Asymptotic Improvement of
Computations over Free Monads

Janis Voigtlander

Technische Universitat Dresden

MPC'08

Monads for 1O in Haskell

Program:
echo :: 10 ()
echo = do ¢ « getChar
when (c # 'x') $
do putChar ¢
echo

Monads for 1O in Haskell

Program:
echo :: 10 ()
echo = do ¢ « getChar
when (c # 'x') $
do putChar ¢
echo
Behaviour:

stdin
stdout :

Monads for 1O in Haskell

Program:

echo :: 10 ()

echo = do ¢ « getChar

when (c # 'x') $
do putChar ¢
echo
Behaviour:
stdin : a

stdout : a

Monads for 1O in Haskell

Program:

echo :: 10 ()

echo = do ¢ « getChar

when (c # 'x') $
do putChar ¢
echo
Behaviour:
stdin :ab

stdout: a b

Monads for 1O in Haskell

Program:

echo :: 10 ()

echo = do ¢ « getChar

when (c # 'x') $
do putChar ¢
echo
Behaviour:
stdin :abc

stdout: abc

Monads for 1O in Haskell

Program:
echo :: 10 ()
echo = do ¢ « getChar
when (c # 'x') $
do putChar ¢
echo
Behaviour:

stdin : abcx
stdout: abc

Monads for 1O in Haskell

Program:
echo :: 10 ()
echo = do ¢ « getChar
when (c # 'x') $
do putChar ¢
echo
Behaviour:

stdin : abcx
stdout: abc

Testing 1O Programs: 10Spec [Swierstra & Altenkirch, 07]

Program:
echo :: 10Spec Teletype ()
echo = do ¢ « getChar
when (c # 'x') $
do putChar ¢
echo

Testing 1O Programs: 10Spec [Swierstra & Altenkirch, 07]

Program:
echo :: 10Spec Teletype ()
echo = do ¢ « getChar
when (c # 'x') $
do putChar ¢
echo
Testing:

> run (evallOSpec echo singleThreaded) “abcx”

Testing 1O Programs: 10Spec [Swierstra & Altenkirch, 07]

Program:
echo :: 10Spec Teletype ()
echo = do ¢ « getChar
when (c # 'x') $
do putChar ¢
echo
Testing:

> run (evallOSpec echo singleThreaded) “abcx”
Read (Print ‘a’ (Read (Print 'b" (Read (Print ‘c’ (Read (Finish ())))))))

Testing 1O Programs: 10Spec [Swierstra & Altenkirch, 07]

Program:
echo :: 10Spec Teletype ()
echo = do ¢ « getChar
when (c # 'x') $
do putChar ¢
echo
Testing:

prop cs = run (evallOSpec echo singleThreaded) (cs + ")
= copy ¢s
where copy (c:cs) = Read (Print ¢ (copy cs))
copy [] = Read (Finish ())

Testing 1O Programs: 10Spec [Swierstra & Altenkirch, 07]

Program:
echo :: 10Spec Teletype ()
echo = do ¢ « getChar
when (c # 'x') $
do putChar ¢
echo
Testing:
prop cs = run (evallOSpec echo singleThreaded) (cs + ")
= copy cs
where copy (c:cs) = Read (Print ¢ (copy cs))
copy [] = Read (Finish ())

> quickCheck prop
OK, passed 100 tests.

A Slight Variation of the Example

Program:
revEcho :: 10 ()
revEcho = do ¢ «+ getChar
when (c # '+') $
do revEcho
putChar ¢

A Slight Variation of the Example

Program:
revEcho :: 10 ()
revEcho = do ¢ «+ getChar
when (c # '+') $
do revEcho
putChar ¢
Behaviour:

stdin
stdout :

A Slight Variation of the Example

Program:

revEcho :: 10 ()

revEcho = do ¢ «+ getChar

when (c # '+') $
do revEcho
putChar ¢
Behaviour:
stdin : a

stdout :

A Slight Variation of the Example

Program:

revEcho :: 10 ()

revEcho = do ¢ «+ getChar

when (c # '+') $
do revEcho
putChar ¢
Behaviour:
stdin : ab

stdout :

A Slight Variation of the Example

Program:

revEcho :: 10 ()

revEcho = do ¢ «+ getChar

when (c # '+') $
do revEcho
putChar ¢
Behaviour:
stdin :abc

stdout :

A Slight Variation of the Example

Program:
revEcho :: 10 ()
revEcho = do ¢ «+ getChar
when (c # '+') $
do revEcho
putChar ¢
Behaviour:

stdin : abc=x
stdout: c b a

A Slight Variation of the Example

Program:
revEcho :: 10 ()
revEcho = do ¢ «+ getChar
when (c # '+') $
do revEcho
putChar ¢
Behaviour:

stdin : abcx
stdout: c b a

A Slight Variation of the Example

Program:
revEcho :: 10Spec Teletype ()
revEcho = do ¢ «+ getChar
when (c # '+') $
do revEcho
putChar ¢
Testing:

> run (evallOSpec revEcho singleThreaded) “abcx”

A Slight Variation of the Example

Program:
revEcho :: 10Spec Teletype ()
revEcho = do ¢ «+ getChar
when (c # '+') $
do revEcho
putChar ¢
Testing:

> run (evallOSpec revEcho singleThreaded) “abcx”
Read (Read (Read (Read (Print ‘c’ (Print ‘b’ (Print ‘a’ (Finish ())))))))

A Slight Variation of the Example

Program:
revEcho :: 10Spec Teletype ()
revEcho = do ¢ «+ getChar
when (c # '+') $
do revEcho
putChar ¢
Testing:

prop cs = run (evallOSpec revEcho singleThreaded) (cs + “x")
= mirror cs (Finish ())
where mirror (c: cs) acc = Read (mirror cs (Print ¢ acc))
mirror] acc = Read acc

A Slight Variation of the Example

Program:
revEcho :: 10Spec Teletype ()
revEcho = do ¢ «+ getChar
when (c # '+') $
do revEcho
putChar ¢
Testing:

prop cs = run (evallOSpec revEcho singleThreaded) (cs H- "x")
= mirror cs (Finish ())
where mirror (c: cs) acc = Read (mirror cs (Print ¢ acc))
mirror] acc = Read acc

> quickCheck prop
OK, passed 100 tests.

A Slight Variation of the Example: Ouch!

Program:
revEcho :: 10Spec Teletype ()
revEcho = do ¢ «+ getChar
when (c # '+') $
do revEcho
putChar ¢
Testing:

prop cs = run (evallOSpec revEcho singleThreaded) (cs H- "x")
= mirror cs (Finish ())
where mirror (c: cs) acc = Read (mirror cs (Print ¢ acc))
mirror] acc = Read acc

> quickCheck prop
OK, passed 100 tests. ‘But each test takes quadratic time!‘

But Why?

Let's take a closer look at “IOSpec Teletype”, henceforth “lO".

But Why?

Let's take a closer look at “IOSpec Teletype”, henceforth “lO".

data |10y o = GetChar (Char — 104 «) | PutChar Char (104 «)
| Return «

But Why?

Let's take a closer look at “IOSpec Teletype”, henceforth “lO".

data |10y o = GetChar (Char — 104 «) | PutChar Char (104 «)
| Return «

instance Monad 10 where

But Why?

Let's take a closer look at “IOSpec Teletype”, henceforth “lO".

data |10y o = GetChar (Char — 104 «) | PutChar Char (104 «)
| Return «

instance Monad 10 where

getChar :: 10y Char
getChar = GetChar Return

putChar :: Char — 104 ()
putChar ¢ = PutChar ¢ (Return ())

But Why?

Let's take a closer look at “IOSpec Teletype”, henceforth “lO".

data |10y o = GetChar (Char — 104 «) | PutChar Char (104 «)
| Return «

instance Monad 10 where

getChar :: 10y Char
getChar = GetChar Return

putChar :: Char — 104 ()
putChar ¢ = PutChar ¢ (Return ())

run :: 10y o — String — Output «

run (GetChar f) (c:cs) = Read (run (f ¢) cs)
run (PutChar ¢ p) cs = Print ¢ (run p cs)
run (Return a) «¢s = Finish a

But Why?

Now, revEcho desugared and with some inlining:

revEcho :: 104 ()
revEcho = GetChar f
where f = A\c — when (c # '«") $ revEcho > putChar c

But Why?

Now, revEcho desugared and with some inlining:

revEcho :: 104 ()
revEcho = GetChar f
where f = A\c — when (c # '«") $ revEcho > putChar c

An example evaluation, counting (certain) steps:

run

revEcho “abcx"”

But Why?

Now, revEcho desugared and with some inlining:

revEcho :: 104 ()
revEcho = GetChar f
where f = \c — when (c # '«") $ revEcho > putChar c

An example evaluation, counting (certain) steps:
run

revEcho “abcx”

But Why?

Now, revEcho desugared and with some inlining:

revEcho :: 104 ()
revEcho = GetChar f
where f = A\c — when (c # '«") $ revEcho > putChar c

An example evaluation, counting (certain) steps:

run

RN
GetChar £ “abcx”

But Why?

Now, revEcho desugared and with some inlining:

revEcho :: 104 ()
revEcho = GetChar f
where f = A\c — when (c # '«") $ revEcho > putChar c

An example evaluation, counting (certain) steps:
run

RN
GetChar f “abcx”

run (GetChar f) (c:cs) = Read (run (f ¢) cs)

But Why?

Now, revEcho desugared and with some inlining:

revEcho :: 104 ()
revEcho = GetChar f
where f = A\c — when (c # '«") $ revEcho >> putChar ¢

An example evaluation, counting (certain) steps:
Re‘ad

run
SN
> «

bex”

PN
revEcho putChar ‘a’

run (GetChar f) (c:cs) = Read (run (f c) cs)

But Why?

Now, revEcho desugared and with some inlining:

revEcho :: 104 ()
revEcho = GetChar f
where f = \c — when (c # '«") $ revEcho > putChar c

An example evaluation, counting (certain) steps:

Read
rL‘Jn
RN
> “bex”

N
revEcho putChar ‘a’

run (GetChar f) (c:cs) = Read (run (f c) cs)

But Why?

Now, revEcho desugared and with some inlining:

revEcho :: 104 ()
revEcho = GetChar f
where f = A\c — when (c # '«") $ revEcho > putChar c

An example evaluation, counting (certain) steps:

Read
rL‘Jn
RN
> “bex”

PN
GetChar £ putChar ‘a’

run (GetChar f) (c:cs) = Read (run (f c) cs)

But Why?

Now, revEcho desugared and with some inlining:

revEcho :: 104 ()
revEcho = GetChar f
where f = A\c — when (c # '«") $ revEcho > putChar c

An example evaluation, counting (certain) steps:

Read
rL‘Jn
N
> “bex”

PN
GetChar £ putChar ‘a’

run (GetChar f) (c:cs) = Read (run (f c) cs)
(GetChar f)>> m = GetChar (Ac — f ¢>m)

But Why?

Now, revEcho desugared and with some inlining:

revEcho :: 104 ()
revEcho = GetChar f
where f = A\c — when (c # '«") $ revEcho > putChar c

An example evaluation, counting (certain) steps: 1
Re‘ad

run
RN
Get‘Char “bex”
AC

\
>

VRN
fc putChar ‘a’

run (GetChar f) (c:cs) = Read (run (f c) cs)
(GetChar) > m = GetChar (Ac — f c¢>m)

But Why?

Now, revEcho desugared and with some inlining:

revEcho :: 104 ()
revEcho = GetChar f
where f = A\c — when (c # '«") $ revEcho > putChar c

An example evaluation, counting (certain) steps: 1
Re‘ad

run
RN
Get‘Char “bex”
AC

\
>

VRN
f ¢ putChar ‘a’

run (GetChar f) (c:cs) = Read (run (f ¢) cs)
(GetChar) > m = GetChar (Ac — f ¢>m)

But Why?

Now, revEcho desugared and with some inlining:

revEcho :: 104 ()
revEcho = GetChar f
where f = A\c — when (c # '«") $ revEcho >> putChar ¢

An example evaluation, counting (certain) steps: 1
Re‘ad

Re‘ad

run
> e
RN
> putChar 'a’
™
revEcho putChar 'b’

run (GetChar f) (c:cs) = Read (run (f c) cs)
(GetChar) > m = GetChar (Ac — f ¢>m)

But Why?

Now, revEcho desugared and with some inlining:

revEcho :: 104 ()
revEcho = GetChar f
where f = \c — when (c # '«") $ revEcho > putChar c

An example evaluation, counting (certain) steps: 1
Re‘ad

Re‘ad

run
>> llc*”
RN
> putChar 'a’
™
revEcho putChar 'b’'

run (GetChar f) (c:cs) = Read (run (f c) cs)
(GetChar) > m = GetChar (Ac — f ¢>m)

But Why?

Now, revEcho desugared and with some inlining:

revEcho :: 104 ()
revEcho = GetChar f
where f = A\c — when (c # '«") $ revEcho > putChar c

An example evaluation, counting (certain) steps: 1
Re‘ad

Re‘ad

run
>> llc*”
RN
> putChar 'a’
™
GetChar £ putChar 'b’

run (GetChar f) (c:cs) = Read (run (f c) cs)
(GetChar) > m = GetChar (Ac — f ¢>m)

But Why?

Now, revEcho desugared and with some inlining:

revEcho :: 104 ()
revEcho = GetChar f
where f = A\c — when (c # '«") $ revEcho > putChar c

An example evaluation, counting (certain) steps: 1
Re‘ad

Re‘ad

run
>> llc*”
RN
> putChar 'a’
™
GetChar £ putChar 'b’

run (GetChar f) (c:cs) = Read (run (f c) cs)
(GetChar f)>> m = GetChar (Ac — f ¢>m)

But Why?

where f = A\c — when (c # '«") $ revEcho > putChar c
An example evaluation, counting (certain) steps: 1 4 1
Re‘ad

Re‘ad

run

RN
> “ox

VRN
Get(‘jhar putChar ‘a’
/\‘c
>
PN
f ¢ putChar ‘b’
run (GetChar f) (c:cs) = Read (run (f c) cs)
(GetChar) > m = GetChar (Ac — f c¢>m)

But Why?

where f = A\c — when (c # '«") $ revEcho > putChar c
An example evaluation, counting (certain) steps: 1 4 1
Re‘ad

Re‘ad

run

PN
> “ox"

PN
Get‘Char putChar ‘a’
)\‘c
>
PN
f ¢ putChar ‘b’
run (GetChar f) (c:cs) = Read (run (f c) cs)
(GetChar f)>> m = GetChar (Ac — f ¢>m)

But Why?

where f = A\c — when (c # '«") $ revEcho > putChar c
An example evaluation, counting (certain) steps: 1 + 2
Read
Read

run

N

Get(‘:har ‘o
/\‘c
>

e

> putChar 'a’
AN
f ¢ putChar ‘b’
run (GetChar f) (c:cs) = Read (run (f c) cs)

(GetChar) > m = GetChar (Ac — f c¢>m)

But Why?

where f = A\c — when (c # '«") $ revEcho > putChar c
An example evaluation, counting (certain) steps: 1 + 2
Read
Read

run

PN

Get‘Char "o
)\‘c
>

e

> putChar 'a’
N
f ¢ putChar'b’
run (GetChar f) (c:cs) = Read (run (f c) cs)

(GetChar) > m = GetChar (Ac — f ¢>m)

But Why?

where f = A\c — when (c # '«") $ revEcho > putChar c
An example evaluation, counting (certain) steps: 1 4 2
Read
Re‘ad

\
Read

run

>

PN
> putChar 'a’
> putChar 'b’
N

revEcho putChar 'c’
run (GetChar f) (c:cs) = Read (run (f c) cs)
(GetChar) > m = GetChar (Ac — f ¢>m)

But Why?

where f = A\c — when (c # '«") $ revEcho > putChar c
An example evaluation, counting (certain) steps: 1 + 2
Re‘ad
Re‘ad
Re‘ad
run
>
PN
> putChar 'a’
> putChar 'b’
N
revEcho putChar ‘c
run (GetChar f) (c:cs) = Read (run (f c) cs)

(GetChar) > m = GetChar (Ac — f ¢>m)

But Why?

where f = A\c — when (c # '«") $ revEcho > putChar c
An example evaluation, counting (certain) steps: 1 + 2
Re‘ad
Re‘ad
Re‘ad
run
>
PN
> putChar 'a’
> putChar 'b’
N
GetChar f putChar 'c
run (GetChar f) (c:cs) = Read (run (f c) cs)

(GetChar) > m = GetChar (Ac — f ¢>m)

But Why?

where f = A\c — when (c # '«") $ revEcho > putChar c
An example evaluation, counting (certain) steps: 1 + 2
Re‘ad
Re‘ad
Re‘ad
run
>
PN
> putChar 'a’
> putChar 'b’
™~
GetChar £ putChar 'c’
run (GetChar f) (c:cs) = Read (run (f c) cs)

(GetChar f)>> m = GetChar (Ac — f ¢>m)

But Why?

An example evaluation, counting (certain) steps: 1 + 2 + 1
Re‘ad

Re‘ad
Re‘ad

run
S
>
RN
> putChar 'a’
Get‘Char putChar ‘b’

AC

\
>

u*n

PN
f ¢ putChar'c
run (GetChar f) (c:cs) = Read (run (f ¢) cs)
(GetChar) > m = GetChar (Ac — f c¢>m)

But Why?

An example evaluation, counting (certain) steps: 1 + 2 + 1
Re‘ad

Re‘ad
Re‘ad

run
S
>
RN
> putChar 'a’
Get‘Char putChar ‘b’

AC

\
>

u*n

PN
f ¢ putChar'c
run (GetChar f) (c:cs) = Read (run (f ¢) cs)
(GetChar f)>> m = GetChar (Ac — f ¢>m)

But Why?

An example evaluation, counting (certain) steps: 1 + 2 + 2

Re‘ad
Re‘ad
Re‘ad
run
S
> “x
RN
Get‘Char putChar ‘a’
/\‘c
>

PN
> putChar 'b’
f ¢ putChar'c
run (GetChar f) (c:cs) = Read (run (f ¢) cs)
(GetChar) > m = GetChar (Ac — f c¢>m)

But Why?

An example evaluation, counting (certain) steps: 1 + 2 + 2

Re‘ad
Re‘ad
Re‘ad
run
PN
> “x
RN

Get‘Char putChar ‘a’
)\‘c
>

PN
> putChar 'b’
f ¢ putChar'c
run (GetChar f) (c:cs) = Read (run (f ¢) cs)
(GetChar f)>> m = GetChar (Ac — f ¢>m)

But Why?

An example evaluation, counting (certain) steps: 1 + 2 + 3
Re‘ad

Re‘ad
Re‘ad

run

RN
Get‘Char !
/\‘c

>
> putChar ‘a’'
AN
> putChar 'b’

f ¢ putChar'c
run (GetChar f) (c:cs) = Read (run (f ¢) cs)

(GetChar) > m = GetChar (Ac — f c¢>m)

But Why?

An example evaluation, counting (certain) steps: 1 + 2 + 3
Re‘ad
Re‘ad
Re‘ad
run
PN
Get‘Char U
/\‘c
>
> putChar 'a’
AN
> putChar 'b’

fc putChar'c
run (GetChar f) (c:cs) = Read (run (f c) cs)

(GetChar) > m = GetChar (Ac — f ¢>m)

But Why?
An example evaluation, counting (certain) steps: 1 + 2 + 3
Read
Read

Re‘ad

run
VRN
Get‘Char Y
/\‘c
>
> putChar 'a’
AN
> putChar 'b’

f ¢ putChar'c
run (GetChar f) (c:cs) = Read (run (f ¢) cs)

(GetChar) > m = GetChar (Ac — f ¢>m)

What to Do?
Switch type yet again:

revEcho :: C ()
revEcho = do ¢ « getChar
when (c # '+') $
do revEcho
putChar ¢

What to Do?
Switch type yet again:

revEcho :: C ()
revEcho = do ¢ «— getChar
when (c # '+') $
do revEcho
putChar ¢

type C a =Vpj. (o« — 10y 8) — 10 B8

What to Do?
Switch type yet again:

revEcho :: C ()
revEcho = do ¢ « getChar
when (c # '+') $
do revEcho
putChar ¢

type C a =Vpj. (o« — 10y 8) — 10 B8

instance Monad C where

What to Do?
Switch type yet again:

revEcho :: C ()
revEcho = do ¢ « getChar
when (c # '+') $
do revEcho
putChar ¢

type C a =Vpj. (o« — 10y 8) — 10 B8

instance Monad C where

getChar :: C Char
getChar = Ah — GetChar (Ac — h ¢)

putChar :: Char — C ()
putChar ¢ = Ah — PutChar ¢ (h ())

And Then?

Now, revEcho desugared and with some inlining:

revEcho :: C ()
revEcho = Ah — GetChar f
where f = A\c — (when (c # ‘x') $ revEcho > putChar c¢) $ h

And Then?

Now, revEcho desugared and with some inlining:

revEcho :: C ()
revEcho = Ah — GetChar f
where f = A\c — (when (c # ‘x') $ revEcho > putChar c¢) $ h

An example evaluation:
run

AN
o $ < “abex”

revEcho Return

And Then?

Now, revEcho desugared and with some inlining:

revEcho :: C ()
revEcho = Ah — GetChar f
where f = A\c — (when (c # ‘x') $ revEcho > putChar c¢) $ h

An example evaluation:
run

SN
/$\ abcx

revEcho Return

run (GetChar f) (c:cs) = Read (run (f c) cs)

And Then?

Now, revEcho desugared and with some inlining:

revEcho :: C ()
revEcho = Ah — GetChar f

where f = A\c — (when (c # ‘x') $ revEcho > putChar ¢) $ h
An example evaluation:

Re‘ad

run
$ “bex"
RN

> Return

v
revEcho putChar ‘a’

run (GetChar f) (c:cs) = Read (run (f c) cs)

And Then?

Now, revEcho desugared and with some inlining:

revEcho :: C ()
revEcho = Ah — GetChar f

where f = A\c — (when (c # ‘x') $ revEcho > putChar c¢) $ h
An example evaluation:

Re‘ad

run
$ \“b "
/ \ Cx

> Return

e
revEcho putChar ‘a’

run (GetChar f) (c:cs) = Read (run (f c) cs)
p>m=Ah—p$ (A —m$ h)

And Then?

Now, revEcho desugared and with some inlining:

revEcho :: C ()
revEcho = Ah — GetChar f
where f = A\c — (when (c # ‘x') $ revEcho > putChar c¢) $ h
An example evaluation:
Re‘ad

run

AN
$ / Hbc*”
/N
revEcho)\‘,

$
putChar ‘a’ Return

run (GetChar f) (c:cs) = Read (run (f c) cs)
p>m=Ah—p$ (A —m$h)

And Then?

Now, revEcho desugared and with some inlining:

revEcho :: C ()
revEcho = Ah — GetChar f
where f = A\c — (when (c # ‘x') $ revEcho > putChar c¢) $ h
An example evaluation:
Re‘ad

run

AN
$ / “bc*”
/N
revEcho)\‘,

$
putChar ‘a’ Return

run (GetChar f) (c:cs) = Read (run (f c) cs)
p>m=A—p% (A —->m$h)

And Then?

Now, revEcho desugared and with some inlining:

revEcho :: C ()
revEcho = Ah — GetChar f
where f = A\c — (when (c # ‘x') $ revEcho > putChar ¢) $ h

An example evaluation:
Re‘ad
Re‘ad

run
/ “ ”n
/$\ «
> A
Echo putChar S
revEcho putChar ‘b’
g ~
putChar 'a’ Return
run (GetChar f) (c:cs) = Read (run (f c) cs)
p>m=A—p$ (A —->m$h)

And Then?

Now, revEcho desugared and with some inlining:

revEcho :: C ()
revEcho = Ah — GetChar f
where f = A\c — (when (c # ‘x') $ revEcho > putChar c¢) $ h

An example evaluation:
Re‘ad
Re‘ad

run
/ “ "
/$\ cx
> A
Echo putChar b S
revEcho putChar ‘b’
g ~
putChar 'a’ Return
run (GetChar f) (c:cs) = Read (run (f c) cs)
p>m=Ah—p$ (A —m$ h)

And Then?

An example evaluation:

VRN
revEcho A_

RN
putChar ‘b’)_
\

/$\

putChar 'a’ Return

run (GetChar f) (c:cs) = Read (run (f ¢) cs)
p>m=Ah—p$ (A —m$ h)

And Then?

An example evaluation:

VRN
revEcho A_

RN
putChar ‘b’)_
\

/$\

putChar 'a’ Return

run (GetChar f) (c:cs) = Read (run (f c) cs)
p>m=A—p% (A —->m$h)

And Then?

An example evaluation:

Read
Re‘ad
Re‘ad
rt‘m

/ \

/ \

/ \ \
revEcho putChar ‘c’ /$
putChar 'b")_

5

putChar ‘a’ Return

run (GetChar f) (c:cs) = Read (run (f ¢) cs)
p>m=XAh—p$ (A —m$h)

And Then?

An example evaluation:
Read

\
Re‘ad
Re‘ad

run
/

> A

VRN \

revEcho putChar ‘c’ /$

putChar ‘b’)_
\
$

putChar ‘a’ Return

run (GetChar f) (c:cs) = Read (run (f ¢) cs)
p>m=XAh—p$ (A —>m$h)

And Then?

An example evaluation:

Re‘ad
Re‘ad

Read
rL‘m
RN
$ S
7\
revEcho)\‘,
/$
putChar ‘c’)_
\
/$\
putChar ‘b’)\‘7
$
RN

putChar ‘a’ Return

And Then?

An example evaluation:

Re‘ad
Re‘ad

Read
n‘m
PR
$ S
/N
revEcho)\‘,
/$
putChar ‘'c’)_
\
e $\
putChar ‘b’)\‘7
$
RN

putChar ‘a’ Return

And Then?

An example evaluation:
Re‘ad
Re‘ad

Re‘ad
run
VAR
$ “*”
7\
revEcho A_

| |Overa||, linear timel!

putChar ‘'c’)_
\
/$\
putChar '‘b")_
\
$
RN

putChar ‘a’ Return

More General Considerations

» Was the transformation semantically correct?

More General Considerations

» Was the transformation semantically correct?

» Is something similar possible for other data types?

More General Considerations

» Was the transformation semantically correct?

» Is something similar possible for other data types?

» How to provide the transformation to the programmer?

More General Considerations

» Was the transformation semantically correct?
= program calculation, monad laws

» Is something similar possible for other data types?

» How to provide the transformation to the programmer?

More General Considerations

» Was the transformation semantically correct?
= program calculation, monad laws

» Is something similar possible for other data types?
= generic development for arbitrary free monads

» How to provide the transformation to the programmer?

More General Considerations

» Was the transformation semantically correct?
= program calculation, monad laws

» Is something similar possible for other data types?
= generic development for arbitrary free monads

» How to provide the transformation to the programmer?
= type constructor classes, rank-2 types

More General Considerations

» Was the transformation semantically correct?
= program calculation, monad laws

» Is something similar possible for other data types?
= generic development for arbitrary free monads

» How to provide the transformation to the programmer?
= type constructor classes, rank-2 types

Next:

» even more monads?

More General Considerations

» Was the transformation semantically correct?
= program calculation, monad laws

» Is something similar possible for other data types?
= generic development for arbitrary free monads

» How to provide the transformation to the programmer?
= type constructor classes, rank-2 types

Next:

» even more monads?

» dual concepts?

More General Considerations

» Was the transformation semantically correct?
= program calculation, monad laws

» Is something similar possible for other data types?
= generic development for arbitrary free monads

» How to provide the transformation to the programmer?
= type constructor classes, rank-2 types

Next:

> even more monads?
» dual concepts?

> .7

References

@ K. Claessen and R.J.M. Hughes.
QuickCheck: A lightweight tool for random testing of Haskell
programs.
In International Conference on Functional Programming,
Proceedings, pages 268-279. ACM Press, 2000.

M W. Swierstra and T. Altenkirch.
Beauty in the beast: A functional semantics for the awkward
squad.
In Haskell Workshop, Proceedings, pages 25-36. ACM Press,
2007.

[W. Swierstra.
Data types a la carte.
Journal of Functional Programming, 18(4):423-436, 2008.

10

	An Example Application
	References

