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Abstract

With the aim of putting type-based reasoning for functional logic languages, as
recently explored by Christiansen et al. (2010), on a formal basis, we develop a deno-
tational semantics for a typed core language of Curry. Dealing with the core language
FlatCurry rather than with full Curry suffices, since there exists a type-preserving
translation from the latter into the former. In contrast to existing semantics for func-
tional logic languages, we deliberately approach the problem “from the functional
side”. That is, rather than adapting approaches previously known from the study of
(resolution-like) semantics for logic languages, we aim for a semantics in the spirit of
standard denotational semantics for the polymorphic lambda calculus. We claim and
set out to prove that the presented semantics is adequate with respect to an existing
operational semantics. Due to problems with recursive let-bindings in combination
with call-time choice (discussed in an appendix), we give the denotational semantics
in the presence of non-recursive let-expressions only.

1 Introduction

It would be nice to have standard reasoning tools used in functional languages at disposal
for functional logic languages as well. For example, type-based reasoning via free theorems
(Wadler 1989), which has become popular in the functional programming community,
might also be useful for functional logic languages. Free theorems formalize semantic
properties that are obtained by considering only the type of a function. We have already
investigated free theorems for the functional logic language Curry in an informal and
example-driven way (Christiansen et al. 2010), but a thorough formal investigation is still
missing. To formally investigate free theorems, we have to define a logical relation over
the type structure of the programming language and to prove fundamental results about
it. For doing so, a completely compositional semantics, a denotational semantics, is very
desirable. Here we mean compositionality less in the sense of module structure and related
concepts for programming-in-the-large as studied by Molina-Bravo and Pimentel (2003),
and more in the basic sense considered also by López-Fraguas et al. (2009).

In the setting of functional logic programming, there are two nearly standard seman-
tics: the constructor based rewrite logic CRWL of González-Moreno et al. (1999) and an

∗This paper is a revised version of a WFLP’10 contribution (Christiansen et al. 2011).
†This author was supported by the DFG under grant VO 1512/1-1.



Section 1 Introduction

operational semantics of Albert et al. (2005) and Braßel and Huch (2007a). In the ab-
sence of recursive let-expressions, López-Fraguas et al. (2007) have proved these semantics
equivalent. The rewriting logic CRWL consists of a set of (conditional) rewrite rules, and
programs are rewritten to a set of constructor terms. Originally, CRWL does not consider
types and does not support higher-order functions. Even if known extensions for these
aspects are considered, a denotational semantics seems more valuable for our purpose.
Hence, the first step in a formal investigation of free theorems for Curry is the devel-
opment of an appropriate denotational semantics for at least a subset of the language,
containing the main functional logic features. Equational reasoning is another beneficiary.
Finally, a functional-style semantics fits in well with recent developments in the field of
functional logic programming. For example, while early Curry implementations compiled
to Prolog, recent implementations compile to Haskell.

A functional logic language can be considered as a functional language extended with
nondeterminism and free variables. Adding nondeterminism can be modeled by switching
from a single-value term semantics to a set-value term semantics. Søndergaard and Ses-
toft (1992) present twelve possible choices in the design space for this kind of denotational
semantics. These choices span over three independent issues, namely strict or non-strict
evaluation, call-time or run-time choice, and angelic, demonic, or erratic nondeterminism.
Curry is a non-strict language with call-time choice and essentially provides angelic non-
determinism. Call-time choice means that for each variable a nondeterministic choice (if
necessary) is made only once, even if the variable is used more than once. It is maybe
best explained by the double coin example, where coin is nondeterministically 0 or 1

and double is defined as double x = x + x. Since the choice for coin to be either 0 or
1 is the same for both occurrences of x in the body of double, under call-time choice the
result of double coin is 0 or 2 but never 1.

Now, what should a denotational, functional-style semantics for functional logic pro-
grams be like? Of course, it should be equivalent to an established semantics. Moreover,
choosing a “native” source language seems reasonable. Here we present a denotational,
functional-style semantics for the typed, flat, functional logic language TFLC. This lan-
guage is a typed adaptation of the FLC language, which is the source language for the
operational semantics of Albert et al. (2005) and for a CRWL-adaptation by López-Fraguas
et al. (2007), who introduced the name. The language reflects all semantically important
features of FlatCurry, the intermediate language for all recent Curry implementations
(MCC, PAKCS, KiCS), but does not deal with implementation features like modules and
import statements. Also, for our denotational semantics we allow only non-recursive let-
expressions. Since there exists a type-preserving translation from Curry to FlatCurry and
hence to TFLC, we are hopeful that type-based reasoning about TFLC programs will
eventually allow assertions about actual Curry programs.

The contributions of this paper are the extension of the FLC language with a type
system and the definition of a completely compositional, denotational, functional-style
semantics for the typed language TFLC minus recursive let-expressions. We also start to
give formal evidence that our semantics then is equivalent to the operational semantics
of Albert et al. (2005) and Braßel and Huch (2007a), and therefore, equivalent as well
to CRWL (López-Fraguas et al. 2007). In an appendix, we consider the situation with
recursive let-expressions.
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2 The Language TFLC

First, we give the syntax of TFLC:

σ ::= ∀α.σ | τ
τ ::= α | τ1 → τ2 | [τ ] | Nat | Bool
P ::= D P | ε
D ::= f :: σ; f(xn) = e

e ::= x | n | e1 + e2 | Nilτ | Cons(e1, e2) | True | False | e1 ? e2 |
case e of {True→ e1;False→ e2} | fτn | apply(e1, e2) | unknownτ |
case e of {Nil→ e1;Cons(x, xs)→ e2} | let xn :: τn = en in e | failedτ

In it, σ denotes a type scheme (possibly with leading type variable quantifications), τ a
type (without type variable quantifications), P a program, D a function definition with
type declaration, and e an expression. Moreover, α ranges over type variables, x over
term variables, n over natural numbers, and ε represents the empty program. We refer
to Cons,Nilτ ,True,False, and any natural number n as constructor symbols and to f with
(f(xn) = e) ∈ P as (n-ary) function symbol. An expression whose outermost symbol is
a constructor symbol is called constructor-rooted. We use bars to refer to sequences of
objects. For example, xn :: τn = en denotes x1 :: τ1 = e1, . . . , xn :: τn = en.

Our TFLC syntax differs in some respects from the syntax of FLC as presented by
Albert et al. (2005). We add unknownτ to denote free variables and failedτ to denote
failure. Albert et al. instead use recursive let-expressions of the form let x = x in . . .
to denote free variables, and introduce failure only implicitly via incomplete case expres-
sions. These are only minor differences. Higher-order is addressed through the primitive
apply(·, ·) and a syntactic form for type-instantiated function symbols, which is similar
to the extension made by Albert et al. (2005) in their Section 5.3. Also compared to
their FLC language, we omit rigid case expressions, because we do not consider residua-
tion. Moreover, for simplicity, we consider only lists and Booleans as algebraic data types.
However, the denotational semantics to be presented in Section 4 can easily be extended
to arbitrary algebraic data types. As a primitive data type, we include natural numbers,
called Nat. While current implementations like PAKCS suspend if a free variable of type
Int is instantiated, our data type Nat is narrowable.

Two more comments on the treatment of free variables are in order. 1) Any occurrence
of unknownτ denotes a fresh occurrence of a free variable, not a single constant. Thus,
the expressions let x :: Nat = unknownNat in x+ x and let x :: Nat = unknownNat, y ::
Nat = unknownNat in x+y mean very different things. 2) Free variables of function types
(generally, of types involving→) are not permitted. We could have encoded this constraint
in the type system, presented next, but for simplicity leave it as a global restriction instead.

Figure 1 shows the typing rules for TFLC. A typing judgment is of the form Γ ` e :: τ
and states that e is typable to τ under an (unordered) typing context Γ. Such a typing
judgment, with typing context Γ = {αm, xn :: τn}, is valid if and only if all type variables
occurring in τn and τ are among αm, all term variables occurring unbound in e are among
xn, and there exists a type derivation for the judgment using the rules given in Figure 1.
Note that typing is always with respect to a given program P , used in the rule for fτm to
access type information about a function defined in P . Formally, the typing judgment thus
would need to be indexed by that program P , but we omit this for the sake of readability.
By [τ/α] we mean syntactic replacement of occurrences of a type variable α by a type τ , and
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Section 3 The Natural Semantics

Γ ` n :: Nat Γ ` True :: Bool Γ ` False :: Bool Γ ` Nilτ :: [τ ]

Γ, x :: τ ` x :: τ Γ ` unknownτ :: τ Γ ` failedτ :: τ

Γ ` e1 :: τ Γ ` e2 :: [τ ]

Γ ` Cons(e1, e2) :: [τ ]

Γ ` e :: Bool Γ ` e1 :: τ Γ ` e2 :: τ

Γ ` case e of {True→ e1;False→ e2} :: τ

Γ ` e :: [τ ′] Γ ` e1 :: τ Γ, x :: τ ′, xs :: [τ ′] ` e2 :: τ

Γ ` case e of {Nil→ e1;Cons(x, xs)→ e2} :: τ

Γ ` e1 :: Nat Γ ` e2 :: Nat
Γ ` e1 + e2 :: Nat

Γ ` e1 :: τ Γ ` e2 :: τ
Γ ` e1 ? e2 :: τ

Γ, xn :: τn ` e1 :: τ1 · · · Γ, xn :: τn ` en :: τn Γ, xn :: τn ` e :: τ

Γ ` let xn :: τn = en in e :: τ

(f :: ∀α1 · · · ∀αm.τ) ∈ P
Γ ` fτm :: τ [τm/αm]

Γ ` e1 :: τ1 → τ2 Γ ` e2 :: τ1

Γ ` apply(e1, e2) :: τ2

Figure 1: Typing rules for TFLC

we use a corresponding vector notation for multiple simultaneous replacements. A program
P is well-typed if and only if for each function definition f(xn) = e with type declaration
f :: ∀α1. · · · ∀αm.τ1 → · · · → τn → τ in P the typing judgment αm, xn :: τn ` e :: τ is valid.

3 The Natural Semantics

Albert et al. (2005) present an operational semantics, called natural semantics, for FLC. To
guarantee correct behavior with respect to call-time choice, the natural semantics is defined
for a normalized subset of FLC terms and programs. We adapt this natural semantics to
TFLC. Therefore, we need to restrict to a normalized subset of TFLC expressions and
programs as well.

Definition 3.1. A TFLC expression is normalized if

• all arguments to apply are variables,

• all constructor arguments are variables,

• unknownτ only appears as right-hand side of definitions in let-expressions.

A TFLC program P is normalized if for every function definition f(xn) = e in P the
right-hand side e is normalized.

The process of normalization introduces let-expressions that bind (non-variable) function
arguments to variables. The original function arguments are replaced by these variables.
For a formal specification of normalization we refer to Albert et al. (2005, Definition 3.2).
An adaptation of this procedure to TFLC is possible but cumbersome, due to the required
handling of type annotations. We avoid spelling out the details, and simply let e† and P †

denote the normalized versions of a term e and a program P , respectively.
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Figure 2 presents the natural semantics for normalized TFLC. Note that we consider a
fixed normalized program P , which, for example, is used in rule (Fun). We omit rules for
Boolean case expressions as they are analogous to the rules for list case expressions. We
deal with higher-order features in the spirit of the corresponding extension of Albert et al.
(2005, Section 5.4.3). Note that we do not take over the problematic rule (VarExp) of
Albert et al. (2005), instead replacing it by the rule (Lookup) of Braßel and Huch (2007a,
who discovered the inappropriateness of (VarExp)).

Given a normalized expression e under a heap ∆, a semantic derivation for a statement
∆ : e ⇓ ∆′ : v means that e under that heap can be evaluated to v while the heap changes
to ∆′. The derivation guarantees that v is in head normal form or a variable that points
to unknownτ in ∆′. An expression is in head normal form if it is constructor-rooted
or a partial function application, i.e., of the form fτm(ek), which is an abbreviation for
apply(. . . (apply(fτm , e1), . . . ), ek), for some n-ary function symbol f and k < n. Note
that partial applications with k > 1 are never part of a normalized TFLC expression; but
they may arise in semantic derivations in the premise of the rule (Apply). Also, for k = 0
we identify fτm(ek) = fτm() with just fτm .

For details about the rules of the natural semantics we refer to the papers of Albert
et al. (2005) and Braßel and Huch (2007a). But let us highlight some adaptations that are
due to our syntactic handling of free variables and failure. The rule (Lookup) forces the
heap entry for the considered variable to be evaluated if it is not some unknownτ . If it is
unknownτ , the rule (Val) applies instead, and the evaluation is completed. Thus, a free
variable is only instantiated if necessary, that is, if it appears in the scrutinee of a case
expression or in a summation. For example, in the rule (LGuess2) the free variable x of
type [τ ] is instantiated to Cons(y, ys) to go on with the derivation via the second premise
of the rule. The function % used, for example, in (LGuess2) renames variables and is
canonically extended to arbitrary expressions. By employing (globally) fresh variables in
(LGuess2) and in (Let), we guarantee that no variable is ever used twice.

As an example, we present a derivation for the double coin example used in the
introduction. We consider the following TFLC program:

coin :: Nat; coin() = 0 ? 1

double :: Nat→ Nat; double(x) = x+ x

Fortunately, both functions are already in normalized form. On the other hand, the
expression apply(double, coin), i.e., double coin in TFLC syntax, is not. So we consider
the corresponding normalized version let x = double, y = coin in apply(x, y).1 In the
following derivation we use the abbreviations ∆1 = {x′ 7→ double, y′ 7→ coin}, ∆2 = {x′ 7→
double}, and ∆3 = {x′ 7→ double, y′ 7→ 0}:

(PartVal)
{y′ 7→ coin} : double ⇓ {y′ 7→ coin} : double

(Lookup)
∆1 : x′ ⇓ ∆1 : double (1)

(Apply)
∆1 : apply(x′, y′) ⇓ ∆3 : 0

(Let)
∅ : let x = double, y = coin in apply(x, y) ⇓ ∆3 : 0

1Here, and later, we omit type annotations for let-bound variables in examples.
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Section 3 The Natural Semantics

(Lookup)
∆ : e ⇓ ∆′ : v

∆[x 7→ e] : x ⇓ ∆′[x 7→ v] : v
where e 6= unknownτ for any τ

(Val) ∆ : v ⇓ ∆ : v
where v is constructor-rooted

or v = x and ∆(x) = unknownτ for some τ

(Fun)
∆ : %(e) ⇓ ∆′ : v

∆ : fτm(xn) ⇓ ∆′ : v

where f :: ∀α1. · · · ∀αm.τ ; f(yn) = e in P
and % = {αm 7→ τm, yn 7→ xn}

(Let)
∆[yk 7→ %(ek)] : %(e) ⇓ ∆′ : v

∆ : let xk :: τk = ek in e ⇓ ∆′ : v

where % = {xk 7→ yk}
with yk fresh

(Plus1)
∆ : e1 ⇓ ∆′ : n1 ∆′ : e2 ⇓ ∆′′ : n2

∆ : e1 + e2 ⇓ ∆′′ : n1 + n2

(Plus2)
∆ : e1 ⇓ ∆′ : n1 ∆′ : e2 ⇓ ∆′′[y 7→ unknownNat] : y

∆ : e1 + e2 ⇓ ∆′′[y 7→ n2] : n1 + n2

(Plus3)
∆ : e1 ⇓ ∆′[x 7→ unknownNat] : x ∆′[x 7→ n1] : e2 ⇓ ∆′′ : n2

∆ : e1 + e2 ⇓ ∆′′ : n1 + n2

(Plus4)

∆ : e1 ⇓ ∆′[x 7→ unknownNat] : x

∆′[x 7→ n1] : e2 ⇓ ∆′′[y 7→ unknownNat] : y

∆ : e1 + e2 ⇓ ∆′′[y 7→ n2] : n1 + n2

where n1, n2 ∈ Nat

(Ori)
∆ : ei ⇓ ∆′ : v

∆ : e1 ? e2 ⇓ ∆′ : v
where i ∈ {1, 2}

(LSelect1)
∆ : e ⇓ ∆′ : Nilτ ∆′ : e1 ⇓ ∆′′ : v

∆ : case e of {Nil 7→ e1;Cons(x1, x2) 7→ e2} ⇓ ∆′′ : v

(LSelect2)
∆ : e ⇓ ∆′ : Cons(y, ys) ∆′ : %(e2) ⇓ ∆′′ : v

∆ : case e of {Nil 7→ e1;Cons(x1, x2) 7→ e2} ⇓ ∆′′ : v

where % = {x1 7→ y, x2 7→ ys}

(LGuess1)
∆ : e ⇓ ∆′[x 7→ unknown[τ ]] : x ∆′[x 7→ Nilτ ] : e1 ⇓ ∆′′ : v

∆ : case e of {Nil 7→ e1;Cons(x1, x2) 7→ e2} ⇓ ∆′′ : v

(LGuess2)
∆ : e ⇓ ∆′[x 7→ unknown[τ ]] : x ∆′ ∪∆′′ : %(e2) ⇓ ∆′′′ : v

∆ : case e of {Nil 7→ e1;Cons(x1, x2) 7→ e2} ⇓ ∆′′′ : v

where % = {x1 7→ y, x2 7→ ys} with y, ys fresh
and ∆′′ = [x 7→ Cons(y, ys), y 7→ unknownτ , ys 7→ unknown[τ ]]

(PartVal) ∆ : fτm(xk) ⇓ ∆ : fτm(xk)

(Apply)
∆ : x ⇓ ∆′ : fτm(xk) ∆′ : fτm(xk, y) ⇓ ∆′′ : v

∆ : apply(x, y) ⇓ ∆′′ : v

where f :: ∀α1. . . .∀αm.τ ; f(xn) = e in P and k < n

Figure 2: Adaptation of the natural semantics presented by Braßel and Huch (2007a)
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At position (1) we use the following subderivation:2

(Val)
∆2 : 0 ⇓ ∆2 : 0

(Or1)
∆2 : 0 ? 1 ⇓ ∆2 : 0

(Fun)
∆2 : coin ⇓ ∆2 : 0

(Lookup)
∆1 : y′ ⇓ ∆3 : 0

(Val)
∆2 : 0 ⇓ ∆2 : 0

(Lookup)
∆3 : y′ ⇓ ∆3 : 0

(Plus1)
∆1 : y′ + y′ ⇓ ∆3 : 0

(Fun)
∆1 : double(y′) ⇓ ∆3 : 0

Of course, another derivation is possible as well: instead of (Or1) we can use (Or2)

and then derive the final result 2. This highlights that nondeterminism is handled by
competing rules in the natural semantics. To get the overall possible semantics of a single
expression, each possible derivation has to be considered. The same holds for CRWL.

Given the example calculation, we observe pros and cons of using an operational se-
mantics. On the one hand, the natural semantics is very useful because it is very close to
a Curry implementation. On the other hand, for calculations by hand and for formal rea-
soning the semantics is not that advantageous. The lengthy derivations and in particular
the contribution of potentially many derivations to the semantics of a single expression
are hindering. Another drawback is the need for normalized expressions.

A denotational semantics as given in the next section is very much complementary
to an operational semantics. It is more abstract and thereby, as a con, farther from an
implementation. On the pro side, every calculation is closed in itself. As calculations
thus become more concise, it is easier to calculate by hand. Moreover, the semantics is
completely compositional, meaning that the semantics of each subterm of a term can be
computed separately and then be used directly to calculate the semantics of the whole
term. This makes that semantics suitable in particular for equational reasoning, and
for proofs of semantic properties by induction on the structure of expressions. Other
advantages are that it operates on all (not only normalized) well-typed TFLC terms, and
that sharing effects are very explicit, which makes them easier to understand.

4 The Denotational Semantics

As we want to model nondeterminism, we cannot use single-value functions as semantic
objects. Walicki and Meldal (1997) give an overview over appropriate function models.
The main criterion for choosing a function model is the decision about call-time vs. run-
time choice. As Curry uses call-time choice, the appropriate function models are 1) the
poweralgebraic model with the restriction to additive functions and 2) the multialgebraic
model.

The poweralgebraic model interprets each function as a mapping that maps a set to
a set. This model can be used for both strategies, run-time and call-time choice. If we
consider only additive functions, we get a model for call-time choice. A (semantic) function
f is additive if for all input sets X, Y we have f(X ∪Y ) = f(X)∪f(Y ). That is, (at least
on finite sets) every function is completely determined by its behavior on the empty set and
on all singleton sets. To satisfy additivity within a term semantics, we have to ensure that

2Note that double(y′) is, by the convention introduced two pages earlier, an abbreviation for
apply(double, y′).
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Section 4 The Denotational Semantics

shared variables embody the same nondeterministic choice. In terms of the double coin

example, we have to guarantee that the semantics of double coin is the union of the
semantics of double 0 and double 1. There are basically two approaches to guarantee
additivity of functions in the term semantics. We can define function application by passing
an input set, to a function, piecewise as singleton sets (and maybe only pass through the
empty set, with some extra care to guarantee laziness). Or we can carefully delay sharing
as much as possible, by having an eye on the function input whenever it is used more
than once in the function body. The latter approach is preferable in an implementation as
presented by Braßel et al. (2011). But it is rather unwieldy in the design of a denotational
semantics, because we would have to either deeply investigate the syntax of terms or be
overly conservative by suspecting a necessity for sharing whenever evaluation of a term
splits into the evaluation of several subterms. Thus, the first alternative mentioned above
seems more appropriate, that is, pass an input set, to a function, piecewise as singleton
sets.

Nevertheless, we choose still another model, namely a multialgebraic one, as it turns
out that the mentioned kind of poweralgebraic model is isomorphic to the multialgebraic
model. A function that takes only singleton sets or the empty set can also be considered
as a function that takes single elements, where the empty set is modeled as an additional
special element. Mapping an element to a set (instead of a set to a set) corresponds to
the multialgebraic approach. We choose the multialgebraic instead of the poweralgebraic
model as, in our opinion, it provides a better overall intuition about the actual behavior
of functions. Also, the multialgebraic model is quite similar to the CRWL approach, and
thus likely to be more accessible to readers familiar with existing semantics for functional
logic languages.

Another choice to be made in a nondeterministic setting is the treatment of failure. One
of the arguments of a nondeterministic choice can be a failure or even be nonterminating.
So far we have not considered whether a nondeterministic choice is supposed to return all
non-failure results, only a part of them, or maybe no result at all in this case. These three
possible approaches are called angelic, erratic, and demonic nondeterminism, respectively.
Curry provides (as far as reasonable3) angelic nondeterminism, returning all non-failure
results. Thus, for example, the terms 3 and 3 ? failedNat are assigned the same semantics.

The appropriate way to model angelic nondeterminism is the Hoare powerdomain. If we
restrict ourselves to directed-complete partial orders (dcpos) as domains, an adaptation of
Theorem 6.2.13 of Abramsky and Jung (1994) allows us to define the Hoare powerdomain
in terms of Scott-closed subsets. A subset A of a dcpo (D,v) is Scott-closed if it is a lower
set that is closed under the suprema of directed subsets. A subset A of a dcpo (D,v) is
a lower set if x ∈ A implies that all y ∈ D with y v x are in A, too. A directed subset A
is a non-empty subset where every two elements in A have a supremum in A.

Definition 4.1. Let D = (D,v) be a dcpo. Its Hoare powerdomain PH(D) is the com-
plete lattice of all Scott-closed subsets of D, along with order ⊆ on those.

Infimum and supremum of M ⊆ PH(D) are defined by:⋂
M = {x ∈ D | ∀m ∈M. x ∈ m}⊔
M =

⋂
{m ∈ PH(D) | ∀n ∈M. n ⊆ m}.

3No implementation is angelic w.r.t. nonterminating computations. Even if all non-failure results are
yielded, such a computation will still fail to terminate afterwards.
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With the just given definition of the Hoare powerdomain we have fixed the domain struc-
ture for interpreting types to dcpos. The type semantics is defined by:

JαKθ = θ(α)

JBoolKθ = {True,False}
JNatKθ = N

Jτ1 → τ2Kθ = {f : (Jτ1Kθ)⊥→PH(Jτ2Kθ) | f continuous}\{Ω}
J[τ ]Kθ = lfp(λS.{[ ]} ∪ {a : b | a ∈ (JτKθ)⊥, b ∈ S⊥})

where θ is a given mapping from type variables to dcpos, to provide for polymorphic types.
Some explanations are in order here, given next.

Types are interpreted as the domains of individual semantic objects, not as the cor-
responding powerdomains. Therefore, the semantics of a term of type τ will be in the
powerdomain of τ ’s semantics. The semantics of Bool and Nat are sets with the discrete
order, in particular without least elements. Results summarized by Abramsky and Jung
(1994) guarantee that the domain structure of type semantics is preserved by the con-
structions for function and for list types. Regarding the function space, functions map
one element of the input type to a set of elements of the output type, i.e., are mappings
from a domain to a powerdomain. Failure (essentially the empty set) as input to a function
needs extra handling, as mentioned before. It is not present in any type’s domain, but
is conceptually a valid input to a function, hence we add it as a special element ⊥. The
lifting operator (·)⊥ adds such an element as least element to a dcpo. Continuity (Scott-
continuity, i.e., monotonicity and preservation of suprema of directed sets) of functions is
enforced explicitly to guarantee that the function space itself is a dcpo (Abramsky and
Jung 1994). The order on the function space is point-wise, and the least defined function
Ω = λa.∅ is excluded from the function space, as we identify it with failure (which, as
indicated above, is not represented in the domains and instead comes in as the empty set
in the respective powerdomain). The semantics of list types is given via least fixpoints
(denoted via lfp). The entries in a list are single elements, not sets. All nondeterminism
in a list is “flattened out” and is represented by having a set of deterministic lists. When
we consider constructors as functions, this approach corresponds to the multialgebraic
function model. This also motivates having ⊥ as a possible list element. The order on the
interpretation of list types is by element-wise comparison.

As mentioned earlier, for the denotational treatment we restrict TFLC to use only
non-recursive let-expressions. We then define the term semantics w.r.t. a fixed program
P , as presented in Figure 3. There, θ maps each type variable to a dcpo and σ maps each
term variable to a single element from a pointed dcpo, specifically not to an element from
a powerdomain over such a dcpo. The latter (restriction to single elements) guarantees
call-time choice. For example, in the semantics of JfτmK the extended variable binding
σ[xn 7→ an] stores possible choices for actual function arguments individually, rather than
a set of possible values for each formal parameter xi.

To guarantee that all term semantics are Scott-closed sets, i.e., elements of a power-
domain, we employ the operation (·)↓, called down-closure. In a dcpo (D,v), we define
A↓ = {x ∈ D | ∃y ∈ A. x v y} for every A ⊆ D. We say that A↓ is the lower set generated
by A. Down-closure suffices for our purpose to guarantee Scott-closedness since we use it
only on finite sets. The following two lemmas establish that fact.

9



Section 4 The Denotational Semantics

JxKθ,σ =

{
∅ if σ(x) = ⊥
{σ(x)}↓ otherwise

JnKθ,σ = {n}

JTrueKθ,σ = {True} JFalseKθ,σ = {False} JNilτ Kθ,σ = {[ ]}

JCons(e1, e2)Kθ,σ =
⊔

h∈(Je1Kθ,σ)⊥

⊔
t∈(Je2Kθ,σ)⊥

{h : t}

Je1 + e2Kθ,σ =
⊔

a∈Je1Kθ,σ

⊔
b∈Je2Kθ,σ{a + b} Je1 ? e2Kθ,σ = Je1Kθ,σ ∪ Je2Kθ,σ

Junknownτ Kθ,σ = JτKθ Jfailedτ Kθ,σ = ∅

JfτmKθ,σ = ({λa1. . . . ({λan.JeKθ[αm 7→JτmKθ],σ[xn 7→an]
} \ {Ω})↓ . . .} \ {Ω})↓

with f :: ∀α1. · · · ∀αm.τ ; f(xn) = e in P

Japply(e1, e2)Kθ,σ =
⊔

f∈Je1Kθ,σ

⊔
a∈(Je2Kθ,σ)⊥

(f a)

Jcase e of {Nil→ e1;Cons(x1, x2)→ e2}Kθ,σ =⊔
t∈JeKθ,σ

{
Je1Kθ,σ if t = [ ]

Je2Kθ,σ[x1 7→t1,x2 7→t2] if t = t1 : t2

Jcase e of {True→ e1;False→ e2}Kθ,σ =
⊔

t∈JeKθ,σ

{
Je1Kθ,σ if t = True

Je2Kθ,σ if t = False

Jlet xn :: τn = en in eKθ,σ =
⊔

(tn)∈Txn=en
JeKθ,σ[xn 7→tn]

with Txn=en the set of all tuples (tn) that fulfill the following requirements:

t1 ∈ (Je1Kθ,σ[xn 7→tn])⊥, . . . , tn ∈ (JenKθ,σ[xn 7→tn])⊥

Figure 3: Denotational term semantics

Lemma 4.2. Let (D,v) be a dcpo and A ⊆ D such that all directed subsets of A have an
upper bound in A. Then A↓ is Scott-closed.

Lemma 4.3. In every finite partially ordered set A each directed subset has an upper
bound in A.

In the term semantics for a variable we use a down-closure w.r.t. the dcpo that is
the semantics of the type of x. Moreover, we use down-closure in the term semantics
for function symbols. Note that there we have to remove Ω before each application of
down-closure because the type semantics for function types do not contain Ω.

Since the system of equations in Figure 3 is recursive, in general there can be more
than one solution. We take the canonical (least) one.

Definition 4.4. The semantic function J·K·,· w.r.t. a program P , formally is a family of
functions J·Kτ·,·, indexed by the type τ (subsequently suppressed in notation), where each
J·Kτ·,· maps terms e with Γ ` e :: τ , and corresponding environments θ, σ, to elements of
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PH(JτKθ). Here, “corresponding” means that θ maps every type variable in Γ to a dcpo,
while σ maps every term variable x :: τ ′ in Γ to an element of (Jτ ′Kθ)⊥. We take J·K·,· as the
least solution of the recursive system of equations in Figure 3 (“least” in the point-wise
order on functions into PH(JτKθ) for τ , θ, σ).

Instead of Scott-closed sets, it often suffices to calculate with sets that contain the
same maximal elements as a Scott-closed set. Additionally, most

⊔
-operators can simply

be considered set unions, as stated by the following lemmas.

Lemma 4.5. The semantic function J·K·,· is monotone w.r.t. the term environment en-
tries. That is, JeKθ,σ[x 7→t] ⊆ JeKθ,σ[x 7→t′] whenever t v t′ in the appropriate domain.

Lemma 4.6. Let (D,v) be a dcpo and A be a Scott-closed set in D. Then A = A′↓ for
every A′ ⊆ A with the same maximal elements as A.

Lemma 4.7. Let D = (D,v), E = (E,v′) be dcpos, and A ⊆ D. Let f be a monotone
map from D⊥ to PH(E). We have

⊔
a∈A↓(f a) =

⊔
a∈A(f a), and if A is finite, then⊔

a∈A(f a) =
⋃
a∈A(f a).

This simplifies calculating with the denotational semantics, as shown in the following
example for apply(double, coin):

JcoinK∅,∅ = J0 ? 1K∅,∅ = J0K∅,∅ ∪ J1K∅,∅ = {0, 1}

JdoubleK∅,∅ = ({λa.Jx+ xK∅,[x 7→a]} \ {Ω})↓
= ({λa.

⊔
b∈JxK∅,[x 7→a]

⊔
c∈JxK∅,[x7→a]

{b + c}} \ {Ω})↓

= ({λa.
⊔

b∈JxKθ,[x 7→a]

{⊔
c∈∅{b + c} if a = ⊥⊔
c∈{a}↓{b + c} otherwise

} \ {Ω})↓

= ({λa.
⊔

b∈JxKθ,[x 7→a]

{⊔
c∈∅{b + c} if a = ⊥⊔
c∈{a}{b + c} otherwise

} \ {Ω})↓

= ({λa.
⊔

b∈JxKθ,[x 7→a]

{⋃
c∈∅{b + c} if a = ⊥⋃
c∈{a}{b + c} otherwise

} \ {Ω})↓

= ({λa.
⊔

b∈JxKθ,[x 7→a]

{
∅ if a = ⊥
{b + a} otherwise

} \ {Ω})↓

= ({λa.

{
∅ if a = ⊥
{a + a} otherwise

} \ {Ω})↓

= ({λa.

{
∅ if a = ⊥
{a + a} otherwise

})↓

Japply(double, coin)K∅,∅ =
⊔

f∈JdoubleK∅,∅

⊔
a∈(JcoinK∅,∅)⊥(f a)

=
⊔

f∈({λa.

∅ if a = ⊥
{a + a} otherwise

})↓

⊔
a∈(JcoinK∅,∅)⊥(f a)

11



Section 5 Equivalence of the Semantics

=
⋃

f∈{λa.

∅ if a = ⊥
{a + a} otherwise

}

⊔
a∈(JcoinK∅,∅)⊥(f a)

=
⊔

a∈{0,1}⊥

{
∅ if a = ⊥
{a + a} otherwise

= {0, 2}

As a more complex example, consider a program containing

ones :: [Nat]; ones() = NilNat ? Cons(1, ones)

and then the following calculation:

JonesK∅,∅ = JNilNat ? Cons(1, ones)K∅,∅
= JNilNatK∅,∅ ∪ JCons(1, ones)K∅,∅
= {[ ]} ∪

⊔
t∈(JonesK∅,∅)⊥{⊥ : t, 1 : t}

= {[ ]} ∪
⊔

t∈({[ ]}∪
⊔

t′∈(JonesK∅,∅)⊥
{⊥:t′,1:t′})⊥{⊥ : t, 1 : t}

= {[ ],⊥ : ⊥, 1 : ⊥,⊥ : [ ], 1 : [ ]} ∪
⊔

t∈
⊔

t′∈(JonesK∅,∅)⊥
{⊥:t′,1:t′}{⊥ : t, 1 : t}

= {[ ],⊥ : ⊥, 1 : ⊥,⊥ : [ ], 1 : [ ],⊥ : ⊥ : ⊥, 1 : ⊥ : ⊥,⊥ : 1 : ⊥, 1 : 1 : ⊥,⊥ : ⊥ : [ ],
1 : ⊥ : [ ],⊥ : 1 : [ ], 1 : 1 : [ ], . . . }

= {[ ], 1 : [ ], 1 : 1 : [ ], . . . , 1 : 1 : · · · }↓

5 Equivalence of the Semantics

As a goal in designing a denotational semantics for Curry, the new semantics should
be equivalent to an already established one. We claim that, in the absence of recursive
let-expressions, the denotational semantics from Section 4 is equivalent to the natural se-
mantics in Section 3. There are several notions of equivalence of two semantics. Obviously,
there is no chance for a statement like “the same expressions evaluate to the same semantic
values” here since the natural semantics yields a set of terms while the denotational se-
mantics yields a set of mathematical objects. Instead, we relate the denotational semantics
of a “result” of a derivation in the natural semantics with the denotational semantics of
the original expression. This corresponds to the well-established notion of computational
adequacy of a denotational semantics with respect to an operational semantics. Since the
natural semantics requires normalized expressions, we first restrict ourselves to normalized
expressions and programs in what follows. At the end of this section we extend the results
to general TFLC expressions and programs (clearly, still without recursive let-expressions).

For an equivalence statement we have to relate the environments under which the
natural and the denotational semantics operate. We use the fact that we are interested
only in well-typed expressions, and hence relate the environments via a typing context.
Note that during the proofs we employ implicitly that the natural semantics preserves well-
typedness at each step of a derivation. By dom(·) we denote the domain of a function.
Since we consider only non-recursive let-expressions, we can restrict attention to non-
recursive heaps, i.e., heaps where no entry directly or indirectly depends on itself.
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Definition 5.1. Let Γ = {αk, xl :: τl} be a typing context. We say (θ,∆, σ) corresponds to
Γ, written (θ,∆, σ) ∼ Γ, if ∆ is a non-recursive heap, dom(θ) = {αk}, dom(∆)∪dom(σ) =
{xl}, dom(∆) ∩ dom(σ) = ∅, ∀x ∈ dom(∆). Γ ` ∆(x) :: τ , and ∀x ∈ dom(σ). σ(x) ∈
(JτKθ)⊥, where Γ ` x :: τ .

The relation ∼ extends the notion “corresponding” from Definition 4.4 and allows us
to define the denotational semantics of a heap-expression pair.

Definition 5.2. Let Γ ` e :: τ and (θ,∆, σ) ∼ Γ with ∆ = {xn 7→ en}. We set

J∆, eKθ,σ = Jlet xn :: τn = en in eKθ,σ

where the τn are taken from the xn :: τn entries in Γ, which are guaranteed to exist by the
correspondence relation.

Now we are able to state the main conjecture, establishing equivalence of the natural
and the denotational semantics.

Conjecture 5.3. If Γ ` e :: τ , (θ,∆, σ) ∼ Γ, and ∀x ∈ dom(σ). σ(x) = ⊥, then, in the
absence of recursive let-expressions,

J∆, eKθ,σ =
⊔

∆:e⇓∆′:vJ∆
′, vKθ,σ.

Note that the right-hand side still contains a nontrivial invocation of the denotational
semantics, because the operational semantics only ever reduces to a head normal form.
That the above adequacy statement is indeed very useful for relating denotational and
operational semantics can be seen by looking at its specialization to ground types. For
example, if we set τ to Nat, we obtain that J∆, eKθ,σ contains an n ∈ N if and only if
there exist ∆′ and v with ∆ : e ⇓ ∆′ : v and either v = n or v is a variable x with
∆′(x) = unknownNat.

We split Conjecture 5.3 into the following theorem and conjecture, where each can be
used to establish one inclusion of the desired equivalence.

Theorem 5.4. Let Γ ` e :: τ . Then, in the absence of recursive let-expressions,

∆ : e ⇓ ∆′ : v ⇒ J∆, eKθ,σ ⊇ J∆′, vKθ,σ

whenever (θ,∆, σ) ∼ Γ (without further condition on σ!).

That is, J∆, eKθ,σ is an upper bound for each J∆′, vKθ,σ with ∆ : e ⇓ ∆′ : v, so clearly it
is above or equal to the least upper bound

⊔
∆:e⇓∆′:vJ∆

′, vKθ,σ, which gives one inclusion
direction of Conjecture 5.3.

For the other direction, we need some preparation. By a standard fixpoint theorem
(using that J·Kθ,σ is continuous), we can characterize the semantic function from Defini-
tion 4.4 via a “step-indexed” version. We set JeK0

θ,σ = ∅. For every i > 0 we get JeKiθ,σ via
an adaptation of the rules in Figure 3 by replacing all occurrences of some Je′Kθ′,σ′ on the
right-hand sides by Je′Ki−1

θ′,σ′ . For example, if e = e1 ? e2, then for every i > 0 the semantics

JeKiθ,σ is defined as Je1Ki−1
θ,σ ∪ Je2Ki−1

θ,σ . Then it holds in general that JeKθ,σ =
⊔
i∈NJeKiθ,σ.

Via Definition 5.2, the step-index is transferred to the notion J∆, eKθ,σ as well, and we can
state the following conjecture.
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Section 5 Equivalence of the Semantics

Conjecture 5.5. Let Γ ` e :: τ , (θ,∆, σ) ∼ Γ, and ∀x ∈ dom(σ). σ(x) = ⊥. Then, in
the absence of recursive let-expressions, for every i ∈ N and t ∈ J∆, eKiθ,σ there exists a
natural semantics derivation yielding ∆ : e ⇓ ∆′ : v such that t ∈ J∆′, vKθ,σ.

This gives the inclusion of J∆, eKθ,σ in
⊔

∆:e⇓∆′:vJ∆
′, vKθ,σ from Conjecture 5.3, because:

J∆, eKθ,σ is
⊔
i∈NJ∆, eKiθ,σ, Conjecture 5.5 gives that

⊔
∆:e⇓∆′:vJ∆

′, vKθ,σ is an upper bound

for each J∆, eKiθ,σ, and hence it is above or equal to the least upper bound
⊔
i∈NJ∆, eKiθ,σ.

We have proved Theorem 5.4, by induction on the length of the semantic derivation
for ∆ : e ⇓ ∆′ : v.4 The proof uses several lemmas and is structured similarly to a proof of
López-Fraguas et al. (2007, proof of Theorem 6.2). Here, we only provide the main results
contributing to the proof.

First, we show how the concept of context refinement is represented in the denotational
semantics.

Lemma 5.6. Let Γ ` e :: τ , Γ′ ` e :: τ , (θ,∆, σ) ∼ Γ, and (θ,∆′, σ) ∼ Γ′. Then, in the
absence of recursive let-expressions,

(∀x ∈ dom(∆). J∆, xKθ,σ ⊇ J∆′, xKθ,σ) ⇒ J∆, eKθ,σ ⊇ J∆′, eKθ,σ

Next, we split the effects of a natural semantics derivation into effects on the heap and on
the result. (The proof uses Lemma 5.6.)

Lemma 5.7. Let Γ ` e :: τ and (θ,∆, σ) ∼ Γ. If ∆ : e ⇓ ∆′ : v, then, in the absence of
recursive let-expressions:

1. ∀x ∈ dom(∆). J∆, xKθ,σ ⊇ J∆′, xKθ,σ, and

2. J∆′, eKθ,σ ⊇ J∆′, vKθ,σ.

Combining Lemma 5.6 and Lemma 5.7(1), we get a corollary that is the last ingredient
necessary for the proof of Theorem 5.4.

Corollary 5.8. Let Γ ` e :: τ and (θ,∆, σ) ∼ Γ. If ∆ : e ⇓ ∆′ : v, then, in the absence of
recursive let-expressions, J∆, eKθ,σ ⊇ J∆′, eKθ,σ.

Proof (Theorem 5.4). Let Γ ` e :: τ and let (θ,∆, σ) be corresponding to Γ. Assume
∆ : e ⇓ ∆′ : v. Then by Corollary 5.8 we have J∆, eKθ,σ ⊇ J∆′, eKθ,σ, and by Lemma 5.7(2)
we have J∆′, eKθ,σ ⊇ J∆′, vKθ,σ. Hence, J∆, eKθ,σ ⊇ J∆′, vKθ,σ.

Finally, in the absence of recursive let-expressions, denotational results about normal-
ized TFLC terms can be extended to all TFLC terms by the following lemma.

Lemma 5.9. Let P be a program and e be a well-typed expression such that ∅ ` e :: τ . It
holds that, in the absence of recursive let-expressions,

JeKP∅,∅ = Je†KP
†

∅,∅ ,

where the superscripts indicate the programs that are used to calculate the semantics.

4For Conjecture 5.5 we expect that the stratification via i will facilitate a proof. That is, a proof would
be first by induction on i ∈ N, then by structural induction on e.
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6 Conclusion

We have presented a new semantics for a core of the functional logic language Curry.
It is the first functional-style, denotational semantics for this language. We partially
proved equivalence to an existing natural semantics (Albert et al. 2005; Braßel and Huch
2007a). We expect benefits for equational reasoning and for formally establishing type-
based reasoning principles. Problems arising with recursive let-expressions are discussed
in Appendix A.
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A What about Recursive Let-Expressions?

We have avoided treating recursive let-expressions in our denotational semantics here.
That is a pity, because we think that the combination of call-time choice and recursive let
is under-appreciated. For example, we can employ a recursive let-expression to define an
interesting way of swapping two elements in a list. This example is inspired by a similar
example of Erkök (2002), who uses the list monad in Haskell instead of nondeterminism.
We define a function called replace, which takes an element and a list and nondetermin-
istically replaces one entry in the list by that element. The function yields the resulting
list and the list entry that has been replaced.

replace :: Int -> [Int] -> ([Int],Int)

replace x (y:ys) =

(x:ys,y) ? let (zs,z) = replace x ys in (y:zs,z)

By means of replace, we now define a function pairSwaps that nondeterministically
exchanges two elements in a list:

pairSwaps :: [Int] -> [Int]

pairSwaps xs = let (ys,y) = replace z xs

(zs,z) = replace y ys in zs

While being useful, even correctly implementing call-time choice in the presence of
let-recursion seems problematic, as exhibited below. First, we give the following Curry
definition of take, which for an input list l yields the longest prefix of l with at most
n ≥ 0 elements:

take :: Int -> [a] -> [a]

take n l = if n<=0 then [] else take’ n l

where

take’ _ [] = []

take’ m (x:xs) = x : take (m-1) xs

Now, consider the following Curry definition, where ? denotes nondeterministic choice:
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Appendix A What about Recursive Let-Expressions?

ones = [] ? (1 : ones)

When we use KiCSi (the interpreter of the Kiel Curry System KiCS) and ask for the list
with the first three (if existing) elements of ones, we get the following answers:

> take 3 ones

[]

More?

[1]

More?

[1,1]

More?

[1,1,1]

More?

No more Solutions

But if we consider a very similar definition, just moving ones into a let-expression, KiCSi
behaves differently:

> let ones = [] ? (1:ones) in take 3 ones

[]

More?

[1,1,1]

More?

No more Solutions

Because of call-time choice, the decision whether ones is [] or 1:ones is made just once
for the let-bound ones. For the top-level ones before, in contrast, the choice is made
in every single recursive step. From a term-rewriting point of view, in the first definition
ones is a constant, i.e., a nullary function, while in the second definition ones is a variable.
That is, in the top-level definition ones is simply a name for its right-hand side while in
the let-bound definition ones is a variable that obeys call-time choice. Omitting take 3

in both examples, the first definition thus yields lists of 1s of every length while the second
definition yields only the empty list and the infinite list of 1s.

So far, so good. But the semantics of recursive let-expressions appears to be not as
settled in functional logic languages as it is in purely functional ones. To see this, let us
now consider another definition which employs a recursive let-expression:

let len = 0 ? (1+len) in len

One could reasonably expect that the semantics of this expression is equal to the semantics
of the following expression:

let ones = [] ? (1:ones) in length ones
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Jlet xn :: τn = en in eKθ,σ =
⊔

(tn)∈Txn=en
JeKθ,σ[xn 7→tn]

with Txn=en the set of the minimal tuples (tn) that fulfill the following requirements:

t1 ∈ max((Je1Kθ,σ[xn 7→tn])⊥), . . . , tn ∈ max((JenKθ,σ[xn 7→tn])⊥)

Figure 4: Attempt at dealing with recursive let-expressions denotationally

But for len, different Curry implementations behave differently. While KiCS indeed yields
the result 0 and then runs out of memory (as would be expected by analogy with the ones

example), PAKCS starts enumerating all natural numbers.
We see that setting up and implementing a formal semantics for a functional logic

language in the presence of recursive let-expressions is not likely to be straightforward. All
the more, creating a formal semantics in a denotational, functional style promises to help
uncovering and handling complex effects such as those described above. We had indeed
originally (Christiansen et al. 2011) allowed recursive let-expressions in our denotational
semantics, and replaced the last rule in Figure 3 by the one given in Figure 4. That allowed
us to explain the difference between ones defined via a recursive let-expression and via a
top-level definition. In particular, we had (for comparison with the calculation at the end
of Section 4):

Jlet ones = NilNat ? Cons(1, ones) in onesK∅,∅
=

⊔
t∈Tones=NilNat?Cons(1,ones)

JonesK∅,{ones 7→t}

with Tones=NilNat?Cons(1,ones)

= min{t | t ∈ max((JNilNat ? Cons(1, ones)K∅,{ones 7→t})⊥)}

= min{t | t ∈ max(({[ ]} ∪

{
{⊥ : ⊥, 1 : ⊥} if t = ⊥⊔

t′∈({t}↓)⊥{⊥ : t′, 1 : t′} otherwise
)⊥)}

= min{t | t ∈ max(({[ ]} ∪ {1 : t}↓)⊥)}
= min{[ ], 1 : 1 : · · · }

= {[ ], 1 : 1 : · · · }↓ ,

where the crucial step was to realize that

{t | t ∈ max(({[ ]} ∪ {1 : t}↓)⊥)} = {[ ], 1 : 1 : . . .}.5

We even conjectured that Theorem 5.4 and Conjecture 5.5, and thus Conjecture 5.3,
hold in the presence of recursive let-expressions with that semantics (while allowing recur-
sive heaps in Definition 5.1), but inspired by an example of Schmidt-Schauß et al. (2009)
we have since found that the proposed denotational treatment of recursive let-expressions
is not consistent with the operational behavior. More precisely, the denotation of expres-
sions that contain recursive let-expressions may consist of more results than it is supposed

5No other choice for t satisfies the requirement t ∈ max(({[ ]} ∪ {1 : t}↓)⊥). For example, the singleton
list 1 : [ ] is not in ({[ ]} ∪ {1 : 1 : [ ]}↓)⊥, and the partial list 1 : ⊥ is in ({[ ]} ∪ {1 : 1 : ⊥}↓)⊥, but not
maximal in it.
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Appendix A What about Recursive Let-Expressions?

to. Let us demonstrate this by considering the following expression, which is actually very
similar to an example of Braßel and Huch (2007b, to show that rule (VarExp) of Albert
et al. (2005) is inappropriate):

let b = True ? case b of {True→ False;False→ False} in b

Evaluating this expression in KiCSi yields True as first result. Asking for more re-
sults leads to nontermination. This is the intended behavior in the presence of call-time
choice: since b is a variable it can only be bound to one deterministic choice. Therefore,
the evaluation of the term above should yield the union of the results of the evaluation
of let b = True in b and let b = case b of {True→ False;False→ False} in b, i.e., de-
notationally the union of {True} and ∅. But the denotational semantics we proposed
additionally yields the result False. Let us examine the corresponding calculation in a bit
more detail:

Jlet b = True ? case b of {True→ False;False→ False} in bK∅,∅
=

⊔
t∈Tb=True?case b of {True→False;False→False}

JbK∅,[b7→t]

with Tb=True?case bof {True→False;False→False}

= min{t | t ∈
max((JTrue ? case b of {True→ False;False→ False}K∅,[b 7→t])⊥)}

= min{t | t ∈ max(({True} ∪

{
∅ if t = ⊥
{False} otherwise

)⊥)}

= {True,False}
= {True,False}

The problem becomes visible best in the third-last line of the calculation. Let us assume
that the result that originates from the non-recursive part of the right-hand side of the vari-
able binding, namely {True}, is not present. In this case possible values for t, over which to
minimize, are exactly ⊥ and False, because ⊥ ∈ max(∅⊥) and False ∈ max({False}⊥), but
True /∈ max({False}⊥). After minimization only ⊥ remains. If we, however, reconsider
the original situation where {True} is present, ⊥ does not even take part in the minimiza-
tion, because ⊥ /∈ max(({True} ∪ ∅)⊥). Due to True,False ∈ max(({True} ∪ {False})⊥)
we now have to minimize over the set {True,False} rather than over the set {⊥,False},
and thus False “survives”.

Contrary to that denotational semantics, the natural semantics does yield the same
results as KiCSi for the above expression, as we will show now. To save space we abbreviate
the term case b of {True→ False;False→ False} by seqbFalse. The following derivation is
the only successful derivation for the expression in question:

(Val)
∅ : True ⇓ ∅ : True

(Or1)
∅ : True ? seqbFalse ⇓ ∅ : True

(Lookup)
{b 7→ True ? seqbFalse} : b ⇓ {b 7→ True} : True

(Let)
∅ : let b = True ? seqbFalse in b ⇓ {b 7→ True} : True
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Crucially, choosing (Or2) instead of (Or1) leads to a partial derivation that cannot be
completed:

∅ : b ⇓ ??? ??? ⇓ ???
(???)

∅ : case b of {True→ False;False→ False} ⇓
(Or2)

∅ : True ? seqbFalse ⇓
For the rule (???) we could try to choose (LSelect1), (LSelect2), (LGuess1) or (LGuess2),
but in the left branch we would always end up asking the empty heap for the value of b,
thus getting stuck.

The example presented above proves that Conjecture 5.3 does not hold in the presence
of recursive let-expressions with their proposed denotational treatment (and, more specif-
ically, neither does Conjecture 5.5). From our current perspective that flaw is unfixable
in any approach to a set-valued denotational semantics. To define such a semantics for a
recursive let-expression it is simply not sufficient to know the sets which would be assigned
to the right-hand sides of variable bindings. Instead, it needs to be known wherefrom the
elements in such a set arise. And that information is not accessible in general.

We still think that Theorem 5.4 holds even in the presence of recursive let-expressions
(as does Lemma 5.9), with our proposed denotational treatment of them, though it is
doubtful how useful that is in practice, given that that part of our denotational semantics
is not really adequate for full Curry. The fragment that contains only non-recursive let-
expressions is still powerful enough to model an interesting part of the language. Hence,
our semantics remains a suitable choice for equational reasoning and as a foundation for
formally carrying over relational parametricity arguments to functional logic languages.
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Großflächiger Szenen
A. Brunn, R. Englert, Th. Hau,
A.B. Cremers und W. Förstner
September 1998.

IAI-TR-98-9 Komponentenbasierte Anpaßbarkeit von Groupware
Oliver Stiemerling
September 1998.

IAI-TR-98-10 Polytypic Functions Over Nested Datatypes
Ralf Hinze
Oktober 1998.

IAI-TR-98-11 Generalizing Generalized Tries
Ralf Hinze
November 1998.

IAI-TR-98-12 Numerical Representations as Higher-Order
Nested Datatypes
Ralf Hinze
Dezember 1998.

IAI-TR-98-13 The MYVIEW Project: from Heterogeneous Bibliographic
Information Repositories to Personalized Digital Libraries
Jens E. Wolff and Armin B. Cremers
Dezember 1998.

IAI-TR-98-14 The Use of Cooperation Scenarios in the Design and
Evaluation of a CSCW System
Oliver Stiemerling and Armin B. Cremers
Dezember 1998.

IAI-TR-98-15 Portfoliooptimierung mit Verfahren aus der Informatik
Armin B. Cremers, Christoph Hundack, Jens Lüssem
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