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Monads for IO in Haskell

Program:
echo :: IO ()
echo = do c ← getChar

when (c 6= ‘∗’) $
do putChar c
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Testing IO Programs: IOSpec [Swierstra & Altenkirch, 07]

Program:
echo :: IOSpec Teletype ()
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when (c 6= ‘∗’) $
do putChar c
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Program:
echo :: IOSpec Teletype ()
echo = do c ← getChar

when (c 6= ‘∗’) $
do putChar c

echo

Testing:

prop cs = run (evalIOSpec echo singleThreaded) (cs ++ “∗”)
≡ copy cs

where copy (c : cs) = Read (Print c (copy cs))
copy [ ] = Read (Finish ())
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Testing IO Programs: IOSpec [Swierstra & Altenkirch, 07]

Program:
echo :: IOSpec Teletype ()
echo = do c ← getChar

when (c 6= ‘∗’) $
do putChar c

echo

Testing:

prop cs = run (evalIOSpec echo singleThreaded) (cs ++ “∗”)
≡ copy cs

where copy (c : cs) = Read (Print c (copy cs))
copy [ ] = Read (Finish ())

> quickCheck prop

OK, passed 100 tests.
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A Slight Variation of the Example

Program:
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when (c 6= ‘∗’) $
do revEcho

putChar c
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Testing:

> run (evalIOSpec revEcho singleThreaded) “abc∗”
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A Slight Variation of the Example

Program:
revEcho :: IOSpec Teletype ()
revEcho = do c ← getChar

when (c 6= ‘∗’) $
do revEcho

putChar c

Testing:

prop cs = run (evalIOSpec revEcho singleThreaded) (cs ++“∗”)
≡ mirror cs (Finish ())

where mirror (c : cs) acc = Read (mirror cs (Print c acc))
mirror [ ] acc = Read acc
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A Slight Variation of the Example: Ouch!

Program:
revEcho :: IOSpec Teletype ()
revEcho = do c ← getChar

when (c 6= ‘∗’) $
do revEcho

putChar c

Testing:

prop cs = run (evalIOSpec revEcho singleThreaded) (cs ++“∗”)
≡ mirror cs (Finish ())

where mirror (c : cs) acc = Read (mirror cs (Print c acc))
mirror [ ] acc = Read acc

> quickCheck prop

OK, passed 100 tests. But each test takes quadratic time!
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But Why?

Let’s take a closer look at “IOSpec Teletype”, henceforth “IOtt”.
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getChar :: IOtt Char
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5



But Why?

Let’s take a closer look at “IOSpec Teletype”, henceforth “IOtt”.

data IOtt α = GetChar (Char→ IOtt α) | PutChar Char (IOtt α)
| Return α

instance Monad IOtt where

· · ·

getChar :: IOtt Char
getChar = GetChar Return

putChar :: Char→ IOtt ()
putChar c = PutChar c (Return ())

run :: IOtt α→ String→ Output α

run (GetChar f ) (c : cs) = Read (run (f c) cs)
run (PutChar c p) cs = Print c (run p cs)
run (Return a) cs = Finish a
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Now, revEcho desugared and with some inlining:

revEcho :: IOtt ()
revEcho = GetChar f

where f = λc → when (c 6= ‘∗’) $ revEcho >> putChar c
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revEcho :: C ()
revEcho = do c ← getChar

when (c 6= ‘∗’) $
do revEcho

putChar c

type C α = ∀β. (α→ IOtt β)→ IOtt β

instance Monad C where

· · ·

getChar :: C Char
getChar = λh→ GetChar (λc → h c)

putChar :: Char→ C ()
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8



And Then?

Now, revEcho desugared and with some inlining:

revEcho :: C ()
revEcho = λh→ GetChar f

where f = λc → (when (c 6= ‘∗’) $ revEcho >> putChar c) $ h

An example evaluation:
run

$ “abc∗”

revEcho Return

a

8



And Then?

Now, revEcho desugared and with some inlining:

revEcho :: C ()
revEcho = λh→ GetChar f

where f = λc → (when (c 6= ‘∗’) $ revEcho >> putChar c) $ h

An example evaluation:
run

$ “abc∗”

revEcho Return

a

run (GetChar f ) (c : cs) = Read (run (f c) cs)

8



And Then?

Now, revEcho desugared and with some inlining:

revEcho :: C ()
revEcho = λh→ GetChar f

where f = λc → (when (c 6= ‘∗’) $ revEcho >> putChar c) $ h

An example evaluation:
Read

run

$ “bc∗”

>> Return

revEcho putChar ‘a’

a

run (GetChar f ) (c : cs) = Read (run (f c) cs)

8



And Then?

Now, revEcho desugared and with some inlining:

revEcho :: C ()
revEcho = λh→ GetChar f

where f = λc → (when (c 6= ‘∗’) $ revEcho >> putChar c) $ h

An example evaluation:
Read

run

$ “bc∗”

>> Return

revEcho putChar ‘a’

a

run (GetChar f ) (c : cs) = Read (run (f c) cs)

p >>m = λh→ p $ (λ → m $ h)
8



And Then?

Now, revEcho desugared and with some inlining:

revEcho :: C ()
revEcho = λh→ GetChar f

where f = λc → (when (c 6= ‘∗’) $ revEcho >> putChar c) $ h

An example evaluation:
Read

run

$ “bc∗”

revEcho λ

$

putChar ‘a’ Return

a

run (GetChar f ) (c : cs) = Read (run (f c) cs)

p >>m = λh→ p $ (λ → m $ h)
8



And Then?

Now, revEcho desugared and with some inlining:

revEcho :: C ()
revEcho = λh→ GetChar f

where f = λc → (when (c 6= ‘∗’) $ revEcho >> putChar c) $ h

An example evaluation:
Read

run

$ “bc∗”

revEcho λ

$

putChar ‘a’ Return

a

run (GetChar f ) (c : cs) = Read (run (f c) cs)

p >>m = λh→ p $ (λ → m $ h)
8



And Then?

Now, revEcho desugared and with some inlining:

revEcho :: C ()
revEcho = λh→ GetChar f

where f = λc → (when (c 6= ‘∗’) $ revEcho >> putChar c) $ h

An example evaluation:
Read

Read

run

$ “c∗”

>> λ

revEcho putChar ‘b’ $

putChar ‘a’ Return

a

run (GetChar f ) (c : cs) = Read (run (f c) cs)

p >>m = λh→ p $ (λ → m $ h)
8



And Then?

Now, revEcho desugared and with some inlining:

revEcho :: C ()
revEcho = λh→ GetChar f

where f = λc → (when (c 6= ‘∗’) $ revEcho >> putChar c) $ h

An example evaluation:
Read

Read

run

$ “c∗”

>> λ

revEcho putChar ‘b’ $

putChar ‘a’ Return

a

run (GetChar f ) (c : cs) = Read (run (f c) cs)

p >>m = λh→ p $ (λ → m $ h)
8



And Then?

An example evaluation:
Read

Read

run

$ “c∗”

revEcho λ

$

putChar ‘b’ λ

$

putChar ‘a’ Return

a

run (GetChar f ) (c : cs) = Read (run (f c) cs)

p >>m = λh→ p $ (λ → m $ h)
8



And Then?

An example evaluation:
Read

Read

run

$ “c∗”

revEcho λ

$

putChar ‘b’ λ

$

putChar ‘a’ Return

a

run (GetChar f ) (c : cs) = Read (run (f c) cs)

p >>m = λh→ p $ (λ → m $ h)
8



And Then?

An example evaluation:
Read

Read

Read

run

$ “∗”

>> λ

revEcho putChar ‘c’ $

putChar ‘b’ λ

$

putChar ‘a’ Return

a

run (GetChar f ) (c : cs) = Read (run (f c) cs)

p >>m = λh→ p $ (λ → m $ h)
8



And Then?

An example evaluation:
Read

Read

Read

run

$ “∗”

>> λ

revEcho putChar ‘c’ $

putChar ‘b’ λ

$

putChar ‘a’ Return

a

run (GetChar f ) (c : cs) = Read (run (f c) cs)

p >>m = λh→ p $ (λ → m $ h)
8



And Then?

An example evaluation:
Read

Read

Read

run

$ “∗”

revEcho λ

$

putChar ‘c’ λ

$

putChar ‘b’ λ

$

putChar ‘a’ Return

a

8



And Then?

An example evaluation:
Read

Read

Read

run

$ “∗”

revEcho λ

$

putChar ‘c’ λ

$

putChar ‘b’ λ

$

putChar ‘a’ Return

a

8



And Then?

An example evaluation:
Read

Read

Read

run

$ “∗”

revEcho λ

$

putChar ‘c’ λ

$

putChar ‘b’ λ

$

putChar ‘a’ Return

a

Overall, linear time!
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◮ How to provide the transformation to the programmer?
⇒ type constructor classes, rank-2 types

Next:
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◮ dual concepts?

◮ . . . ?
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