
Knuth’s 0-1-Principle and Beyond

Janis Voigtländer

University of Bonn, Germany

(visiting NII Tokyo)

February 26th, 2010

The Sorting Problem

Task: Given a list and an order on the type of elements of
this list, produce a sorted list (with same content)!

Example:

12 7 9 8 4 6 �→ 4 6 7 8 9 12

1

The Sorting Problem

Task: Given a list and an order on the type of elements of
this list, produce a sorted list (with same content)!

Example:

12 7 9 8 4 6 �→ 4 6 7 8 9 12

Many Solutions:

� Quicksort
� Insertion Sort
� Merge Sort
� Bubble Sort
� . . .

1

Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:
� one containing all elements smaller than x, and
� one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:
� the sorted first sublist,
� the element x, and
� the sorted second sublist.

2

Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:
� one containing all elements smaller than x, and
� one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:
� the sorted first sublist,
� the element x, and
� the sorted second sublist.

Realisation:

� �i x j

k0 n-1

2

Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:
� one containing all elements smaller than x, and
� one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:
� the sorted first sublist,
� the element x, and
� the sorted second sublist.

Realisation:

� �i x j

k0 n-1

Example:

2 15 7 9 12 4 11

2

Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:
� one containing all elements smaller than x, and
� one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:
� the sorted first sublist,
� the element x, and
� the sorted second sublist.

Realisation:

� �i x j

k0 n-1

Example:

2 15 7 9 12 4 11

i j

2

Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:
� one containing all elements smaller than x, and
� one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:
� the sorted first sublist,
� the element x, and
� the sorted second sublist.

Realisation:

� �i x j

k0 n-1

Example:

2 15 7 9 12 4 11

i j

2

Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:
� one containing all elements smaller than x, and
� one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:
� the sorted first sublist,
� the element x, and
� the sorted second sublist.

Realisation:

� �i x j

k0 n-1

Example:

2 15 7 9 12 4 11

i j

2

Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:
� one containing all elements smaller than x, and
� one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:
� the sorted first sublist,
� the element x, and
� the sorted second sublist.

Realisation:

� �i x j

k0 n-1

Example:

2 4 7 9 12 15 11

i j

2

Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:
� one containing all elements smaller than x, and
� one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:
� the sorted first sublist,
� the element x, and
� the sorted second sublist.

Realisation:

� �i x j

k0 n-1

Example:

2 4 7 9 12 15 11

i j

2

Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:
� one containing all elements smaller than x, and
� one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:
� the sorted first sublist,
� the element x, and
� the sorted second sublist.

Realisation:

� �i x j

k0 n-1

Example:

2 4 7 9 12 15 11

i j

2

Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:
� one containing all elements smaller than x, and
� one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:
� the sorted first sublist,
� the element x, and
� the sorted second sublist.

Realisation:

� �i x j

k0 n-1

Example:

2 4 7 9 12 15 11

i j

2

Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:
� one containing all elements smaller than x, and
� one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:
� the sorted first sublist,
� the element x, and
� the sorted second sublist.

Realisation:

� �i x j

k0 n-1

Example:

2 4 7 9 12 15 11

ij

2

Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:
� one containing all elements smaller than x, and
� one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:
� the sorted first sublist,
� the element x, and
� the sorted second sublist.

Realisation:

� �i x j

k0 n-1

Example:

2 4 7 9 12 15 11

2

Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:
� one containing all elements smaller than x, and
� one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:
� the sorted first sublist,
� the element x, and
� the sorted second sublist.

Realisation:

� �i x j

k0 n-1

Example:

2 4 7 9 12 15 11

i j

2

Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:
� one containing all elements smaller than x, and
� one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:
� the sorted first sublist,
� the element x, and
� the sorted second sublist.

Realisation:

� �i x j

k0 n-1

Example:

2 4 7 9 12 15 11

i j

2

Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:
� one containing all elements smaller than x, and
� one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:
� the sorted first sublist,
� the element x, and
� the sorted second sublist.

Realisation:

� �i x j

k0 n-1

Example:

2 4 7 9 12 15 11

i j

2

Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:
� one containing all elements smaller than x, and
� one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:
� the sorted first sublist,
� the element x, and
� the sorted second sublist.

Realisation:

� �i x j

k0 n-1

Example:

2 4 7 9 12 15 11

ij

2

Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:
� one containing all elements smaller than x, and
� one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:
� the sorted first sublist,
� the element x, and
� the sorted second sublist.

Realisation:

� �i x j

k0 n-1

Example:

2 4 7 9 12 15 11

2

Alternatives

Note: � The Quicksort algorithm uses the following as
key operation (to drive the partitioning):

compare :: (τ, τ)→ Bool

3

Alternatives

Note: � The Quicksort algorithm uses the following as
key operation (to drive the partitioning):

compare :: (τ, τ)→ Bool

� The same is true for algorithms like
Insertion Sort, Merge Sort, . . .

3

Alternatives

Note: � The Quicksort algorithm uses the following as
key operation (to drive the partitioning):

compare :: (τ, τ)→ Bool

� The same is true for algorithms like
Insertion Sort, Merge Sort, . . .

But: Knuth also considered a more restricted class of
sorting algorithms, based instead on the following
operation:

cswap :: (τ, τ)→ (τ, τ)

3

Alternatives

Note: � The Quicksort algorithm uses the following as
key operation (to drive the partitioning):

compare :: (τ, τ)→ Bool

� The same is true for algorithms like
Insertion Sort, Merge Sort, . . .

But: Knuth also considered a more restricted class of
sorting algorithms, based instead on the following
operation:

cswap :: (τ, τ)→ (τ, τ)

3

Bitonic Sort

1. Split the input list into two sublists of equal length.

4

Bitonic Sort

1. Split the input list into two sublists of equal length.

4

Bitonic Sort

1. Split the input list into two sublists of equal length.

4

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively

4

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively

4

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

4

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.

4

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.

4

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.

4

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.

4

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.

4

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.
3.4 Concatenate the results.

4

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.
3.4 Concatenate the results.

4

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.
3.4 Concatenate the results.

Note: � works only for lists whose length is a power of two

4

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.
3.4 Concatenate the results.

Note: � works only for lists whose length is a power of two

� complexity is O(n · log(n)2)

4

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.
3.4 Concatenate the results.

Note: � works only for lists whose length is a power of two

� complexity is O(n · log(n)2)
� particularly suitable for hardware and parallel implementations

4

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.
3.4 Concatenate the results.

Note: � works only for lists whose length is a power of two

� complexity is O(n · log(n)2)
� particularly suitable for hardware and parallel implementations

� correctness is not obvious

4

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.

5

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.

5

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.

5

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.

5

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.

5

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

5

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

5

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

6

Knuth’s 0-1-Principle [Knuth 1973]

Informally: If a comparison-swap algorithm sorts Booleans
correctly, it sorts integers correctly as well.

7

Bitonic Sort

1. Split the input list into two sublists of equal length.

8

Bitonic Sort

1. Split the input list into two sublists of equal length.

8

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

8

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

8

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.

8

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.

8

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.

8

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.

8

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

8

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

8

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

8

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

8

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

8

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

8

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.
3.4 Concatenate the results.

8

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.
3.4 Concatenate the results.

8

Bitonic Sort

1. Split the input list into two sublists of equal length.

9

Bitonic Sort

1. Split the input list into two sublists of equal length.

9

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

9

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

9

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.

9

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.

9

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.

9

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.

9

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

9

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

9

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

9

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

9

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

9

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

9

Knuth’s 0-1-Principle [Knuth 1973]

Informally: If a comparison-swap algorithm sorts Booleans
correctly, it sorts integers correctly as well.

10

Knuth’s 0-1-Principle [Knuth 1973]

Informally: If a comparison-swap algorithm sorts Booleans
correctly, it sorts integers correctly as well.

Formally: ???

10

Knuth’s 0-1-Principle [Knuth 1973]

Informally: If a comparison-swap algorithm sorts Booleans
correctly, it sorts integers correctly as well.

Formally: Use Haskell.

10

Knuth’s 0-1-Principle [Knuth 1973]

Informally: If a comparison-swap algorithm sorts Booleans
correctly, it sorts integers correctly as well.

Formally: Use Haskell. Let

sort :: ((α,α) → (α,α)) → [α]→ [α]

10

Knuth’s 0-1-Principle [Knuth 1973]

Informally: If a comparison-swap algorithm sorts Booleans
correctly, it sorts integers correctly as well.

Formally: Use Haskell. Let

sort :: ((α,α) → (α,α)) → [α]→ [α]

f :: (Int, Int)→ (Int, Int)
f (x , y) = if x > y then (y , x) else (x , y)

g :: (Bool,Bool)→ (Bool,Bool)
g (x , y) = (x && y , x || y)

10

Knuth’s 0-1-Principle [Knuth 1973]

Informally: If a comparison-swap algorithm sorts Booleans
correctly, it sorts integers correctly as well.

Formally: Use Haskell. Let

sort :: ((α,α) → (α,α)) → [α]→ [α]

f :: (Int, Int)→ (Int, Int)
f (x , y) = if x > y then (y , x) else (x , y)

g :: (Bool,Bool)→ (Bool,Bool)
g (x , y) = (x && y , x || y)

If for every xs :: [Bool], sort g xs gives the correct
result, then for every xs :: [Int], sort f xs gives the
correct result.

10

Knuth’s 0-1-Principle [Knuth 1973]

Informally: If a comparison-swap algorithm sorts Booleans
correctly, it sorts integers correctly as well.

Formally: Use Haskell. Let

sort :: ((α,α) → (α,α)) → [α]→ [α]

f :: (Int, Int)→ (Int, Int)
f (x , y) = if x > y then (y , x) else (x , y)

g :: (Bool,Bool)→ (Bool,Bool)
g (x , y) = (x && y , x || y)

If ∀xs :: [Bool], ys = sort g xs. P(xs, ys) ∧ Q(ys),
then ∀xs :: [Int], ys = sort f xs. P(xs, ys) ∧ Q(ys),
where P(xs, ys) := xs and ys contain the same ele-

ments in the same multiplicity
Q(ys) := ys is sorted

10

Free Theorems [Reynolds 1983, Wadler 1989]

Here just a magic black box.

11

Free Theorems [Reynolds 1983, Wadler 1989]

Here just a magic black box.

Input: sort::((a,a)->(a,a))->[a]->[a]

11

Free Theorems [Reynolds 1983, Wadler 1989]

Here just a magic black box.

Input: sort::((a,a)->(a,a))->[a]->[a]

Output: forall t1,t2 in TYPES, h::t1->t2.

forall f::(t1,t1)->(t1,t1).

forall g::(t2,t2)->(t2,t2).

(forall (x,y) in lift_{(,)}(h,h).

(f x,g y) in lift_{(,)}(h,h))

==> (forall xs::[t1].

map h (sort f xs) = sort g (map h xs))

lift_{(,)}(h,h)

= {((x1,x2),(y1,y2)) | (h x1 = y1)

&& (h x2 = y2)}

map h [] = []

map h (x:xs) = (h x):(map h xs)

11

More Specific (and Intuitive)

For every sort :: ((α,α)→ (α,α))→ [α]→ [α],
f :: (Int, Int)→ (Int, Int), g :: (Bool,Bool)→ (Bool,Bool), and
h :: Int→ Bool:

(Int, Int) (Int, Int) [Int] [Int]

= ⇒ =

(Bool,Bool) (Bool,Bool) [Bool] [Bool]

f

h × h

g

h × h

sort f

map h map h

sort g

12

More Specific (and Intuitive)

For every sort :: ((α,α)→ (α,α))→ [α]→ [α],
f :: (Int, Int)→ (Int, Int), g :: (Bool,Bool)→ (Bool,Bool), and
h :: Int→ Bool:

(Int, Int) (Int, Int) [Int] [Int]

= ⇒ =

(Bool,Bool) (Bool,Bool) [Bool] [Bool]

f

h × h

g

h × h

sort f

map h map h

sort g

If f and g are as defined before, then the precondition is fulfilled
for any h of the form h x = n < x for some n :: Int.

12

Knuth’s 0-1-Principle [Knuth 1973]

Informally: If a comparison-swap algorithm sorts Booleans
correctly, it sorts integers correctly as well.

Formally: Use Haskell. Let

sort :: ((α,α) → (α,α)) → [α]→ [α]

f :: (Int, Int)→ (Int, Int)
f (x , y) = if x > y then (y , x) else (x , y)

g :: (Bool,Bool)→ (Bool,Bool)
g (x , y) = (x && y , x || y)

If ∀xs :: [Bool], ys = sort g xs. P(xs, ys) ∧ Q(ys),
then ∀xs :: [Int], ys = sort f xs. P(xs, ys) ∧ Q(ys),
where P(xs, ys) := xs and ys contain the same ele-

ments in the same multiplicity
Q(ys) := ys is sorted

13

Proof of “P on [Bool] implies P on [Int]”

Recall: P(xs, ys) := xs and ys contain the same ele-
ments in the same multiplicity

14

Proof of “P on [Bool] implies P on [Int]”

Recall: P(xs, ys) := xs and ys contain the same ele-
ments in the same multiplicity

Given: ∀xs :: [Bool], ys = sort g xs. P(xs, ys)

14

Proof of “P on [Bool] implies P on [Int]”

Recall: P(xs, ys) := xs and ys contain the same ele-
ments in the same multiplicity

Given: ∀xs :: [Bool], ys = sort g xs. P(xs, ys)

To prove: ∀xs :: [Int], ys = sort f xs. P(xs, ys)

14

Proof of “P on [Bool] implies P on [Int]”

Recall: P(xs, ys) := xs and ys contain the same ele-
ments in the same multiplicity

Given: ∀xs :: [Bool], ys = sort g xs. P(xs, ys)

To prove: ∀xs :: [Int], ys = sort f xs. P(xs, ys)

Assume there exist us :: [Int] and vs = sort f us with ¬P(us, vs).

14

Proof of “P on [Bool] implies P on [Int]”

Recall: P(xs, ys) := xs and ys contain the same ele-
ments in the same multiplicity

Given: ∀xs :: [Bool], ys = sort g xs. P(xs, ys)

To prove: ∀xs :: [Int], ys = sort f xs. P(xs, ys)

Assume there exist us :: [Int] and vs = sort f us with ¬P(us, vs).
Then there is a smallest integer n such that the multiplicities of n
in us and vs are not the same.

14

Proof of “P on [Bool] implies P on [Int]”

Recall: P(xs, ys) := xs and ys contain the same ele-
ments in the same multiplicity

Given: ∀xs :: [Bool], ys = sort g xs. P(xs, ys)

To prove: ∀xs :: [Int], ys = sort f xs. P(xs, ys)

Assume there exist us :: [Int] and vs = sort f us with ¬P(us, vs).
Then there is a smallest integer n such that the multiplicities of n
in us and vs are not the same. Then for h x = n < x the
multiplicities of False in (map h us) and (map h vs) are different.

14

Proof of “P on [Bool] implies P on [Int]”

Recall: P(xs, ys) := xs and ys contain the same ele-
ments in the same multiplicity

Given: ∀xs :: [Bool], ys = sort g xs. P(xs, ys)

To prove: ∀xs :: [Int], ys = sort f xs. P(xs, ys)

Assume there exist us :: [Int] and vs = sort f us with ¬P(us, vs).
Then there is a smallest integer n such that the multiplicities of n
in us and vs are not the same. Then for h x = n < x the
multiplicities of False in (map h us) and (map h vs) are different.
But this is in contradiction to the precondition with:

xs = map h us
ys = sort g (map h us)

14

Proof of “P on [Bool] implies P on [Int]”

Recall: P(xs, ys) := xs and ys contain the same ele-
ments in the same multiplicity

Given: ∀xs :: [Bool], ys = sort g xs. P(xs, ys)

To prove: ∀xs :: [Int], ys = sort f xs. P(xs, ys)

Assume there exist us :: [Int] and vs = sort f us with ¬P(us, vs).
Then there is a smallest integer n such that the multiplicities of n
in us and vs are not the same. Then for h x = n < x the
multiplicities of False in (map h us) and (map h vs) are different.
But this is in contradiction to the precondition with:

xs = map h us
ys = sort g (map h us) = map h (sort f us)

14

Proof of “P on [Bool] implies P on [Int]”

Recall: P(xs, ys) := xs and ys contain the same ele-
ments in the same multiplicity

Given: ∀xs :: [Bool], ys = sort g xs. P(xs, ys)

To prove: ∀xs :: [Int], ys = sort f xs. P(xs, ys)

Assume there exist us :: [Int] and vs = sort f us with ¬P(us, vs).
Then there is a smallest integer n such that the multiplicities of n
in us and vs are not the same. Then for h x = n < x the
multiplicities of False in (map h us) and (map h vs) are different.
But this is in contradiction to the precondition with:

xs = map h us
ys = sort g (map h us) = map h (sort f us) = map h vs

14

Proof of “Q on [Bool] implies Q on [Int]”

Recall: Q(ys) := ys is sorted

15

Proof of “Q on [Bool] implies Q on [Int]”

Recall: Q(ys) := ys is sorted

Given: ∀xs :: [Bool], ys = sort g xs. Q(ys)

15

Proof of “Q on [Bool] implies Q on [Int]”

Recall: Q(ys) := ys is sorted

Given: ∀xs :: [Bool], ys = sort g xs. Q(ys)

To prove: ∀xs :: [Int], ys = sort f xs. Q(ys)

15

Proof of “Q on [Bool] implies Q on [Int]”

Recall: Q(ys) := ys is sorted

Given: ∀xs :: [Bool], ys = sort g xs. Q(ys)

To prove: ∀xs :: [Int], ys = sort f xs. Q(ys)

Assume there exist us :: [Int] and vs = sort f us with ¬Q(vs).

15

Proof of “Q on [Bool] implies Q on [Int]”

Recall: Q(ys) := ys is sorted

Given: ∀xs :: [Bool], ys = sort g xs. Q(ys)

To prove: ∀xs :: [Int], ys = sort f xs. Q(ys)

Assume there exist us :: [Int] and vs = sort f us with ¬Q(vs).
Then there are n < m such that an m occurs in vs before an n.

15

Proof of “Q on [Bool] implies Q on [Int]”

Recall: Q(ys) := ys is sorted

Given: ∀xs :: [Bool], ys = sort g xs. Q(ys)

To prove: ∀xs :: [Int], ys = sort f xs. Q(ys)

Assume there exist us :: [Int] and vs = sort f us with ¬Q(vs).
Then there are n < m such that an m occurs in vs before an n.
Then for h x = n < x a True occurs in (map h vs) before a False.

15

Proof of “Q on [Bool] implies Q on [Int]”

Recall: Q(ys) := ys is sorted

Given: ∀xs :: [Bool], ys = sort g xs. Q(ys)

To prove: ∀xs :: [Int], ys = sort f xs. Q(ys)

Assume there exist us :: [Int] and vs = sort f us with ¬Q(vs).
Then there are n < m such that an m occurs in vs before an n.
Then for h x = n < x a True occurs in (map h vs) before a False.
But this is in contradiction to the precondition with:

xs = map h us
ys = sort g (map h us)

15

Proof of “Q on [Bool] implies Q on [Int]”

Recall: Q(ys) := ys is sorted

Given: ∀xs :: [Bool], ys = sort g xs. Q(ys)

To prove: ∀xs :: [Int], ys = sort f xs. Q(ys)

Assume there exist us :: [Int] and vs = sort f us with ¬Q(vs).
Then there are n < m such that an m occurs in vs before an n.
Then for h x = n < x a True occurs in (map h vs) before a False.
But this is in contradiction to the precondition with:

xs = map h us
ys = sort g (map h us) = map h (sort f us)

15

Proof of “Q on [Bool] implies Q on [Int]”

Recall: Q(ys) := ys is sorted

Given: ∀xs :: [Bool], ys = sort g xs. Q(ys)

To prove: ∀xs :: [Int], ys = sort f xs. Q(ys)

Assume there exist us :: [Int] and vs = sort f us with ¬Q(vs).
Then there are n < m such that an m occurs in vs before an n.
Then for h x = n < x a True occurs in (map h vs) before a False.
But this is in contradiction to the precondition with:

xs = map h us
ys = sort g (map h us) = map h (sort f us) = map h vs

15

Knuth’s 0-1-Principle [Knuth 1973]

Informally: If a comparison-swap algorithm sorts Booleans
correctly, it sorts integers correctly as well.

Formally: Use Haskell. Let

sort :: ((α,α) → (α,α)) → [α]→ [α]

f :: (Int, Int)→ (Int, Int)
f (x , y) = if x > y then (y , x) else (x , y)

g :: (Bool,Bool)→ (Bool,Bool)
g (x , y) = (x && y , x || y)

If for every xs :: [Bool], sort g xs gives the correct
result, then for every xs :: [Int], sort f xs gives the
correct result.

16

And Beyond?

� Knuth’s 0-1-Principle allows to reduce algorithm correctness,
for comparison-swap sorting, for inputs over an infinite range
to correctness over a finite range of values.

17

And Beyond?

� Knuth’s 0-1-Principle allows to reduce algorithm correctness,
for comparison-swap sorting, for inputs over an infinite range
to correctness over a finite range of values.

� Free theorems allow for a particularly elegant proof of this
principle. (This was not my idea: [Day et al. 1999]!)

17

And Beyond?

� Knuth’s 0-1-Principle allows to reduce algorithm correctness,
for comparison-swap sorting, for inputs over an infinite range
to correctness over a finite range of values.

� Free theorems allow for a particularly elegant proof of this
principle. (This was not my idea: [Day et al. 1999]!)

� Can we do something similar for other algorithm classes?

17

And Beyond?

� Knuth’s 0-1-Principle allows to reduce algorithm correctness,
for comparison-swap sorting, for inputs over an infinite range
to correctness over a finite range of values.

� Free theorems allow for a particularly elegant proof of this
principle. (This was not my idea: [Day et al. 1999]!)

� Can we do something similar for other algorithm classes?

� Good candidates: algorithms parametrised over some
operation, like cswap :: (α,α)→ (α,α) in the case of sorting.

17

Parallel Prefix Computation

Given: inputs x1, . . . , xn and an associative operation ⊕
Task: compute the values x1, x1 ⊕ x2, . . . , x1 ⊕ x2 ⊕ · · · ⊕ xn

18

Parallel Prefix Computation

Given: inputs x1, . . . , xn and an associative operation ⊕
Task: compute the values x1, x1 ⊕ x2, . . . , x1 ⊕ x2 ⊕ · · · ⊕ xn

Solution: x1 x2 x3 x4 x5 x6 x7 x8

⊕
⊕
⊕
⊕
⊕
⊕
⊕

18

Parallel Prefix Computation

Alternative: x1 x2 x3 x4 x5 x6 x7 x8

⊕
⊕
⊕
⊕
⊕

⊕

⊕
⊕
⊕

⊕
⊕
⊕

19

Parallel Prefix Computation

Alternative: x1 x2 x3 x4 x5 x6 x7 x8

⊕
⊕
⊕
⊕
⊕

⊕

⊕
⊕
⊕

⊕
⊕
⊕

Or: x1 x2 x3 x4 x5 x6 x7 x8

⊕

⊕

⊕
⊕

⊕

⊕

⊕
⊕

⊕
⊕
⊕

Or: . . .
19

In Haskell

Functions of type:

scanl1 :: (α→ α→ α)→ [α]→ [α]

20

In Haskell

Functions of type:

scanl1 :: (α→ α→ α)→ [α]→ [α]

For example, à la [Sklansky 1960]:

sklansky :: (α→ α→ α)→ [α]→ [α]
sklansky (⊕) [x] = [x]
sklansky (⊕) xs = us ++ vs

where t = ((length xs) + 1) ‘div‘ 2
(ys, zs) = splitAt t xs
us = sklansky (⊕) ys
vs = [(last us)⊕ v | v ← sklansky (⊕) zs]

20

Sklansky’s Method Visualised

x1 x2

⊕

21

Sklansky’s Method Visualised

x1 x2 x3

⊕
⊕

21

Sklansky’s Method Visualised

x1 x2 x3 x4

⊕
⊕
⊕
⊕

21

Sklansky’s Method Visualised

x1 x2 x3 x4 x5

⊕
⊕
⊕

⊕

⊕

21

Sklansky’s Method Visualised

x1 x2 x3 x4 x5 x6

⊕
⊕
⊕

⊕

⊕
⊕
⊕

21

Sklansky’s Method Visualised

x1 x2 x3 x4 x5 x6 x7

⊕
⊕
⊕
⊕
⊕

⊕

⊕
⊕
⊕

21

Sklansky’s Method Visualised

x1 x2 x3 x4 x5 x6 x7 x8

⊕
⊕
⊕
⊕
⊕

⊕

⊕
⊕
⊕

⊕
⊕
⊕

21

Sklansky’s Method Visualised

x1 x2 x3 x4 x5 x6 x7 x8 x9

⊕
⊕
⊕

⊕

⊕
⊕

⊕

⊕

⊕

⊕

⊕
⊕

⊕

21

Sklansky’s Method Visualised

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

⊕
⊕
⊕

⊕

⊕
⊕

⊕

⊕

⊕

⊕
⊕
⊕

⊕

⊕
⊕

21

Sklansky’s Method Visualised

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

⊕
⊕
⊕

⊕

⊕
⊕
⊕
⊕

⊕

⊕

⊕

⊕
⊕
⊕

⊕

⊕
⊕

21

Sklansky’s Method Visualised

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

⊕
⊕
⊕

⊕

⊕
⊕
⊕
⊕

⊕

⊕

⊕

⊕
⊕
⊕

⊕

⊕
⊕

⊕
⊕
⊕

21

Sklansky’s Method Visualised

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

⊕
⊕
⊕
⊕
⊕

⊕

⊕
⊕
⊕
⊕

⊕

⊕

⊕

⊕
⊕
⊕

⊕

⊕
⊕

⊕
⊕
⊕

21

Sklansky’s Method Visualised

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

⊕
⊕
⊕
⊕
⊕

⊕

⊕
⊕
⊕
⊕

⊕

⊕

⊕

⊕

⊕
⊕

⊕
⊕
⊕

⊕

⊕
⊕

⊕
⊕
⊕

21

Sklansky’s Method Visualised

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

⊕
⊕
⊕
⊕
⊕

⊕

⊕
⊕
⊕

⊕
⊕
⊕
⊕

⊕

⊕

⊕

⊕

⊕
⊕

⊕
⊕
⊕

⊕

⊕
⊕

⊕
⊕
⊕

21

Sklansky’s Method Visualised

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

⊕
⊕
⊕
⊕
⊕

⊕

⊕
⊕
⊕

⊕
⊕
⊕
⊕

⊕

⊕

⊕

⊕

⊕
⊕

⊕
⊕
⊕

⊕

⊕
⊕

⊕
⊕
⊕

⊕
⊕
⊕
⊕

21

Sklansky’s Method Visualised

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17

⊕
⊕
⊕

⊕

⊕
⊕

⊕

⊕

⊕

⊕

⊕
⊕

⊕
⊕

⊕

⊕

⊕

⊕

⊕
⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕
⊕

⊕

⊕
⊕
⊕

⊕

21

Sklansky’s Method Visualised

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18

⊕
⊕
⊕

⊕

⊕
⊕

⊕

⊕

⊕

⊕

⊕
⊕

⊕
⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕
⊕
⊕

⊕

⊕
⊕

⊕

⊕
⊕

⊕
⊕

⊕
⊕

21

Sklansky’s Method Visualised

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19

⊕
⊕
⊕

⊕

⊕
⊕

⊕

⊕

⊕

⊕
⊕
⊕

⊕

⊕
⊕
⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕
⊕
⊕

⊕

⊕
⊕

⊕

⊕
⊕

⊕
⊕

⊕
⊕

21

Sklansky’s Method Visualised

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20

⊕
⊕
⊕

⊕

⊕
⊕

⊕

⊕

⊕

⊕
⊕
⊕

⊕

⊕
⊕
⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕
⊕
⊕

⊕

⊕
⊕

⊕

⊕
⊕

⊕
⊕
⊕

⊕

⊕
⊕
⊕

21

Or, à la [Brent & Kung 1980]
(code follows [Sheeran 2007])

brentKung :: (α→ α→ α)→ [α]→ [α]
brentKung (⊕) [x] = [x]
brentKung (⊕) xs = odds (riffle (par (unriffle (evens xs))))

where evens [] = []
evens [x] = [x]
evens (x : y : zs) = [x , x ⊕ y] ++ evens zs

unriffle [] = ([], [])
unriffle [x] = ([x], [])
unriffle (x : y : zs) = (x : xs, y : ys)

where (xs, ys) = unriffle zs

par (xs , ys) = (xs , brentKung (⊕) ys)
riffle ([], []) = []
riffle ([x], []) = [x]
riffle (x : xs, y : ys) = x : y : riffle (xs , ys)

odds (x : xs) = x : evens xs
22

Brent & Kung’s Method Visualised

x1 x2

⊕

23

Brent & Kung’s Method Visualised

x1 x2 x3

⊕
⊕

23

Brent & Kung’s Method Visualised

x1 x2 x3 x4

⊕

⊕

⊕
⊕

23

Brent & Kung’s Method Visualised

x1 x2 x3 x4 x5

⊕

⊕

⊕
⊕
⊕

23

Brent & Kung’s Method Visualised

x1 x2 x3 x4 x5 x6

⊕

⊕

⊕
⊕

⊕

⊕

⊕

23

Brent & Kung’s Method Visualised

x1 x2 x3 x4 x5 x6 x7

⊕

⊕

⊕
⊕

⊕

⊕

⊕
⊕

23

Brent & Kung’s Method Visualised

x1 x2 x3 x4 x5 x6 x7 x8

⊕

⊕

⊕
⊕

⊕

⊕

⊕
⊕

⊕
⊕
⊕

23

Brent & Kung’s Method Visualised

x1 x2 x3 x4 x5 x6 x7 x8 x9

⊕

⊕

⊕
⊕

⊕

⊕

⊕
⊕

⊕
⊕
⊕
⊕

23

Brent & Kung’s Method Visualised

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

⊕

⊕

⊕
⊕

⊕

⊕

⊕
⊕

⊕
⊕
⊕

⊕

⊕

⊕

23

Brent & Kung’s Method Visualised

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

⊕

⊕

⊕
⊕

⊕

⊕

⊕
⊕

⊕
⊕
⊕

⊕

⊕

⊕
⊕

23

Brent & Kung’s Method Visualised

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

⊕

⊕

⊕
⊕

⊕

⊕

⊕
⊕

⊕
⊕
⊕

⊕

⊕

⊕
⊕

⊕
⊕

⊕

23

Brent & Kung’s Method Visualised

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

⊕

⊕

⊕
⊕

⊕

⊕

⊕
⊕

⊕
⊕
⊕

⊕

⊕

⊕
⊕

⊕
⊕

⊕
⊕

23

Brent & Kung’s Method Visualised

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

⊕

⊕

⊕
⊕

⊕

⊕

⊕
⊕

⊕
⊕
⊕

⊕

⊕

⊕
⊕

⊕
⊕

⊕

⊕

⊕

⊕

23

Brent & Kung’s Method Visualised

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

⊕

⊕

⊕
⊕

⊕

⊕

⊕
⊕

⊕
⊕
⊕

⊕

⊕

⊕
⊕

⊕
⊕

⊕

⊕

⊕

⊕
⊕

23

Brent & Kung’s Method Visualised

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

⊕

⊕

⊕
⊕

⊕

⊕

⊕
⊕

⊕
⊕
⊕

⊕

⊕

⊕
⊕

⊕
⊕

⊕

⊕

⊕

⊕
⊕

⊕
⊕
⊕
⊕

23

Brent & Kung’s Method Visualised

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17

⊕

⊕

⊕
⊕

⊕

⊕

⊕
⊕

⊕
⊕
⊕

⊕

⊕

⊕
⊕

⊕
⊕

⊕

⊕

⊕

⊕
⊕

⊕
⊕
⊕
⊕
⊕

23

Brent & Kung’s Method Visualised

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18

⊕

⊕

⊕
⊕

⊕

⊕

⊕
⊕

⊕
⊕
⊕

⊕

⊕

⊕
⊕

⊕
⊕

⊕

⊕

⊕

⊕
⊕

⊕
⊕
⊕
⊕

⊕

⊕

⊕

23

Brent & Kung’s Method Visualised

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19

⊕

⊕

⊕
⊕

⊕

⊕

⊕
⊕

⊕
⊕
⊕

⊕

⊕

⊕
⊕

⊕
⊕

⊕

⊕

⊕

⊕
⊕

⊕
⊕
⊕
⊕

⊕

⊕

⊕
⊕

23

Brent & Kung’s Method Visualised

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20

⊕

⊕

⊕
⊕

⊕

⊕

⊕
⊕

⊕
⊕
⊕

⊕

⊕

⊕
⊕

⊕
⊕

⊕

⊕

⊕

⊕
⊕

⊕
⊕
⊕
⊕

⊕

⊕

⊕
⊕

⊕
⊕

⊕

23

Brent & Kung’s Method Visualised

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20

⊕

⊕

⊕
⊕

⊕

⊕

⊕
⊕

⊕
⊕
⊕

⊕

⊕

⊕
⊕

⊕
⊕

⊕

⊕

⊕

⊕
⊕

⊕
⊕
⊕
⊕

⊕

⊕

⊕
⊕

⊕
⊕

⊕

Wanted: reasoning principles, verification techniques,
systematic testing approach, . . .

23

Investigating Particular Instances Only

Knuth’s 0-1-Principle

If a comparison-swap algorithm sorts correctly on the Booleans,
it does so on arbitrary totally ordered value sets.

24

Investigating Particular Instances Only

Knuth’s 0-1-Principle

If a comparison-swap algorithm sorts correctly on the Booleans,
it does so on arbitrary totally ordered value sets.

A Knuth-like 0-1-Principle ?

If a parallel prefix algorithm is correct (for associative operations)
on the Booleans, it is so on arbitrary value sets.

24

Investigating Particular Instances Only

Knuth’s 0-1-Principle

If a comparison-swap algorithm sorts correctly on the Booleans,
it does so on arbitrary totally ordered value sets.

A Knuth-like 0-1-Principle ?

If a parallel prefix algorithm is correct (for associative operations)
on the Booleans, it is so on arbitrary value sets.

Unfortunately not !

24

A Knuth-like 0-1-2-Principle [V. 2008]

Given: scanl1 :: (α→ α→ α)→ [α]→ [α]
scanl1 (⊕) (x : xs) = go x xs

where go x [] = [x]
go x (y : ys) = x : (go (x ⊕ y) ys)

25

A Knuth-like 0-1-2-Principle [V. 2008]

Given: scanl1 :: (α→ α→ α)→ [α]→ [α]
scanl1 (⊕) (x : xs) = go x xs

where go x [] = [x]
go x (y : ys) = x : (go (x ⊕ y) ys)

candidate :: (α→ α→ α)→ [α]→ [α]

25

A Knuth-like 0-1-2-Principle [V. 2008]

Given: scanl1 :: (α→ α→ α)→ [α]→ [α]
scanl1 (⊕) (x : xs) = go x xs

where go x [] = [x]
go x (y : ys) = x : (go (x ⊕ y) ys)

candidate :: (α→ α→ α)→ [α]→ [α]

data Three = Zero | One | Two

25

A Knuth-like 0-1-2-Principle [V. 2008]

Given: scanl1 :: (α→ α→ α)→ [α]→ [α]
scanl1 (⊕) (x : xs) = go x xs

where go x [] = [x]
go x (y : ys) = x : (go (x ⊕ y) ys)

candidate :: (α→ α→ α)→ [α]→ [α]

data Three = Zero | One | Two

Theorem: If for every xs :: [Three] and associative
(⊕) :: Three→ Three→ Three,

candidate (⊕) xs = scanl1 (⊕) xs ,

then the same holds for every type τ , xs :: [τ], and
associative (⊕) :: τ → τ → τ .

25

Why 0-1-2? And How?

A question: What can candidate :: (α→ α→ α)→ [α]→ [α]
do, given an operation ⊕ and input list [x1, . . . , xn] ?

26

Why 0-1-2? And How?

A question: What can candidate :: (α→ α→ α)→ [α]→ [α]
do, given an operation ⊕ and input list [x1, . . . , xn] ?

The answer: Create an output list consisting of expressions built
from ⊕ and x1, . . . , xn. Independently of the α-type !

26

Why 0-1-2? And How?

A question: What can candidate :: (α→ α→ α)→ [α]→ [α]
do, given an operation ⊕ and input list [x1, . . . , xn] ?

The answer: Create an output list consisting of expressions built
from ⊕ and x1, . . . , xn. Independently of the α-type !

Among these expressions, there are good ones:

⊕
⊕
⊕

x1 x2

x3

x4
,

⊕
⊕

x1 x2

⊕
⊕

x3 x4

x5
, . . . ,

26

Why 0-1-2? And How?

A question: What can candidate :: (α→ α→ α)→ [α]→ [α]
do, given an operation ⊕ and input list [x1, . . . , xn] ?

The answer: Create an output list consisting of expressions built
from ⊕ and x1, . . . , xn. Independently of the α-type !

Among these expressions, there are good ones:

⊕
⊕
⊕

x1 x2

x3

x4
,

⊕
⊕

x1 x2

⊕
⊕

x3 x4

x5
, . . . ,

bad ones:
⊕

⊕
x1 x2

⊕
x3 x5

,

⊕
x1 ⊕
x2 x2

,

⊕
⊕

x3 x2

x1 , . . . ,

26

Why 0-1-2? And How?

Among these expressions, there are good ones:

⊕
⊕
⊕

x1 x2

x3

x4
,

⊕
⊕

x1 x2

⊕
⊕

x3 x4

x5
, . . . ,

bad ones:
⊕

⊕
x1 x2

⊕
x3 x5

,

⊕
x1 ⊕
x2 x2

,

⊕
⊕

x3 x2

x1 , . . . ,

and ones in the wrong position:[
x1 ,

⊕
x1 x2

,

⊕
⊕

x1 x2

⊕
x3 x4

, . . .

]
26

That’s How!

Let

⊕1 Zero One Two

Zero Zero One Two
One One Two Two
Two Two Two Two

and

⊕2 Zero One Two

Zero Zero One Two
One One One Two
Two Two One Two

27

That’s How!

Let

⊕1 Zero One Two

Zero Zero One Two
One One Two Two
Two Two Two Two

and

⊕2 Zero One Two

Zero Zero One Two
One One One Two
Two Two One Two

If candidate (⊕1) is correct on each list of the form

[(Zero,)∗ One (,Zero)∗ (,Two)∗]

27

That’s How!

Let

⊕1 Zero One Two

Zero Zero One Two
One One Two Two
Two Two Two Two

and

⊕2 Zero One Two

Zero Zero One Two
One One One Two
Two Two One Two

If candidate (⊕1) is correct on each list of the form

[(Zero,)∗ One (,Zero)∗ (,Two)∗]

and candidate (⊕2) is correct on each list of the form

[(Zero,)∗ One,Two (,Zero)∗]

then candidate is correct for associative ⊕ at arbitrary type.

27

A Knuth-like 0-1-2-Principle [V. 2008]

Given: scanl1 :: (α→ α→ α)→ [α]→ [α]
scanl1 (⊕) (x : xs) = go x xs

where go x [] = [x]
go x (y : ys) = x : (go (x ⊕ y) ys)

candidate :: (α→ α→ α)→ [α]→ [α]

data Three = Zero | One | Two

Theorem: If for every xs :: [Three] and associative
(⊕) :: Three→ Three→ Three,

candidate (⊕) xs = scanl1 (⊕) xs ,

then the same holds for every type τ , xs :: [τ], and
associative (⊕) :: τ → τ → τ .

28

Using a Free Theorem (Generator)

Input: candidate :: (a -> a -> a) -> [a] -> [a]

Output: forall t1,t2 in TYPES, f :: t1 -> t2.

forall g :: t1 -> t1 -> t1.

forall h :: t2 -> t2 -> t2.

(forall x :: t1. forall y :: t1.

f (g x y) = h (f x) (f y))

==> (forall z :: [t1].

map f (candidate g z)

= candidate h (map f z))

29

Rephrased

For every choice of types τ1, τ2 and functions f :: τ1 → τ2,
(⊗) :: τ1 → τ1 → τ1, and (⊕) :: τ2 → τ2 → τ2:

τ1 × τ1 τ1 [τ1] [τ1]

= ⇒ =

τ2 × τ2 τ2 [τ2] [τ2]

⊗

f × f

⊕

f

candidate (⊗)

map f map f

candidate (⊕)

30

A Knuth-like 0-1-2-Principle [V. 2008]

Given: scanl1 :: (α→ α→ α)→ [α]→ [α]
scanl1 (⊕) (x : xs) = go x xs

where go x [] = [x]
go x (y : ys) = x : (go (x ⊕ y) ys)

candidate :: (α→ α→ α)→ [α]→ [α]

data Three = Zero | One | Two

Theorem: If for every xs :: [Three] and associative
(⊕) :: Three→ Three→ Three,

candidate (⊕) xs = scanl1 (⊕) xs ,

then the same holds for every type τ , xs :: [τ], and
associative (⊕) :: τ → τ → τ .

31

Decomposing the 0-1-2-Principle

Proposition 1: If candidate (⊕1) is correct on each list of the
form [(Zero,)∗ One (,Zero)∗ (,Two)∗] and candidate (⊕2) is
correct on each list of the form [(Zero,)∗ One,Two (,Zero)∗],
then for every n ≥ 0,
candidate (++) [[k] | k ← [0..n]] = [[0..k] | k ← [0..n]] (*).

32

Decomposing the 0-1-2-Principle

Proposition 1: If candidate (⊕1) is correct on each list of the
form [(Zero,)∗ One (,Zero)∗ (,Two)∗] and candidate (⊕2) is
correct on each list of the form [(Zero,)∗ One,Two (,Zero)∗],
then for every n ≥ 0,
candidate (++) [[k] | k ← [0..n]] = [[0..k] | k ← [0..n]] (*).

Proposition 2: If for every n ≥ 0, (*) holds, then candidate is
correct for associative ⊕ at arbitrary type.

32

Decomposing the 0-1-2-Principle

Proposition 1: If candidate (⊕1) is correct on each list of the
form [(Zero,)∗ One (,Zero)∗ (,Two)∗] and candidate (⊕2) is
correct on each list of the form [(Zero,)∗ One,Two (,Zero)∗],
then for every n ≥ 0,
candidate (++) [[k] | k ← [0..n]] = [[0..k] | k ← [0..n]] (*).

Proposition 2: If for every n ≥ 0, (*) holds, then candidate is
correct for associative ⊕ at arbitrary type.

τ1 × τ1 τ1 [τ1] [τ1]

= ⇒ =

τ2 × τ2 τ2 [τ2] [τ2]

⊗

f × f

⊕

f

candidate (⊗)

map f map f

candidate (⊕)

32

Decomposing the 0-1-2-Principle

Proposition 1: If candidate (⊕1) is correct on each list of the
form [(Zero,)∗ One (,Zero)∗ (,Two)∗] and candidate (⊕2) is
correct on each list of the form [(Zero,)∗ One,Two (,Zero)∗],
then for every n ≥ 0,
candidate (++) [[k] | k ← [0..n]] = [[0..k] | k ← [0..n]] (*).

Proposition 2: If for every n ≥ 0, (*) holds, then candidate is
correct for associative ⊕ at arbitrary type.

[Int]× [Int] [Int] [[Int]] [[Int]]

= ⇒ =

τ2 × τ2 τ2 [τ2] [τ2]

++

f × f

⊕

f

candidate (++)

map f map f

candidate (⊕)

::
[[k] | k ← [0..n]]

32

What Else?

� For parallel prefix computation, formalisation available
in Isabelle/HOL [Böhme 2007].

33

What Else?

� For parallel prefix computation, formalisation available
in Isabelle/HOL [Böhme 2007].

� There is still an interesting story to tell behind how
“0-1-2”, ⊕1, ⊕2, . . . were found.

33

What Else?

� For parallel prefix computation, formalisation available
in Isabelle/HOL [Böhme 2007].

� There is still an interesting story to tell behind how
“0-1-2”, ⊕1, ⊕2, . . . were found.

� For which other algorithm classes can one play
the same trick?

33

References I

G.E. Blelloch.
Prefix sums and their applications.
In J.H. Reif, editor, Synthesis of Parallel Algorithms, pages
35–60. Morgan Kaufmann, 1993.

S. Böhme.
Much Ado about Two. Formal proof development.
In The Archive of Formal Proofs.
http://afp.sf.net/entries/MuchAdoAboutTwo.shtml,
2007.

A. Bove and T. Coquand.
Formalising bitonic sort in type theory.
In Types for Proofs and Programs, TYPES 2004, Revised
Selected Papers, volume 3839 of LNCS, pages 82–97.
Springer-Verlag, 2006.

34

http://afp.sf.net/entries/MuchAdoAboutTwo.shtml

References II

R.P. Brent and H.T. Kung.
The chip complexity of binary arithmetic.
In ACM Symposium on Theory of Computing, Proceedings,
pages 190–200. ACM Press, 1980.

N.A. Day, J. Launchbury, and J.R. Lewis.
Logical abstractions in Haskell.
In Haskell Workshop, Proceedings, 1999.

P. Dybjer, Q. Haiyan, and M. Takeyama.
Verifying Haskell programs by combining testing, model
checking and interactive theorem proving.
Information & Software Technology, 46(15):1011–1025, 2004.

35

References III

D.E. Knuth.
The Art of Computer Programming, volume 3: Sorting and
Searching.
Addison-Wesley, 1973.

J.C. Reynolds.
Types, abstraction and parametric polymorphism.
In Information Processing, Proceedings, pages 513–523.
Elsevier Science Publishers B.V., 1983.

M. Sheeran.
Searching for prefix networks to fit in a context using a lazy
functional programming language.
Hardware Design and Functional Languages, 2007.

36

References IV

J. Sklansky.
Conditional-sum addition logic.
IRE Transactions on Electronic Computers, EC-9(6):226–231,
1960.

J. Voigtländer.
Much ado about two: A pearl on parallel prefix computation.
In Principles of Programming Languages, Proceedings, pages
29–35. ACM Press, 2008.

P. Wadler.
Theorems for free!
In Functional Programming Languages and Computer
Architecture, Proceedings, pages 347–359. ACM Press, 1989.

37

Excerpt from Formal Proof — Where Associativity is Used

Let xs :: [τ2] with length (n + 1).

38

Excerpt from Formal Proof — Where Associativity is Used

Let xs :: [τ2] with length (n + 1). Then for

f = foldl1 (⊕) ◦ map (xs !!)

the precondition of

[Int]× [Int] [Int] [[Int]] [[Int]]

= ⇒ =

τ2 × τ2 τ2 [τ2] [τ2]

++

f × f

⊕

f

candidate (++)

map f map f

candidate (⊕)

::
[[k] | k ← [0..n]]

38

Excerpt from Formal Proof — Where Associativity is Used

Let xs :: [τ2] with length (n + 1). Then for

f = foldl1 (⊕) ◦ map (xs !!)

the precondition of

[Int]× [Int] [Int] [[Int]] [[Int]]

= ⇒ =

τ2 × τ2 τ2 [τ2] [τ2]

++

f × f

⊕

f

candidate (++)

map f map f

candidate (⊕)

::
[[k] | k ← [0..n]]

is fulfilled, provided ⊕ is associative.

38

Excerpt from Formal Proof — Where Associativity is Used

Let xs :: [τ2] with length (n + 1). Then for

f = foldl1 (⊕) ◦ map (xs !!)

the precondition of

[Int]× [Int] [Int] [[Int]] [[Int]]

= ⇒ =

τ2 × τ2 τ2 [τ2] [τ2]

++

f × f

⊕

f

candidate (++)

map f map f

candidate (⊕)

::
[[k] | k ← [0..n]]

is fulfilled, provided ⊕ is associative.
Hence, then:

map f (candidate (++) [[k] | k ← [0..n]])
= candidate (⊕) (map f [[k] | k ← [0..n]])

38

Excerpt from Formal Proof — Where Associativity is Used

Let xs :: [τ2] with length (n + 1). Then for

f = foldl1 (⊕) ◦ map (xs !!)

the precondition of

[Int]× [Int] [Int] [[Int]] [[Int]]

= ⇒ =

τ2 × τ2 τ2 [τ2] [τ2]

++

f × f

⊕

f

candidate (++)

map f map f

candidate (⊕)

::
[[k] | k ← [0..n]]

is fulfilled, provided ⊕ is associative.
Hence, then:

map f (candidate (++) [[k] | k ← [0..n]])
= candidate (⊕) (map f [[k] | k ← [0..n]])
= candidate (⊕) xs

38

	The Sorting Problem
	Some Sort Algorithms
	– using a comparison function
	– using comparison-swap

	Knuth's 0-1-Principle
	– informally
	– formally
	– derived as a free theorem

	Parallel Prefix Computation
	A Knuth-like 0-1-2-Principle
	Conclusion
	References

