Programming Language Approaches to
 Bidirectional Transformation

Janis Voigtländer

University of Bonn
LDTA'12

Bidirectional Transformations (BX)

Bidirectional Transformations (BX)

concrete syntax
\Leftrightarrow
abstract syntax

Bidirectional Transformations (BX)

database source
\Leftrightarrow
materialized view

Bidirectional Transformations (BX)

document representation \Leftrightarrow screen visualization

Bidirectional Transformations (BX)

software model
\Leftrightarrow
code

Bidirectional Transformations (BX)

abstract datatype
\Leftrightarrow actual implementation

Bidirectional Transformations (BX)

program input
\Leftrightarrow program output

Bidirectional Transformations (BX)

concrete syntax
database source
document representation
software model
abstract datatype program input
\Leftrightarrow
\Leftrightarrow
\Leftrightarrow
\Leftrightarrow
\Leftrightarrow actual implementation
$\Leftrightarrow \quad$ program output

Bidirectional Transformations

Bidirectional Transformations

Bidirectional Transformations

Bidirectional Transformations

Bidirectional Transformations

Bidirectional Transformations

Bidirectional Transformations

unless bijective, typically additional information needed/useful

Bidirectional Transformations

unless bijective, typically additional information needed/useful:

- about connections between A and B (objects)

Bidirectional Transformations

unless bijective, typically additional information needed/useful:

- about connections between A and B (objects)
- about the updates on either side

Bidirectional Transformations

unless bijective, typically additional information needed/useful:

- about connections between A and B (objects)
- about the updates on either side

Bidirectional Transformations

A closer look at representing $\cdot a_{i} \ldots . . . b_{i}$ connections.
For example:

Bidirectional Transformations

A closer look at representing $\cdot a_{i} \ldots . . . b_{i}$ connections.
For example:

Bidirectional Transformations

A closer look at representing $\cdot a_{i} \ldots . . . b_{i}$ connections.
For example:

Bidirectional Transformations

A closer look at representing $\cdot a_{i} \ldots . . . b_{i}$ connections.
For example:

Bidirectional Transformations

A closer look at representing $\cdot a_{i} \ldots . . . b_{i}$ connections.
For example:

Why is it not enough to look just at the data?

x
y
z
u
v

x
y
z
u

Bidirectional Transformations

A closer look at representing $\cdot a_{i} \ldots . . . b_{i}$ connections.
For example:

Why is it not enough to look just at the data?

x
y
z
u
v

Because of:

X
X
X
X
X

X
X
X
X

Bidirectional Transformations

Some further relevant aspects:

- What artefacts need to be specified?
- both to and from
- only one of them, the other derived
- a more abstract artefact, from which both derivable

Bidirectional Transformations

Some further relevant aspects:

- What artefacts need to be specified?
- both to and from
- only one of them, the other derived
- a more abstract artefact, from which both derivable
- How are they specified, manipulated, analyzed?

Bidirectional Transformations

Some further relevant aspects:

- What artefacts need to be specified?
- both to and from
- only one of them, the other derived
- a more abstract artefact, from which both derivable
- How are they specified, manipulated, analyzed?
- What properties are they expected to have?

Bidirectional Transformations

Some further relevant aspects:

- What artefacts need to be specified?
- both to and from
- only one of them, the other derived
- a more abstract artefact, from which both derivable
- How are they specified, manipulated, analyzed?
- What properties are they expected to have?
- What influence does a user, modeller, programmer have?

Bidirectional Transformations

Some further relevant aspects:

- What artefacts need to be specified?
- both to and from
- only one of them, the other derived
- a more abstract artefact, from which both derivable
- How are they specified, manipulated, analyzed?
- What properties are they expected to have?
- What influence does a user, modeller, programmer have?
answers/approaches vary with field

Bidirectional Transformations

A specific (asymmetric) setting:

GetPut law

Bidirectional Transformations

A specific (asymmetric) setting:

GetPut law

Bidirectional Transformations

A specific (asymmetric) setting:

PutGet law

Bidirectional Transformations

A specific (asymmetric) setting:

PutGet law

Bidirectional Transformations

A specific (asymmetric) setting:

Bidirectionalization "by Hand"

A simple example:

$$
\begin{aligned}
& \operatorname{get}::[\alpha] \rightarrow[\alpha] \\
& \operatorname{get}[] \quad=[] \\
& \operatorname{get}[x] \quad=[] \\
& \operatorname{get}(x: y: z s) \\
& =y:(\operatorname{get} z s)
\end{aligned}
$$

Bidirectionalization "by Hand"

A simple example:

$$
\begin{aligned}
& \text { get }::[\alpha] \rightarrow[\alpha] \\
& \operatorname{get}[] \quad=[] \\
& \operatorname{get}[x] \quad=[] \\
& \operatorname{get}(x: y: z s) \\
& =y:(\operatorname{get} z s)
\end{aligned}
$$

Bidirectionalization "by Hand"

A simple example:

$$
\begin{aligned}
& \text { get }::[\alpha] \rightarrow[\alpha] \\
& \operatorname{get}[] \quad=[] \\
& \operatorname{get}[x] \quad=[] \\
& \operatorname{get}(x: y: z s) \\
& =y:(\operatorname{get} z s)
\end{aligned}
$$

One possible backwards transformation:

$$
\begin{array}{lll}
\text { put [] } & {[]} & =[] \\
\text { put [] } & {[x]} & =[x] \\
\text { put }\left(y^{\prime}: v^{\prime}\right)(x: y: z s) & =x: y^{\prime}:\left(\text { put } v^{\prime} z s\right)
\end{array}
$$

Bidirectionalization "by Hand"

A simple example:

$$
\begin{aligned}
& \text { get }::[\alpha] \rightarrow[\alpha] \\
& \text { get }[] \quad=[] \\
& \operatorname{get}[x] \quad=[] \\
& \operatorname{get}(x: y: z s) \\
& =y:(\text { get } z s)
\end{aligned}
$$

One possible backwards transformation:

$$
\begin{array}{lll}
\text { put [] } & {[]} & =[] \\
\text { put [] } \quad[x] & =[x] \quad \text { not tot } \\
\text { put }\left(y^{\prime}: v^{\prime}\right)(x: y: z s) & =x: y^{\prime}:\left(\text { put } v^{\prime} z s\right)
\end{array}
$$

Programming Language Approaches

There has been, and is ongoing, great work in the "lenses" PL/DSLs tradition [Foster et al., ACM TOPLAS'07, ...]. Not covered today.

Programming Language Approaches

There has been, and is ongoing, great work in the "lenses" PL/DSLs tradition [Foster et al., ACM TOPLAS'07, ...]. Not covered today.

We will mention/look at:

- syntactic program transformation
- semantic/type-based transformation
- benefits of higher-order types and abstraction
- search-based program synthesis (if time permits, otherwise see PEPM'12 short paper)

A Principled Approach: Constant-Complement [Bancilhon \& Spyratos, ACM TODS'81]

Given

$$
\text { get }:: S \rightarrow V
$$

A Principled Approach: Constant-Complement [Bancilhon \& Spyratos, ACM TODS'81]

Given

$$
\text { get }:: S \rightarrow V
$$

define a C and

$$
\text { res }:: S \rightarrow C
$$

A Principled Approach: Constant-Complement [Bancilhon \& Spyratos, ACM TODS'81]

Given

$$
\text { get }:: S \rightarrow V
$$

define a C and

$$
\text { res }:: S \rightarrow C
$$

such that

$$
\text { paired }=\lambda s \rightarrow(\text { get } s, \text { res } s)
$$

is injective

A Principled Approach: Constant-Complement [Bancilhon \& Spyratos, ACM TODS'81]

Given

$$
\text { get }:: S \rightarrow V
$$

define a C and

$$
\text { res }:: S \rightarrow C
$$

such that

$$
\text { paired }=\lambda s \rightarrow(\text { get } s, \text { res } s)
$$

is injective and has an inverse inv $::(V, C) \rightarrow S$.

A Principled Approach: Constant-Complement [Bancilhon \& Spyratos, ACM TODS'81]

Given

$$
\text { get }:: S \rightarrow V
$$

define a C and

$$
\text { res }:: S \rightarrow C
$$

such that

$$
\text { paired }=\lambda s \rightarrow(\text { get } s, \text { res } s)
$$

is injective and has an inverse inv $::(V, C) \rightarrow S$.
Then:

$$
\begin{aligned}
& \text { put }:: V \rightarrow S \rightarrow S \\
& \text { put } v^{\prime} s=\operatorname{inv}\left(v^{\prime}, \text { res } s\right)
\end{aligned}
$$

A Principled Approach: Constant-Complement [Bancilhon \& Spyratos, ACM TODS'81]

Given

$$
\text { get }:: S \rightarrow V
$$

define a C and

$$
\text { res }:: S \rightarrow C
$$

such that

$$
\text { paired }=\lambda s \rightarrow(\text { get } s, \text { res } s)
$$

is injective and has an inverse inv $::(V, C) \rightarrow S$.
has to be effective!
Then:

$$
\begin{aligned}
& \text { put }:: V \rightarrow S \rightarrow S \\
& \text { put } v^{\prime} s=\operatorname{inv}\left(v^{\prime}, \text { res } s\right)
\end{aligned}
$$

A Principled Approach: Constant-Complement

Guarantees "very-well-behavedness":

- put (get s) $s=s$
- get $\left(\right.$ put $\left.v^{\prime} s\right)=v^{\prime}$
- put $v^{\prime \prime}\left(\right.$ put $\left.v^{\prime} s\right)=$ put $v^{\prime \prime} s$

A Principled Approach: Constant-Complement

Guarantees "very-well-behavedness":

- put (get s) $s=s$
- get $\left(\right.$ put $\left.v^{\prime} s\right)=v^{\prime}$
- put $v^{\prime \prime}\left(\right.$ put $\left.v^{\prime} s\right)=$ put $v^{\prime \prime} s$

Example:

$$
\begin{aligned}
& \text { get }:: \text { Nat } \rightarrow \text { Nat } \\
& \text { get } n=n \operatorname{div}^{\prime} 2
\end{aligned}
$$

A Principled Approach: Constant-Complement

Guarantees "very-well-behavedness":

- put (get s) $s=s$
- get $\left(\right.$ put $\left.v^{\prime} s\right)=v^{\prime}$
- put $v^{\prime \prime}$ (put $\left.v^{\prime} s\right)=$ put $v^{\prime \prime} s$

Example:

$$
\begin{array}{ll}
\text { get }:: \text { Nat } \rightarrow \text { Nat } & \text { res }:: \text { Nat } \rightarrow \text { Nat }_{2} \\
\text { get } n=n \text { div' }^{\prime} 2 & \text { res } n=n \text { 'mod' }^{\prime} 2
\end{array}
$$

A Principled Approach: Constant-Complement

Guarantees "very-well-behavedness":

- put (get s) $s=s$
- get $\left(\right.$ put $\left.v^{\prime} s\right)=v^{\prime}$
- put $v^{\prime \prime}$ (put $\left.v^{\prime} s\right)=$ put $v^{\prime \prime} s$

Example:

$$
\begin{aligned}
& \text { get }:: \text { Nat } \rightarrow \text { Nat } \quad \text { res }:: \text { Nat } \rightarrow \text { Nat }_{2} \\
& \text { get } n=n \text { 'div' } 2 \quad \text { res } n=n \text { mod' }^{2} \\
& \text { inv }::(\text { Nat, Nat } 2) \rightarrow \text { Nat } \\
& \text { inv }\left(v^{\prime}, c\right)=2 * v^{\prime}+c
\end{aligned}
$$

A Principled Approach: Constant-Complement

Example:

$$
\begin{aligned}
& \text { get }:: \text { Nat } \rightarrow \text { Nat } \quad \text { res }:: \text { Nat } \rightarrow \text { Nat }_{2} \\
& \text { get } n=n \text { 'div' } 2 \quad \text { res } n=n \text { 'mod' } 2 \\
& \text { inv }::(\text { Nat, Nat } 2) \rightarrow \text { Nat } \\
& \text { inv }\left(v^{\prime}, c\right)=2 * v^{\prime}+c
\end{aligned}
$$

A Principled Approach: Constant-Complement

Example:

$$
\begin{gathered}
\text { get }:: \text { Nat } \rightarrow \text { Nat } \quad \text { res }:: \text { Nat } \rightarrow \text { Nat }_{2} \\
\text { get } n=n \text { 'div' } 2 \quad \text { res } n=n \text { mod' }^{2} \\
\text { inv }::(\text { Nat, Nat } 2) \rightarrow \text { Nat } \\
\text { inv }\left(v^{\prime}, c\right)=2 * v^{\prime}+c
\end{gathered}
$$

Then:
put :: Nat \rightarrow Nat \rightarrow Nat put $v^{\prime} s=\operatorname{inv}\left(v^{\prime}\right.$, res $\left.s\right)$

A Principled Approach: Constant-Complement

Example:

$$
\begin{aligned}
& \text { get }:: \text { Nat } \rightarrow \text { Nat } \quad \text { res }:: \text { Nat } \rightarrow \text { Nat }_{2} \\
& \text { get } n=n \text { 'div' } 2 \quad \text { res } n=n \text { 'mod' } 2 \\
& \text { inv }::(\text { Nat, Nat } 2) \rightarrow \text { Nat } \\
& \text { inv }\left(v^{\prime}, c\right)=2 * v^{\prime}+c
\end{aligned}
$$

Then:
put :: Nat \rightarrow Nat \rightarrow Nat put $v^{\prime} s=\operatorname{inv}\left(v^{\prime}\right.$, res $\left.s\right)$

$$
=2 * v^{\prime}+s \bmod ^{\prime} 2
$$

A Principled Approach: Constant-Complement

Example:

$$
\begin{array}{ll}
\text { get }:: \text { Nat } \rightarrow \text { Nat } \quad \text { res }:: \text { Nat } \rightarrow \text { Nat }_{2} \\
\text { get } n=n \text { 'div' } 2 & \text { res } n=n \text { 'mod' } 2
\end{array}
$$

Then:

$$
\begin{aligned}
& \text { put }:: \text { Nat } \rightarrow \text { Nat } \rightarrow \text { Nat } \\
& \text { put } \begin{aligned}
v^{\prime} s & =\operatorname{inv}\left(v^{\prime}, \text { res } s\right) \\
& =2 * v^{\prime}+s s^{\prime} \bmod ^{\prime} 2
\end{aligned}
\end{aligned}
$$

Automatic Bidirectionalization by Example

Let:

$$
\begin{aligned}
& \text { get }::[\alpha] \rightarrow[\alpha] \\
& \operatorname{get}[] \quad=[] \\
& \operatorname{get}[x] \quad=[] \\
& \operatorname{get}(x: y: z s) \\
& =y:(\operatorname{get} z s)
\end{aligned}
$$

Automatic Bidirectionalization by Example

Let:

$$
\begin{aligned}
& \text { get }::[\alpha] \rightarrow[\alpha] \\
& \operatorname{get}[] \quad=[] \\
& \operatorname{get}[x] \quad=[] \\
& \operatorname{get}(x: y: z s) \\
& =y:(\text { get } z s)
\end{aligned}
$$

A syntactically derived complement function:

$$
\begin{array}{ll}
\text { res }[] & =C_{1} \\
\text { res }[x] & =C_{2} x \\
\operatorname{res}(x: y: z s) & =C_{3} x(\text { res } z s)
\end{array}
$$

Automatic Bidirectionalization by Example

A syntactically derived complement function:

$$
\begin{array}{ll}
\operatorname{res}[] & =C_{1} \\
\operatorname{res}[x] & =C_{2} x \\
\operatorname{res}(x: y: z s) & =C_{3} x(\text { res } z s)
\end{array}
$$

Syntactic pairing:

$$
\begin{aligned}
\text { paired }[] & =\left([] \quad, C_{1}\right) \\
\text { paired }[x] & =([] \\
\text { paired }(x: y: z s)= & \left(y: v, C_{2} x\right) \\
& \text { where }(v, c)=\text { paired } z s
\end{aligned}
$$

Automatic Bidirectionalization by Example

Syntactic pairing:

$$
\begin{aligned}
\text { paired }[] & =\left([] \quad, C_{1}\right) \\
\text { paired }[x] & =([] \\
\text { paired }(x: y: z s)= & \left(y: v, C_{2} x\right) \\
& \text { where }(v, c)=\text { paired } z s
\end{aligned}
$$

Syntactic inversion:

$$
\begin{aligned}
\operatorname{inv}\left([] \quad, C_{1}\right)= & {[] } \\
\operatorname{inv}\left([], C_{2} x\right)= & {[x] } \\
\operatorname{inv}\left(y: v, C_{3} x c\right)= & x: y: z s \\
& \quad \text { where } z s=\operatorname{inv}(v, c)
\end{aligned}
$$

Automatic Bidirectionalization by Example

Syntactic inversion:

$$
\begin{aligned}
\operatorname{inv}\left([] \quad, C_{1}\right)= & {[] } \\
\operatorname{inv}\left([], C_{2} x\right)= & {[x] } \\
\operatorname{inv}\left(y: v, C_{3} x c\right)= & x: y: z s \\
& \quad \text { where } z s=\operatorname{inv}(v, c)
\end{aligned}
$$

Then,

$$
\text { put } v^{\prime} s=\operatorname{inv}\left(v^{\prime}, \text { res } s\right)
$$

Automatic Bidirectionalization by Example

Syntactic inversion:

$$
\begin{aligned}
\operatorname{inv}\left([] \quad, C_{1}\right)= & {[] } \\
\operatorname{inv}\left([], C_{2} x\right)= & {[x] } \\
\operatorname{inv}\left(y: v, C_{3} x c\right)= & x: y: z s \\
& \quad \text { where } z s=\operatorname{inv}(v, c)
\end{aligned}
$$

Then,

$$
\text { put } v^{\prime} s=\operatorname{inv}\left(v^{\prime}, \text { res } s\right)
$$

corresponds to (the earlier seen):

$$
\begin{array}{lll}
\text { put [] } \quad[] & =[] \\
\text { put [] } & {[x]} & =[x] \\
\text { put }\left(y^{\prime}: v^{\prime}\right)(x: y: z s) & =x: y^{\prime}:\left(\text { put } v^{\prime} z s\right)
\end{array}
$$

Automatic Bidirectionalization

Syntactic Bidirectionalization
[Matsuda et al., ICFP'07]

Automatic Bidirectionalization

Semantic Bidirectionalization
[V., POPL'09]

Semantic Bidirectionalization

Aim: Write higher-order function $\mathrm{bff}{ }^{\dagger}$ such that any get and bff get satisfy GetPut, PutGet,

Semantic Bidirectionalization

Aim: Write higher-order function $\mathrm{bff}{ }^{\dagger}$ such that any get and bff get satisfy GetPut, PutGet,

Examples:

$$
\text { "abc" } \xrightarrow{\text { tail }} \text { "bc" }
$$

Semantic Bidirectionalization

Aim: Write higher-order function $\mathrm{bff}{ }^{\dagger}$ such that any get and bff get satisfy GetPut, PutGet,

Examples:

Semantic Bidirectionalization

Aim: Write higher-order function $\mathrm{bff}^{\dagger}{ }^{\dagger}$ such that any get and bff get satisfy GetPut, PutGet,

Examples:

Semantic Bidirectionalization

Aim: Write higher-order function $\mathrm{bff}^{\dagger}{ }^{\dagger}$ such that any get and bff get satisfy GetPut, PutGet,

Examples:

Semantic Bidirectionalization

Aim: Write higher-order function $\mathrm{bff}^{\dagger}{ }^{\dagger}$ such that any get and bff get satisfy GetPut, PutGet,

Examples:

Semantic Bidirectionalization

Aim: Write higher-order function $\mathrm{bff}{ }^{\dagger}$ such that any get and bff get satisfy GetPut, PutGet,

Examples:

Analyzing Specific Instances

Assume we are given some

$$
\text { get }::[\alpha] \rightarrow[\alpha]
$$

How can we, or bff, analyze it without access to its source code?

Analyzing Specific Instances

Assume we are given some

$$
\text { get }::[\alpha] \rightarrow[\alpha]
$$

How can we, or bff, analyze it without access to its source code?

Idea: How about applying get to some input?

Analyzing Specific Instances

Assume we are given some

$$
\text { get }::[\alpha] \rightarrow[\alpha]
$$

How can we, or bff, analyze it without access to its source code?

Idea: How about applying get to some input?
Like:

$$
\text { get }[1 . . n]= \begin{cases}{[2 . . n]} & \text { if get }=\text { tail } \\ {[n . .1]} & \text { if get }=\text { reverse } \\ {[1 . .(\min 5 n)]} & \text { if get }=\text { take } 5 \\ \vdots & \end{cases}
$$

Analyzing Specific Instances

Like:

$$
\text { get }[1 . . n]= \begin{cases}{[2 . . n]} & \text { if get = tail } \\ {[n . .1]} & \text { if get = reverse } \\ {[1 . .(\min 5 n)]} & \text { if get=take 5 } \\ \vdots\end{cases}
$$

Indeed, this gives us traceability for free:

Analyzing Specific Instances

Like:

$$
\operatorname{get}[1 . . n]= \begin{cases}{[2 . . n]} & \text { if get = tail } \\ {[n . .1]} & \text { if get = reverse } \\ {[1 . .(\min 5 n)]} & \text { if get=take 5 } \\ \vdots\end{cases}
$$

Indeed, this gives us traceability for free:

tail	
1	$\xrightarrow[2]{2}$
2	3
3	4
4	5
5	

Analyzing Specific Instances

Like:

$$
\text { get }[1 . . n]= \begin{cases}{[2 . . n]} & \text { if get = tail } \\ {[n . .1]} & \text { if get = reverse } \\ {[1 . .(\min 5 n)]} & \text { if get=take 5 } \\ \vdots\end{cases}
$$

Indeed, this gives us traceability for free:

Analyzing Specific Instances

Like:

$$
\text { get }[1 . . n]= \begin{cases}{[2 . . n]} & \text { if get }=\text { tail } \\ {[n . .1]} & \text { if get }=\text { reverse } \\ {[1 . .(\min 5 n)]} & \text { if get }=\text { take } 5 \\ & \vdots\end{cases}
$$

Indeed, this gives us traceability for free:

Analyzing Specific Instances

Like:

$$
\text { get }[1 . . n]= \begin{cases}{[2 . . n]} & \text { if get=tail } \\ {[n . .1]} & \text { if get = reverse } \\ {[1 . .(\min 5 n)]} & \text { if get=take } 5 \\ \vdots\end{cases}
$$

Indeed, this gives us traceability for free:

Analyzing Specific Instances

Like:

$$
\text { get }[1 . . n]= \begin{cases}{[2 . . n]} & \text { if get=tail } \\ {[n . .1]} & \text { if get = reverse } \\ {[1 . .(\min 5 n)]} & \text { if get=take } 5 \\ \vdots\end{cases}
$$

Indeed, this gives us traceability for free:

Analyzing Specific Instances

Like:

$$
\text { get }[1 . . n]= \begin{cases}{[2 . . n]} & \text { if get }=\text { tail } \\ {[n . .1]} & \text { if get }=\text { reverse } \\ {[1 . .(\min 5 n)]} & \text { if get }=\text { take } 5 \\ & \vdots\end{cases}
$$

Indeed, this gives us traceability for free:

Then transfer the gained insights to arbitrary lists!

Semantic Bidirectionalization by Example

Semantic Bidirectionalization by Example

$$
\begin{aligned}
& \text { 'b' 'x' 'c' 'a' }
\end{aligned}
$$

Semantic Bidirectionalization by Example

Semantic Bidirectionalization by Example

$$
\begin{aligned}
& \text { 'b' 'x' 'c' 'a' }
\end{aligned}
$$

Taking Stock of Automatic Bidirectionalization

[Matsuda et al., ICFP'07]:

- depends on syntactic restraints
- allows (ad-hoc) some shape-changing updates

Taking Stock of Automatic Bidirectionalization

[Matsuda et al., ICFP'07]:

- depends on syntactic restraints
- allows (ad-hoc) some shape-changing updates
[V., POPL'09]:
- very lightweight, easy access to bidirectionality
- essential role: polymorphic function types
- major problem: rejects shape-changing updates

Taking Stock of Automatic Bidirectionalization

[Matsuda et al., ICFP'07]:

- depends on syntactic restraints
- allows (ad-hoc) some shape-changing updates
[V., POPL'09]:
- very lightweight, easy access to bidirectionality
- essential role: polymorphic function types
- major problem: rejects shape-changing updates
[V. et al., ICFP'10]:
- synthesis of the two techniques
- inherits limitations in program coverage from both
- strictly better in terms of updatability than either

References I

F. Bancilhon and N. Spyratos.

Update semantics of relational views.
ACM Transactions on Database Systems, 6(3):557-575, 1981.
雷 J.N. Foster, M.B. Greenwald, J.T. Moore, B.C. Pierce, and A. Schmitt.
Combinators for bidirectional tree transformations: A linguistic approach to the view-update problem.
ACM Transactions on Programming Languages and Systems, 29(3):17, 2007.
國
S. Katayama.

Systematic search for lambda expressions.
In Trends in Functional Programming 2005, Revised Selected Papers, pages 111-126. Intellect, 2007.

References II

E. Kitzelmann and U. Schmid.

Inductive synthesis of functional programs: An explanation based generalization approach.
Journal of Machine Learning Research, 7:429-454, 2006.
圊 K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi. Bidirectionalization transformation based on automatic derivation of view complement functions.
In International Conference on Functional Programming, Proceedings, pages 47-58. ACM Press, 2007.
围 J. Voigtländer, Z. Hu, K. Matsuda, and M. Wang. Combining syntactic and semantic bidirectionalization. In International Conference on Functional Programming, Proceedings, pages 181-192. ACM Press, 2010.

References III

圊 J. Voigtländer.
Bidirectionalization for free!
In Principles of Programming Languages, Proceedings, pages 165-176. ACM Press, 2009.

