
Embarrassingly Simple Generation
of Free Theorems

Stefan Mehner and Janis Voigtländer

March 26th, 2014

Free Theorems

Statements about polymorphic functions based solely on their
types, obtained from relational parametricity [Rey83, Wad89].

For example,

I for every f :: [α]→ [α] and every g and x ,

map g (f x) = f (map g x)

I for every f :: (α→ Bool)→ [α]→ Maybe α and every g , h, x ,

fmap g (f (h ◦ g) x) = f h (map g x)

I for every f :: (α→ Bool)→ α→ Int and every g , h and x ,

f (h ◦ g) x = f h (g x)

I for every f :: (([α]→ Int)→ α)→ α and every g and h,

g (f h) = f (λk → g (h (k ◦map g)))

1

Free Theorems

Statements about polymorphic functions based solely on their
types, obtained from relational parametricity [Rey83, Wad89].

For example,

I for every f :: [α]→ [α] and every g and x ,

map g (f x) = f (map g x)

I for every f :: (α→ Bool)→ [α]→ Maybe α and every g , h, x ,

fmap g (f (h ◦ g) x) = f h (map g x)

I for every f :: (α→ Bool)→ α→ Int and every g , h and x ,

f (h ◦ g) x = f h (g x)

I for every f :: (([α]→ Int)→ α)→ α and every g and h,

g (f h) = f (λk → g (h (k ◦map g)))

1

Free Theorems

Statements about polymorphic functions based solely on their
types, obtained from relational parametricity [Rey83, Wad89].

For example,

I for every f :: [α]→ [α] and every g and x ,

map g (f x) = f (map g x)

I for every f :: (α→ Bool)→ [α]→ Maybe α and every g , h, x ,

fmap g (f (h ◦ g) x) = f h (map g x)

I for every f :: (α→ Bool)→ α→ Int and every g , h and x ,

f (h ◦ g) x = f h (g x)

I for every f :: (([α]→ Int)→ α)→ α and every g and h,

g (f h) = f (λk → g (h (k ◦map g)))

1

Free Theorems

Statements about polymorphic functions based solely on their
types, obtained from relational parametricity [Rey83, Wad89].

For example,

I for every f :: [α]→ [α] and every g and x ,

map g (f x) = f (map g x)

I for every f :: (α→ Bool)→ [α]→ Maybe α and every g , h, x ,

fmap g (f (h ◦ g) x) = f h (map g x)

I for every f :: (α→ Bool)→ α→ Int and every g , h and x ,

f (h ◦ g) x = f h (g x)

I for every f :: (([α]→ Int)→ α)→ α and every g and h,

g (f h) = f (λk → g (h (k ◦map g)))

1

Free Theorems

Statements about polymorphic functions based solely on their
types, obtained from relational parametricity [Rey83, Wad89].

For example,

I for every f :: [α]→ [α] and every g and x ,

map g (f x) = f (map g x)

I for every f :: (α→ Bool)→ [α]→ Maybe α and every g , h, x ,

fmap g (f (h ◦ g) x) = f h (map g x)

I for every f :: (α→ Bool)→ α→ Int and every g , h and x ,

f (h ◦ g) x = f h (g x)

I for every f :: (([α]→ Int)→ α)→ α and every g and h,

g (f h) = f (λk → g (h (k ◦map g)))

1

Free Theorems – How they are usually derived

Take polymorphic type, say f :: (α→ Bool)→ ([α]→ Maybe α),

replace type variables by relation variables, for the example yielding
(R → Bool)→ ([R]→ Maybe R), invoke a parametricity theorem
stating (f , f) ∈ . . . , unfold a given set of definitions, such as:

I base types like Bool and Int are read as identity relations,

I R1 → R2 = {(f , g) | ∀(a, b) ∈ R1. (f a, g b) ∈ R2}
I Maybe R = {(N,N)}∪{(J a, J b) | (a, b) ∈ R}

. . . and then try to massage and simplify the resulting statement.

For example:

(f , f) ∈ (R → id)→ ([R]→ Maybe R)
⇔ [[definition of R1 → R2]]
∀(a, b) ∈ R → id . (f a, f b) ∈ [R]→ Maybe R
⇔ [[again]]
∀(a, b) ∈ R → id , (c , d) ∈ [R].(f a c , f b d) ∈ Maybe R
⇔ . . .

2

Free Theorems – How they are usually derived

Take polymorphic type, say f :: (α→ Bool)→ ([α]→ Maybe α),
replace type variables by relation variables, for the example yielding
(R → Bool)→ ([R]→ Maybe R),

invoke a parametricity theorem
stating (f , f) ∈ . . . , unfold a given set of definitions, such as:

I base types like Bool and Int are read as identity relations,

I R1 → R2 = {(f , g) | ∀(a, b) ∈ R1. (f a, g b) ∈ R2}
I Maybe R = {(N,N)}∪{(J a, J b) | (a, b) ∈ R}

. . . and then try to massage and simplify the resulting statement.

For example:

(f , f) ∈ (R → id)→ ([R]→ Maybe R)
⇔ [[definition of R1 → R2]]
∀(a, b) ∈ R → id . (f a, f b) ∈ [R]→ Maybe R
⇔ [[again]]
∀(a, b) ∈ R → id , (c , d) ∈ [R].(f a c , f b d) ∈ Maybe R
⇔ . . .

2

Free Theorems – How they are usually derived

Take polymorphic type, say f :: (α→ Bool)→ ([α]→ Maybe α),
replace type variables by relation variables, for the example yielding
(R → Bool)→ ([R]→ Maybe R), invoke a parametricity theorem
stating (f , f) ∈ . . . ,

unfold a given set of definitions, such as:

I base types like Bool and Int are read as identity relations,

I R1 → R2 = {(f , g) | ∀(a, b) ∈ R1. (f a, g b) ∈ R2}
I Maybe R = {(N,N)}∪{(J a, J b) | (a, b) ∈ R}

. . . and then try to massage and simplify the resulting statement.

For example:

(f , f) ∈ (R → id)→ ([R]→ Maybe R)
⇔ [[definition of R1 → R2]]
∀(a, b) ∈ R → id . (f a, f b) ∈ [R]→ Maybe R
⇔ [[again]]
∀(a, b) ∈ R → id , (c , d) ∈ [R].(f a c , f b d) ∈ Maybe R
⇔ . . .

2

Free Theorems – How they are usually derived

Take polymorphic type, say f :: (α→ Bool)→ ([α]→ Maybe α),
replace type variables by relation variables, for the example yielding
(R → Bool)→ ([R]→ Maybe R), invoke a parametricity theorem
stating (f , f) ∈ . . . , unfold a given set of definitions, such as:

I base types like Bool and Int are read as identity relations,

I R1 → R2 = {(f , g) | ∀(a, b) ∈ R1. (f a, g b) ∈ R2}
I Maybe R = {(N,N)}∪{(J a, J b) | (a, b) ∈ R}

. . . and then try to massage and simplify the resulting statement.

For example:

(f , f) ∈ (R → id)→ ([R]→ Maybe R)
⇔ [[definition of R1 → R2]]
∀(a, b) ∈ R → id . (f a, f b) ∈ [R]→ Maybe R
⇔ [[again]]
∀(a, b) ∈ R → id , (c , d) ∈ [R].(f a c , f b d) ∈ Maybe R
⇔ . . .

2

Free Theorems – How they are usually derived

Take polymorphic type, say f :: (α→ Bool)→ ([α]→ Maybe α),
replace type variables by relation variables, for the example yielding
(R → Bool)→ ([R]→ Maybe R), invoke a parametricity theorem
stating (f , f) ∈ . . . , unfold a given set of definitions, such as:

I base types like Bool and Int are read as identity relations,

I R1 → R2 = {(f , g) | ∀(a, b) ∈ R1. (f a, g b) ∈ R2}
I Maybe R = {(N,N)}∪{(J a, J b) | (a, b) ∈ R}

. . . and then try to massage and simplify the resulting statement.

For example:

(f , f) ∈ (R → id)→ ([R]→ Maybe R)
⇔ [[definition of R1 → R2]]
∀(a, b) ∈ R → id . (f a, f b) ∈ [R]→ Maybe R
⇔ [[again]]
∀(a, b) ∈ R → id , (c , d) ∈ [R].(f a c , f b d) ∈ Maybe R
⇔ . . .

2

Free Theorems – How they are usually derived

Take polymorphic type, say f :: (α→ Bool)→ ([α]→ Maybe α),
replace type variables by relation variables, for the example yielding
(R → Bool)→ ([R]→ Maybe R), invoke a parametricity theorem
stating (f , f) ∈ . . . , unfold a given set of definitions, such as:

I base types like Bool and Int are read as identity relations,

I R1 → R2 = {(f , g) | ∀(a, b) ∈ R1. (f a, g b) ∈ R2}
I Maybe R = {(N,N)}∪{(J a, J b) | (a, b) ∈ R}

. . . and then try to massage and simplify the resulting statement.

For example:

(f , f) ∈ (R → id)→ ([R]→ Maybe R)
⇔ [[definition of R1 → R2]]
∀(a, b) ∈ R → id . (f a, f b) ∈ [R]→ Maybe R
⇔ [[again]]
∀(a, b) ∈ R → id , (c , d) ∈ [R].(f a c , f b d) ∈ Maybe R
⇔ . . .

2

Free Theorems – How they are usually derived

For example:

(f , f) ∈ (R → id)→ ([R]→ Maybe R)
⇔ [[definition of R1 → R2]]
∀(a, b) ∈ R → id . (f a, f b) ∈ [R]→ Maybe R
⇔ [[again]]
∀(a, b) ∈ R → id , (c , d) ∈ [R].(f a c , f b d) ∈ Maybe R
⇔ . . .

Observations:

I Even when we in principle “know” what the free theorem is,
we have to go through these steps.

I We have no guarantee that we will end up with a nice enough
statement (depends on the massage/simplification heuristics).

I Depending on what language we are actually interested in,
there will be deviations in the relation unfolding definitions,
hence also in the derivations.

3

Free Theorems – How they are usually derived

For example:

(f , f) ∈ (R → id)→ ([R]→ Maybe R)
⇔ [[definition of R1 → R2]]
∀(a, b) ∈ R → id . (f a, f b) ∈ [R]→ Maybe R
⇔ [[again]]
∀(a, b) ∈ R → id , (c , d) ∈ [R].(f a c , f b d) ∈ Maybe R
⇔ . . .

Observations:

I Even when we in principle “know” what the free theorem is,
we have to go through these steps.

I We have no guarantee that we will end up with a nice enough
statement (depends on the massage/simplification heuristics).

I Depending on what language we are actually interested in,
there will be deviations in the relation unfolding definitions,
hence also in the derivations.

3

Free Theorems – How they are usually derived

For example:

(f , f) ∈ (R → id)→ ([R]→ Maybe R)
⇔ [[definition of R1 → R2]]
∀(a, b) ∈ R → id . (f a, f b) ∈ [R]→ Maybe R
⇔ [[again]]
∀(a, b) ∈ R → id , (c , d) ∈ [R].(f a c , f b d) ∈ Maybe R
⇔ . . .

Observations:

I Even when we in principle “know” what the free theorem is,
we have to go through these steps.

I We have no guarantee that we will end up with a nice enough
statement (depends on the massage/simplification heuristics).

I Depending on what language we are actually interested in,
there will be deviations in the relation unfolding definitions,
hence also in the derivations.

3

Relational Parametricity

Usually,

I definition of a family of relations ∆ρ,τ capturing the
interpretation of types by relations, such that, e.g.,
∆[α 7→R],(α→Bool)→([α]→α) = (R → id)→ ([R]→ R)

I proof that for closed type τ , ∆∅,τ is the identity relation

I proof that for each valid typing judgement Γ ` e :: τ , if for
each x :: τ ′ in Γ we choose ex1 and ex2 with (ex1 , e

x
2) ∈ ∆ρ,τ ′ ,

then (e[ex1/x], e[ex2/x]) ∈ ∆ρ,τ

From the above, we prove the “conjuring lemma of parametricity”.
Crucially, it does not even mention ∆.

4

Relational Parametricity

Usually,

I definition of a family of relations ∆ρ,τ capturing the
interpretation of types by relations, such that, e.g.,
∆[α 7→R],(α→Bool)→([α]→α) = (R → id)→ ([R]→ R)

I proof that for closed type τ , ∆∅,τ is the identity relation

I proof that for each valid typing judgement Γ ` e :: τ , if for
each x :: τ ′ in Γ we choose ex1 and ex2 with (ex1 , e

x
2) ∈ ∆ρ,τ ′ ,

then (e[ex1/x], e[ex2/x]) ∈ ∆ρ,τ

From the above, we prove the “conjuring lemma of parametricity”.
Crucially, it does not even mention ∆.

4

Relational Parametricity

Usually,

I definition of a family of relations ∆ρ,τ capturing the
interpretation of types by relations, such that, e.g.,
∆[α 7→R],(α→Bool)→([α]→α) = (R → id)→ ([R]→ R)

I proof that for closed type τ , ∆∅,τ is the identity relation

I proof that for each valid typing judgement Γ ` e :: τ , if for
each x :: τ ′ in Γ we choose ex1 and ex2 with (ex1 , e

x
2) ∈ ∆ρ,τ ′ ,

then (e[ex1/x], e[ex2/x]) ∈ ∆ρ,τ

From the above, we prove the “conjuring lemma of parametricity”.
Crucially, it does not even mention ∆.

4

Relational Parametricity

Usually,

I definition of a family of relations ∆ρ,τ capturing the
interpretation of types by relations, such that, e.g.,
∆[α 7→R],(α→Bool)→([α]→α) = (R → id)→ ([R]→ R)

I proof that for closed type τ , ∆∅,τ is the identity relation

I proof that for each valid typing judgement Γ ` e :: τ , if for
each x :: τ ′ in Γ we choose ex1 and ex2 with (ex1 , e

x
2) ∈ ∆ρ,τ ′ ,

then (e[ex1/x], e[ex2/x]) ∈ ∆ρ,τ

From the above, we prove the “conjuring lemma of parametricity”.
Crucially, it does not even mention ∆.

4

The Conjuring Lemma

Let τ , τ1 and τ2 be closed types. Let e :: τ be a term possibly
involving α (but not in its own overall type, which is closed by
assumption) and term variables pre :: τ1 → α and post :: α→ τ2,
but no other free variables. Then for every g :: τ1 → τ2,

e[τ1/α, idτ1/pre, g/post] = e[τ2/α, g/pre, idτ2/post]

(∗)

I How could such an e look like?

For example e = λxs → map post (f (map pre xs)) with
f :: [α]→ [α].

I Why is this interesting?

Because in this case, (∗) specializes to

λxs → map g (f (map id xs)) = λxs → map id (f (map g xs))

5

The Conjuring Lemma

Let τ , τ1 and τ2 be closed types. Let e :: τ be a term possibly
involving α (but not in its own overall type, which is closed by
assumption) and term variables pre :: τ1 → α and post :: α→ τ2,
but no other free variables. Then for every g :: τ1 → τ2,

e[τ1/α, idτ1/pre, g/post] = e[τ2/α, g/pre, idτ2/post]

(∗)

I How could such an e look like?

For example e = λxs → map post (f (map pre xs)) with
f :: [α]→ [α].

I Why is this interesting?

Because in this case, (∗) specializes to

λxs → map g (f (map id xs)) = λxs → map id (f (map g xs))

5

The Conjuring Lemma

Let τ , τ1 and τ2 be closed types. Let e :: τ be a term possibly
involving α (but not in its own overall type, which is closed by
assumption) and term variables pre :: τ1 → α and post :: α→ τ2,
but no other free variables. Then for every g :: τ1 → τ2,

e[τ1/α, idτ1/pre, g/post] = e[τ2/α, g/pre, idτ2/post]

(∗)

I How could such an e look like?

For example e = λxs → map post (f (map pre xs)) with
f :: [α]→ [α].

I Why is this interesting?

Because in this case, (∗) specializes to

λxs → map g (f (map id xs)) = λxs → map id (f (map g xs))

5

The Conjuring Lemma

Let τ , τ1 and τ2 be closed types. Let e :: τ be a term possibly
involving α (but not in its own overall type, which is closed by
assumption) and term variables pre :: τ1 → α and post :: α→ τ2,
but no other free variables. Then for every g :: τ1 → τ2,

e[τ1/α, idτ1/pre, g/post] = e[τ2/α, g/pre, idτ2/post]

(∗)

I How could such an e look like?

For example e = λxs → map post (f (map pre xs)) with
f :: [α]→ [α].

I Why is this interesting?

Because in this case, (∗) specializes to

λxs → map g (f (map id xs)) = λxs → map id (f (map g xs))

5

The Conjuring Lemma

Let τ , τ1 and τ2 be closed types. Let e :: τ be a term possibly
involving α (but not in its own overall type, which is closed by
assumption) and term variables pre :: τ1 → α and post :: α→ τ2,
but no other free variables. Then for every g :: τ1 → τ2,

e[τ1/α, idτ1/pre, g/post] = e[τ2/α, g/pre, idτ2/post] (∗)

I How could such an e look like?

For example e = λxs → map post (f (map pre xs)) with
f :: [α]→ [α].

I Why is this interesting?

Because in this case, (∗) specializes to

λxs → map g (f (map id xs)) = λxs → map id (f (map g xs))

5

Turning this into a Generator

Given some f of polymorphic type, can we come up with some
term e of closed type and only pre :: τ1 → α and post :: α→ τ2
(for any closed types τ1 and τ2) as free term variables?

Well, e should of course use f in some interesting way.
In essence, we want to build e around f , using pre and post to do
away with the polymorphism of f .

Let’s see on a few examples:

I f :: [α]→ [α] e = map post ◦ f ◦map pre :: [τ1]→ [τ2]

I f :: (α→ Bool)→ [α]→ Maybe α
 e = λh→ fmap post ◦ f (h ◦ post) ◦map pre

:: (τ2 → Bool)→ [τ1]→ Maybe τ2
I f :: (α→ Bool)→ α→ Int
 e = λh→ f (h ◦ post) ◦ pre

:: (τ2 → Bool)→ τ1 → Int

6

Turning this into a Generator

Given some f of polymorphic type, can we come up with some
term e of closed type and only pre :: τ1 → α and post :: α→ τ2
(for any closed types τ1 and τ2) as free term variables?

Well, e should of course use f in some interesting way.

In essence, we want to build e around f , using pre and post to do
away with the polymorphism of f .

Let’s see on a few examples:

I f :: [α]→ [α] e = map post ◦ f ◦map pre :: [τ1]→ [τ2]

I f :: (α→ Bool)→ [α]→ Maybe α
 e = λh→ fmap post ◦ f (h ◦ post) ◦map pre

:: (τ2 → Bool)→ [τ1]→ Maybe τ2
I f :: (α→ Bool)→ α→ Int
 e = λh→ f (h ◦ post) ◦ pre

:: (τ2 → Bool)→ τ1 → Int

6

Turning this into a Generator

Given some f of polymorphic type, can we come up with some
term e of closed type and only pre :: τ1 → α and post :: α→ τ2
(for any closed types τ1 and τ2) as free term variables?

Well, e should of course use f in some interesting way.
In essence, we want to build e around f , using pre and post to do
away with the polymorphism of f .

Let’s see on a few examples:

I f :: [α]→ [α] e = map post ◦ f ◦map pre :: [τ1]→ [τ2]

I f :: (α→ Bool)→ [α]→ Maybe α
 e = λh→ fmap post ◦ f (h ◦ post) ◦map pre

:: (τ2 → Bool)→ [τ1]→ Maybe τ2
I f :: (α→ Bool)→ α→ Int
 e = λh→ f (h ◦ post) ◦ pre

:: (τ2 → Bool)→ τ1 → Int

6

Turning this into a Generator

Given some f of polymorphic type, can we come up with some
term e of closed type and only pre :: τ1 → α and post :: α→ τ2
(for any closed types τ1 and τ2) as free term variables?

Well, e should of course use f in some interesting way.
In essence, we want to build e around f , using pre and post to do
away with the polymorphism of f .

Let’s see on a few examples:

I f :: [α]→ [α] e = map post ◦ f ◦map pre :: [τ1]→ [τ2]

I f :: (α→ Bool)→ [α]→ Maybe α
 e = λh→ fmap post ◦ f (h ◦ post) ◦map pre

:: (τ2 → Bool)→ [τ1]→ Maybe τ2
I f :: (α→ Bool)→ α→ Int
 e = λh→ f (h ◦ post) ◦ pre

:: (τ2 → Bool)→ τ1 → Int

6

Turning this into a Generator

Given some f of polymorphic type, can we come up with some
term e of closed type and only pre :: τ1 → α and post :: α→ τ2
(for any closed types τ1 and τ2) as free term variables?

Well, e should of course use f in some interesting way.
In essence, we want to build e around f , using pre and post to do
away with the polymorphism of f .

Let’s see on a few examples:

I f :: [α]→ [α] e = map post ◦ f ◦map pre :: [τ1]→ [τ2]

I f :: (α→ Bool)→ [α]→ Maybe α
 e = λh→ fmap post ◦ f (h ◦ post) ◦map pre

:: (τ2 → Bool)→ [τ1]→ Maybe τ2

I f :: (α→ Bool)→ α→ Int
 e = λh→ f (h ◦ post) ◦ pre

:: (τ2 → Bool)→ τ1 → Int

6

Turning this into a Generator

Given some f of polymorphic type, can we come up with some
term e of closed type and only pre :: τ1 → α and post :: α→ τ2
(for any closed types τ1 and τ2) as free term variables?

Well, e should of course use f in some interesting way.
In essence, we want to build e around f , using pre and post to do
away with the polymorphism of f .

Let’s see on a few examples:

I f :: [α]→ [α] e = map post ◦ f ◦map pre :: [τ1]→ [τ2]

I f :: (α→ Bool)→ [α]→ Maybe α
 e = λh→ fmap post ◦ f (h ◦ post) ◦map pre

:: (τ2 → Bool)→ [τ1]→ Maybe τ2
I f :: (α→ Bool)→ α→ Int
 e = λh→ f (h ◦ post) ◦ pre

:: (τ2 → Bool)→ τ1 → Int
6

Turning this into a Generator

The following does the trick:

monopre,post(α) = post
monopre,post(Bool) = id
monopre,post(Int) = id
monopre,post([σ]) = map monopre,post(σ)
monopre,post(Maybe σ) = fmap monopre,post(σ)
monopre,post(σ1 → σ2) = λh→ monopre,post(σ2)

◦ h ◦
monopost,pre(σ1)

. . . in the sense that e = monopre,post(σ) f is the term we seek
if f has polymorphic type σ.

In other words, given f :: σ, we now generate the free theorem

mono id ,g (σ) f = monog ,id(σ) f

7

Turning this into a Generator

The following does the trick:

monopre,post(α) = post
monopre,post(Bool) = id
monopre,post(Int) = id
monopre,post([σ]) = map monopre,post(σ)
monopre,post(Maybe σ) = fmap monopre,post(σ)
monopre,post(σ1 → σ2) = λh→ monopre,post(σ2)

◦ h ◦
monopost,pre(σ1)

. . . in the sense that e = monopre,post(σ) f is the term we seek
if f has polymorphic type σ.

In other words, given f :: σ, we now generate the free theorem

mono id ,g (σ) f = monog ,id(σ) f

7

Turning this into a Generator

The following does the trick:

monopre,post(α) = post
monopre,post(Bool) = id
monopre,post(Int) = id
monopre,post([σ]) = map monopre,post(σ)
monopre,post(Maybe σ) = fmap monopre,post(σ)
monopre,post(σ1 → σ2) = λh→ monopre,post(σ2)

◦ h ◦
monopost,pre(σ1)

. . . in the sense that e = monopre,post(σ) f is the term we seek
if f has polymorphic type σ.

In other words, given f :: σ, we now generate the free theorem

mono id ,g (σ) f = monog ,id(σ) f
7

. . . and doing deterministic Simplifications

Well, actually, we generate

bmono id ,g (σ) f c = bmonog ,id(σ) f c

where:

bid tc = t
bmap f tc = map (λv → bf vc) t
bfmap f tc = fmap (λv → bf vc) t
b(λh→ body) tc = λv → bbody [t/h] vc
b(f ◦ g) tc = bf bg tcc
bf tc = f t

Thanks to the types used for syntax in the implementation, and
GHC’s exhaustiveness checker, we know that this simple recursive
definition cannot accidentally skip any simplification opportunities.

8

. . . and doing deterministic Simplifications

Well, actually, we generate

bmono id ,g (σ) f c = bmonog ,id(σ) f c

where:

bid tc = t
bmap f tc = map (λv → bf vc) t
bfmap f tc = fmap (λv → bf vc) t
b(λh→ body) tc = λv → bbody [t/h] vc
b(f ◦ g) tc = bf bg tcc
bf tc = f t

Thanks to the types used for syntax in the implementation, and
GHC’s exhaustiveness checker, we know that this simple recursive
definition cannot accidentally skip any simplification opportunities.

8

When it “doesn’t work”

For types like f :: (α→ α)→ (α→ α) we lose some generality.

The general free theorem would be:

(g ◦ h = k ◦ g)⇒ (g ◦ f h = f k ◦ g)

We instead generate:

g ◦ f (p ◦ g) = f (g ◦ p) ◦ g

Why? And what does “like” mean above?

In a nutshell, “because” of: (α+ → α−)− → (α− → α+)+

9

When it “doesn’t work”

For types like f :: (α→ α)→ (α→ α) we lose some generality.

The general free theorem would be:

(g ◦ h = k ◦ g)⇒ (g ◦ f h = f k ◦ g)

We instead generate:

g ◦ f (p ◦ g) = f (g ◦ p) ◦ g

Why? And what does “like” mean above?

In a nutshell, “because” of: (α+ → α−)− → (α− → α+)+

9

When it “doesn’t work”

For types like f :: (α→ α)→ (α→ α) we lose some generality.

The general free theorem would be:

(g ◦ h = k ◦ g)⇒ (g ◦ f h = f k ◦ g)

We instead generate:

g ◦ f (p ◦ g) = f (g ◦ p) ◦ g

Why? And what does “like” mean above?

In a nutshell, “because” of: (α+ → α−)− → (α− → α+)+

9

When it “doesn’t work”

For types like f :: (α→ α)→ (α→ α) we lose some generality.

The general free theorem would be:

(g ◦ h = k ◦ g)⇒ (g ◦ f h = f k ◦ g)

We instead generate:

g ◦ f (p ◦ g) = f (g ◦ p) ◦ g

Why? And what does “like” mean above?

In a nutshell, “because” of: (α+ → α−)− → (α− → α+)+

9

References

J.C. Reynolds.
Types, abstraction and parametric polymorphism.
In Information Processing, Proceedings, pages 513–523.
Elsevier, 1983.

P. Wadler.
Theorems for free!
In Functional Programming Languages and Computer
Architecture, Proceedings, pages 347–359. ACM Press, 1989.

10

