Type-Based Reasoning about Efficiency

D. Seidel* J. Voigtländer

University of Bonn
August 3rd, 2011
*Supported by the DFG under grant VO 1512/1-1.

Parametric Polymorphism in Haskell

A standard function:

$$
\begin{array}{ll}
\operatorname{map} g[] & =[] \\
\operatorname{map} g(a: a s) & =\binom{g}{g}:(\operatorname{map} g a s)
\end{array}
$$

Parametric Polymorphism in Haskell

A standard function:

$$
\begin{array}{ll}
\operatorname{map} g[] & =[] \\
\operatorname{map} g(a: a s) & =(g a):(\operatorname{map} g a s)
\end{array}
$$

Some invocations:
map succ $[1,2,3]=[2,3,4]$

Parametric Polymorphism in Haskell

A standard function:

$$
\begin{array}{ll}
\operatorname{map} g[] & =[] \\
\operatorname{map} g(a: a s) & =(g a):(\operatorname{map} g a s)
\end{array}
$$

Some invocations:
$\operatorname{map} \operatorname{succ}[1,2,3]=[2,3,4]$
map not $[$ True, False $]=[$ False, True $]$

Parametric Polymorphism in Haskell

A standard function:

$$
\begin{array}{ll}
\operatorname{map} g[] & =[] \\
\operatorname{map} g(a: a s) & =(g a):(\operatorname{map} g a s)
\end{array}
$$

Some invocations:
map succ $[1,2,3]=[2,3,4]$
map not $[$ True, False] $=[$ False, True $]$
map even $[1,2,3]=[$ False, True, False $]$

Parametric Polymorphism in Haskell

A standard function:

$$
\begin{array}{ll}
\operatorname{map} g[] & =[] \\
\operatorname{map} g(a: a s) & =(g a):(\operatorname{map} g a s)
\end{array}
$$

Some invocations:
$\operatorname{map} \operatorname{succ}[1,2,3]=[2,3,4]$
map not $[$ True, False] $=[$ False, True $]$
map even $[1,2,3]=[$ False, True, False $]$
map not $[1,2,3]$

Parametric Polymorphism in Haskell

A standard function:

$$
\begin{aligned}
\operatorname{map}::(\alpha \rightarrow \beta) & \rightarrow[\alpha] \rightarrow[\beta] \\
\operatorname{map} g[] & =[] \\
\operatorname{map} g(a: a s) & =(g a):(\operatorname{map} g \text { as })
\end{aligned}
$$

Some invocations:
map succ $[1,2,3]=[2,3,4]$
map not $[$ True, False] $=[$ False, True $]$
map even $[1,2,3]=$ [False, True, False]
map not $[1,2,3]$

Parametric Polymorphism in Haskell

A standard function:

$$
\begin{aligned}
& \operatorname{map}::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta] \\
& \operatorname{map} g[]=[] \\
& \operatorname{map} g(a: a s)=(g a):(\operatorname{map} g a s)
\end{aligned}
$$

Some invocations:
$\operatorname{map} \operatorname{succ}[1,2,3]=[2,3,4]$
map not $[$ True, False $]=[$ False, True $]$
map even $[1,2,3]=[$ False, True, False $]$
map not $[1,2,3]$ \& rejected at compile-time

Parametric Polymorphism in Haskell

A standard function:

$$
\operatorname{map}::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta]
$$

Some invocations:
$\operatorname{map} \operatorname{succ}[1,2,3]=[2,3,4]$
map not $[$ True, False] $=[$ False, True $]$
map even $[1,2,3]=[$ False, True, False $]$
map not $[1,2,3]$ \& rejected at compile-time

Another Example

$$
\begin{aligned}
& \text { reverse }::[\alpha] \rightarrow[\alpha] \\
& \text { reverse }[]=[] \\
& \text { reverse }(a: a s)=(\text { reverse as })+[a]
\end{aligned}
$$

Another Example

$$
\begin{aligned}
& \text { reverse }::[\alpha] \rightarrow[\alpha] \\
& \text { reverse }[]=[] \\
& \text { reverse }(a: a s)=(\text { reverse as })+[a]
\end{aligned}
$$

For every choice of g and I :

$$
\text { reverse }(\operatorname{map} g l)=\operatorname{map} g(\text { reverse } I)
$$

Provable by induction.

Another Example

$$
\begin{aligned}
& \text { reverse }::[\alpha] \rightarrow[\alpha] \\
& \text { reverse }[]=[] \\
& \text { reverse }(a: a s)=(\text { reverse as })+[a]
\end{aligned}
$$

For every choice of g and I :

$$
\text { reverse }(\operatorname{map} g I)=\operatorname{map} g(\text { reverse } I)
$$

Provable by induction.
Or as a "free theorem" [Wadler, FPCA'89].

Another Example

$$
\text { reverse }::[\alpha] \rightarrow[\alpha]
$$

For every choice of g and I :

$$
\text { reverse }(\operatorname{map} g l)=\operatorname{map} g(\text { reverse } I)
$$

Provable by induction.
Or as a "free theorem" [Wadler, FPCA'89].

Another Example

$$
\begin{array}{r}
\text { reverse }::[\alpha] \rightarrow[\alpha] \\
\text { tail }::[\alpha] \rightarrow[\alpha]
\end{array}
$$

For every choice of g and I :

$$
\begin{aligned}
\text { reverse }(\operatorname{map} g l) & =\operatorname{map} g(\text { reverse } I) \\
\operatorname{tail}(\operatorname{map} g l) & =\operatorname{map} g(\operatorname{tail} l)
\end{aligned}
$$

Another Example

$$
\begin{array}{r}
\text { reverse }::[\alpha] \rightarrow[\alpha] \\
\text { tail }::[\alpha] \rightarrow[\alpha] \\
\mathrm{f}::[\alpha] \rightarrow[\alpha]
\end{array}
$$

For every choice of g and I :
reverse $(\operatorname{map} g I)=\operatorname{map} g($ reverse $I)$

$$
\begin{aligned}
\operatorname{tail}(\operatorname{map} g l) & =\operatorname{map} g(\operatorname{tail} I) \\
f(\operatorname{map} g l) & =\operatorname{map} g(\mathrm{f} I)
\end{aligned}
$$

Automatic Generation of Free Theorems

At http://www-ps.iai.uni-bonn.de/ft:

Please enter a (polymorphic) type, e.g. "(a -> Bool) -> [a] -> [a]" or simply "filter":
f : : $(a \rightarrow B \operatorname{BoOl}) \rightarrow[a] \rightarrow[a]$
Please choose a sublanguage of Haskell:
© no bottoms (hence no general recursion and no selective strictness)general recursion but no selective strictness
general recursion and selective strictness
Please choose a theorem style (without effect in the sublanguage with no bottoms):

- equational
inequational

```
Generate }\square\mathrm{ hide type instantiations © PNG ○Plain ○TeX ○PDF ?
```


Automatic Generation of Free Theorems

The Free Theorem for " f :: forall a . (a -> Bool) -> [a] -> [a]"

$$
\begin{aligned}
\forall t_{1}, t_{2} & \in \text { TYPES, } \mathrm{R} \in \operatorname{REL}\left(t_{1}, t_{2}\right) . \\
\forall p:: & t_{1} \rightarrow \text { BooL. } \\
& \forall \\
& q:: t_{2} \rightarrow \text { BooL. } \\
& (\forall(x, y) \in \operatorname{R.} p x=q y) \\
& \Rightarrow(\forall(z, v) \in \operatorname{LIFT}]\}(\mathrm{R}) .(f p z, f q v) \in \operatorname{LIFT}\{[\}(\mathrm{R}))
\end{aligned}
$$

```
LIFT{[]}(R)
    ={([],[])}
    \cup{(x:xs,y:ys)|((x,y)\inR)\wedge((xs,ys)\in\operatorname{LIFT}{]}(R))}
```

Reducing all permissable relation variables to functions

$$
\begin{aligned}
& \forall t_{1}, t_{2} \in \text { TYPES, } g:: t_{1} \rightarrow t_{2} . \\
& \forall p:: t_{1} \rightarrow \text { BooL. } \\
& \forall q:: t_{2} \rightarrow \text { BooL. } \\
&\left(\forall x:: t_{1} \cdot p x=q(g x)\right) \\
& \Rightarrow\left(\forall y::\left[t_{1}\right] . \operatorname{map} g(f p y)=f q(\operatorname{map} g y)\right)
\end{aligned}
$$

Applications

- Short Cut Fusion [Gill et al., FPCA'93]

Applications

- Short Cut Fusion [Gill et al., FPCA'93]
- The Dual of Short Cut Fusion
[Takano \& Meijer, FPCA'95], [Svenningsson, ICFP'02]

Applications

- Short Cut Fusion [Gill et al., FPCA'93]
- The Dual of Short Cut Fusion [Takano \& Meijer, FPCA'95], [Svenningsson, ICFP'02]
- Knuth's 0-1-principle and the like [Day et al., Haskell'99], [V., POPL'08]

Applications

- Short Cut Fusion [Gill et al., FPCA'93]
- The Dual of Short Cut Fusion [Takano \& Meijer, FPCA'95], [Svenningsson, ICFP'02]
- Knuth's 0-1-principle and the like [Day et al., Haskell'99], [V., POPL'08]
- Bidirectionalization [V., POPL'09]

Applications

- Short Cut Fusion [Gill et al., FPCA'93]
- The Dual of Short Cut Fusion [Takano \& Meijer, FPCA'95], [Svenningsson, ICFP'02]
- Knuth's 0-1-principle and the like [Day et al., Haskell'99], [V., POPL'08]
- Bidirectionalization [V., POPL'09]
- . .
- Testing polymorphic properties [Bernardy et al., ESOP'10]

What About Efficiency?

$$
\begin{array}{|c|c|c}
f:: \alpha \rightarrow \mathrm{Nat} & \mathrm{f}:: \alpha \rightarrow \alpha \rightarrow \alpha & \mathrm{f}:: \alpha \rightarrow(\alpha, \alpha) \\
\hline & & \mathrm{f}(\mathrm{~g} x) \\
\mathrm{f}(g x) & \mathrm{f}(\mathrm{~g} x)(\mathrm{g} y) & = \\
= & = & \text { let } y=\mathrm{f} x \\
\mathrm{f} x & g(\mathrm{f} x y) & \text { in }(g(\mathrm{fst} y), \\
& & g(\text { ind } y))
\end{array}
$$

What About Efficiency?

	$\mathrm{f}:: \alpha \rightarrow$ Nat	$\mathrm{f}:: \alpha \rightarrow \alpha \rightarrow \alpha$	$\mathrm{f}:: \alpha \rightarrow(\alpha, \alpha)$
	$\begin{gathered} f(g x) \\ = \\ f x \end{gathered}$	$\begin{gathered} f(g x)(g y) \\ = \\ g(f x y) \end{gathered}$	$\begin{gathered} f(g x) \\ = \\ \text { let } y=f x \\ \text { in }(g(\text { fst } y), \\ g(\text { snd } y)) \end{gathered}$
call-byvalue	>	>	$<$

What About Efficiency?

	$\mathrm{f}:: \alpha \rightarrow$ Nat	$\mathrm{f}:: \alpha \rightarrow \alpha \rightarrow \alpha$	$\mathrm{f}:: \alpha \rightarrow(\alpha, \alpha)$
	$\begin{aligned} & f(g x) \\ & = \\ & f x \end{aligned}$	$\begin{gathered} f(g x)(g y) \\ = \\ g(f x y) \end{gathered}$	$\begin{gathered} f(g x) \\ = \\ \text { let } y=f x \\ \text { in }(g(\text { fst } y), \\ g(\operatorname{snd} y)) \end{gathered}$
call-byvalue	>	>	$<$
call-byname	$=$	$=$	$<(?)$

What About Efficiency?

	$\mathrm{f}:: \alpha \rightarrow$ Nat	f $:: \alpha \rightarrow \alpha \rightarrow \alpha$	$\mathrm{f}:: \alpha \rightarrow(\alpha, \alpha)$
	$\begin{gathered} f(g x) \\ = \\ f x \end{gathered}$	$\begin{gathered} f(g x)(g y) \\ = \\ g(f x y) \end{gathered}$	$\begin{gathered} f(g x) \\ = \\ \text { let } y=f x \\ \text { in }(g(\text { fst } y), \\ g(\text { snd } y)) \end{gathered}$
call-byvalue	>	>	$<$
call-byname	$=$	$=$	$<(?)$
call-byneed	$=$	$=$	$<$

What About Efficiency?

	$\mathrm{f}:: \alpha \rightarrow$ Nat	f $:: \alpha \rightarrow \alpha \rightarrow \alpha$	f $:: \alpha \rightarrow(\alpha, \alpha)$
	$\begin{gathered} f(g x) \\ = \\ f x \end{gathered}$	$\begin{gathered} f(g x)(g y) \\ = \\ g(f x y) \end{gathered}$	$\begin{gathered} f(g x) \\ = \\ \text { let } y=f x \\ \text { in }(g(\text { fst } y), \\ g(\text { snd } y)) \end{gathered}$
call-byvalue	>	>	$<$
call-byname	$=$	$=$	$<(?)$
call-byneed	$=$	$=$	$<$

What About Efficiency?

Now, how about, say $\mathrm{f}:: \alpha \rightarrow \alpha \rightarrow(\alpha, \alpha)$?

What About Efficiency?

Now, how about, say $\mathrm{f}:: \alpha \rightarrow \alpha \rightarrow(\alpha, \alpha)$?

$$
\operatorname{Or} f::[\alpha] \rightarrow[\alpha] ?
$$

What About Efficiency?

Now, how about, say $\mathrm{f}:: \alpha \rightarrow \alpha \rightarrow(\alpha, \alpha)$?

$$
\text { Or } f::[\alpha] \rightarrow[\alpha] ?
$$

And how to actually establish such statements?

But isn't it Somehow Trivial?

Recall $\mathrm{f}:: \alpha \rightarrow$ Nat, with standard free theorem:

$$
f(g x)=f x
$$

for all choices of types τ_{1}, τ_{2}, function $g:: \tau_{1} \rightarrow \tau_{2}$, and $x:: \tau_{1}$.

But isn't it Somehow Trivial?

Recall $\mathrm{f}:: \alpha \rightarrow$ Nat, with standard free theorem:

$$
f(g x)=f x
$$

for all choices of types τ_{1}, τ_{2}, function $g:: \tau_{1} \rightarrow \tau_{2}$, and $x:: \tau_{1}$. Clearly, this means that f is a constant function, i.e., for all x and y :

$$
\mathrm{f} y=\mathrm{f} x
$$

But isn't it Somehow Trivial?

Recall $\mathrm{f}:: \alpha \rightarrow$ Nat, with standard free theorem:

$$
f(g x)=f x
$$

for all choices of types τ_{1}, τ_{2}, function $g:: \tau_{1} \rightarrow \tau_{2}$, and $x:: \tau_{1}$. Clearly, this means that f is a constant function, i.e., for all x and y :

$$
\mathrm{f} y=\mathrm{f} x
$$

So, "obviously",

$$
f(g x) \sqsupseteq f x
$$

where \sqsupseteq means "the same result, and equally fast or slower".

But isn't it Somehow Trivial?

Recall $\mathrm{f}:: \alpha \rightarrow$ Nat, with standard free theorem:

$$
f(g x)=f x
$$

for all choices of types τ_{1}, τ_{2}, function $g:: \tau_{1} \rightarrow \tau_{2}$, and $x:: \tau_{1}$. Clearly, this means that f is a constant function, i.e., for all x and y :

$$
\mathrm{f} y=\mathrm{f} x
$$

So, "obviously",

$$
f(g x) \sqsupseteq f x
$$

where \sqsupseteq means "the same result, and equally fast or slower". What's wrong with this reasoning?

But isn't it Somehow Trivial?

Consider:

$$
f x=\text { if } x==0 \quad g x=0
$$

$$
\text { then } 0 \text { else } f(x-1)
$$

But isn't it Somehow Trivial?

Consider:

$$
f x=\text { if } x==0 \quad g x=0
$$

$$
\text { then } 0 \text { else } f(x-1)
$$

Certainly, for all x and y :

$$
\mathrm{f} y=\mathrm{f} x
$$

But isn't it Somehow Trivial?

Consider:

$$
f x=\text { if } x==0 \quad g x=0
$$ then 0 else $f(x-1)$

Certainly, for all x and y :

$$
\mathrm{f} y=\mathrm{f} x
$$

But certainly not, for $x>0$:

$$
f(g x) \sqsupseteq f x
$$

But isn't it Somehow Trivial?

Consider:

$$
\begin{aligned}
& f:: \text { Nat } \rightarrow \text { Nat } \\
& \text { f } x=\text { if } x==0
\end{aligned}
$$

$$
\begin{aligned}
& g:: \alpha \rightarrow \text { Nat } \\
& g x=0
\end{aligned}
$$

Certainly, for all x and y :

$$
f y=f x
$$

But certainly not, for $x>0$:

$$
f(g x) \sqsupseteq f x
$$

But isn't it Somehow Trivial?

Consider:

$$
\begin{array}{ll}
\mathrm{f}:: \text { Nat } \rightarrow \text { Nat } & g:: \alpha \rightarrow \text { Nat } \\
\mathrm{f} x=\text { if } x==0 & g x=0
\end{array}
$$

$$
\text { then } 0 \text { else } f(x-1)
$$

Certainly, for all x and y :

$$
f y=f x
$$

But certainly not, for $x>0$:

$$
f(g x) \sqsupseteq f x
$$

Exploiting polymorphism is really essential, and not just for the extensional statements!

Free Theorems, Formally - In a Nutshell

Syntax for a typed λ-calculus:

$$
\begin{aligned}
& \tau::=\alpha \mid \text { Nat }|\tau \rightarrow \tau| \ldots \\
& t::=x|n| t+t|\lambda x:: \tau . t| t t \mid \ldots
\end{aligned}
$$

Free Theorems, Formally - In a Nutshell

Syntax for a typed λ-calculus:

$$
\begin{aligned}
& \tau::=\alpha|\mathrm{Nat}| \tau \rightarrow \tau \mid \ldots \\
& t::=x|n| t+t|\lambda x:: \tau . t| t t \mid \ldots
\end{aligned}
$$

Semantics:

$$
\begin{array}{ll}
\llbracket \alpha \rrbracket_{\theta} & =\theta(\alpha) \\
\llbracket \mathrm{Nat} \rrbracket_{\theta} & =\mathbb{N} \\
\llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket_{\theta} & =\llbracket \tau_{2} \rrbracket_{\theta} \llbracket \tau_{1} \rrbracket_{\theta} \\
\theta & \in \operatorname{Set}^{\top \mathrm{TVar}}
\end{array}
$$

Free Theorems, Formally - In a Nutshell

Syntax for a typed λ-calculus:

$$
\begin{aligned}
& \tau::=\alpha|\mathrm{Nat}| \tau \rightarrow \tau \mid \ldots \\
& t::=x|n| t+t|\lambda x:: \tau . t| t t \mid \ldots
\end{aligned}
$$

Semantics:

$$
\begin{aligned}
& \llbracket \alpha \rrbracket_{\theta} \quad=\theta(\alpha) \\
& \llbracket x \rrbracket_{\sigma} \\
& =\sigma(x) \\
& \llbracket \mathrm{Nat} \rrbracket_{\theta}=\mathbb{N} \\
& \llbracket n \rrbracket_{\sigma} \\
& =\mathbf{n} \\
& \llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket_{\theta}=\llbracket \tau_{2} \rrbracket_{\theta}{ }^{\llbracket \tau_{1} \rrbracket_{\theta}} \\
& \llbracket \lambda x:: \tau \cdot t \rrbracket_{\sigma}=\lambda \mathbf{v} . \llbracket t \rrbracket_{\sigma[x \mapsto \mathbf{v}]} \\
& \theta \quad \in \operatorname{Set}^{\text {TVar }} \\
& \llbracket t_{1} t_{2} \rrbracket_{\sigma} \quad=\llbracket t_{1} \rrbracket_{\sigma} \llbracket t_{2} \rrbracket_{\sigma}
\end{aligned}
$$

Free Theorems, Formally - In a Nutshell

Syntax for a typed λ-calculus:

$$
\begin{aligned}
& \tau::=\alpha|\operatorname{Nat}| \tau \rightarrow \tau \mid \ldots \\
& t::=x|n| t+t|\lambda x:: \tau . t| t t \mid \ldots
\end{aligned}
$$

Semantics:

$$
\begin{aligned}
& \llbracket \alpha \rrbracket_{\theta} \quad=\theta(\alpha) \\
& \llbracket x \rrbracket_{\sigma} \\
& =\sigma(x) \\
& \llbracket \mathrm{Nat} \rrbracket_{\theta}=\mathbb{N} \\
& \llbracket n \rrbracket_{\sigma} \\
& =\mathbf{n} \\
& \llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket_{\theta}=\llbracket \tau_{2} \rrbracket_{\left.\theta^{[\tau 1}\right]_{\theta}} \quad \llbracket \lambda x:: \tau . t \rrbracket_{\sigma}=\lambda \mathbf{v} \cdot \llbracket t \rrbracket_{\sigma[x \pitchfork \mathbf{v}]} \\
& \theta \quad \in \operatorname{Set}^{\text {TVar }} \\
& \llbracket t_{1} t_{2} \rrbracket_{\sigma} \quad=\llbracket t_{1} \rrbracket_{\sigma} \llbracket t_{2} \rrbracket_{\sigma}
\end{aligned}
$$

Logical relation:

$$
\begin{aligned}
& \Delta_{\alpha, \rho}=\rho(\alpha) \quad \Delta_{\text {Nat }, \rho}=i d_{\mathbb{N}} \\
& \Delta_{\tau_{1} \rightarrow \tau_{2}, \rho}=\left\{(\mathbf{f}, \mathbf{g}) \mid \forall(\mathbf{x}, \mathbf{y}) \in \Delta_{\tau_{1}, \rho} .(\mathbf{f} \mathbf{x}, \mathbf{g} \mathbf{y}) \in \Delta_{\tau_{2}, \rho}\right\}
\end{aligned}
$$

with $\rho \in \operatorname{Rel}^{\text {TVar }}$

Free Theorems, Formally - In a Nutshell

Syntax for a typed λ-calculus:

$$
\begin{aligned}
& \tau::=\alpha|\mathrm{Nat}| \tau \rightarrow \tau \mid \ldots \\
& t::=x|n| t+t|\lambda x:: \tau . t| t t \mid \ldots
\end{aligned}
$$

Semantics:

$$
\begin{aligned}
& \llbracket \alpha \rrbracket_{\theta} \quad=\theta(\alpha) \\
& \llbracket x \rrbracket_{\sigma} \\
& =\sigma(x) \\
& \llbracket \mathrm{Nat} \rrbracket_{\theta}=\mathbb{N} \\
& \llbracket n \rrbracket_{\sigma} \quad=\mathbf{n} \\
& \llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket_{\theta}=\llbracket \tau_{2} \rrbracket_{\left.\theta^{[\tau 1}\right]_{\theta}} \quad \llbracket \lambda x:: \tau . t \rrbracket_{\sigma}=\lambda \mathbf{v} \cdot \llbracket t \rrbracket_{\sigma[x \rightarrow \mathbf{v}]} \\
& \theta \quad \in \operatorname{Set}^{\text {TVar }} \\
& \llbracket t_{1} t_{2} \rrbracket_{\sigma} \quad=\llbracket t_{1} \rrbracket_{\sigma} \llbracket t_{2} \rrbracket_{\sigma}
\end{aligned}
$$

Logical relation:

$$
\begin{aligned}
& \Delta_{\alpha, \rho}=\rho(\alpha) \quad \Delta_{\text {Nat }, \rho}=i d_{\mathbb{N}} \\
& \Delta_{\tau_{1} \rightarrow \tau_{2}, \rho}=\left\{(\mathbf{f}, \mathbf{g}) \mid \forall(\mathbf{x}, \mathbf{y}) \in \Delta_{\tau_{1}, \rho} .(\mathbf{f} \mathbf{x}, \mathbf{g} \mathbf{y}) \in \Delta_{\tau_{2}, \rho}\right\}
\end{aligned}
$$

with $\rho \in \operatorname{Rel}^{\text {TVar }}$
Theorem: for closed term t of type $\tau,\left(\llbracket t \rrbracket_{\varnothing}, \llbracket t \rrbracket_{\wp}\right) \in \Delta_{\tau, \rho}$.

An Example Derivation, for $f:: \alpha \rightarrow$ Nat

$\forall \rho, t$ closed with $t:: \tau .\left(\llbracket t \rrbracket_{\emptyset}, \llbracket t \rrbracket_{\emptyset}\right) \in \Delta_{\tau, \rho}$

An Example Derivation, for $f:: \alpha \rightarrow$ Nat

$$
\begin{gathered}
\forall \rho, t \text { closed with } t:: \tau .\left(\llbracket t \rrbracket_{\emptyset}, \llbracket t \rrbracket_{\emptyset}\right) \in \Delta_{\tau, \rho} \\
\Rightarrow(t=\mathrm{f} \text { and } \tau=\alpha \rightarrow \mathrm{Nat}) \\
\forall \rho .\left(\llbracket \mathrm{f} \rrbracket_{\emptyset}, \llbracket \mathrm{f} \rrbracket_{\emptyset}\right) \in \Delta_{\alpha \rightarrow \mathrm{Nat}, \rho}
\end{gathered}
$$

An Example Derivation, for $f:: \alpha \rightarrow$ Nat

$\forall \rho, t$ closed with $t:: \tau .\left(\llbracket t \rrbracket_{\emptyset}, \llbracket t \rrbracket_{\emptyset}\right) \in \Delta_{\tau, \rho}$

$$
\begin{aligned}
& \Rightarrow(t=\mathrm{f} \text { and } \tau=\alpha \rightarrow \mathrm{Nat}) \\
& \forall \rho .\left(\llbracket \mathrm{f} \rrbracket_{\emptyset}, \llbracket \mathrm{f} \rrbracket_{\emptyset}\right) \in \Delta_{\alpha \rightarrow \mathrm{Nat}, \rho} \\
& \Leftrightarrow\left(\Delta_{\tau_{1} \rightarrow \tau_{2}, \rho}=\left\{(\mathrm{f}, \mathrm{~g}) \mid \forall(\mathbf{x}, \mathbf{y}) \in \Delta_{\tau_{1}, \rho \cdot} .(\mathrm{f} \times, \mathrm{g} \mathbf{y}) \in \Delta_{\tau_{2}, \rho}\right\}\right) \\
& \forall \rho,(\mathbf{x}, \mathbf{y}) \in \Delta_{\alpha, \rho} .\left(\llbracket \mathrm{f} \rrbracket_{\emptyset} \mathbf{x}, \llbracket \mathrm{f} \rrbracket_{\emptyset} \mathbf{y}\right) \in \Delta_{\mathrm{Nat}, \rho}
\end{aligned}
$$

An Example Derivation, for $f:: \alpha \rightarrow$ Nat

$\forall \rho, t$ closed with $t:: \tau .\left(\llbracket t \rrbracket_{\emptyset}, \llbracket t \rrbracket_{\emptyset}\right) \in \Delta_{\tau, \rho}$

$$
\begin{aligned}
& \Rightarrow(t=\mathrm{f} \text { and } \tau=\alpha \rightarrow \mathrm{Nat}) \\
& \forall \rho .\left(\llbracket f \rrbracket_{\emptyset}, \llbracket f \rrbracket_{\emptyset}\right) \in \Delta_{\alpha \rightarrow \mathrm{Nat}, \rho} \\
& \Leftrightarrow\left(\Delta_{\tau_{1} \rightarrow T_{2}, \rho}=\left\{(f, g) \mid \forall(x, y) \in \Delta_{\tau_{1}, \rho} .(f x, g y) \in \Delta_{\tau_{2}, \rho}\right\}\right) \\
& \forall \rho,(\mathbf{x}, \mathbf{y}) \in \Delta_{\alpha, \rho} .\left(\llbracket f \rrbracket_{\emptyset} \mathbf{x}, \llbracket \rrbracket_{\emptyset} \mathbf{y}\right) \in \Delta_{\text {Nat }, \rho}
\end{aligned}
$$

$$
\begin{aligned}
& \forall \mathbf{g} \in \llbracket \tau_{2} \rrbracket_{\emptyset}{ }^{\llbracket \tau_{1} \rrbracket_{\emptyset}}, \mathbf{x} \in \llbracket \tau_{1} \rrbracket_{\emptyset} . \llbracket f \rrbracket_{\emptyset} \mathbf{x}=\llbracket f \rrbracket_{\emptyset}(\mathbf{g} \mathbf{x})
\end{aligned}
$$

An Example Derivation, for $f:: \alpha \rightarrow$ Nat

$\forall \rho, t$ closed with $t:: \tau .\left(\llbracket t \rrbracket_{\emptyset}, \llbracket t \rrbracket_{\emptyset}\right) \in \Delta_{\tau, \rho}$

$$
\Rightarrow(t=\mathrm{f} \text { and } \tau=\alpha \rightarrow \mathrm{Nat})
$$

$$
\forall \rho .\left(\llbracket f \rrbracket_{\emptyset}, \llbracket \mathrm{f} \rrbracket_{\emptyset}\right) \in \Delta_{\alpha \rightarrow \mathrm{Nat}, \rho}
$$

$$
\Leftrightarrow\left(\Delta_{\tau_{1} \rightarrow \tau_{2}, \rho}=\left\{(\mathrm{f}, \mathrm{~g}) \mid \forall(\mathrm{x}, \mathrm{y}) \in \Delta_{\tau_{1}, \rho \cdot}(\mathrm{f} x, \mathrm{~g} \mathrm{y}) \in \Delta_{\tau_{2}, \rho}\right\}\right)
$$

$$
\forall \rho,(\mathbf{x}, \mathbf{y}) \in \Delta_{\alpha, \rho} .\left(\llbracket f \rrbracket_{\emptyset} \mathbf{x}, \llbracket \rrbracket_{\emptyset} \mathbf{y}\right) \in \Delta_{\mathrm{Nat}, \rho}
$$

$$
\Rightarrow\left(\Delta_{\alpha, \rho}=\rho(\alpha), \rho(\alpha):=\mathrm{g} \in \llbracket \tau_{2} \rrbracket_{\rho^{\left[\tau_{1} \mathbb{1}_{\rho}\right.},}, \Delta_{\text {Nat, } \rho}=i d_{\mathbb{N}}\right)
$$

$$
\forall \mathbf{g} \in \llbracket \tau_{2} \rrbracket_{\emptyset} \llbracket_{1} \rrbracket_{\emptyset}, \mathbf{x} \in \llbracket \tau_{1} \rrbracket_{\emptyset} \cdot \llbracket f \rrbracket_{\emptyset} \mathbf{x}=\llbracket f \rrbracket_{\emptyset}(\mathbf{g} \mathbf{x})
$$

\Rightarrow (term semantics)

$$
\forall g:: \tau_{1} \rightarrow \tau_{2}, x:: \tau_{1} . \llbracket f x \rrbracket_{\emptyset}=\llbracket f(g x) \rrbracket_{\emptyset}
$$

Bringing Costs into the Picture

New semantics:

$$
\begin{array}{ll}
\llbracket x \rrbracket_{\sigma}^{\Phi} & =(\sigma(x), 0) \\
\llbracket n \rrbracket_{\sigma}^{\phi} & =(\mathbf{n}, 0) \\
\llbracket \lambda x:: \tau \cdot t \rrbracket_{\sigma}^{\Phi} & =\left(\lambda \mathbf{v} \cdot 1 \triangleright \llbracket t \rrbracket_{\sigma[x \mapsto \mathbf{v}}^{\phi}, 0\right) \\
\llbracket t_{1} t_{2} \rrbracket_{\sigma}^{\phi} & =\llbracket t_{1} \rrbracket_{\sigma}^{\phi} \Phi \llbracket t_{2} \rrbracket_{\sigma}^{\Phi}
\end{array}
$$

where: $c \triangleright\left(\mathbf{v}, c^{\prime}\right)=\left(\mathbf{v}, c+c^{\prime}\right)$ and

$$
\begin{aligned}
\mathbf{f} \phi \mathbf{x}=\left(c+c^{\prime}\right) \triangleright(\mathbf{g} \mathbf{v}) \text { if } \mathbf{f} & =(\mathbf{g}, c), \\
\mathbf{x} & =\left(\mathbf{v}, c^{\prime}\right)
\end{aligned}
$$

Bringing Costs into the Picture

New semantics:

$$
\begin{array}{ll}
\llbracket x \rrbracket_{\sigma}^{\phi} & =(\sigma(x), 0) \\
\llbracket n \rrbracket_{\sigma}^{\phi} & =(\mathbf{n}, 0) \\
\llbracket \lambda x:: \tau \cdot t \rrbracket_{\sigma}^{\varphi} & =\left(\lambda \mathbf{v} \cdot 1 \triangleright \llbracket t \rrbracket_{\sigma[x \mapsto \mathbf{v}]}^{\phi}, 0\right) \\
\llbracket t_{1} t_{2} \rrbracket_{\sigma}^{\phi} & =\llbracket t_{1} \rrbracket_{\sigma}^{\phi} \Phi \llbracket t_{2} \rrbracket_{\sigma}^{\phi}
\end{array}
$$

where: $c \triangleright\left(\mathbf{v}, c^{\prime}\right)=\left(\mathbf{v}, c+c^{\prime}\right)$ and

$$
\begin{aligned}
\mathbf{f} \phi \mathbf{x}=\left(c+c^{\prime}\right) \triangleright(\mathbf{g} \mathbf{v}) \text { if } \mathbf{f} & =(\mathbf{g}, c), \\
\mathbf{x} & =\left(\mathbf{v}, c^{\prime}\right)
\end{aligned}
$$

Note: $t:: \alpha \rightarrow$ Nat implies $\llbracket t \rrbracket_{\emptyset}^{\phi} \in \mathcal{C}\left(\mathcal{C}(\mathbb{N})^{\theta(\alpha)}\right)$, for every $\theta \in \operatorname{Set}^{T \mathrm{Var}}$, where $\mathcal{C}(S)=\{(\mathbf{v}, c) \mid \mathbf{v} \in S, c \in \mathbb{Z}\}$.

How about the Logical Relation?

Tempting would be:

$$
\begin{aligned}
& \begin{array}{l}
\Delta_{\alpha, \rho}^{\mathrm{q}}=\rho(\alpha) \quad \Delta_{\mathrm{Nat}, \rho}^{\mathrm{t}}=i d_{\mathbb{N} \times \mathbb{Z}} \\
\Delta_{\tau_{1} \rightarrow \tau_{2}, \rho}^{\mathrm{t}}=\{(\mathbf{f}, \mathbf{g}) \mid \\
\quad \forall(\mathbf{x}, \mathbf{y}) \in \Delta_{\tau_{1}, \rho}^{\mathrm{t}} . \\
\left.\quad(\mathbf{f} \Phi \mathbf{x}, \mathbf{g} \Phi \mathbf{y}) \in \Delta_{\tau_{2}, \rho}^{\mathrm{C}}\right\}
\end{array} \\
& \text { with } \rho\left(\alpha_{1}\right), \rho\left(\alpha_{2}\right), \ldots \subseteq \mathcal{C}\left(S_{i}\right) \times \mathcal{C}\left(T_{i}\right)
\end{aligned}
$$

How about the Logical Relation?

Tempting would be:

$$
\begin{aligned}
& \Delta_{\alpha, \rho}^{\phi}=\rho(\alpha) \quad \Delta_{\text {Nat }, \rho}^{\mathrm{q}}=i d_{\mathbb{N} \times \mathbb{Z}} \\
& \Delta_{\tau_{1} \rightarrow \tau_{2}, \rho}^{\Phi}=\left\{(\mathbf{f}, \mathbf{g}) \mid \forall(\mathbf{x}, \mathbf{y}) \in \Delta_{\tau_{1}, \rho}^{\Phi} .\right. \\
& \left.(\mathbf{f} \oplus \mathbf{x}, \mathbf{g} \oplus \mathbf{y}) \in \Delta_{\tau_{2}, \rho}^{¢}\right\} \\
& \text { with } \rho\left(\alpha_{1}\right), \rho\left(\alpha_{2}\right), \ldots \subseteq \mathcal{C}\left(S_{i}\right) \times \mathcal{C}\left(T_{i}\right)
\end{aligned}
$$

But NO, does not work!

How about the Logical Relation?

Tempting would be:

$$
\begin{aligned}
& \begin{array}{l}
\Delta_{\alpha, \rho}^{\mathrm{t}}=\rho(\alpha) \quad \Delta_{\mathrm{Nat}, \rho}^{\mathrm{C}}=i d_{\mathbb{N} \times \mathbb{Z}} \\
\Delta_{\tau_{1} \rightarrow \tau_{2}, \rho}^{\mathrm{t}}=\{(\mathbf{f}, \mathbf{g}) \mid \\
\quad \forall(\mathbf{x}, \mathbf{y}) \in \Delta_{\tau_{1}, \rho}^{\mathrm{t}} \\
\left.\quad(\mathbf{f} \Phi \mathbf{x}, \mathbf{g} \Phi \mathbf{y}) \in \Delta_{\tau_{2}, \rho}^{\mathrm{q}}\right\}
\end{array} \\
& \text { with } \rho\left(\alpha_{1}\right), \rho\left(\alpha_{2}\right), \ldots \subseteq \mathcal{C}\left(S_{i}\right) \times \mathcal{C}\left(T_{i}\right)
\end{aligned}
$$

But NO, does not work! It would allow us to conclude from:

$$
\forall \rho, f:: \alpha \rightarrow \text { Nat. }\left(\llbracket f \rrbracket_{\emptyset}^{¢}, \llbracket f \rrbracket_{\emptyset}^{¢}\right) \in \Delta_{\alpha \rightarrow \text { Nat }, \rho}^{¢}
$$

that:

$$
\forall g:: \tau_{1} \rightarrow \tau_{2}, x:: \tau_{1} . \llbracket f x \rrbracket_{\emptyset}^{d}=\llbracket f(g \quad x) \rrbracket_{\emptyset}^{d}
$$

How about the Logical Relation?

Much more disciplined:

$$
\begin{aligned}
& \Delta_{\alpha, \rho}^{\mathrm{t}}=\mathcal{C}(\rho(\alpha)) \quad \Delta_{\mathrm{Nat}, \rho}^{\mathrm{q}}=i d_{\mathbb{N} \times \mathbb{Z}} \\
& \Delta_{\tau_{1} \rightarrow \tau_{2}, \rho}^{\Phi}=\{(\mathbf{f}, \mathbf{g}) \mid \operatorname{cost}(\mathbf{f})=\operatorname{cost}(\mathbf{g}) \\
& \left.\wedge \forall(\mathbf{x}, \mathbf{y}) \in \Delta_{\tau_{1}, \rho}^{\Phi}(\mathbf{f} \phi \mathbf{x}, \mathbf{g} \phi \mathbf{y}) \in \Delta_{\tau_{2}, \rho}^{\Phi}\right\} \\
& \text { with } \rho\left(\alpha_{1}\right), \rho\left(\alpha_{2}\right), \ldots \subseteq S_{i} \times T_{i} \text {, } \\
& \text { where } \mathcal{C}(R)=\{((\mathbf{u}, c),(\mathbf{v}, c) \mid(\mathbf{u}, \mathbf{v}) \in R, c \in \mathbb{Z}\}
\end{aligned}
$$

How about the Logical Relation?

Much more disciplined:

$$
\begin{aligned}
& \Delta_{\alpha, \rho}^{\phi}=\mathcal{C}(\rho(\alpha)) \quad \Delta_{\text {Nat }, \rho}^{\mathrm{q}}=i d_{\mathbb{N} \times \mathbb{Z}} \\
& \Delta_{\tau_{1} \rightarrow \tau_{2}, \rho}^{\Phi}=\{(\mathbf{f}, \mathbf{g}) \mid \operatorname{cost}(\mathbf{f})=\operatorname{cost}(\mathbf{g}) \\
& \left.\wedge \forall(\mathbf{x}, \mathbf{y}) \in \Delta_{\tau_{1}, \rho}^{\Phi}(\mathbf{f} \phi \mathbf{x}, \mathbf{g} \phi \mathbf{y}) \in \Delta_{\tau_{2}, \rho}^{\Phi}\right\} \\
& \text { with } \rho\left(\alpha_{1}\right), \rho\left(\alpha_{2}\right), \ldots \subseteq S_{i} \times T_{i} \text {, } \\
& \text { where } \mathcal{C}(R)=\{((\mathbf{u}, c),(\mathbf{v}, c) \mid(\mathbf{u}, \mathbf{v}) \in R, c \in \mathbb{Z}\}
\end{aligned}
$$

Now indeed ...
Theorem: for closed term t of type τ,

$$
\left(\llbracket t \rrbracket_{\emptyset}^{\phi}, \llbracket t \rrbracket_{\emptyset}^{\mathrm{q}}\right) \in \Delta_{\tau, \rho}^{\Phi}
$$

Now, What about our Example $f:: \alpha \rightarrow$ Nat ?

$$
\forall \rho .\left(\llbracket f \rrbracket_{\emptyset}^{d}, \llbracket \rrbracket_{\emptyset}^{¢}\right) \in \Delta_{\alpha \rightarrow \text { Nat }, \rho}^{¢}
$$

Now, What about our Example $f:: \alpha \rightarrow$ Nat ?

$$
\begin{aligned}
& \forall \rho .\left(\llbracket f \rrbracket_{\emptyset}^{\phi}, \llbracket f \rrbracket_{\emptyset}^{d}\right) \in \Delta_{\alpha \rightarrow \mathrm{Nat}, \rho}^{¢} \\
& \Rightarrow\left(\Delta_{T_{1} \rightarrow \tau_{2}, \rho}^{¢}=\{(\mathrm{f}, \mathrm{~g}) \mid \operatorname{cost}(\mathrm{f})=\operatorname{cost}(\mathrm{g})\right. \\
& \left.\left.\wedge \forall(\mathbf{x}, \mathbf{y}) \in \Delta_{\tau_{1}, \rho}^{\oplus}(\mathbf{f} \phi \mathbf{x}, \mathbf{g} \phi \mathbf{y}) \in \Delta_{\tau_{2}, \rho}^{¢}\right\}\right) \\
& \forall \rho,(\mathbf{x}, \mathbf{y}) \in \Delta_{\alpha, \rho}^{\phi} \cdot\left(\llbracket f \rrbracket_{\emptyset}^{\phi} \phi \mathbf{x}, \llbracket \rrbracket_{\emptyset}^{\phi} \Phi \mathbf{y}\right) \in \Delta_{\text {Nat }, \rho}^{\phi}
\end{aligned}
$$

Now, What about our Example $f:: \alpha \rightarrow$ Nat ?

$$
\begin{aligned}
& \forall \rho .\left(\llbracket f \rrbracket_{\emptyset}^{\phi}, \llbracket \rrbracket_{\emptyset}^{\phi}\right) \in \Delta_{\alpha \rightarrow \mathrm{Nat}, \rho}^{\phi} \\
& \Rightarrow\left(\Delta_{T_{1} \rightarrow \tau_{2}, p}^{\varphi}=\{(\mathrm{f}, \mathrm{~g}) \mid \operatorname{cost}(\mathrm{f})=\operatorname{cost}(\mathrm{g})\right. \\
& \left.\left.\wedge \forall(\mathbf{x}, \mathbf{y}) \in \Delta_{\tau_{1}, \rho}^{\oplus}(\mathbf{f} \phi \mathbf{x}, \mathbf{g} \phi \mathbf{y}) \in \Delta_{\tau_{2}, \rho}^{¢}\right\}\right) \\
& \forall \rho,(\mathbf{x}, \mathbf{y}) \in \Delta_{\alpha, \rho}^{\phi} .\left(\llbracket \rrbracket_{\emptyset}^{\phi} \phi \mathbf{x}, \llbracket \rrbracket_{\emptyset}^{\phi} \Phi \mathbf{y}\right) \in \Delta_{\text {Nat }, \rho}^{\phi} \\
& \Rightarrow\left(\Delta_{\alpha, \rho}^{+}=\mathcal{C}(\rho(\alpha)), \rho(\alpha):=R \in \operatorname{Rel}, \Delta_{\text {Nat }, \rho}^{¢}=i d_{\mathrm{N} \times \mathbb{Z}}\right) \\
& \forall R \in \operatorname{Rel},(\mathbf{x}, \mathbf{y}) \in \mathcal{C}(R) . \llbracket f \rrbracket_{\emptyset}^{\Phi} \Phi \mathbf{x}=\llbracket f \rrbracket_{\emptyset}^{d} \Phi \mathbf{y}
\end{aligned}
$$

Now, What about our Example $f:: \alpha \rightarrow$ Nat ?

$$
\begin{aligned}
& \forall \rho .\left(\llbracket f \rrbracket_{\emptyset}^{d}, \llbracket \rrbracket_{\emptyset}^{q}\right) \in \Delta_{\alpha \rightarrow N a t, \rho}^{¢} \\
& \Rightarrow\left(\Delta_{T_{1} \rightarrow \tau_{2}, p}^{\varphi}=\{(\mathrm{f}, \mathrm{~g}) \mid \operatorname{cost}(\mathrm{f})=\operatorname{cost}(\mathrm{g})\right. \\
& \left.\left.\wedge \forall(\mathbf{x}, \mathbf{y}) \in \Delta_{\tau_{1}, \rho}^{\oplus} .(\mathbf{f} \Phi \mathbf{x}, \mathbf{g} \Phi \mathbf{y}) \in \Delta_{\tau_{2}, p}^{¢}\right\}\right) \\
& \forall \rho,(\mathbf{x}, \mathbf{y}) \in \Delta_{\alpha, \rho}^{¢} .\left(\llbracket \rrbracket_{\emptyset}^{¢} \phi \mathbf{x}, \llbracket \rrbracket_{\emptyset}^{¢} \phi \mathbf{y}\right) \in \Delta_{\text {Nat }, \rho}^{\Phi} \\
& \Rightarrow\left(\Delta_{\alpha, \rho}^{+}=\mathcal{C}(\rho(\alpha)), \rho(\alpha):=R \in \operatorname{Rel}, \Delta_{\text {Nat }, \rho}^{¢}=i d_{\mathrm{N} \times \mathbb{Z}}\right) \\
& \forall R \in \operatorname{Rel},(\mathbf{x}, \mathbf{y}) \in \mathcal{C}(R) . \llbracket f \rrbracket_{\emptyset}^{\Phi} \Phi \mathbf{x}=\llbracket f \rrbracket_{\emptyset}^{d} \Phi \mathbf{y}
\end{aligned}
$$

How to choose R to bring $g:: \tau_{1} \rightarrow \tau_{2}$ into play?

Now, What about our Example $f:: \alpha \rightarrow$ Nat ?

$$
\begin{aligned}
& \forall \rho .\left(\llbracket f \rrbracket_{\emptyset}^{d}, \llbracket f \rrbracket_{\emptyset}^{¢}\right) \in \Delta_{\alpha \rightarrow N a t, \rho}^{¢} \\
& \Rightarrow\left(\Delta_{\tau_{1} \rightarrow \tau_{2}, p}^{c}=\{(\mathrm{f}, \mathrm{~g}) \mid \operatorname{cost}(\mathrm{f})=\operatorname{cost}(\mathrm{g})\right. \\
& \left.\left.\wedge \forall(\mathbf{x}, \mathbf{y}) \in \Delta_{\tau_{1}, \rho}^{\oplus} .(\mathbf{f} \Phi \mathbf{x}, \mathbf{g} \Phi \mathbf{y}) \in \Delta_{\tau_{2}, p}^{\varphi}\right\}\right) \\
& \forall \rho,(\mathbf{x}, \mathbf{y}) \in \Delta_{\alpha, \rho}^{\phi} \cdot\left(\llbracket f \rrbracket_{\emptyset}^{\phi} \phi \mathbf{x}, \llbracket \rrbracket_{\emptyset}^{\phi} \Phi \mathbf{y}\right) \in \Delta_{\text {Nat }, \rho}^{\phi} \\
& \Rightarrow\left(\Delta_{\alpha, \rho}^{\dagger}=\mathcal{C}(\rho(\alpha)), \rho(\alpha):=R \in \operatorname{Rel}, \Delta_{\text {Nat }, \rho}^{\dagger}=i d_{\mathbb{N} \times \mathbb{Z}}\right) \\
& \forall R \in \operatorname{Rel},(\mathbf{x}, \mathbf{y}) \in \mathcal{C}(R) . \llbracket f \rrbracket_{\emptyset}^{d} \Phi \mathbf{x}=\llbracket f \rrbracket_{\emptyset}^{d} \Phi \mathbf{y}
\end{aligned}
$$

How to choose R to bring $g:: \tau_{1} \rightarrow \tau_{2}$ into play?
Problem: $\left\{(\mathbf{x}, \mathbf{y}) \mid \llbracket g \rrbracket_{\emptyset}^{\ddagger} \Phi \mathbf{x}=\mathbf{y}\right\} \operatorname{not} \mathcal{C}(R)$ for any R

Now, What about our Example $f:: \alpha \rightarrow$ Nat ?

Problem: $\left\{(\mathbf{x}, \mathbf{y}) \mid \llbracket g \rrbracket_{\emptyset}^{d} \Phi \mathbf{x}=\mathbf{y}\right\}$ not $\mathcal{C}(R)$ for any R
Solution: but

$$
\begin{aligned}
\{(c \triangleright \operatorname{app} \operatorname{Cost}(g, \mathbf{x}) \triangleright \mathbf{x}, c \triangleright \mathbf{y}) \\
\left.\mid \llbracket g \rrbracket_{\emptyset}^{d} \phi \mathbf{x}=\mathbf{y}, c \in \mathbb{Z}\right\}=\mathcal{C}\left(R^{g}\right)
\end{aligned}
$$

for

$$
R^{g}=\left\{\left(\operatorname{val}(\mathbf{x}), \operatorname{val}\left(\llbracket g \rrbracket_{\emptyset}^{\phi} \phi \mathbf{x}\right)\right) \mid \mathbf{x} \in \llbracket \tau_{1} \rrbracket_{\emptyset}^{\phi}\right\}
$$

where $\operatorname{app} \operatorname{Cost}(g, \mathbf{x})=\operatorname{cost}\left(\llbracket g \rrbracket_{\emptyset}^{d} \Phi \mathbf{x}\right)-\operatorname{cost}(\mathbf{x})$

Now, What about our Example $f:: \alpha \rightarrow$ Nat ?
Problem: $\left\{(\mathbf{x}, \mathbf{y}) \mid \llbracket g \rrbracket_{\emptyset}^{\Phi} \Phi \mathbf{x}=\mathbf{y}\right\}$ not $\mathcal{C}(R)$ for any R
Solution: but

$$
\begin{aligned}
\{(c \triangleright \operatorname{app} \operatorname{Cost}(g, \mathbf{x}) \triangleright \mathbf{x}, c \triangleright \mathbf{y}) \\
\left.\mid \llbracket g \rrbracket_{\emptyset}^{d} \phi \mathbf{x}=\mathbf{y}, c \in \mathbb{Z}\right\}=\mathcal{C}\left(R^{g}\right)
\end{aligned}
$$

for

$$
R^{g}=\left\{\left(\operatorname{val}(\mathbf{x}), \operatorname{val}\left(\llbracket g \rrbracket_{\emptyset}^{\phi} \phi \mathbf{x}\right)\right) \mid \mathbf{x} \in \llbracket \tau_{1} \rrbracket_{\emptyset}^{\Phi}\right\}
$$

where $\operatorname{app} \operatorname{Cost}(g, \mathbf{x})=\operatorname{cost}\left(\llbracket g \rrbracket_{\emptyset}^{d} \Phi \mathbf{x}\right)-\operatorname{cost}(\mathbf{x})$
Now:

$$
\begin{gathered}
\forall R \in \operatorname{Rel},(\mathbf{x}, \mathbf{y}) \in \mathcal{C}(R) . \llbracket \rrbracket_{\emptyset}^{d} \phi \mathbf{x}=\llbracket \rrbracket_{\emptyset}^{d} \Phi \mathbf{y} \\
\Rightarrow \quad \forall \mathbf{x} \in \llbracket \tau_{1} \rrbracket_{\emptyset}^{d} \cdot \llbracket \rrbracket_{\emptyset}^{d} \phi(\operatorname{app} \operatorname{Cost}(g, \mathbf{x}) \triangleright \mathbf{x}) \\
=\llbracket \rrbracket_{\emptyset}^{d} \Phi\left(\llbracket g \rrbracket_{\emptyset}^{d} \phi \mathbf{x}\right)
\end{gathered}
$$

Now, What about our Example $f:: \alpha \rightarrow$ Nat ?

Now:

$$
\begin{gathered}
\forall R \in \operatorname{Rel},(\mathbf{x}, \mathbf{y}) \in \mathcal{C}(R) . \llbracket \rrbracket_{\emptyset}^{d} \Phi \mathbf{x}=\llbracket f \rrbracket_{\emptyset}^{d} \Phi \mathbf{y} \\
\Rightarrow \quad \forall \mathbf{x} \in \llbracket \tau_{1} \rrbracket_{\emptyset}^{d} \cdot \llbracket f \rrbracket_{\emptyset}^{d} \Phi(\operatorname{app} \operatorname{Cost}(g, \mathbf{x}) \triangleright \mathbf{x}) \\
=\llbracket f \rrbracket_{\emptyset}^{d} \Phi\left(\llbracket g \rrbracket_{\emptyset}^{d} \Phi \mathbf{x}\right)
\end{gathered}
$$

Now, What about our Example $f:: \alpha \rightarrow$ Nat ?

Now:

$$
\begin{gathered}
\forall R \in \operatorname{Rel},(\mathbf{x}, \mathbf{y}) \in \mathcal{C}(R) \cdot \llbracket f \rrbracket_{\emptyset}^{d} \Phi \mathbf{x}=\llbracket \mathrm{f} \rrbracket_{\emptyset}^{\Phi} \Phi \mathbf{y} \\
\Rightarrow \quad \forall \mathbf{x} \in \llbracket \tau_{1} \rrbracket_{\emptyset}^{q} \cdot \llbracket f \rrbracket_{\emptyset}^{d} \Phi(\operatorname{app} \operatorname{Cost}(g, \mathbf{x}) \triangleright \mathbf{x}) \\
=\llbracket \mathrm{f} \rrbracket_{\emptyset}^{\phi} \Phi\left(\llbracket g \rrbracket_{\emptyset}^{d} \Phi \mathbf{x}\right) \\
\Rightarrow \quad \forall x:: \tau_{1} \cdot \operatorname{app} \operatorname{Cost}\left(g, \llbracket x \rrbracket_{\emptyset}^{d}\right) \triangleright\left(\llbracket \rrbracket_{\emptyset}^{d} \Phi \llbracket x \rrbracket_{\emptyset}^{d}\right) \\
=\llbracket f \rrbracket_{\emptyset}^{d} \Phi\left(\llbracket g \rrbracket_{\emptyset}^{d} \Phi \llbracket x \rrbracket_{\emptyset}^{d}\right)
\end{gathered}
$$

Now, What about our Example $f:: \alpha \rightarrow$ Nat ?

Now:

$$
\begin{aligned}
& \forall R \in \operatorname{Rel},(\mathbf{x}, \mathbf{y}) \in \mathcal{C}(R) . \llbracket f \rrbracket_{\emptyset}^{\phi} \phi \mathbf{x}=\llbracket f \rrbracket_{\emptyset}^{d} \phi \mathbf{y} \\
& \Rightarrow \forall \mathbf{x} \in \llbracket \tau_{1} \rrbracket_{\emptyset}^{d} . \llbracket f \rrbracket_{\emptyset}^{d} \Phi(\operatorname{app} \operatorname{Cost}(g, \mathbf{x}) \triangleright \mathbf{x}) \\
& =\llbracket f \rrbracket_{\emptyset}^{d} \Phi\left(\llbracket g \rrbracket_{\emptyset}^{q} \Phi \mathbf{x}\right) \\
& \Rightarrow \quad \forall x:: \tau_{1} . \operatorname{app} \operatorname{Cost}\left(g, \llbracket x \rrbracket_{\emptyset}^{d}\right) \triangleright\left(\llbracket f \rrbracket_{\emptyset}^{q} \Phi \llbracket x \rrbracket_{\emptyset}^{d}\right) \\
& =\llbracket f \rrbracket_{\emptyset}^{\phi} \Phi\left(\llbracket g \rrbracket_{\emptyset}^{\phi} \Phi \llbracket x \rrbracket_{\emptyset}^{\Phi}\right) \\
& \Rightarrow \forall x:: \tau_{1} \cdot \operatorname{appCost}\left(g, \llbracket x \rrbracket_{\emptyset}^{\phi}\right) \triangleright \llbracket f x \rrbracket_{\emptyset}^{d}=\llbracket f(g x) \rrbracket_{\emptyset}^{d}
\end{aligned}
$$

Now, What about our Example $f:: \alpha \rightarrow$ Nat ?

Now:

$$
\begin{aligned}
& \forall R \in \operatorname{Rel},(\mathbf{x}, \mathbf{y}) \in \mathcal{C}(R) . \llbracket f \rrbracket_{\emptyset}^{\phi} \phi \mathbf{x}=\llbracket f \rrbracket_{\emptyset}^{d} \phi \mathbf{y} \\
& \Rightarrow \forall \mathbf{x} \in \llbracket \tau_{1} \rrbracket_{\emptyset}^{d} \cdot \llbracket f \rrbracket_{\emptyset}^{d} \varphi(\operatorname{app} \operatorname{Cost}(g, \mathbf{x}) \triangleright \mathbf{x}) \\
& =\llbracket f \rrbracket_{\emptyset}^{d} \Phi\left(\llbracket g \rrbracket_{\emptyset}^{q} \Phi \mathbf{x}\right) \\
& \Rightarrow \quad \forall x:: \tau_{1} . \operatorname{app} \operatorname{Cost}\left(g, \llbracket x \rrbracket_{\emptyset}^{d}\right) \triangleright\left(\llbracket f \rrbracket_{\emptyset}^{q} \Phi \llbracket x \rrbracket_{\emptyset}^{d}\right) \\
& =\llbracket f \rrbracket_{\emptyset}^{\phi} \Phi\left(\llbracket g \rrbracket_{\emptyset}^{\phi} \Phi \llbracket x \rrbracket_{\emptyset}^{\Phi}\right) \\
& \Rightarrow \forall x:: \tau_{1} \cdot \operatorname{appCost}\left(g, \llbracket x \rrbracket_{\emptyset}^{\phi}\right) \triangleright \llbracket f x \rrbracket_{\emptyset}^{d}=\llbracket f(g x) \rrbracket_{\emptyset}^{d}
\end{aligned}
$$

Hence:

$$
f x \sqsubset f(g x)
$$

Let's Try another Example, $\mathrm{f}:: \alpha \rightarrow \alpha$

$$
\forall \rho .\left(\llbracket f \rrbracket_{\emptyset}^{\Phi}, \llbracket f \rrbracket_{\emptyset}^{\Phi}\right) \in \Delta_{\alpha \rightarrow \alpha, \rho}^{¢}
$$

Let's Try another Example, $\mathrm{f}:: \alpha \rightarrow \alpha$

$$
\begin{aligned}
& \forall \rho .\left(\llbracket f \rrbracket_{\emptyset}^{\Phi}, \llbracket f \rrbracket_{\emptyset}^{\Phi}\right) \in \Delta_{\alpha \rightarrow \alpha, \rho}^{\Phi} \\
& \Rightarrow \quad \forall \rho,(\mathbf{x}, \mathbf{y}) \in \Delta_{\alpha, \rho}^{\phi} .\left(\llbracket \rrbracket_{\emptyset}^{d} \Phi \mathbf{x}, \llbracket \rrbracket_{\emptyset}^{d} \Phi \mathbf{y}\right) \in \Delta_{\alpha, \rho}^{\phi}
\end{aligned}
$$

Let's Try another Example, $\mathrm{f}:: \alpha \rightarrow \alpha$

$$
\begin{aligned}
& \forall \rho .\left(\llbracket f \rrbracket_{\emptyset}^{\Phi}, \llbracket f \rrbracket_{\emptyset}^{\Phi}\right) \in \Delta_{\alpha \rightarrow \alpha, \rho}^{\Phi} \\
& \Rightarrow \quad \forall \rho,(\mathbf{x}, \mathbf{y}) \in \Delta_{\alpha, \rho}^{\phi} .\left(\llbracket f \rrbracket_{\emptyset}^{\phi} \Phi \mathbf{x}, \llbracket \rrbracket_{\emptyset}^{\phi} \Phi \mathbf{y}\right) \in \Delta_{\alpha, \rho}^{\phi} \\
& \Rightarrow \quad \forall g:: \tau_{1} \rightarrow \tau_{2},(\mathbf{x}, \mathbf{y}) \in \mathcal{C}\left(R^{g}\right) \text {. } \\
& \left(\llbracket f \rrbracket_{\emptyset}^{\Phi} \Phi \mathbf{x}, \llbracket f \rrbracket_{\emptyset}^{d} \Phi \mathbf{y}\right) \in \mathcal{C}\left(R^{g}\right)
\end{aligned}
$$

Let's Try another Example, $\mathrm{f}:: \alpha \rightarrow \alpha$

$$
\begin{aligned}
& \forall \rho .\left(\llbracket f \rrbracket_{\emptyset}^{\Phi}, \llbracket f \rrbracket_{\emptyset}^{d}\right) \in \Delta_{\alpha \rightarrow \alpha, \rho}^{\phi} \\
& \Rightarrow \quad \forall \rho,(\mathbf{x}, \mathbf{y}) \in \Delta_{\alpha, \rho}^{\phi} .\left(\llbracket f \rrbracket_{\emptyset}^{\phi} \Phi \mathbf{x}, \llbracket \rrbracket_{\emptyset}^{\phi} \Phi \mathbf{y}\right) \in \Delta_{\alpha, \rho}^{\phi} \\
& \Rightarrow \quad \forall g:: \tau_{1} \rightarrow \tau_{2},(\mathbf{x}, \mathbf{y}) \in \mathcal{C}\left(R^{g}\right) \text {. } \\
& \left(\llbracket \rrbracket_{\emptyset}^{¢} \Phi \mathbf{x}, \llbracket f \rrbracket_{\emptyset}^{d} \oplus \mathbf{y}\right) \in \mathcal{C}\left(R^{g}\right) \\
& \Rightarrow \quad \forall g:: \tau_{1} \rightarrow \tau_{2}, \mathbf{x} \in \llbracket \tau_{1} \rrbracket_{\emptyset}^{d} . \\
& \left(\llbracket f \rrbracket_{\emptyset}^{d} \Phi(\operatorname{app} \operatorname{Cost}(g, \mathbf{x}) \triangleright \mathbf{x}),\right. \\
& \left.\llbracket f \rrbracket_{\emptyset}^{\Phi} \Phi\left(\llbracket g \rrbracket_{\emptyset}^{\Phi} \Phi \mathbf{x}\right)\right) \in \mathcal{C}\left(R^{g}\right)
\end{aligned}
$$

Let's Try another Example, $\mathrm{f}:: \alpha \rightarrow \alpha$

$$
\begin{aligned}
& \forall \rho .\left(\llbracket f \rrbracket_{\emptyset}^{\phi}, \llbracket f \rrbracket_{\emptyset}^{d}\right) \in \Delta_{\alpha \rightarrow \alpha, \rho}^{\phi} \\
& \Rightarrow \quad \forall \rho,(\mathbf{x}, \mathbf{y}) \in \Delta_{\alpha, \rho}^{\phi} .\left(\llbracket f \rrbracket_{\emptyset}^{\phi} \Phi \mathbf{x}, \llbracket \rrbracket_{\emptyset}^{\phi} \Phi \mathbf{y}\right) \in \Delta_{\alpha, \rho}^{\phi} \\
& \Rightarrow \quad \forall g:: \tau_{1} \rightarrow \tau_{2},(\mathbf{x}, \mathbf{y}) \in \mathcal{C}\left(R^{g}\right) \text {. } \\
& \left(\llbracket \rrbracket_{\emptyset}^{\Phi} \Phi \mathbf{x}, \llbracket f \rrbracket_{\emptyset}^{\Phi} \Phi \mathbf{y}\right) \in \mathcal{C}\left(R^{g}\right) \\
& \Rightarrow \quad \forall g:: \tau_{1} \rightarrow \tau_{2}, \mathbf{x} \in \llbracket \tau_{1} \rrbracket_{\emptyset}^{d} . \\
& \left(\llbracket f \rrbracket_{\emptyset}^{d} \Phi(\operatorname{app} \operatorname{Cost}(g, \mathbf{x}) \triangleright \mathbf{x}),\right. \\
& \left.\llbracket f \rrbracket_{\emptyset}^{d} \Phi\left(\llbracket g \rrbracket_{\emptyset}^{d} \Phi \mathbf{x}\right)\right) \in \mathcal{C}\left(R^{g}\right)
\end{aligned}
$$

Does this imply

$$
\llbracket g \rrbracket_{\emptyset}^{\Phi} \Phi\left(\llbracket f \rrbracket_{\emptyset}^{\phi} \phi \mathbf{x}\right)=\llbracket f \rrbracket_{\emptyset}^{\phi} \Phi\left(\llbracket g \rrbracket_{\emptyset}^{\phi} \phi \mathbf{x}\right) ?
$$

Let's Try another Example, $\mathrm{f}:: \alpha \rightarrow \alpha$

$$
\begin{aligned}
& \forall g:: \tau_{1} \rightarrow \tau_{2}, \mathbf{x} \in \llbracket \tau_{1} \rrbracket_{\emptyset}^{d} . \\
& \left(\operatorname{app} \operatorname{Cost}(g, \mathbf{x}) \triangleright\left(\llbracket \rrbracket \rrbracket_{\emptyset}^{d} \phi \mathbf{x}\right),\right. \\
& \left.\llbracket f \rrbracket_{\emptyset}^{d} \Phi\left(\llbracket g \rrbracket_{\emptyset}^{d} \Phi \mathbf{x}\right)\right) \in \mathcal{C}\left(R^{g}\right)
\end{aligned}
$$

Does this imply

$$
\llbracket g \rrbracket_{\emptyset}^{\phi} \Phi\left(\llbracket f \rrbracket_{\emptyset}^{d} \phi \mathbf{x}\right)=\llbracket f \rrbracket_{\emptyset}^{d} \Phi\left(\llbracket g \rrbracket_{\emptyset}^{\phi} \phi \mathbf{x}\right) ?
$$

Let's see:

$$
\begin{aligned}
\mathcal{C}\left(R^{g}\right)=\{(c \triangleright \operatorname{appCost}(g, \mathbf{x}) \triangleright \mathbf{x}, c \triangleright \mathbf{y}) \\
\left.\mid \llbracket g \rrbracket_{\emptyset}^{\Phi} \Phi \mathbf{x}=\mathbf{y}, c \in \mathbb{Z}\right\}
\end{aligned}
$$

Let's Try another Example, $\mathrm{f}:: \alpha \rightarrow \alpha$

$$
\begin{aligned}
& \forall g:: \tau_{1} \rightarrow \tau_{2}, \mathbf{x} \in \llbracket \tau_{1} \rrbracket_{\emptyset}^{d} . \\
& \left(\operatorname{app} \operatorname{Cost}(g, \mathbf{x}) \triangleright\left(\llbracket \rrbracket \rrbracket_{\emptyset}^{d} \phi \mathbf{x}\right),\right. \\
& \left.\llbracket f \rrbracket_{\emptyset}^{d} \Phi\left(\llbracket g \rrbracket_{\emptyset}^{d} \Phi \mathbf{x}\right)\right) \in \mathcal{C}\left(R^{g}\right)
\end{aligned}
$$

Does this imply

$$
\llbracket g \rrbracket_{\emptyset}^{\phi} \Phi\left(\llbracket f \rrbracket_{\emptyset}^{d} \phi \mathbf{x}\right)=\llbracket f \rrbracket_{\emptyset}^{d} \Phi\left(\llbracket g \rrbracket_{\emptyset}^{\phi} \phi \mathbf{x}\right) ?
$$

Let's see:

$$
\begin{aligned}
& \mathcal{C}\left(R^{g}\right)=\{(c \triangleright \operatorname{app} \operatorname{Cost}\left.\left(g, \mathbf{x}^{\prime}\right) \triangleright \mathbf{x}^{\prime}, c \triangleright \mathbf{y}\right) \\
&\left.\mid \llbracket g \rrbracket_{\emptyset}^{d} \Phi \mathbf{x}^{\prime}=\mathbf{y}, c \in \mathbb{Z}\right\}
\end{aligned}
$$

Let's Try another Example, $\mathrm{f}:: \alpha \rightarrow \alpha$

$$
\begin{aligned}
& \forall g:: \tau_{1} \rightarrow \tau_{2}, \mathbf{x} \in \llbracket \tau_{1} \rrbracket_{\emptyset}^{\phi} . \\
& \left(\operatorname{app} \operatorname{Cost}(g, \mathbf{x}) \triangleright\left(\llbracket \rrbracket \rrbracket_{\emptyset}^{d} \phi \mathbf{x}\right),\right. \\
& \left.\llbracket f \rrbracket_{\emptyset}^{d} \phi\left(\llbracket g \rrbracket_{\emptyset}^{d} \phi \mathbf{x}\right)\right) \in \mathcal{C}\left(R^{g}\right)
\end{aligned}
$$

Let's see:

$$
\begin{aligned}
& \mathcal{C}\left(R^{g}\right)=\{(c \triangleright \operatorname{app} \operatorname{Cost}\left.\left(g, \mathbf{x}^{\prime}\right) \triangleright \mathbf{x}^{\prime}, c \triangleright \mathbf{y}\right) \\
&\left.\mid \llbracket g \rrbracket_{\emptyset}^{d} \Phi \mathbf{x}^{\prime}=\mathbf{y}, c \in \mathbb{Z}\right\}
\end{aligned}
$$

Actually, the above only imply:

$$
\begin{aligned}
\forall \mathbf{x} . \exists \mathbf{x}^{\prime} . & \quad \operatorname{app} \operatorname{Cost}(g, \mathbf{x}) \triangleright\left(\llbracket g \rrbracket_{\emptyset}^{d} \varphi\left(\llbracket f \rrbracket_{\emptyset}^{\Phi} \varphi \mathbf{x}\right)\right) \\
= & \operatorname{app} \operatorname{Cost}\left(g, \mathbf{x}^{\prime}\right) \triangleright\left(\llbracket f \rrbracket_{\emptyset}^{d} \Phi\left(\llbracket g \rrbracket_{\emptyset}^{d} \varphi \mathbf{x}\right)\right)
\end{aligned}
$$

Let's Try another Example, $\mathrm{f}:: \alpha \rightarrow \alpha$

Define:

$$
R_{x}^{g}=\left\{\left(\operatorname{val}\left(\llbracket x \rrbracket_{\emptyset}^{q}\right), \operatorname{val}\left(\llbracket g \rrbracket_{\emptyset}^{d} \Phi \llbracket x \rrbracket_{\emptyset}^{q}\right)\right)\right\}
$$

Let's Try another Example, $\mathrm{f}:: \alpha \rightarrow \alpha$

Define:

$$
R_{x}^{g}=\left\{\left(\operatorname{val}\left(\llbracket x \rrbracket_{\emptyset}^{d}\right), \operatorname{val}\left(\llbracket g \rrbracket_{\emptyset}^{d} \Phi \llbracket x \rrbracket_{\emptyset}^{d}\right)\right)\right\}
$$

Then:

$$
\begin{aligned}
\mathcal{C}\left(R_{x}^{g}\right)=\{(& \left(\triangleright \triangleright \operatorname{app} \operatorname{Cost}\left(g, \llbracket x \rrbracket_{\emptyset}^{d}\right) \triangleright \llbracket x \rrbracket_{\emptyset}^{\phi},\right. \\
& \left.\left.c \triangleright\left(\llbracket g \rrbracket_{\emptyset}^{d} \Phi \llbracket x \rrbracket_{\emptyset}^{d}\right)\right) \mid c \in \mathbb{Z}\right\}
\end{aligned}
$$

Let's Try another Example, $\mathrm{f}:: \alpha \rightarrow \alpha$

Define:

$$
R_{x}^{g}=\left\{\left(\operatorname{val}\left(\llbracket x \rrbracket_{\emptyset}^{q}\right), \operatorname{val}\left(\llbracket g \rrbracket_{\emptyset}^{d} \Phi \llbracket x \rrbracket_{\emptyset}^{\phi}\right)\right)\right\}
$$

Then:

$$
\begin{aligned}
& \mathcal{C}\left(R_{x}^{g}\right)=\left\{\left(c \triangleright \operatorname{app} \operatorname{Cost}\left(g, \llbracket x \rrbracket_{\emptyset}^{d}\right) \triangleright \llbracket x \rrbracket_{\emptyset}^{\phi},\right.\right. \\
&\left.\left.c \triangleright\left(\llbracket g \rrbracket_{\emptyset}^{d} \phi \llbracket x \rrbracket_{\emptyset}^{d}\right)\right) \mid c \in \mathbb{Z}\right\}
\end{aligned}
$$

Thus:

$$
\begin{aligned}
& \Rightarrow \quad \forall g:: \tau_{1} \rightarrow \tau_{2}, x:: \tau_{1},(\mathbf{x}, \mathbf{y}) \in \mathcal{C}\left(R_{x}^{g}\right) . \\
&\left(\llbracket \rrbracket_{\emptyset}^{d} \Phi \mathbf{x}, \llbracket f \rrbracket_{\emptyset}^{d} \Phi \mathbf{y}\right) \in \mathcal{C}\left(R_{x}^{g}\right) \\
& \Rightarrow \quad \forall g:: \tau_{1} \rightarrow \tau_{2}, x:: \tau_{1} . \\
&\left(\llbracket f \rrbracket_{\emptyset}^{d} \Phi\left(\operatorname{app} \operatorname{Cost}\left(g, \llbracket x \rrbracket_{\emptyset}^{d}\right) \triangleright \llbracket x \rrbracket_{\emptyset}^{d}\right),\right. \\
&\left.\llbracket f \rrbracket_{\emptyset}^{d} \Phi\left(\llbracket g \rrbracket_{\emptyset}^{d} \Phi \llbracket x \rrbracket_{\emptyset}^{d}\right)\right) \in \mathcal{C}\left(R_{x}^{g}\right)
\end{aligned}
$$

Let's Try another Example, $\mathrm{f}:: \alpha \rightarrow \alpha$

Then:

$$
\begin{aligned}
\mathcal{C}\left(R_{x}^{g}\right)=\left\{\left(c \triangleright \operatorname{appCost}\left(g, \llbracket x \rrbracket_{\emptyset}^{\phi}\right) \triangleright \llbracket x \rrbracket_{\emptyset}^{\phi},\right.\right. \\
\left.\left.c \triangleright\left(\llbracket g \rrbracket_{\emptyset}^{d} \Phi \llbracket x \rrbracket_{\emptyset}^{d}\right)\right) \mid c \in \mathbb{Z}\right\}
\end{aligned}
$$

Thus:

$$
\begin{aligned}
& \Rightarrow \forall g:: \tau_{1} \rightarrow \tau_{2}, x:: \tau_{1},(\mathbf{x}, \mathbf{y}) \in \mathcal{C}\left(R_{x}^{g}\right) . \\
& \left(\llbracket \rrbracket_{\emptyset}^{d} \Phi \mathbf{x}, \llbracket f \rrbracket_{\emptyset}^{d} \oplus \mathbf{y}\right) \in \mathcal{C}\left(R_{x}^{g}\right) \\
& \Rightarrow \forall g:: \tau_{1} \rightarrow \tau_{2}, x:: \tau_{1} \text {. } \\
& \left(\llbracket f \rrbracket_{\emptyset}^{d} \Phi\left(\operatorname{app} \operatorname{Cost}\left(g, \llbracket x \rrbracket_{\emptyset}^{d}\right) \triangleright \llbracket x \rrbracket_{\emptyset}^{d}\right),\right. \\
& \left.\llbracket f \rrbracket_{\emptyset}^{\Phi} \Phi\left(\llbracket g \rrbracket_{\emptyset}^{\phi} \Phi \llbracket x \rrbracket_{\emptyset}^{\Phi}\right)\right) \in \mathcal{C}\left(R_{x}^{g}\right) \\
& \Rightarrow \forall g:: \tau_{1} \rightarrow \tau_{2}, x:: \tau_{1} \text {. }
\end{aligned}
$$

Other Examples

For $\mathrm{f}:: \alpha \rightarrow \alpha \rightarrow \alpha$,

$$
g(f x y) \sqsubset f(g x)(g y)
$$

Other Examples

For $\mathrm{f}:: \alpha \rightarrow \alpha \rightarrow \alpha$,

$$
g(f x y) \sqsubset f(g x)(g y)
$$

For $f:: \alpha \rightarrow(\alpha, \alpha)$,

$$
\operatorname{mapPair}(g, g)(f x) \sqsupset f(g x)
$$

Other Examples

For $\mathrm{f}:: \alpha \rightarrow \alpha \rightarrow \alpha$,

$$
g(f x y) \sqsubset f(g x)(g y)
$$

For $f:: \alpha \rightarrow(\alpha, \alpha)$,

$$
\operatorname{mapPair}(g, g)(f x) \sqsupset f(g x)
$$

For $\mathrm{f}::[\alpha] \rightarrow$ Nat,

$$
\mathrm{f} l \sqsubset f(\operatorname{map} g /)
$$

Other Examples

For $\mathrm{f}:: \alpha \rightarrow \alpha \rightarrow \alpha$,

$$
g(f x y) \sqsubset f(g x)(g y)
$$

For $\mathrm{f}:: \alpha \rightarrow(\alpha, \alpha)$,

$$
\operatorname{mapPair}(g, g)(f x) \sqsupset f(g x)
$$

For $\mathrm{f}::[\alpha] \rightarrow$ Nat,

$$
f l \sqsubset f(\operatorname{map} g l)
$$

For $f::[\alpha] \rightarrow[\alpha]$, get conditional statements about relative efficiency of $\operatorname{map} g(f I)$ and $f(\operatorname{map} g I)$.

Conclusion

We did:

- develop of "cost-aware" logical relation and its parametricity theorem,

Conclusion

We did:

- develop of "cost-aware" logical relation and its parametricity theorem,
- realize that more effort has to go into the actual deriving of concrete free theorems,

Conclusion

We did:

- develop of "cost-aware" logical relation and its parametricity theorem,
- realize that more effort has to go into the actual deriving of concrete free theorems,
- establish a number of building blocks/heuristics for that.

Conclusion

We did:

- develop of "cost-aware" logical relation and its parametricity theorem,
- realize that more effort has to go into the actual deriving of concrete free theorems,
- establish a number of building blocks/heuristics for that.
Further plans:
- mechanize derivation of cost-aware statements,

Conclusion

We did:

- develop of "cost-aware" logical relation and its parametricity theorem,
- realize that more effort has to go into the actual deriving of concrete free theorems,
- establish a number of building blocks/heuristics for that.
Further plans:
- mechanize derivation of cost-aware statements,
- apply to automatic program transformations,

Conclusion

We did:

- develop of "cost-aware" logical relation and its parametricity theorem,
- realize that more effort has to go into the actual deriving of concrete free theorems,
- establish a number of building blocks/heuristics for that.
Further plans:
- mechanize derivation of cost-aware statements,
- apply to automatic program transformations,
- extend to full recursion, other language features,

Conclusion

We did:

- develop of "cost-aware" logical relation and its parametricity theorem,
- realize that more effort has to go into the actual deriving of concrete free theorems,
- establish a number of building blocks/heuristics for that.
Further plans:
- mechanize derivation of cost-aware statements,
- apply to automatic program transformations,
- extend to full recursion, other language features,
- investigate call-by-name/call-by-need,

Conclusion

We did:

- develop of "cost-aware" logical relation and its parametricity theorem,
- realize that more effort has to go into the actual deriving of concrete free theorems,
- establish a number of building blocks/heuristics for that.
Further plans:
- mechanize derivation of cost-aware statements,
- apply to automatic program transformations,
- extend to full recursion, other language features,
- investigate call-by-name/call-by-need,
- use more realistic cost measures?

References I

R. J.-P. Bernardy, P. Jansson, and K. Claessen.

Testing polymorphic properties.
In European Symposium on Programming, Proceedings,
volume 6012 of LNCS, pages 125-144. Springer-Verlag, 2010.
國 B. Bjerner and S. Holmström.
A compositional approach to time analysis of first order lazy functional programs.
In Functional Programming Languages and Computer
Architecture, Proceedings, pages 157-165. ACM Press, 1989.
围 N.A. Day, J. Launchbury, and J. Lewis.
Logical abstractions in Haskell.
In Haskell Workshop, Proceedings. Technical Report
UU-CS-1999-28, Utrecht University, 1999.

References II

A. Gill, J. Launchbury, and S.L. Peyton Jones.

A short cut to deforestation.
In Functional Programming Languages and Computer
Architecture, Proceedings, pages 223-232. ACM Press, 1993.
围 Y. Liu and G. Gómez.
Automatic accurate cost-bound analysis for high-level languages.
IEEE Transactions on Computers, 50(12):1295-1309, 2001.
圊 J.C. Reynolds.
Types, abstraction and parametric polymorphism.
In Information Processing, Proceedings, pages 513-523.
Elsevier, 1983.

References III

目 M. Rosendahl.
Automatic complexity analysis.
In Functional Programming Languages and Computer
Architecture, Proceedings, pages 144-156. ACM Press, 1989.
D. Sands.

A naïve time analysis and its theory of cost equivalence.
Journal of Logic and Computation, 5(4):495-541, 1995.
R J. Svenningsson.
Shortcut fusion for accumulating parameters \& zip-like functions.
In International Conference on Functional Programming,
Proceedings, pages 124-132. ACM Press, 2002.

References IV

圊 A．Takano and E．Meijer．
Shortcut deforestation in calculational form．
In Functional Programming Languages and Computer
Architecture，Proceedings，pages 306－313．ACM Press， 1995.
囯 J．Voigtländer．
Much ado about two：A pearl on parallel prefix computation．
In Principles of Programming Languages，Proceedings，pages 29－35．ACM Press， 2008.

嗇 J．Voigtländer．
Bidirectionalization for free！
In Principles of Programming Languages，Proceedings，pages 165－176．ACM Press， 2009.

References V

目 P. Wadler.
Strictness analysis aids time analysis.
In Principles of Programming Languages, Proceedings, pages 119-132. ACM Press, 1988.
B
P. Wadler.

Theorems for free!
In Functional Programming Languages and Computer
Architecture, Proceedings, pages 347-359. ACM Press, 1989.

A "Real" Example: Fusion [Gill et al., FPCA'93]

Extensional free theorem:
For every $\mathrm{f}::(\tau \rightarrow \alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$,

$$
\text { foldr } k z(f(:)[])=f k z
$$

The whole point of fusion:
We expect,

$$
\text { foldr } k z(f(:)[]) \sqsupseteq f k z
$$

A counterexample (in call-by-value setting):

$$
\begin{aligned}
& f::(\text { Nat } \rightarrow \alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha \\
& \text { f } k z=\text { case }[k 5 z] \text { of }\{[] \rightarrow z ; x: x s \rightarrow z\}
\end{aligned}
$$

