Programming Language Approaches to Bidirectional Transformation

Janis Voigtländer

University of Bonn

LDTA'12

concrete syntax \Leftrightarrow abstract syntax

database source \Leftrightarrow materialized view

document representation \Leftrightarrow screen visualization

software model \Leftrightarrow code

abstract datatype \Leftrightarrow actual implementation

program input \Leftrightarrow program output

abstract syntax concrete syntax \Leftrightarrow database source materialized view \Leftrightarrow document representation screen visualization \Leftrightarrow software model code \Leftrightarrow actual implementation abstract datatype \Leftrightarrow program input program output \Leftrightarrow

unless bijective, typically additional information needed/useful

unless bijective, typically additional information needed/useful:

 about connections between A and B (objects)

unless bijective, typically additional information needed/useful:

- about connections between A and B (objects)
- about the updates on either side

unless bijective, typically additional information needed/useful:

- about connections between A and B (objects)
- about the updates on either side

A closer look at representing $a_{i_1,...}, b_i$ connections. For example:

A closer look at representing $a_{i_1,...}, b_i$ connections. For example:

A closer look at representing $a_{i_1} \cdot b_i$ connections. For example:

Why is it not enough to look just at the data?

Ζ

A closer look at representing $a_{i_1} b_i$ connections. For example:

Why is it not enough to look just at the data?

Ζ

Ζ

U

 $\frac{x}{x}$

x

- What artefacts need to be specified?
 - both to and from
 - only one of them, the other derived
 - ▶ a more abstract artefact, from which both derivable

- What artefacts need to be specified?
 - both to and from
 - only one of them, the other derived
 - ▶ a more abstract artefact, from which both derivable
- How are they specified, manipulated, analyzed?

- What artefacts need to be specified?
 - both to and from
 - only one of them, the other derived
 - ▶ a more abstract artefact, from which both derivable
- How are they specified, manipulated, analyzed?
- What properties are they expected to have?

- What artefacts need to be specified?
 - both to and from
 - only one of them, the other derived
 - ▶ a more abstract artefact, from which both derivable
- How are they specified, manipulated, analyzed?
- What properties are they expected to have?
- What influence does a user, modeller, programmer have?

Some further relevant aspects:

- What artefacts need to be specified?
 - both to and from
 - only one of them, the other derived
 - ▶ a more abstract artefact, from which both derivable
- How are they specified, manipulated, analyzed?
- What properties are they expected to have?
- What influence does a user, modeller, programmer have?

answers/approaches vary with field

A specific (asymmetric) setting:

GetPut law

A specific (asymmetric) setting:

GetPut law

Bidirectional Transformations

A specific (asymmetric) setting:

PutGet law

Bidirectional Transformations

A specific (asymmetric) setting:

Bidirectional Transformations

A specific (asymmetric) setting:

A simple example:

$$\begin{array}{l} \texttt{get} :: [\alpha] \to [\alpha] \\ \texttt{get} [] &= [] \\ \texttt{get} [x] &= [] \\ \texttt{get} (x: y: zs) = y: (\texttt{get} zs) \end{array}$$

A simple example:

$$\begin{array}{l} \texttt{get} :: [\alpha] \to [\alpha] \\ \texttt{get} [] &= [] \\ \texttt{get} [x] &= [] \\ \texttt{get} (x: y: zs) = y: (\texttt{get} zs) \end{array}$$

A simple example:

$$\begin{array}{l} \texttt{get} :: [\alpha] \to [\alpha] \\ \texttt{get} [] &= [] \\ \texttt{get} [x] &= [] \\ \texttt{get} (x : y : zs) = y : (\texttt{get} zs) \end{array}$$

One possible backwards transformation:

A simple example:

$$\begin{array}{l} \texttt{get} :: [\alpha] \to [\alpha] \\ \texttt{get} [] &= [] \\ \texttt{get} [x] &= [] \\ \texttt{get} (x : y : zs) = y : (\texttt{get} zs) \end{array}$$

One possible backwards transformation:

Programming Language Approaches

There has been, and is ongoing, great work in the "lenses" PL/DSLs tradition [Foster et al., ACM TOPLAS'07, ...]. Not covered today.

Programming Language Approaches

There has been, and is ongoing, great work in the "lenses" PL/DSLs tradition [Foster et al., ACM TOPLAS'07, ...]. Not covered today.

We will mention/look at:

- syntactic program transformation
- semantic/type-based transformation
- benefits of higher-order types and abstraction
- search-based program synthesis (if time permits, otherwise see PEPM'12 short paper)

Given

$$\texttt{get}::S\to V$$

Given

$$\texttt{get}::S\to V$$

define a C and

 $\texttt{res}::S\to C$

Given

$$\texttt{get}::S\to V$$

define a C and

 $\texttt{res}::S\to C$

such that

$$paired = \lambda s \rightarrow (get \ s, res \ s)$$

is injective

Given

$$\texttt{get}::S\to V$$

define a C and

 $\texttt{res}::S\to C$

such that

$$paired = \lambda s \rightarrow (get s, res s)$$

is injective and has an inverse $inv :: (V, C) \rightarrow S$.

Given

$$\texttt{get}::S\to V$$

define a C and

 $\texttt{res}::S\to C$

such that

$$\texttt{paired} = \lambda s \rightarrow (\texttt{get } s, \texttt{res } s)$$

is injective and has an inverse $inv :: (V, C) \rightarrow S$.

Then:

put ::
$$V \rightarrow S \rightarrow S$$

put $v' \ s = inv \ (v', res \ s)$

Given

$$\texttt{get}::S\to V$$

define a C and

res :: $S \rightarrow C$

such that

$$extsf{paired} = \lambda s
ightarrow (extsf{get} \ s, extsf{res} \ s)$$

is injective and has an inverse inv :: $(V, C) \rightarrow S$. has to be effective! Then:

put ::
$$V \rightarrow S \rightarrow S$$

put $v' \ s = inv \ (v', res \ s)$

Guarantees "very-well-behavedness":

• put (get s) s = s

• get (put
$$v' s$$
) = v'

• put v'' (put v' s) = put v'' s

Guarantees "very-well-behavedness":

• put (get s) s = s

• get (put
$$v' s$$
) = v'

 $\blacktriangleright \text{ put } v'' \text{ (put } v' \text{ s)} = \text{put } v'' \text{ s}$

Example:

 $\begin{array}{l} \texttt{get} :: \mathsf{Nat} \to \mathsf{Nat} \\ \texttt{get} \ n = n \ \texttt{`div'} \ 2 \end{array}$

Guarantees "very-well-behavedness":

• put (get s) s = s

• get (put
$$v' s$$
) = v'

 $\blacktriangleright \text{ put } v'' \text{ (put } v' \text{ s)} = \text{put } v'' \text{ s}$

Example:

Guarantees "very-well-behavedness":

• put (get s) s = s

• get (put
$$v' s$$
) = v'

 $\blacktriangleright \text{ put } v'' \text{ (put } v' \text{ s)} = \text{put } v'' \text{ s}$

Example:

$$\texttt{inv} :: (\mathsf{Nat}, \mathsf{Nat}_2) \to \mathsf{Nat}$$

 $\texttt{inv} (\mathbf{v}', \mathbf{c}) = 2 * \mathbf{v}' + \mathbf{c}$

Example:

$$inv(v', c) = 2 * v' + c$$

Example:

Then:

put :: Nat
$$\rightarrow$$
 Nat \rightarrow Nat
put $v' \ s = inv \ (v', res \ s)$

Example:

Then:

put :: Nat
$$\rightarrow$$
 Nat \rightarrow Nat
put v' $s = inv (v', res s)$
 $= 2 * v' + s \mod 2$

Example:

$$\begin{array}{ccc} \texttt{get} :: \mathsf{Nat} \to \mathsf{Nat} & \texttt{res} :: \mathsf{Nat} \to \mathsf{Nat}_2 \\ \texttt{get} & n = n \; \texttt{`div'} \; 2 & \texttt{res} \; n = n \; \texttt{`mod'} \; 2 \\ & \texttt{inv} :: (\mathsf{Nat}, \mathsf{Nat}_2) \to \mathsf{Nat} \\ & \texttt{inv} \; (v', c) = 2 * v' + c \end{array} \; \begin{array}{c} \texttt{other choices} \\ \texttt{possible, and} \\ \texttt{give different} \end{array}$$

Then:

put :: Nat
$$\rightarrow$$
 Nat \rightarrow Nat
put v' $s = inv (v', res s)$
 $= 2 * v' + s \mod 2$

behavior

Let:

$$get :: [\alpha] \rightarrow [\alpha]$$

$$get [] = []$$

$$get [x] = []$$

$$get (x : y : zs) = y : (get zs)$$

Let:

$$\begin{array}{l} \texttt{get} :: [\alpha] \to [\alpha] \\ \texttt{get} [] &= [] \\ \texttt{get} [x] &= [] \\ \texttt{get} (x: y: zs) = y: (\texttt{get} zs) \end{array}$$

A syntactically derived complement function:

$$\begin{array}{l} \texttt{res} \left[\right] &= \mathsf{C}_1 \\ \texttt{res} \left[x \right] &= \mathsf{C}_2 \ x \\ \texttt{res} \left(x : y : zs \right) = \mathsf{C}_3 \ x \ (\texttt{res} \ zs) \end{array}$$

A syntactically derived complement function:

$$\begin{array}{l} \operatorname{res} \left[\right] &= \mathsf{C}_1 \\ \operatorname{res} \left[x \right] &= \mathsf{C}_2 \ x \\ \operatorname{res} \left(x : y : zs \right) = \mathsf{C}_3 \ x \ (\operatorname{res} \ zs) \end{array}$$

Syntactic pairing:

Syntactic pairing:

Syntactic inversion:

inv ([] ,
$$C_1$$
) = []
inv ([] , $C_2 x$) = [x]
inv (y: v, $C_3 x c$) = x : y : zs
where $zs = inv (v, c)$

Syntactic inversion:

$$inv([], C_1) = []$$

 $inv([], C_2 x) = [x]$
 $inv(y: v, C_3 x c) = x: y: zs$
where $zs = inv(v, c)$

Then,

put
$$v' \ s = inv \ (v', res \ s)$$

Syntactic inversion:

$$inv([], C_1) = []$$

 $inv([], C_2 x) = [x]$
 $inv(y: v, C_3 x c) = x: y: zs$
where $zs = inv(v, c)$

Then,

put
$$v' \ s = inv \ (v', res \ s)$$

corresponds to (the earlier seen):

Automatic Bidirectionalization

Syntactic Bidirectionalization [Matsuda et al., ICFP'07]

Automatic Bidirectionalization

Semantic Bidirectionalization [V., POPL'09]

Aim: Write higher-order function bff[†] such that any get and bff get satisfy GetPut, PutGet,

Aim: Write higher-order function bff[†] such that any get and bff get satisfy GetPut, PutGet,

Aim: Write higher-order function bff[†] such that any get and bff get satisfy GetPut, PutGet,

Aim: Write higher-order function bff[†] such that any get and bff get satisfy GetPut, PutGet,

Aim: Write higher-order function bff[†] such that any get and bff get satisfy GetPut, PutGet,

Semantic Bidirectionalization

Aim: Write higher-order function bff[†] such that any get and bff get satisfy GetPut, PutGet,

Examples:

Semantic Bidirectionalization

Aim: Write higher-order function bff[†] such that any get and bff get satisfy GetPut, PutGet,

Examples:

[†] "Bidirectionalization for free!"

Assume we are given some $\texttt{get} :: [\alpha] \to [\alpha]$ How can we, or <code>bff</code>, analyze it without access to its source code?

Assume we are given some get :: $[\alpha] \rightarrow [\alpha]$

How can we, or **bff**, analyze it without access to its source code?

Idea: How about applying get to some input?

Assume we are given some $\texttt{get}::[\alpha] \to [\alpha]$

How can we, or **bff**, analyze it without access to its source code?

Idea: How about applying get to some input?

Like:
get
$$[1..n] = \begin{cases} [2..n] & \text{if get} = \texttt{tail} \\ [n..1] & \text{if get} = \texttt{reverse} \\ [1..(\min 5 n)] & \text{if get} = \texttt{take 5} \\ \vdots \end{cases}$$

Like:

$$get [1..n] = \begin{cases} [2..n] & \text{if get} = \texttt{tail} \\ [n..1] & \text{if get} = \texttt{reverse} \\ [1..(\texttt{min 5 } n)] & \text{if get} = \texttt{take 5} \\ \vdots \end{cases}$$

Like:

$$get [1..n] = \begin{cases} [2..n] & \text{if get} = \texttt{tail} \\ [n..1] & \text{if get} = \texttt{reverse} \\ [1..(\texttt{min 5 } n)] & \text{if get} = \texttt{take 5} \\ \vdots \end{cases}$$

Like:

$$get [1..n] = \begin{cases} [2..n] & \text{if get} = \texttt{tail} \\ [n..1] & \text{if get} = \texttt{reverse} \\ [1..(\texttt{min 5 } n)] & \text{if get} = \texttt{take 5} \\ \vdots \end{cases}$$

Like:

$$get [1..n] = \begin{cases} [2..n] & \text{if get} = \texttt{tail} \\ [n..1] & \text{if get} = \texttt{reverse} \\ [1..(\texttt{min 5 } n)] & \text{if get} = \texttt{take 5} \\ \vdots \end{cases}$$

Like:

$$get [1..n] = \begin{cases} [2..n] & \text{if get} = \texttt{tail} \\ [n..1] & \text{if get} = \texttt{reverse} \\ [1..(\texttt{min 5 } n)] & \text{if get} = \texttt{take 5} \\ \vdots \end{cases}$$

Like:

$$get [1..n] = \begin{cases} [2..n] & \text{if get} = \texttt{tail} \\ [n..1] & \text{if get} = \texttt{reverse} \\ [1..(\texttt{min 5 } n)] & \text{if get} = \texttt{take 5} \\ \vdots \end{cases}$$

Like:

$$get [1..n] = \begin{cases} [2..n] & \text{if get} = \texttt{tail} \\ [n..1] & \text{if get} = \texttt{reverse} \\ [1..(\texttt{min 5 } n)] & \text{if get} = \texttt{take 5} \\ \vdots \end{cases}$$

Indeed, this gives us traceability for free:

Then transfer the gained insights to arbitrary lists!

Taking Stock of Automatic Bidirectionalization

[Matsuda et al., ICFP'07]:

- depends on syntactic restraints
- allows (ad-hoc) some shape-changing updates

Taking Stock of Automatic Bidirectionalization

[Matsuda et al., ICFP'07]:

- depends on syntactic restraints
- allows (ad-hoc) some shape-changing updates
- [V., POPL'09]:
 - very lightweight, easy access to bidirectionality
 - essential role: polymorphic function types
 - major problem: rejects shape-changing updates

Taking Stock of Automatic Bidirectionalization

[Matsuda et al., ICFP'07]:

- depends on syntactic restraints
- allows (ad-hoc) some shape-changing updates
- [V., POPL'09]:
 - very lightweight, easy access to bidirectionality
 - essential role: polymorphic function types
 - major problem: rejects shape-changing updates
- [V. et al., ICFP'10]:
 - synthesis of the two techniques
 - inherits limitations in program coverage from both
 - strictly better in terms of updatability than either

References I

- F. Bancilhon and N. Spyratos.
 Update semantics of relational views.
 ACM Transactions on Database Systems, 6(3):557–575, 1981.
- J.N. Foster, M.B. Greenwald, J.T. Moore, B.C. Pierce, and A. Schmitt.

Combinators for bidirectional tree transformations: A linguistic approach to the view-update problem.

ACM Transactions on Programming Languages and Systems, 29(3):17, 2007.

S. Katayama.

Systematic search for lambda expressions.

In Trends in Functional Programming 2005, Revised Selected Papers, pages 111–126. Intellect, 2007.

References II

E. Kitzelmann and U. Schmid. Inductive synthesis of functional programs: An explanation based generalization approach.

Journal of Machine Learning Research, 7:429–454, 2006.

- K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi. Bidirectionalization transformation based on automatic derivation of view complement functions. In International Conference on Functional Programming, Proceedings, pages 47–58. ACM Press, 2007.
- J. Voigtländer, Z. Hu, K. Matsuda, and M. Wang. Combining syntactic and semantic bidirectionalization. In International Conference on Functional Programming, Proceedings, pages 181–192. ACM Press, 2010.

References III

J. Voigtländer.

Bidirectionalization for free!

In Principles of Programming Languages, Proceedings, pages 165-176. ACM Press, 2009.