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The Sorting Problem

Task: Given a list and an order on the type of elements of
this list, produce a sorted list (with same content)!

Example:

12 7 9 8 4 6 �→ 4 6 7 8 9 12
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Task: Given a list and an order on the type of elements of
this list, produce a sorted list (with same content)!

Example:

12 7 9 8 4 6 �→ 4 6 7 8 9 12

Many Solutions:

� Quicksort
� Insertion Sort
� Merge Sort
� Bubble Sort
� . . .

1



Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:
� one containing all elements smaller than x, and
� one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:
� the sorted first sublist,
� the element x, and
� the sorted second sublist.
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Alternatives

Note: � The Quicksort algorithm uses the following as
key operation (to drive the partitioning):

compare :: (τ, τ)→ Bool
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Knuth’s 0-1-Principle [Knuth 1973]

Informally: If a comparison-swap algorithm sorts Booleans
correctly, it sorts integers correctly as well.
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Free Theorems [Reynolds 1983, Wadler 1989]

Here just a magic black box.

Input: sort::((a,a)->(a,a))->[a]->[a]

Output: forall t1,t2 in TYPES, h::t1->t2.

forall f::(t1,t1)->(t1,t1).

forall g::(t2,t2)->(t2,t2).

(forall (x,y) in lift_{(,)}(h,h).

(f x,g y) in lift_{(,)}(h,h))

==> (forall xs::[t1].

map h (sort f xs) = sort g (map h xs))

lift_{(,)}(h,h)

= {((x1,x2),(y1,y2)) | (h x1 = y1)

&& (h x2 = y2)}

map h [] = []

map h (x:xs) = (h x):(map h xs)
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More Specific (and Intuitive)

For every sort :: ((α,α)→ (α,α))→ [α]→ [α],
f :: (Int, Int)→ (Int, Int), g :: (Bool,Bool)→ (Bool,Bool), and
h :: Int→ Bool:

(Int, Int) (Int, Int) [Int] [Int]

= ⇒ =

(Bool,Bool) (Bool,Bool) [Bool] [Bool]

f

h × h

g

h × h

sort f

map h map h

sort g
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f :: (Int, Int)→ (Int, Int), g :: (Bool,Bool)→ (Bool,Bool), and
h :: Int→ Bool:

(Int, Int) (Int, Int) [Int] [Int]

= ⇒ =

(Bool,Bool) (Bool,Bool) [Bool] [Bool]

f

h × h

g

h × h

sort f

map h map h

sort g

If f and g are as defined before, then the precondition is fulfilled
for any h of the form h x = n < x for some n :: Int.
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Knuth’s 0-1-Principle [Knuth 1973]

Informally: If a comparison-swap algorithm sorts Booleans
correctly, it sorts integers correctly as well.

Formally: Use Haskell. Let

sort :: ((α,α) → (α,α)) → [α]→ [α]

f :: (Int, Int)→ (Int, Int)
f (x , y) = if x > y then (y , x) else (x , y)

g :: (Bool,Bool)→ (Bool,Bool)
g (x , y) = (x && y , x || y)

If for every xs :: [Bool], sort g xs gives the correct
result, then for every xs :: [Int], sort f xs gives the
correct result.
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And Beyond?

� Knuth’s 0-1-Principle allows to reduce algorithm correctness,
for comparison-swap sorting, for inputs over an infinite range
to correctness over a finite range of values.

� Free theorems allow for a particularly elegant proof of this
principle. (This was not my idea: [Day et al. 1999]!)

� Can we do something similar for other algorithm classes?

� Good candidates: algorithms parametrised over some
operation, like cswap :: (α,α)→ (α,α) in the case of sorting.
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Parallel Prefix Computation

Given: inputs x1, . . . , xn and an associative operation ⊕
Task: compute the values x1, x1 ⊕ x2, . . . , x1 ⊕ x2 ⊕ · · · ⊕ xn
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Parallel Prefix Computation

Given: inputs x1, . . . , xn and an associative operation ⊕
Task: compute the values x1, x1 ⊕ x2, . . . , x1 ⊕ x2 ⊕ · · · ⊕ xn

Solution: x1 x2 x3 x4 x5 x6 x7 x8

⊕
⊕
⊕
⊕
⊕
⊕
⊕
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Parallel Prefix Computation

Alternative: x1 x2 x3 x4 x5 x6 x7 x8

⊕
⊕
⊕
⊕
⊕

⊕

⊕
⊕
⊕

⊕
⊕
⊕
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Parallel Prefix Computation

Alternative: x1 x2 x3 x4 x5 x6 x7 x8

⊕
⊕
⊕
⊕
⊕

⊕

⊕
⊕
⊕

⊕
⊕
⊕

Or: x1 x2 x3 x4 x5 x6 x7 x8

⊕

⊕

⊕
⊕

⊕

⊕

⊕
⊕

⊕
⊕
⊕

Or: . . .
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In Haskell

Functions of type:

scanl1 :: (α→ α→ α)→ [α]→ [α]
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In Haskell

Functions of type:

scanl1 :: (α→ α→ α)→ [α]→ [α]

For example, à la [Sklansky 1960]:

sklansky :: (α→ α→ α)→ [α]→ [α]
sklansky (⊕) [x ] = [x ]
sklansky (⊕) xs = us ++ vs

where t = ((length xs) + 1) ‘div‘ 2
(ys, zs) = splitAt t xs
us = sklansky (⊕) ys
vs = [(last us)⊕ v | v ← sklansky (⊕) zs]

20



Sklansky’s Method Visualised

x1 x2

⊕
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Or, à la [Brent & Kung 1980]
(code follows [Sheeran 2007])

brentKung :: (α→ α→ α)→ [α]→ [α]
brentKung (⊕) [x ] = [x ]
brentKung (⊕) xs = odds (riffle (par (unriffle (evens xs))))

where evens [ ] = [ ]
evens [x ] = [x ]
evens (x : y : zs) = [x , x ⊕ y ] ++ evens zs

unriffle [ ] = ([ ], [ ])
unriffle [x ] = ([x ], [ ])
unriffle (x : y : zs) = (x : xs, y : ys)

where (xs, ys) = unriffle zs

par (xs , ys) = (xs , brentKung (⊕) ys)
riffle ([ ], [ ]) = [ ]
riffle ([x ], [ ]) = [x ]
riffle (x : xs, y : ys) = x : y : riffle (xs , ys)

odds (x : xs) = x : evens xs
22
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Wanted: reasoning principles, verification techniques,
systematic testing approach, . . .
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Investigating Particular Instances Only

Knuth’s 0-1-Principle

If a comparison-swap algorithm sorts correctly on the Booleans,
it does so on arbitrary totally ordered value sets.
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Investigating Particular Instances Only

Knuth’s 0-1-Principle

If a comparison-swap algorithm sorts correctly on the Booleans,
it does so on arbitrary totally ordered value sets.

A Knuth-like 0-1-Principle ?

If a parallel prefix algorithm is correct (for associative operations)
on the Booleans, it is so on arbitrary value sets.

Unfortunately not !
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A Knuth-like 0-1-2-Principle [V. 2008]

Given: scanl1 :: (α→ α→ α)→ [α]→ [α]
scanl1 (⊕) (x : xs) = go x xs

where go x [ ] = [x ]
go x (y : ys) = x : (go (x ⊕ y) ys)
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A Knuth-like 0-1-2-Principle [V. 2008]

Given: scanl1 :: (α→ α→ α)→ [α]→ [α]
scanl1 (⊕) (x : xs) = go x xs

where go x [ ] = [x ]
go x (y : ys) = x : (go (x ⊕ y) ys)

candidate :: (α→ α→ α)→ [α]→ [α]

data Three = Zero | One | Two

Theorem: If for every xs :: [Three] and associative
(⊕) :: Three→ Three→ Three,

candidate (⊕) xs = scanl1 (⊕) xs ,

then the same holds for every type τ , xs :: [τ ], and
associative (⊕) :: τ → τ → τ .
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Why 0-1-2? And How?

A question: What can candidate :: (α→ α→ α)→ [α]→ [α]
do, given an operation ⊕ and input list [x1, . . . , xn] ?
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Why 0-1-2? And How?

Among these expressions, there are good ones:

⊕
⊕
⊕

x1 x2

x3

x4
,

⊕
⊕

x1 x2

⊕
⊕

x3 x4

x5
, . . . ,

bad ones:
⊕

⊕
x1 x2

⊕
x3 x5

,

⊕
x1 ⊕
x2 x2

,

⊕
⊕

x3 x2

x1 , . . . ,

and ones in the wrong position:[
x1 ,

⊕
x1 x2

,

⊕
⊕

x1 x2

⊕
x3 x4

, . . .

]
26



That’s How!

Let

⊕1 Zero One Two

Zero Zero One Two
One One Two Two
Two Two Two Two

and

⊕2 Zero One Two

Zero Zero One Two
One One One Two
Two Two One Two
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A Knuth-like 0-1-2-Principle [V. 2008]

Given: scanl1 :: (α→ α→ α)→ [α]→ [α]
scanl1 (⊕) (x : xs) = go x xs

where go x [ ] = [x ]
go x (y : ys) = x : (go (x ⊕ y) ys)

candidate :: (α→ α→ α)→ [α]→ [α]

data Three = Zero | One | Two

Theorem: If for every xs :: [Three] and associative
(⊕) :: Three→ Three→ Three,

candidate (⊕) xs = scanl1 (⊕) xs ,

then the same holds for every type τ , xs :: [τ ], and
associative (⊕) :: τ → τ → τ .
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Using a Free Theorem (Generator)

Input: candidate :: (a -> a -> a) -> [a] -> [a]

Output: forall t1,t2 in TYPES, f :: t1 -> t2.

forall g :: t1 -> t1 -> t1.

forall h :: t2 -> t2 -> t2.

(forall x :: t1. forall y :: t1.

f (g x y) = h (f x) (f y))

==> (forall z :: [t1].

map f (candidate g z)

= candidate h (map f z))

29



Rephrased

For every choice of types τ1, τ2 and functions f :: τ1 → τ2,
(⊗) :: τ1 → τ1 → τ1, and (⊕) :: τ2 → τ2 → τ2:

τ1 × τ1 τ1 [τ1] [τ1]

= ⇒ =

τ2 × τ2 τ2 [τ2] [τ2]

⊗

f × f

⊕

f

candidate (⊗)

map f map f

candidate (⊕)

30



A Knuth-like 0-1-2-Principle [V. 2008]

Given: scanl1 :: (α→ α→ α)→ [α]→ [α]
scanl1 (⊕) (x : xs) = go x xs

where go x [ ] = [x ]
go x (y : ys) = x : (go (x ⊕ y) ys)

candidate :: (α→ α→ α)→ [α]→ [α]

data Three = Zero | One | Two

Theorem: If for every xs :: [Three] and associative
(⊕) :: Three→ Three→ Three,

candidate (⊕) xs = scanl1 (⊕) xs ,

then the same holds for every type τ , xs :: [τ ], and
associative (⊕) :: τ → τ → τ .
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Decomposing the 0-1-2-Principle

Proposition 1: If candidate (⊕1) is correct on each list of the
form [(Zero, )∗ One (,Zero)∗ (,Two)∗] and candidate (⊕2) is
correct on each list of the form [(Zero, )∗ One,Two (,Zero)∗],
then for every n ≥ 0,
candidate (++) [[k] | k ← [0..n]] = [[0..k] | k ← [0..n]] (*).
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correct on each list of the form [(Zero, )∗ One,Two (,Zero)∗],
then for every n ≥ 0,
candidate (++) [[k] | k ← [0..n]] = [[0..k] | k ← [0..n]] (*).

Proposition 2: If for every n ≥ 0, (*) holds, then candidate is
correct for associative ⊕ at arbitrary type.

[Int]× [Int] [Int] [[Int]] [[Int]]

= ⇒ =

τ2 × τ2 τ2 [τ2] [τ2]

++

f × f

⊕

f

candidate (++)

map f map f

candidate (⊕)

::
[[k] | k ← [0..n]]
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What Else?

� For parallel prefix computation, formalisation available
in Isabelle/HOL [Böhme 2007].
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What Else?

� For parallel prefix computation, formalisation available
in Isabelle/HOL [Böhme 2007].

� There is still an interesting story to tell behind how
“0-1-2”, ⊕1, ⊕2, . . . were found.

� For which other algorithm classes can one play
the same trick?
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::
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is fulfilled, provided ⊕ is associative.
Hence, then:

map f (candidate (++) [[k] | k ← [0..n]])
= candidate (⊕) (map f [[k] | k ← [0..n]])
= candidate (⊕) xs
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