
Asymptotic Improvement of

Computations over Free Monads

Janis Voigtländer

Technische Universität Dresden

MPC’08

Monads for IO in Haskell

Program:
echo :: IO ()
echo = do c ← getChar

when (c 6= ‘∗’) $
do putChar c

echo

2

Monads for IO in Haskell

Program:
echo :: IO ()
echo = do c ← getChar

when (c 6= ‘∗’) $
do putChar c

echo

Behaviour:

stdin :
stdout :

2

Monads for IO in Haskell

Program:
echo :: IO ()
echo = do c ← getChar

when (c 6= ‘∗’) $
do putChar c

echo

Behaviour:

stdin : a
stdout : a

2

Monads for IO in Haskell

Program:
echo :: IO ()
echo = do c ← getChar

when (c 6= ‘∗’) $
do putChar c

echo

Behaviour:

stdin : a b
stdout : a b

2

Monads for IO in Haskell

Program:
echo :: IO ()
echo = do c ← getChar

when (c 6= ‘∗’) $
do putChar c

echo

Behaviour:

stdin : a b c
stdout : a b c

2

Monads for IO in Haskell

Program:
echo :: IO ()
echo = do c ← getChar

when (c 6= ‘∗’) $
do putChar c

echo

Behaviour:

stdin : a b c ∗
stdout : a b c

2

Monads for IO in Haskell

Program:
echo :: IO ()
echo = do c ← getChar

when (c 6= ‘∗’) $
do putChar c

echo

Behaviour:

stdin : a b c ∗
stdout : a b c

2

Testing IO Programs: IOSpec [Swierstra & Altenkirch, 07]

Program:
echo :: IOSpec Teletype ()
echo = do c ← getChar

when (c 6= ‘∗’) $
do putChar c

echo

3

Testing IO Programs: IOSpec [Swierstra & Altenkirch, 07]

Program:
echo :: IOSpec Teletype ()
echo = do c ← getChar

when (c 6= ‘∗’) $
do putChar c

echo

Testing:

> run (evalIOSpec echo singleThreaded) “abc∗”

3

Testing IO Programs: IOSpec [Swierstra & Altenkirch, 07]

Program:
echo :: IOSpec Teletype ()
echo = do c ← getChar

when (c 6= ‘∗’) $
do putChar c

echo

Testing:

> run (evalIOSpec echo singleThreaded) “abc∗”
Read (Print ‘a’ (Read (Print ‘b’ (Read (Print ‘c’ (Read (Finish ())))))))

3

Testing IO Programs: IOSpec [Swierstra & Altenkirch, 07]

Program:
echo :: IOSpec Teletype ()
echo = do c ← getChar

when (c 6= ‘∗’) $
do putChar c

echo

Testing:

prop cs = run (evalIOSpec echo singleThreaded) (cs ++ “∗”)
≡ copy cs

where copy (c : cs) = Read (Print c (copy cs))
copy [] = Read (Finish ())

3

Testing IO Programs: IOSpec [Swierstra & Altenkirch, 07]

Program:
echo :: IOSpec Teletype ()
echo = do c ← getChar

when (c 6= ‘∗’) $
do putChar c

echo

Testing:

prop cs = run (evalIOSpec echo singleThreaded) (cs ++ “∗”)
≡ copy cs

where copy (c : cs) = Read (Print c (copy cs))
copy [] = Read (Finish ())

> quickCheck prop

OK, passed 100 tests.

3

A Slight Variation of the Example

Program:
revEcho :: IO ()
revEcho = do c ← getChar

when (c 6= ‘∗’) $
do revEcho

putChar c

4

A Slight Variation of the Example

Program:
revEcho :: IO ()
revEcho = do c ← getChar

when (c 6= ‘∗’) $
do revEcho

putChar c

Behaviour:

stdin :
stdout :

4

A Slight Variation of the Example

Program:
revEcho :: IO ()
revEcho = do c ← getChar

when (c 6= ‘∗’) $
do revEcho

putChar c

Behaviour:

stdin : a
stdout :

4

A Slight Variation of the Example

Program:
revEcho :: IO ()
revEcho = do c ← getChar

when (c 6= ‘∗’) $
do revEcho

putChar c

Behaviour:

stdin : a b
stdout :

4

A Slight Variation of the Example

Program:
revEcho :: IO ()
revEcho = do c ← getChar

when (c 6= ‘∗’) $
do revEcho

putChar c

Behaviour:

stdin : a b c
stdout :

4

A Slight Variation of the Example

Program:
revEcho :: IO ()
revEcho = do c ← getChar

when (c 6= ‘∗’) $
do revEcho

putChar c

Behaviour:

stdin : a b c ∗
stdout : c b a

4

A Slight Variation of the Example

Program:
revEcho :: IO ()
revEcho = do c ← getChar

when (c 6= ‘∗’) $
do revEcho

putChar c

Behaviour:

stdin : a b c ∗
stdout : c b a

4

A Slight Variation of the Example

Program:
revEcho :: IOSpec Teletype ()
revEcho = do c ← getChar

when (c 6= ‘∗’) $
do revEcho

putChar c

Testing:

> run (evalIOSpec revEcho singleThreaded) “abc∗”

4

A Slight Variation of the Example

Program:
revEcho :: IOSpec Teletype ()
revEcho = do c ← getChar

when (c 6= ‘∗’) $
do revEcho

putChar c

Testing:

> run (evalIOSpec revEcho singleThreaded) “abc∗”
Read (Read (Read (Read (Print ‘c’ (Print ‘b’ (Print ‘a’ (Finish ())))))))

4

A Slight Variation of the Example

Program:
revEcho :: IOSpec Teletype ()
revEcho = do c ← getChar

when (c 6= ‘∗’) $
do revEcho

putChar c

Testing:

prop cs = run (evalIOSpec revEcho singleThreaded) (cs ++“∗”)
≡ mirror cs (Finish ())

where mirror (c : cs) acc = Read (mirror cs (Print c acc))
mirror [] acc = Read acc

4

A Slight Variation of the Example

Program:
revEcho :: IOSpec Teletype ()
revEcho = do c ← getChar

when (c 6= ‘∗’) $
do revEcho

putChar c

Testing:

prop cs = run (evalIOSpec revEcho singleThreaded) (cs ++“∗”)
≡ mirror cs (Finish ())

where mirror (c : cs) acc = Read (mirror cs (Print c acc))
mirror [] acc = Read acc

> quickCheck prop

OK, passed 100 tests.

4

A Slight Variation of the Example: Ouch!

Program:
revEcho :: IOSpec Teletype ()
revEcho = do c ← getChar

when (c 6= ‘∗’) $
do revEcho

putChar c

Testing:

prop cs = run (evalIOSpec revEcho singleThreaded) (cs ++“∗”)
≡ mirror cs (Finish ())

where mirror (c : cs) acc = Read (mirror cs (Print c acc))
mirror [] acc = Read acc

> quickCheck prop

OK, passed 100 tests. But each test takes quadratic time!

4

But Why?

Let’s take a closer look at “IOSpec Teletype”, henceforth “IOtt”.

5

But Why?

Let’s take a closer look at “IOSpec Teletype”, henceforth “IOtt”.

data IOtt α = GetChar (Char→ IOtt α) | PutChar Char (IOtt α)
| Return α

5

But Why?

Let’s take a closer look at “IOSpec Teletype”, henceforth “IOtt”.

data IOtt α = GetChar (Char→ IOtt α) | PutChar Char (IOtt α)
| Return α

instance Monad IOtt where

· · ·

5

But Why?

Let’s take a closer look at “IOSpec Teletype”, henceforth “IOtt”.

data IOtt α = GetChar (Char→ IOtt α) | PutChar Char (IOtt α)
| Return α

instance Monad IOtt where

· · ·

getChar :: IOtt Char
getChar = GetChar Return

putChar :: Char→ IOtt ()
putChar c = PutChar c (Return ())

5

But Why?

Let’s take a closer look at “IOSpec Teletype”, henceforth “IOtt”.

data IOtt α = GetChar (Char→ IOtt α) | PutChar Char (IOtt α)
| Return α

instance Monad IOtt where

· · ·

getChar :: IOtt Char
getChar = GetChar Return

putChar :: Char→ IOtt ()
putChar c = PutChar c (Return ())

run :: IOtt α→ String→ Output α

run (GetChar f) (c : cs) = Read (run (f c) cs)
run (PutChar c p) cs = Print c (run p cs)
run (Return a) cs = Finish a

5

But Why?

Now, revEcho desugared and with some inlining:

revEcho :: IOtt ()
revEcho = GetChar f

where f = λc → when (c 6= ‘∗’) $ revEcho >> putChar c

6

But Why?

Now, revEcho desugared and with some inlining:

revEcho :: IOtt ()
revEcho = GetChar f

where f = λc → when (c 6= ‘∗’) $ revEcho >> putChar c

An example evaluation, counting (certain) steps:

run

revEcho “abc∗”

a

6

But Why?

Now, revEcho desugared and with some inlining:

revEcho :: IOtt ()
revEcho = GetChar f

where f = λc → when (c 6= ‘∗’) $ revEcho >> putChar c

An example evaluation, counting (certain) steps:

run

revEcho “abc∗”

a

6

But Why?

Now, revEcho desugared and with some inlining:

revEcho :: IOtt ()
revEcho = GetChar f

where f = λc → when (c 6= ‘∗’) $ revEcho >> putChar c

An example evaluation, counting (certain) steps:

run

GetChar f “abc∗”

a

6

But Why?

Now, revEcho desugared and with some inlining:

revEcho :: IOtt ()
revEcho = GetChar f

where f = λc → when (c 6= ‘∗’) $ revEcho >> putChar c

An example evaluation, counting (certain) steps:

run

GetChar f “abc∗”

a

run (GetChar f) (c : cs) = Read (run (f c) cs)

6

But Why?

Now, revEcho desugared and with some inlining:

revEcho :: IOtt ()
revEcho = GetChar f

where f = λc → when (c 6= ‘∗’) $ revEcho >> putChar c

An example evaluation, counting (certain) steps:

Read

run

>> “bc∗”

revEcho putChar ‘a’

a

run (GetChar f) (c : cs) = Read (run (f c) cs)

6

But Why?

Now, revEcho desugared and with some inlining:

revEcho :: IOtt ()
revEcho = GetChar f

where f = λc → when (c 6= ‘∗’) $ revEcho >> putChar c

An example evaluation, counting (certain) steps:

Read

run

>> “bc∗”

revEcho putChar ‘a’

a

run (GetChar f) (c : cs) = Read (run (f c) cs)

6

But Why?

Now, revEcho desugared and with some inlining:

revEcho :: IOtt ()
revEcho = GetChar f

where f = λc → when (c 6= ‘∗’) $ revEcho >> putChar c

An example evaluation, counting (certain) steps:

Read

run

>> “bc∗”

GetChar f putChar ‘a’

a

run (GetChar f) (c : cs) = Read (run (f c) cs)

6

But Why?

Now, revEcho desugared and with some inlining:

revEcho :: IOtt ()
revEcho = GetChar f

where f = λc → when (c 6= ‘∗’) $ revEcho >> putChar c

An example evaluation, counting (certain) steps:

Read

run

>> “bc∗”

GetChar f putChar ‘a’

a

run (GetChar f) (c : cs) = Read (run (f c) cs)

(GetChar f)>>m = GetChar (λc → f c >>m)
6

But Why?

Now, revEcho desugared and with some inlining:

revEcho :: IOtt ()
revEcho = GetChar f

where f = λc → when (c 6= ‘∗’) $ revEcho >> putChar c

An example evaluation, counting (certain) steps: 1

Read

run

GetChar “bc∗”

λc

>>

f c putChar ‘a’

a

run (GetChar f) (c : cs) = Read (run (f c) cs)

(GetChar f)>>m = GetChar (λc → f c >>m)
6

But Why?

Now, revEcho desugared and with some inlining:

revEcho :: IOtt ()
revEcho = GetChar f

where f = λc → when (c 6= ‘∗’) $ revEcho >> putChar c

An example evaluation, counting (certain) steps: 1

Read

run

GetChar “bc∗”

λc

>>

f c putChar ‘a’

a

run (GetChar f) (c : cs) = Read (run (f c) cs)

(GetChar f)>>m = GetChar (λc → f c >>m)
6

But Why?

Now, revEcho desugared and with some inlining:

revEcho :: IOtt ()
revEcho = GetChar f

where f = λc → when (c 6= ‘∗’) $ revEcho >> putChar c

An example evaluation, counting (certain) steps: 1

Read

Read

run

>> “c∗”

>> putChar ‘a’

revEcho putChar ‘b’

a

run (GetChar f) (c : cs) = Read (run (f c) cs)

(GetChar f)>>m = GetChar (λc → f c >>m)
6

But Why?

Now, revEcho desugared and with some inlining:

revEcho :: IOtt ()
revEcho = GetChar f

where f = λc → when (c 6= ‘∗’) $ revEcho >> putChar c

An example evaluation, counting (certain) steps: 1

Read

Read

run

>> “c∗”

>> putChar ‘a’

revEcho putChar ‘b’

a

run (GetChar f) (c : cs) = Read (run (f c) cs)

(GetChar f)>>m = GetChar (λc → f c >>m)
6

But Why?

Now, revEcho desugared and with some inlining:

revEcho :: IOtt ()
revEcho = GetChar f

where f = λc → when (c 6= ‘∗’) $ revEcho >> putChar c

An example evaluation, counting (certain) steps: 1

Read

Read

run

>> “c∗”

>> putChar ‘a’

GetChar f putChar ‘b’

a

run (GetChar f) (c : cs) = Read (run (f c) cs)

(GetChar f)>>m = GetChar (λc → f c >>m)
6

But Why?

Now, revEcho desugared and with some inlining:

revEcho :: IOtt ()
revEcho = GetChar f

where f = λc → when (c 6= ‘∗’) $ revEcho >> putChar c

An example evaluation, counting (certain) steps: 1

Read

Read

run

>> “c∗”

>> putChar ‘a’

GetChar f putChar ‘b’

a

run (GetChar f) (c : cs) = Read (run (f c) cs)

(GetChar f)>>m = GetChar (λc → f c >>m)
6

But Why?

· · ·
where f = λc → when (c 6= ‘∗’) $ revEcho >> putChar c

An example evaluation, counting (certain) steps: 1 + 1

Read

Read

run

>> “c∗”

GetChar putChar ‘a’

λc

>>

f c putChar ‘b’

a

run (GetChar f) (c : cs) = Read (run (f c) cs)

(GetChar f)>>m = GetChar (λc → f c >>m)
6

But Why?

· · ·
where f = λc → when (c 6= ‘∗’) $ revEcho >> putChar c

An example evaluation, counting (certain) steps: 1 + 1

Read

Read

run

>> “c∗”

GetChar putChar ‘a’

λc

>>

f c putChar ‘b’

a

run (GetChar f) (c : cs) = Read (run (f c) cs)

(GetChar f)>>m = GetChar (λc → f c >>m)
6

But Why?

· · ·
where f = λc → when (c 6= ‘∗’) $ revEcho >> putChar c

An example evaluation, counting (certain) steps: 1 + 2

Read

Read

run

GetChar “c∗”

λc

>>

>> putChar ‘a’

f c putChar ‘b’

a

run (GetChar f) (c : cs) = Read (run (f c) cs)

(GetChar f)>>m = GetChar (λc → f c >>m)
6

But Why?

· · ·
where f = λc → when (c 6= ‘∗’) $ revEcho >> putChar c

An example evaluation, counting (certain) steps: 1 + 2

Read

Read

run

GetChar “c∗”

λc

>>

>> putChar ‘a’

f c putChar ‘b’

a

run (GetChar f) (c : cs) = Read (run (f c) cs)

(GetChar f)>>m = GetChar (λc → f c >>m)
6

But Why?

· · ·
where f = λc → when (c 6= ‘∗’) $ revEcho >> putChar c

An example evaluation, counting (certain) steps: 1 + 2

Read

Read

Read

run

>> “∗”

>> putChar ‘a’

>> putChar ‘b’

revEcho putChar ‘c’

a

run (GetChar f) (c : cs) = Read (run (f c) cs)

(GetChar f)>>m = GetChar (λc → f c >>m)
6

But Why?

· · ·
where f = λc → when (c 6= ‘∗’) $ revEcho >> putChar c

An example evaluation, counting (certain) steps: 1 + 2

Read

Read

Read

run

>> “∗”

>> putChar ‘a’

>> putChar ‘b’

revEcho putChar ‘c’

a

run (GetChar f) (c : cs) = Read (run (f c) cs)

(GetChar f)>>m = GetChar (λc → f c >>m)
6

But Why?

· · ·
where f = λc → when (c 6= ‘∗’) $ revEcho >> putChar c

An example evaluation, counting (certain) steps: 1 + 2

Read

Read

Read

run

>> “∗”

>> putChar ‘a’

>> putChar ‘b’

GetChar f putChar ‘c’

a

run (GetChar f) (c : cs) = Read (run (f c) cs)

(GetChar f)>>m = GetChar (λc → f c >>m)
6

But Why?

· · ·
where f = λc → when (c 6= ‘∗’) $ revEcho >> putChar c

An example evaluation, counting (certain) steps: 1 + 2

Read

Read

Read

run

>> “∗”

>> putChar ‘a’

>> putChar ‘b’

GetChar f putChar ‘c’

a

run (GetChar f) (c : cs) = Read (run (f c) cs)

(GetChar f)>>m = GetChar (λc → f c >>m)
6

But Why?

An example evaluation, counting (certain) steps: 1 + 2 + 1

Read

Read

Read

run

>> “∗”

>> putChar ‘a’

GetChar putChar ‘b’

λc

>>

f c putChar ‘c’

a

run (GetChar f) (c : cs) = Read (run (f c) cs)

(GetChar f)>>m = GetChar (λc → f c >>m)
6

But Why?

An example evaluation, counting (certain) steps: 1 + 2 + 1

Read

Read

Read

run

>> “∗”

>> putChar ‘a’

GetChar putChar ‘b’

λc

>>

f c putChar ‘c’

a

run (GetChar f) (c : cs) = Read (run (f c) cs)

(GetChar f)>>m = GetChar (λc → f c >>m)
6

But Why?

An example evaluation, counting (certain) steps: 1 + 2 + 2

Read

Read

Read

run

>> “∗”

GetChar putChar ‘a’

λc

>>

>> putChar ‘b’

f c putChar ‘c’

a

run (GetChar f) (c : cs) = Read (run (f c) cs)

(GetChar f)>>m = GetChar (λc → f c >>m)
6

But Why?

An example evaluation, counting (certain) steps: 1 + 2 + 2

Read

Read

Read

run

>> “∗”

GetChar putChar ‘a’

λc

>>

>> putChar ‘b’

f c putChar ‘c’

a

run (GetChar f) (c : cs) = Read (run (f c) cs)

(GetChar f)>>m = GetChar (λc → f c >>m)
6

But Why?

An example evaluation, counting (certain) steps: 1 + 2 + 3

Read

Read

Read

run

GetChar “∗”

λc

>>

>> putChar ‘a’

>> putChar ‘b’

f c putChar ‘c’

a

run (GetChar f) (c : cs) = Read (run (f c) cs)

(GetChar f)>>m = GetChar (λc → f c >>m)
6

But Why?

An example evaluation, counting (certain) steps: 1 + 2 + 3

Read

Read

Read

run

GetChar “∗”

λc

>>

>> putChar ‘a’

>> putChar ‘b’

f c putChar ‘c’

a

run (GetChar f) (c : cs) = Read (run (f c) cs)

(GetChar f)>>m = GetChar (λc → f c >>m)
6

But Why?

An example evaluation, counting (certain) steps: 1 + 2 + 3

Read

Read

Read

run

GetChar “∗”

λc

>>

>> putChar ‘a’

>> putChar ‘b’

f c putChar ‘c’

a

run (GetChar f) (c : cs) = Read (run (f c) cs)

(GetChar f)>>m = GetChar (λc → f c >>m)
6

What to Do?

Switch type yet again:

revEcho :: C ()
revEcho = do c ← getChar

when (c 6= ‘∗’) $
do revEcho

putChar c

7

What to Do?

Switch type yet again:

revEcho :: C ()
revEcho = do c ← getChar

when (c 6= ‘∗’) $
do revEcho

putChar c

type C α = ∀β. (α→ IOtt β)→ IOtt β

7

What to Do?

Switch type yet again:

revEcho :: C ()
revEcho = do c ← getChar

when (c 6= ‘∗’) $
do revEcho

putChar c

type C α = ∀β. (α→ IOtt β)→ IOtt β

instance Monad C where

· · ·

7

What to Do?

Switch type yet again:

revEcho :: C ()
revEcho = do c ← getChar

when (c 6= ‘∗’) $
do revEcho

putChar c

type C α = ∀β. (α→ IOtt β)→ IOtt β

instance Monad C where

· · ·

getChar :: C Char
getChar = λh→ GetChar (λc → h c)

putChar :: Char→ C ()
putChar c = λh→ PutChar c (h ())

7

And Then?

Now, revEcho desugared and with some inlining:

revEcho :: C ()
revEcho = λh→ GetChar f

where f = λc → (when (c 6= ‘∗’) $ revEcho >> putChar c) $ h

8

And Then?

Now, revEcho desugared and with some inlining:

revEcho :: C ()
revEcho = λh→ GetChar f

where f = λc → (when (c 6= ‘∗’) $ revEcho >> putChar c) $ h

An example evaluation:
run

$ “abc∗”

revEcho Return

a

8

And Then?

Now, revEcho desugared and with some inlining:

revEcho :: C ()
revEcho = λh→ GetChar f

where f = λc → (when (c 6= ‘∗’) $ revEcho >> putChar c) $ h

An example evaluation:
run

$ “abc∗”

revEcho Return

a

run (GetChar f) (c : cs) = Read (run (f c) cs)

8

And Then?

Now, revEcho desugared and with some inlining:

revEcho :: C ()
revEcho = λh→ GetChar f

where f = λc → (when (c 6= ‘∗’) $ revEcho >> putChar c) $ h

An example evaluation:
Read

run

$ “bc∗”

>> Return

revEcho putChar ‘a’

a

run (GetChar f) (c : cs) = Read (run (f c) cs)

8

And Then?

Now, revEcho desugared and with some inlining:

revEcho :: C ()
revEcho = λh→ GetChar f

where f = λc → (when (c 6= ‘∗’) $ revEcho >> putChar c) $ h

An example evaluation:
Read

run

$ “bc∗”

>> Return

revEcho putChar ‘a’

a

run (GetChar f) (c : cs) = Read (run (f c) cs)

p >>m = λh→ p $ (λ → m $ h)
8

And Then?

Now, revEcho desugared and with some inlining:

revEcho :: C ()
revEcho = λh→ GetChar f

where f = λc → (when (c 6= ‘∗’) $ revEcho >> putChar c) $ h

An example evaluation:
Read

run

$ “bc∗”

revEcho λ

$

putChar ‘a’ Return

a

run (GetChar f) (c : cs) = Read (run (f c) cs)

p >>m = λh→ p $ (λ → m $ h)
8

And Then?

Now, revEcho desugared and with some inlining:

revEcho :: C ()
revEcho = λh→ GetChar f

where f = λc → (when (c 6= ‘∗’) $ revEcho >> putChar c) $ h

An example evaluation:
Read

run

$ “bc∗”

revEcho λ

$

putChar ‘a’ Return

a

run (GetChar f) (c : cs) = Read (run (f c) cs)

p >>m = λh→ p $ (λ → m $ h)
8

And Then?

Now, revEcho desugared and with some inlining:

revEcho :: C ()
revEcho = λh→ GetChar f

where f = λc → (when (c 6= ‘∗’) $ revEcho >> putChar c) $ h

An example evaluation:
Read

Read

run

$ “c∗”

>> λ

revEcho putChar ‘b’ $

putChar ‘a’ Return

a

run (GetChar f) (c : cs) = Read (run (f c) cs)

p >>m = λh→ p $ (λ → m $ h)
8

And Then?

Now, revEcho desugared and with some inlining:

revEcho :: C ()
revEcho = λh→ GetChar f

where f = λc → (when (c 6= ‘∗’) $ revEcho >> putChar c) $ h

An example evaluation:
Read

Read

run

$ “c∗”

>> λ

revEcho putChar ‘b’ $

putChar ‘a’ Return

a

run (GetChar f) (c : cs) = Read (run (f c) cs)

p >>m = λh→ p $ (λ → m $ h)
8

And Then?

An example evaluation:
Read

Read

run

$ “c∗”

revEcho λ

$

putChar ‘b’ λ

$

putChar ‘a’ Return

a

run (GetChar f) (c : cs) = Read (run (f c) cs)

p >>m = λh→ p $ (λ → m $ h)
8

And Then?

An example evaluation:
Read

Read

run

$ “c∗”

revEcho λ

$

putChar ‘b’ λ

$

putChar ‘a’ Return

a

run (GetChar f) (c : cs) = Read (run (f c) cs)

p >>m = λh→ p $ (λ → m $ h)
8

And Then?

An example evaluation:
Read

Read

Read

run

$ “∗”

>> λ

revEcho putChar ‘c’ $

putChar ‘b’ λ

$

putChar ‘a’ Return

a

run (GetChar f) (c : cs) = Read (run (f c) cs)

p >>m = λh→ p $ (λ → m $ h)
8

And Then?

An example evaluation:
Read

Read

Read

run

$ “∗”

>> λ

revEcho putChar ‘c’ $

putChar ‘b’ λ

$

putChar ‘a’ Return

a

run (GetChar f) (c : cs) = Read (run (f c) cs)

p >>m = λh→ p $ (λ → m $ h)
8

And Then?

An example evaluation:
Read

Read

Read

run

$ “∗”

revEcho λ

$

putChar ‘c’ λ

$

putChar ‘b’ λ

$

putChar ‘a’ Return

a

8

And Then?

An example evaluation:
Read

Read

Read

run

$ “∗”

revEcho λ

$

putChar ‘c’ λ

$

putChar ‘b’ λ

$

putChar ‘a’ Return

a

8

And Then?

An example evaluation:
Read

Read

Read

run

$ “∗”

revEcho λ

$

putChar ‘c’ λ

$

putChar ‘b’ λ

$

putChar ‘a’ Return

a

Overall, linear time!

8

More General Considerations

◮ Was the transformation semantically correct?

9

More General Considerations

◮ Was the transformation semantically correct?

◮ Is something similar possible for other data types?

9

More General Considerations

◮ Was the transformation semantically correct?

◮ Is something similar possible for other data types?

◮ How to provide the transformation to the programmer?

9

More General Considerations

◮ Was the transformation semantically correct?
⇒ program calculation, monad laws

◮ Is something similar possible for other data types?

◮ How to provide the transformation to the programmer?

9

More General Considerations

◮ Was the transformation semantically correct?
⇒ program calculation, monad laws

◮ Is something similar possible for other data types?
⇒ generic development for arbitrary free monads

◮ How to provide the transformation to the programmer?

9

More General Considerations

◮ Was the transformation semantically correct?
⇒ program calculation, monad laws

◮ Is something similar possible for other data types?
⇒ generic development for arbitrary free monads

◮ How to provide the transformation to the programmer?
⇒ type constructor classes, rank-2 types

9

More General Considerations

◮ Was the transformation semantically correct?
⇒ program calculation, monad laws

◮ Is something similar possible for other data types?
⇒ generic development for arbitrary free monads

◮ How to provide the transformation to the programmer?
⇒ type constructor classes, rank-2 types

Next:

◮ even more monads?

9

More General Considerations

◮ Was the transformation semantically correct?
⇒ program calculation, monad laws

◮ Is something similar possible for other data types?
⇒ generic development for arbitrary free monads

◮ How to provide the transformation to the programmer?
⇒ type constructor classes, rank-2 types

Next:

◮ even more monads?

◮ dual concepts?

9

More General Considerations

◮ Was the transformation semantically correct?
⇒ program calculation, monad laws

◮ Is something similar possible for other data types?
⇒ generic development for arbitrary free monads

◮ How to provide the transformation to the programmer?
⇒ type constructor classes, rank-2 types

Next:

◮ even more monads?

◮ dual concepts?

◮ . . . ?

9

References

K. Claessen and R.J.M. Hughes.
QuickCheck: A lightweight tool for random testing of Haskell
programs.
In International Conference on Functional Programming,

Proceedings, pages 268–279. ACM Press, 2000.

W. Swierstra and T. Altenkirch.
Beauty in the beast: A functional semantics for the awkward
squad.
In Haskell Workshop, Proceedings, pages 25–36. ACM Press,
2007.

W. Swierstra.
Data types à la carte.
Journal of Functional Programming, 18(4):423–436, 2008.

10

	An Example Application
	References

