (PairList l) = map fst l
content (PairList l) = map snd l
fill (as,bs) | (length as== length bs) = PairList (zip as bs)

Due to the ‘Functor κ ⇒’ constraint in the type of bff plug (dbff), we will also need a
Functor instance for PairList α further below, and provide it as follows:

instance Functor (PairList α) where
fmap f (PairList l) = PairList (map (λ (a,b) → (a, f b)) l)

Now let us take a look at sget ≡ shapify get4. Conveniently, it has type [α]→Nat, which is
exactly the type dealt with in Example 3. In fact, more than that, shapify get4 is semantically
equivalent to length as used in Example 3. That is, we can use put′ d (for some d) from
Example 3 as sput here, and obtain14:

put4 ::Monad μ ⇒ α → PairList α β → [β] → μ (PairList α β)
put4 d = dbff get4 (put′ d) ⊥

Another way to put this is that:

put4 d = dbff get4 (λ s → dbff (Const◦ shapify get4) sput d s◦Const) ⊥

where sput is the one from Example 3. Given our observation that in Example 3 the sput
could actually have been obtained as sputsearch (shapify get3), we could even write the
above as:

put4 d = let get3 = Const◦ shapify get4
in dbff get4 (λ s → dbff get3 (sputsearch (shapify get3)) d s◦Const) ⊥

14 It so happens that the third argument of dbff will never be used here, so we choose ⊥ as that default value.

Enhancing semantic bidirectionalization via shape bidirectionalizer plug-ins 549

Note that this working depends only on the type of get4. In particular, it does not depend on
the observation from above that shapify get4 is semantically equivalent to length. The shape
abstraction from get4 to get3 ≡ Const ◦ shapify get4 and then double use of dbff , on the
outer level for get4 and on the inner level for get3 defined in terms of get4, would have been
possible for other get4-functions as well. In fact, besides the strategies from Sections 5.1–
5.3, we could now add a fourth one: ‘5.4 Shape-bidirectionalization by bootstrapping’,
which uses bff plug (or dbff) itself as a plug-in. Of course, all this is only possible since we
have provided a data-type-generic account of pluggable bidirectionalization. For otherwise,
we would not have been able to use dbff both for a function and its shape-abstracted
version.

Given the specific get4-function above, we obtain results like these:

s get4 (PairList s) v′ put4 ’ ’ (PairList s) v′

zip "ab" [1,2] [1,2] [3] Just (PairList [(’a’,3)])
zip "ab" [1,2] [1,2] [3,4,5] Just (PairList [(’a’,3),(’b’,4),(’ ’,5)])

Finding good pragmatic bias strategies, as in Section 6, for the case of non-lists is a possible
topic for future work.

8 Conclusion

We have shown how to refactor the semantic bidirectionalization technique of Voigtländer
(2009) in such a way that other techniques can be used as plug-ins. The key idea is to
separate shape from content, thus simplifying the problem of explicit bidirectionalization
by posing it only on the shape level (going from get to sget ≡ shapify get). That way, for
example, the existing syntactic bidirectionalization technique of Matsuda et al. (2007) can
give far better results (in combination) than for the general problem (on its own). We have
also developed a data-type-generic account. An interesting development is that we have
moved automatic bidirectionalization toward more customizability by users/programmers,
both in terms of choosing plug-ins and in terms of providing explicit bias. That brings the
techniques closer in spirit to the domain-specific language approaches in the tradition of
Foster et al. (2007).

Finally, a few more words about formal properties of get/put-pairs are in order. We have
taken laws GetPut (1) and PutGet (2), in the form of Definition 1, as consistency conditions.
So in the terminology of Foster et al. (2012), we have considered partial well-behaved
lenses. The literature also knows PutPut:

put (put s v′) v′′ ≡ put s v′′ ,

which as one interesting consequence together with GetPut implies undoability:

put (put s v′) (get s) ≡ s .

Or, for partial put, both are required to hold whenever put s v′ is defined. The technique
of Matsuda et al. (2007) satisfies these two laws (thus producing partial very well-behaved
lenses) by virtue of being based on the constant-complement approach of Bancilhon &
Spyratos (1981). Although not explicitly proved by Voigtländer (2009), the same is true
for his technique. In fact, it can be reformulated via the constant-complement approach as

550 J. Voigtländer et al.

well (Foster et al., 2012). So the question is natural whether semantic bidirectionalization
with plug-ins can also be so based, and satisfies PutPut and undoability as well. The answer
is No, as invocations like dput ’ ’ "abcd" "x" ≡ Just "ax" ≡ dput ’ ’ "abyd" "x"

for Example 1 show, where dput = dbff get1 sput (cf. the continuation of this example
in Section 5.1). Clearly, there is no way that dput ’ ’ "ax" "bd" is both Just "abcd" and
Just "abyd" as undoability would demand; instead: dput ’ ’ "ax" "bd"≡ Just "ab d".
(PutPut fails for a similar reason.) Is that a bad news? We think not: any method that
successfully deals with insertion and deletion updates for a function like the get1 under
consideration here will have to give up PutPut and undoability. Indeed, these two properties
are often considered undesirable, precisely because they significantly limit the transforma-
tions one can hope to deal with (Keller, 1987; Gottlob et al., 1988; Foster et al., 2007).

Acknowledgments

We thank the anonymous reviewers of the earlier related paper (Voigtländer et al., 2010)
and of the present paper for their insightful comments and suggestions. Part of this work is
supported by JSPS KAKENHI grant numbers 22800003 and 24700020.

References

Abbott, M., Altenkirch, T. & Ghani, N. (2003) Categories of containers. In Proceedings of
Foundations of Software Science and Computational Structures, LNCS, vol. 2620. Springer-
Verlag, pp. 23–38.

Bancilhon, F. & Spyratos, N. (1981) Update semantics of relational views. ACM Trans. Database
Syst. 6(3), 557–575.

Bohannon, A., Foster, J. N., Pierce, B. C., Pilkiewicz, A. & Schmitt, A. (2008) Boomerang:
Resourceful lenses for string data. In Proceedings of Principles of Programming Languages. ACM
Press, pp. 407–419.

Bohannon, A., Pierce, B. C. & Vaughan, J. A. (2006) Relational lenses: A language for updatable
views. In Proceedings of Principles of Database Systems. ACM Press, pp. 338–347.

Czarnecki, K., Foster, J. N., Hu, Z., Lämmel, R., Schürr, A. & Terwilliger, J. F. (2009) Bidirectional
transformations: A cross-discipline perspective. In Proceedings of the International Conference
on Model Transformation, LNCS, vol. 5563. Springer-Verlag, pp. 260–283.

Foster, J. N., Greenwald, M. B., Moore, J. T., Pierce, B. C. & Schmitt, A. (2007) Combinators for
bidirectional tree transformations: A linguistic approach to the view-update problem. ACM Trans.
Program. Lang. Syst. 29(3), 17.

Foster, J. N., Matsuda, K. & Voigtländer, J. (2012) Three complementary approaches to bidirectional
programming. In Revised Lectures of Spring School on Generic and Indexed Programming 2010,
LNCS, vol. 7470. Springer-Verlag, pp. 1–46.

Foster, J. N., Pilkiewicz, A. & Pierce, B. C. (2008) Quotient lenses. In Proceedings of the
International Conference on Functional Programming. ACM Press, pp. 383–395.

Gibbons, J. & Oliveira, B. C. d. S. (2009) The essence of the iterator pattern. J. Funct. Program.
19(3–4), 377–402.

Giesl, J. (2000) Context-moving transformations for function verification. In Selected Papers on
Logic-Based Program Synthesis and Transformation 1999, LNCS, vol. 1817. Springer-Verlag,
pp. 293–312.

Giesl, J., Kühnemann, A. & Voigtländer, J. (2007) Deaccumulation techniques for improving
provability. J. Logic Algebr. Program. 71(2), 79–113.

Gottlob, G., Paolini, P. & Zicari, R. (1988) Properties and update semantics of consistent views. ACM
Trans. Database Syst. 13(4), 486–524.

Enhancing semantic bidirectionalization via shape bidirectionalizer plug-ins 551

Hidaka, S., Hu, Z., Inaba, K., Kato, H., Matsuda, K. & Nakano, K. (2010) Bidirectionalizing graph
transformations. In Proceedings of the International Conference on Functional Programming.
ACM Press, pp. 205–216.

Hu, Z., Mu, S.-C. & Takeichi, M. (2008) A programmable editor for developing structured documents
based on bidirectional transformations. Higher-Order Symb. Comput. 21(1–2), 89–118.

Jay, C. B. (1995) A semantics for shape. Sci. Comput. Program. 25(2–3), 251–283.
Keller, A. M. (1987) Comments on Bancilhon and Spyratos’ ‘Update semantics and relational views’.

ACM Trans. Database Syst. 12(3), 521–523.
Matsuda, K., Hu, Z., Nakano, K., Hamana, M. & Takeichi, M. (2007) Bidirectionalization

transformation based on automatic derivation of view complement functions. In Proceedings
of the International Conference on Functional Programming. ACM Press, pp. 47–58.

Matsuda, K., Hu, Z., Nakano, K., Hamana, M. & Takeichi, M. (2009) Bidirectionalizing programs
with duplication through complementary function derivation. Comput. Softw. 26(2), 56–75 (In
Japanese).

Matsuda, K. & Wang, M. (2013) Bidirectionalization for free with runtime recording. In Proceedings
of Principles and Practice of Declarative Programming. ACM Press, pp. 297–308.

Pacheco, H. & Cunha, A. (2010) Generic point-free lenses. In Proceedings of Mathematics of
Program Construction, LNCS, vol. 6120. Springer-Verlag, pp. 331–352.

Pacheco, H., Cunha, A. & Hu, Z. (2012) Delta lenses over inductive types. Electron. Commun. Eur.
Assoc. Softw. Sci. Technol. 49. Available at: http://journal.ub.tu-berlin.de/eceasst/issue/view/59

Pettorossi, A. (1977) Transformation of programs and use of tupling strategy. In Proceedings of
Informatica 77, Bled, Yugoslavia. pp. 1–6.

Peyton Jones, S. L. (ed). (2003) Haskell 98 Language and Libraries: The Revised Report. Cambridge,
UK: Cambridge University Press.

Reynolds, J. C. (1983) Types, abstraction and parametric polymorphism. In Proceedings of
Information Processing. Elsevier, pp. 513–523.

Strachey, C. (2000) Fundamental Concepts in Programming Languages. Lecture notes for a course at
the International Summer School in Computer Programming, 1967. Reprint appeared in Higher-
Order Symb. Comput. 13(1–2), 11–49.

Voigtländer, J. (2009) Bidirectionalization for free! In Proceedings of Principles of Programming
Languages. ACM Press, pp. 165–176.

Voigtländer, J. (2012) Ideas for connecting inductive program synthesis and bidirectionalization. In
Proceedings of Partial Evaluation and Program Manipulation. ACM Press, pp. 39–42.

Voigtländer, J., Hu, Z., Matsuda, K. & Wang, M. (2010) Combining syntactic and semantic
bidirectionalization. In Proceedings of the International Conference on Functional Programming.
ACM Press, pp. 181–192.

Wadler, P. (1989) Theorems for free! In Proceedings of Functional Programming Languages and
Computer Architecture. ACM Press, pp. 347–359.

Wadler, P. (1990) Deforestation: Transforming programs to eliminate trees. Theor. Comput. Sci.
73(2), 231–248.

Wadler, P. (1992) The essence of functional programming (Invited talk). In Proceedings of Principles
of Programming Languages. ACM Press, pp. 1–14.

Wang, M., Gibbons, J., Matsuda, K. & Hu, Z. (2013) Refactoring pattern matching. Sci. Comput.
Program. 78(11), 2216–2242.

Wang, M., Gibbons, J. & Wu, N. (2011) Incremental updates for efficient bidirectional
transformations. In Proceedings of the International Conference on Functional Programming.
ACM Press, pp. 392–403.

