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Testing 1O Programs: 10Spec [Swierstra & Altenkirch, 07]

Program:
echo :: 10Spec Teletype ()
echo = do ¢ « getChar
when (c # 'x') $
do putChar ¢
echo
Testing:
prop cs = run (evallOSpec echo singleThreaded) (cs + ")
= copy cs
where copy (c:cs) = Read (Print ¢ (copy cs))
copy [] = Read (Finish ())

> quickCheck prop
OK, passed 100 tests.
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Testing:
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A Slight Variation of the Example

Program:
revEcho :: 10Spec Teletype ()
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Program:
revEcho :: 10Spec Teletype ()
revEcho = do ¢ «+ getChar
when (c # '+') $
do revEcho
putChar ¢
Testing:

prop cs = run (evallOSpec revEcho singleThreaded) (cs H- "x")
= mirror cs (Finish ())
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A Slight Variation of the Example: Ouch!

Program:
revEcho :: 10Spec Teletype ()
revEcho = do ¢ «+ getChar
when (c # '+') $
do revEcho
putChar ¢
Testing:

prop cs = run (evallOSpec revEcho singleThreaded) (cs H- "x")
= mirror cs (Finish ())
where mirror (c: cs) acc = Read (mirror cs (Print ¢ acc))
mirror ] acc = Read acc

> quickCheck prop
OK, passed 100 tests. ‘But each test takes quadratic time!‘




But Why?

Let's take a closer look at “IOSpec Teletype”, henceforth “lO".



But Why?

Let's take a closer look at “IOSpec Teletype”, henceforth “lO".

data |10y o = GetChar (Char — 104 «) | PutChar Char (104 «)
| Return «



But Why?

Let's take a closer look at “IOSpec Teletype”, henceforth “lO".

data |10y o = GetChar (Char — 104 «) | PutChar Char (104 «)
| Return «

instance Monad 10 where



But Why?

Let's take a closer look at “IOSpec Teletype”, henceforth “lO".

data |10y o = GetChar (Char — 104 «) | PutChar Char (104 «)
| Return «

instance Monad 10 where

getChar :: 10y Char
getChar = GetChar Return

putChar :: Char — 104 ()
putChar ¢ = PutChar ¢ (Return ())



But Why?

Let's take a closer look at “IOSpec Teletype”, henceforth “lO".

data |10y o = GetChar (Char — 104 «) | PutChar Char (104 «)
| Return «

instance Monad 10 where

getChar :: 10y Char
getChar = GetChar Return

putChar :: Char — 104 ()
putChar ¢ = PutChar ¢ (Return ())

run :: 10y o — String — Output «

run (GetChar f) (c:cs) = Read (run (f ¢) cs)
run (PutChar ¢ p) cs = Print ¢ (run p cs)
run (Return a)  «¢s = Finish a
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What to Do?
Switch type yet again:

revEcho :: C ()
revEcho = do ¢ « getChar
when (c # '+') $
do revEcho
putChar ¢

type C a =Vpj. (o« — 10y 8) — 10 B8

instance Monad C where

getChar :: C Char
getChar = Ah — GetChar (Ac — h ¢)

putChar :: Char — C ()
putChar ¢ = Ah — PutChar ¢ (h ())
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And Then?

An example evaluation:
Re‘ad
Re‘ad

Re‘ad
run
VAR
$ “*”
7\
revEcho  A_

| |Overa||, linear timel!

putChar ‘'c’ )\_
\
/$\
putChar '‘b" )\_
\
$
RN

putChar ‘a’ Return
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» Was the transformation semantically correct?
= program calculation, monad laws

» Is something similar possible for other data types?
= generic development for arbitrary free monads

» How to provide the transformation to the programmer?
= type constructor classes, rank-2 types

Next:

> even more monads?
» dual concepts?

> .7



References

@ K. Claessen and R.J.M. Hughes.
QuickCheck: A lightweight tool for random testing of Haskell
programs.
In International Conference on Functional Programming,
Proceedings, pages 268-279. ACM Press, 2000.

M W. Swierstra and T. Altenkirch.
Beauty in the beast: A functional semantics for the awkward
squad.
In Haskell Workshop, Proceedings, pages 25-36. ACM Press,
2007.

[ W. Swierstra.
Data types a la carte.
Journal of Functional Programming, 18(4):423-436, 2008.

10



	An Example Application
	References

