# Embarrassingly Simple Generation of Free Theorems 

Stefan Mehner and Janis Voigtländer

March 26th, 2014

## Free Theorems

Statements about polymorphic functions based solely on their types, obtained from relational parametricity [Rey83, Wad89].

For example,

- for every $f::[\alpha] \rightarrow[\alpha]$ and every $g$ and $x$,

$$
\operatorname{map} g(f x)=f(\operatorname{map} g x)
$$

## Free Theorems

Statements about polymorphic functions based solely on their types, obtained from relational parametricity [Rey83, Wad89].

For example,

- for every $f::[\alpha] \rightarrow[\alpha]$ and every $g$ and $x$,

$$
\operatorname{map} g(f x)=f(\operatorname{map} g x)
$$

- for every $f::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow$ Maybe $\alpha$ and every $g, h, x$,

$$
f m a p g(f(h \circ g) x)=f h(\operatorname{map} g x)
$$

## Free Theorems

Statements about polymorphic functions based solely on their types, obtained from relational parametricity [Rey83, Wad89].

For example,

- for every $f::[\alpha] \rightarrow[\alpha]$ and every $g$ and $x$,

$$
\operatorname{map} g(f x)=f(\operatorname{map} g x)
$$

- for every $f::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow$ Maybe $\alpha$ and every $g, h, x$,

$$
f m a p g(f(h \circ g) x)=f h(\operatorname{map} g x)
$$

- for every $f::(\alpha \rightarrow$ Bool $) \rightarrow \alpha \rightarrow$ Int and every $g, h$ and $x$,

$$
f(h \circ g) x=f h(g x)
$$

## Free Theorems

Statements about polymorphic functions based solely on their types, obtained from relational parametricity [Rey83, Wad89].

For example,

- for every $f::[\alpha] \rightarrow[\alpha]$ and every $g$ and $x$,

$$
\operatorname{map} g(f x)=f(\operatorname{map} g x)
$$

- for every $f::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow$ Maybe $\alpha$ and every $g, h, x$,

$$
f m a p g(f(h \circ g) x)=f h(\operatorname{map} g x)
$$

- for every $f::(\alpha \rightarrow$ Bool $) \rightarrow \alpha \rightarrow$ Int and every $g, h$ and $x$,

$$
f(h \circ g) x=f h(g x)
$$

- for every $f::(([\alpha] \rightarrow \operatorname{Int}) \rightarrow \alpha) \rightarrow \alpha$ and every $g$ and $h$,


## Free Theorems

Statements about polymorphic functions based solely on their types, obtained from relational parametricity [Rey83, Wad89].

For example,

- for every $f::[\alpha] \rightarrow[\alpha]$ and every $g$ and $x$,

$$
\operatorname{map} g(f x)=f(\operatorname{map} g x)
$$

- for every $f::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow$ Maybe $\alpha$ and every $g, h, x$,

$$
f m a p g(f(h \circ g) x)=f h(\operatorname{map} g x)
$$

- for every $f::(\alpha \rightarrow$ Bool $) \rightarrow \alpha \rightarrow$ Int and every $g, h$ and $x$,

$$
f(h \circ g) x=f h(g x)
$$

- for every $f::(([\alpha] \rightarrow \operatorname{Int}) \rightarrow \alpha) \rightarrow \alpha$ and every $g$ and $h$,

$$
g(f h)=f(\lambda k \rightarrow g(h(k \circ \operatorname{map} g)))
$$

## Free Theorems - How they are usually derived

Take polymorphic type, say $f::(\alpha \rightarrow$ Bool $) \rightarrow([\alpha] \rightarrow$ Maybe $\alpha)$,

## Free Theorems - How they are usually derived

Take polymorphic type, say $f::(\alpha \rightarrow$ Bool $) \rightarrow([\alpha] \rightarrow$ Maybe $\alpha)$, replace type variables by relation variables, for the example yielding $(\mathcal{R} \rightarrow$ Bool $) \rightarrow([\mathcal{R}] \rightarrow$ Maybe $\mathcal{R})$,

## Free Theorems - How they are usually derived

Take polymorphic type, say $f::(\alpha \rightarrow$ Bool $) \rightarrow([\alpha] \rightarrow$ Maybe $\alpha)$, replace type variables by relation variables, for the example yielding $(\mathcal{R} \rightarrow$ Bool $) \rightarrow([\mathcal{R}] \rightarrow$ Maybe $\mathcal{R})$, invoke a parametricity theorem stating $(f, f) \in \ldots$,

## Free Theorems - How they are usually derived

Take polymorphic type, say $f::(\alpha \rightarrow$ Bool $) \rightarrow([\alpha] \rightarrow$ Maybe $\alpha)$, replace type variables by relation variables, for the example yielding $(\mathcal{R} \rightarrow$ Bool $) \rightarrow([\mathcal{R}] \rightarrow$ Maybe $\mathcal{R})$, invoke a parametricity theorem stating $(f, f) \in \ldots$, unfold a given set of definitions, such as:

- base types like Bool and Int are read as identity relations,
- $\mathcal{R}_{1} \rightarrow \mathcal{R}_{2}=\left\{(f, g) \mid \forall(a, b) \in \mathcal{R}_{1} .(f a, g b) \in \mathcal{R}_{2}\right\}$
- Maybe $\mathcal{R}=\{(\mathrm{N}, \mathrm{N})\} \cup\{(\mathrm{J} a, \mathrm{~J} b) \mid(a, b) \in \mathcal{R}\}$


## Free Theorems - How they are usually derived

Take polymorphic type, say $f::(\alpha \rightarrow$ Bool $) \rightarrow([\alpha] \rightarrow$ Maybe $\alpha)$, replace type variables by relation variables, for the example yielding $(\mathcal{R} \rightarrow$ Bool $) \rightarrow([\mathcal{R}] \rightarrow$ Maybe $\mathcal{R})$, invoke a parametricity theorem stating $(f, f) \in \ldots$, unfold a given set of definitions, such as:

- base types like Bool and Int are read as identity relations,
- $\mathcal{R}_{1} \rightarrow \mathcal{R}_{2}=\left\{(f, g) \mid \forall(a, b) \in \mathcal{R}_{1} .(f a, g b) \in \mathcal{R}_{2}\right\}$
- Maybe $\mathcal{R}=\{(\mathrm{N}, \mathrm{N})\} \cup\{(\mathrm{J} a, \mathrm{~J} b) \mid(a, b) \in \mathcal{R}\}$
$\ldots$ and then try to massage and simplify the resulting statement.


## Free Theorems - How they are usually derived

Take polymorphic type, say $f::(\alpha \rightarrow$ Bool $) \rightarrow([\alpha] \rightarrow$ Maybe $\alpha)$, replace type variables by relation variables, for the example yielding $(\mathcal{R} \rightarrow$ Bool $) \rightarrow([\mathcal{R}] \rightarrow$ Maybe $\mathcal{R})$, invoke a parametricity theorem stating $(f, f) \in \ldots$, unfold a given set of definitions, such as:

- base types like Bool and Int are read as identity relations,
- $\mathcal{R}_{1} \rightarrow \mathcal{R}_{2}=\left\{(f, g) \mid \forall(a, b) \in \mathcal{R}_{1} .(f a, g b) \in \mathcal{R}_{2}\right\}$
- Maybe $\mathcal{R}=\{(\mathrm{N}, \mathrm{N})\} \cup\{(\mathrm{J} a, \mathrm{~J} b) \mid(a, b) \in \mathcal{R}\}$
$\ldots$ and then try to massage and simplify the resulting statement.
For example:

```
    \((f, f) \in(\mathcal{R} \rightarrow i d) \rightarrow([\mathcal{R}] \rightarrow\) Maybe \(\mathcal{R})\)
\(\Leftrightarrow \quad \llbracket\) definition of \(\mathcal{R}_{1} \rightarrow \mathcal{R}_{2} \rrbracket\)
    \(\forall(a, b) \in \mathcal{R} \rightarrow i d\). \((f\) a,f \(b) \in[\mathcal{R}] \rightarrow\) Maybe \(\mathcal{R}\)
\(\Leftrightarrow \quad\) 【again 】
    \(\forall(a, b) \in \mathcal{R} \rightarrow i d,(c, d) \in[\mathcal{R}] .(f\) a \(c, f b d) \in\) Maybe \(\mathcal{R}\)
\(\Leftrightarrow \quad\)...
```


## Free Theorems - How they are usually derived

For example:

$$
\begin{aligned}
& \quad(f, f) \in(\mathcal{R} \rightarrow i d) \rightarrow([\mathcal{R}] \rightarrow \text { Maybe } \mathcal{R}) \\
& \Leftrightarrow \quad \llbracket \text { definition of } \mathcal{R}_{1} \rightarrow \mathcal{R}_{2} \rrbracket \\
& \forall(a, b) \in \mathcal{R} \rightarrow \text { id. }(f \text { a }, f b) \in[\mathcal{R}] \rightarrow \text { Maybe } \mathcal{R} \\
& \Leftrightarrow \quad \llbracket \text { again } \\
& \forall(a, b) \in \mathcal{R} \rightarrow i d,(c, d) \in[\mathcal{R}] .(f \text { a } c, f b d) \in \text { Maybe } \mathcal{R} \\
& \Leftrightarrow \quad \ldots
\end{aligned}
$$

Observations:

- Even when we in principle "know" what the free theorem is, we have to go through these steps.


## Free Theorems - How they are usually derived

For example:

$$
\begin{aligned}
& \quad(f, f) \in(\mathcal{R} \rightarrow i d) \rightarrow([\mathcal{R}] \rightarrow \text { Maybe } \mathcal{R}) \\
& \Leftrightarrow \quad \llbracket \text { definition of } \mathcal{R}_{1} \rightarrow \mathcal{R}_{2} \rrbracket \\
& \forall(a, b) \in \mathcal{R} \rightarrow \text { id. }(f \text { a,f } b) \in[\mathcal{R}] \rightarrow \text { Maybe } \mathcal{R} \\
& \Leftrightarrow \quad \llbracket \text { again } \\
& \forall(a, b) \in \mathcal{R} \rightarrow i d,(c, d) \in[\mathcal{R}] .(f \text { a } c, f b d) \in \text { Maybe } \mathcal{R} \\
& \Leftrightarrow \quad \ldots
\end{aligned}
$$

Observations:

- Even when we in principle "know" what the free theorem is, we have to go through these steps.
- We have no guarantee that we will end up with a nice enough statement (depends on the massage/simplification heuristics).


## Free Theorems - How they are usually derived

For example:

$$
\begin{aligned}
& \quad(f, f) \in(\mathcal{R} \rightarrow i d) \rightarrow([\mathcal{R}] \rightarrow \text { Maybe } \mathcal{R}) \\
& \Leftrightarrow \quad \llbracket \text { definition of } \mathcal{R}_{1} \rightarrow \mathcal{R}_{2} \rrbracket \\
& \forall(a, b) \in \mathcal{R} \rightarrow \text { id. }(f \text { a,fb) }) \in[\mathcal{R}] \rightarrow \text { Maybe } \mathcal{R} \\
& \Leftrightarrow \quad \llbracket \text { again } \\
& \forall(a, b) \in \mathcal{R} \rightarrow i d,(c, d) \in[\mathcal{R}] .(f \text { a } c, f b d) \in \text { Maybe } \mathcal{R} \\
& \Leftrightarrow \quad \ldots
\end{aligned}
$$

Observations:

- Even when we in principle "know" what the free theorem is, we have to go through these steps.
- We have no guarantee that we will end up with a nice enough statement (depends on the massage/simplification heuristics).
- Depending on what language we are actually interested in, there will be deviations in the relation unfolding definitions, hence also in the derivations.


## Relational Parametricity

Usually,

- definition of a family of relations $\Delta_{\rho, \tau}$ capturing the interpretation of types by relations, such that, e.g.,

$$
\Delta_{[\alpha \mapsto \mathcal{R}],(\alpha \rightarrow \text { Bool }) \rightarrow([\alpha] \rightarrow \alpha)}=(\mathcal{R} \rightarrow i d) \rightarrow([\mathcal{R}] \rightarrow \mathcal{R})
$$

## Relational Parametricity

Usually,

- definition of a family of relations $\Delta_{\rho, \tau}$ capturing the interpretation of types by relations, such that, e.g.,

$$
\Delta_{[\alpha \mapsto \mathcal{R}],(\alpha \rightarrow \text { Bool }) \rightarrow([\alpha] \rightarrow \alpha)}=(\mathcal{R} \rightarrow i d) \rightarrow([\mathcal{R}] \rightarrow \mathcal{R})
$$

- proof that for closed type $\tau, \Delta_{\emptyset, \tau}$ is the identity relation


## Relational Parametricity

Usually,

- definition of a family of relations $\Delta_{\rho, \tau}$ capturing the interpretation of types by relations, such that, e.g.,

$$
\Delta_{[\alpha \mapsto \mathcal{R}],(\alpha \rightarrow \text { Bool }) \rightarrow([\alpha] \rightarrow \alpha)}=(\mathcal{R} \rightarrow i d) \rightarrow([\mathcal{R}] \rightarrow \mathcal{R})
$$

- proof that for closed type $\tau, \Delta_{\emptyset, \tau}$ is the identity relation
- proof that for each valid typing judgement $\Gamma \vdash e:: \tau$, if for each $x:: \tau^{\prime}$ in $\Gamma$ we choose $e_{1}^{x}$ and $e_{2}^{x}$ with $\left(e_{1}^{x}, e_{2}^{x}\right) \in \Delta_{\rho, \tau^{\prime}}$, then $\left(e\left[\overline{e_{1}^{x}} / \bar{x}\right], e\left[\overline{e_{2}^{x}} / \bar{x}\right]\right) \in \Delta_{\rho, \tau}$


## Relational Parametricity

Usually,

- definition of a family of relations $\Delta_{\rho, \tau}$ capturing the interpretation of types by relations, such that, e.g.,

$$
\Delta_{[\alpha \mapsto \mathcal{R}],(\alpha \rightarrow \text { Bool }) \rightarrow([\alpha] \rightarrow \alpha)}=(\mathcal{R} \rightarrow i d) \rightarrow([\mathcal{R}] \rightarrow \mathcal{R})
$$

- proof that for closed type $\tau, \Delta_{\emptyset, \tau}$ is the identity relation
- proof that for each valid typing judgement $\Gamma \vdash e:: \tau$, if for each $x:: \tau^{\prime}$ in $\Gamma$ we choose $e_{1}^{x}$ and $e_{2}^{x}$ with $\left(e_{1}^{x}, e_{2}^{x}\right) \in \Delta_{\rho, \tau^{\prime}}$, then $\left(e\left[\overline{e_{1}^{x}} / \bar{x}\right], e\left[\overline{e_{2}^{x}} / \bar{x}\right]\right) \in \Delta_{\rho, \tau}$

From the above, we prove the "conjuring lemma of parametricity".
Crucially, it does not even mention $\Delta$.

## The Conjuring Lemma

Let $\tau, \tau_{1}$ and $\tau_{2}$ be closed types. Let $e:: \tau$ be a term possibly involving $\alpha$ (but not in its own overall type, which is closed by assumption) and term variables pre $:: \tau_{1} \rightarrow \alpha$ and post $:: \alpha \rightarrow \tau_{2}$, but no other free variables. Then for every $g:: \tau_{1} \rightarrow \tau_{2}$,

$$
e\left[\tau_{1} / \alpha, i d_{\tau_{1}} / \text { pre }, g / \text { post }\right]=e\left[\tau_{2} / \alpha, g / \text { pre }, i d_{\tau_{2}} / \text { post }\right]
$$

## The Conjuring Lemma

Let $\tau, \tau_{1}$ and $\tau_{2}$ be closed types. Let $e:: \tau$ be a term possibly involving $\alpha$ (but not in its own overall type, which is closed by assumption) and term variables pre $:: \tau_{1} \rightarrow \alpha$ and post $:: \alpha \rightarrow \tau_{2}$, but no other free variables. Then for every $g:: \tau_{1} \rightarrow \tau_{2}$,

$$
e\left[\tau_{1} / \alpha, i d_{\tau_{1}} / \text { pre }, g / \text { post }\right]=e\left[\tau_{2} / \alpha, g / \text { pre }, i d_{\tau_{2}} / \text { post }\right]
$$

- How could such an e look like?


## The Conjuring Lemma

Let $\tau, \tau_{1}$ and $\tau_{2}$ be closed types. Let $e:: \tau$ be a term possibly involving $\alpha$ (but not in its own overall type, which is closed by assumption) and term variables pre $:: \tau_{1} \rightarrow \alpha$ and post $:: \alpha \rightarrow \tau_{2}$, but no other free variables. Then for every $g:: \tau_{1} \rightarrow \tau_{2}$,

$$
e\left[\tau_{1} / \alpha, i d_{\tau_{1}} / \text { pre }, g / \text { post }\right]=e\left[\tau_{2} / \alpha, g / \text { pre }, i d_{\tau_{2}} / \text { post }\right]
$$

- How could such an e look like?

For example $e=\lambda x s \rightarrow$ map post ( $f($ map pre $x s)$ ) with $f::[\alpha] \rightarrow[\alpha]$.

## The Conjuring Lemma

Let $\tau, \tau_{1}$ and $\tau_{2}$ be closed types. Let $e:: \tau$ be a term possibly involving $\alpha$ (but not in its own overall type, which is closed by assumption) and term variables pre $:: \tau_{1} \rightarrow \alpha$ and post $:: \alpha \rightarrow \tau_{2}$, but no other free variables. Then for every $g:: \tau_{1} \rightarrow \tau_{2}$,

$$
e\left[\tau_{1} / \alpha, i d_{\tau_{1}} / \text { pre }, g / \text { post }\right]=e\left[\tau_{2} / \alpha, g / \text { pre }, i d_{\tau_{2}} / \text { post }\right]
$$

- How could such an e look like?

For example $e=\lambda x s \rightarrow$ map post ( $f($ map pre $x s)$ ) with $f::[\alpha] \rightarrow[\alpha]$.

- Why is this interesting?


## The Conjuring Lemma

Let $\tau, \tau_{1}$ and $\tau_{2}$ be closed types. Let $e:: \tau$ be a term possibly involving $\alpha$ (but not in its own overall type, which is closed by assumption) and term variables pre $:: \tau_{1} \rightarrow \alpha$ and post $:: \alpha \rightarrow \tau_{2}$, but no other free variables. Then for every $g:: \tau_{1} \rightarrow \tau_{2}$,

$$
\begin{equation*}
e\left[\tau_{1} / \alpha, i d_{\tau_{1}} / \text { pre }, g / \text { post }\right]=e\left[\tau_{2} / \alpha, g / \text { pre }, i d_{\tau_{2}} / \text { post }\right] \tag{*}
\end{equation*}
$$

- How could such an e look like?

For example $e=\lambda x s \rightarrow$ map post $(f($ map pre $x s))$ with $f::[\alpha] \rightarrow[\alpha]$.

- Why is this interesting?

Because in this case, $(*)$ specializes to

$$
\lambda x s \rightarrow \operatorname{map} g(f(\operatorname{map} i d x s))=\lambda x s \rightarrow \operatorname{map} i d(f(\operatorname{map} g x s))
$$

## Turning this into a Generator

Given some $f$ of polymorphic type, can we come up with some term $e$ of closed type and only pre $:: \tau_{1} \rightarrow \alpha$ and post $:: \alpha \rightarrow \tau_{2}$ (for any closed types $\tau_{1}$ and $\tau_{2}$ ) as free term variables?

## Turning this into a Generator

Given some $f$ of polymorphic type, can we come up with some term $e$ of closed type and only pre $:: \tau_{1} \rightarrow \alpha$ and post $:: \alpha \rightarrow \tau_{2}$ (for any closed types $\tau_{1}$ and $\tau_{2}$ ) as free term variables?

Well, e should of course use $f$ in some interesting way.

## Turning this into a Generator

Given some $f$ of polymorphic type, can we come up with some term $e$ of closed type and only pre $:: \tau_{1} \rightarrow \alpha$ and post $:: \alpha \rightarrow \tau_{2}$ (for any closed types $\tau_{1}$ and $\tau_{2}$ ) as free term variables?

Well, e should of course use $f$ in some interesting way.
In essence, we want to build $e$ around $f$, using pre and post to do away with the polymorphism of $f$.

## Turning this into a Generator

Given some $f$ of polymorphic type, can we come up with some term $e$ of closed type and only pre $:: \tau_{1} \rightarrow \alpha$ and post $:: \alpha \rightarrow \tau_{2}$ (for any closed types $\tau_{1}$ and $\tau_{2}$ ) as free term variables?

Well, e should of course use $f$ in some interesting way.
In essence, we want to build $e$ around $f$, using pre and post to do away with the polymorphism of $f$.

Let's see on a few examples:

- $f::[\alpha] \rightarrow[\alpha] \rightsquigarrow e=$ map post $\circ f \circ$ map pre $::\left[\tau_{1}\right] \rightarrow\left[\tau_{2}\right]$


## Turning this into a Generator

Given some $f$ of polymorphic type, can we come up with some term $e$ of closed type and only pre $:: \tau_{1} \rightarrow \alpha$ and post $:: \alpha \rightarrow \tau_{2}$ (for any closed types $\tau_{1}$ and $\tau_{2}$ ) as free term variables?

Well, e should of course use $f$ in some interesting way. In essence, we want to build $e$ around $f$, using pre and post to do away with the polymorphism of $f$.

Let's see on a few examples:

- $f::[\alpha] \rightarrow[\alpha] \rightsquigarrow e=$ map post $\circ f \circ$ map pre $::\left[\tau_{1}\right] \rightarrow\left[\tau_{2}\right]$
- $f::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow$ Maybe $\alpha$
$\rightsquigarrow e=\lambda h \rightarrow f m a p$ post $\circ f(h \circ p o s t) \circ$ map pre
$::\left(\tau_{2} \rightarrow\right.$ Bool $) \rightarrow\left[\tau_{1}\right] \rightarrow$ Maybe $\tau_{2}$


## Turning this into a Generator

Given some $f$ of polymorphic type, can we come up with some term $e$ of closed type and only pre $:: \tau_{1} \rightarrow \alpha$ and post $:: \alpha \rightarrow \tau_{2}$ (for any closed types $\tau_{1}$ and $\tau_{2}$ ) as free term variables?

Well, e should of course use $f$ in some interesting way.
In essence, we want to build $e$ around $f$, using pre and post to do away with the polymorphism of $f$.

Let's see on a few examples:

- $f::[\alpha] \rightarrow[\alpha] \rightsquigarrow e=$ map post $\circ f \circ$ map pre $::\left[\tau_{1}\right] \rightarrow\left[\tau_{2}\right]$
- $f::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow$ Maybe $\alpha$
$\rightsquigarrow e=\lambda h \rightarrow$ fmap post $\circ f(h \circ$ post $) \circ$ map pre
$\because\left(\tau_{2} \rightarrow\right.$ Bool $) \rightarrow\left[\tau_{1}\right] \rightarrow$ Maybe $\tau_{2}$
- $f::(\alpha \rightarrow$ Bool $) \rightarrow \alpha \rightarrow$ Int
$\rightsquigarrow e=\lambda h \rightarrow f(h \circ p o s t) \circ$ pre
$::\left(\tau_{2} \rightarrow\right.$ Bool $) \rightarrow \tau_{1} \rightarrow$ Int


## Turning this into a Generator

The following does the trick:

$$
\begin{array}{ll}
\text { mono }_{\text {pre,post }}(\alpha) & =\text { post } \\
\text { mono }_{\text {pre,post }}(\mathrm{Bool}) & =\text { id } \\
\text { mono }_{\text {pre,post }}(\mathrm{lnt}) & =\text { id } \\
\text { mono }_{\text {pre,post }}([\sigma]) & =\text { map mono } \\
\text { mono }_{\text {pre,post }}(\sigma) \\
\text { mono }_{\text {pre,post }}\left(\sigma_{1} \rightarrow \sigma_{2}\right) & =\lambda h \rightarrow \text { mono }_{\text {pre,post }}\left(\sigma_{2}\right) \\
& \quad \circ h \circ \\
& \text { mono }_{\text {post,pre }}\left(\sigma_{1}\right)
\end{array}
$$

## Turning this into a Generator

The following does the trick:

$$
\begin{aligned}
& \text { mono }_{\text {pre, post }}(\alpha)=\text { post } \\
& \text { mono }_{\text {pre, post }} \text { (Bool) }=i d \\
& \text { mono }_{\text {pre,post }}(\operatorname{lnt})=\text { id } \\
& \text { mono }_{\text {pre,post }}([\sigma])=\text { map mono } \text { pre,post }(\sigma) \\
& \text { mono }_{\text {pre,post }}(\text { Maybe } \sigma)=\text { fmap mono }_{\text {pre,post }}(\sigma) \\
& \text { mono }_{\text {pre,post }}\left(\sigma_{1} \rightarrow \sigma_{2}\right)=\lambda h \rightarrow \text { mono }_{\text {pre,post }}\left(\sigma_{2}\right) \\
& \text {-ho } \\
& \text { mono }_{\text {post, pre }}\left(\sigma_{1}\right)
\end{aligned}
$$

$\ldots$ in the sense that $e=$ mono $_{\text {pre, post }}(\sigma) f$ is the term we seek if $f$ has polymorphic type $\sigma$.

## Turning this into a Generator

The following does the trick:

$$
\begin{aligned}
& \text { mono }_{\text {pre, post }}(\alpha)=\text { post } \\
& \text { mono }_{\text {pre, post }} \text { (Bool) }=i d \\
& \text { mono }_{\text {pre, post }}(\operatorname{lnt})=\text { id } \\
& \text { mono }_{\text {pre,post }}([\sigma])=\text { map mono } \text { pre,post }(\sigma) \\
& \text { mono }_{\text {pre,post }}(\text { Maybe } \sigma)=\text { fmap mono }_{\text {pre,post }}(\sigma) \\
& \text { mono }_{\text {pre,post }}\left(\sigma_{1} \rightarrow \sigma_{2}\right)=\lambda h \rightarrow \text { mono }_{\text {pre,post }}\left(\sigma_{2}\right) \\
& \text {-ho } \\
& \text { mono }_{\text {post, pre }}\left(\sigma_{1}\right)
\end{aligned}
$$

$\ldots$ in the sense that $e=$ mono $_{\text {pre, post }}(\sigma) f$ is the term we seek if $f$ has polymorphic type $\sigma$.

In other words, given $f:: \sigma$, we now generate the free theorem

$$
\text { mono }_{i d, g}(\sigma) f=\text { mono }_{g, i d}(\sigma) f
$$

## ... and doing deterministic Simplifications

Well, actually, we generate

$$
\left\lfloor\text { mono }_{i d, g}(\sigma) f\right\rfloor=\left\lfloor\text { mono }_{g, i d}(\sigma) f\right\rfloor
$$

where:

$$
\begin{array}{ll}
\lfloor\text { id } t\rfloor & =t \\
\lfloor\text { map } f\rfloor & =\operatorname{map}(\lambda v \rightarrow\lfloor f v\rfloor) t \\
\lfloor\text { fmap } f t\rfloor & \\
\lfloor(\lambda h \rightarrow \text { body }(\lambda v \rightarrow\lfloor f v v\rfloor) t \\
\lfloor(\lambda b \rightarrow\lfloor\operatorname{body}[t / h] v\rfloor \\
\lfloor(f \circ g) t\rfloor & \\
\lfloor f t\rfloor\lfloor g t\rfloor\rfloor \\
\lfloor f t\rfloor & =f t
\end{array}
$$

## ... and doing deterministic Simplifications

Well, actually, we generate

$$
\left\lfloor\text { mono }_{i d, g}(\sigma) f\right\rfloor=\left\lfloor\text { mono }_{g, i d}(\sigma) f\right\rfloor
$$

where:

$$
\begin{array}{ll}
\lfloor\text { id } t\rfloor & =t \\
\lfloor\text { map } f t\rfloor & =\operatorname{map}(\lambda v \rightarrow\lfloor f v\rfloor) t \\
\lfloor\text { fmap } f t\rfloor & =f \operatorname{map}(\lambda v \rightarrow\lfloor f v v\rfloor) t \\
\lfloor(\lambda h \rightarrow \text { body }) t\rfloor & =\lambda v \rightarrow\lfloor\operatorname{body}[t / h] v\rfloor \\
\lfloor(f \circ g) t\rfloor & \\
\lfloor f\lfloor\lfloor\lfloor t\rfloor\rfloor \\
\lfloor f t\rfloor & =f t
\end{array}
$$

Thanks to the types used for syntax in the implementation, and GHC's exhaustiveness checker, we know that this simple recursive definition cannot accidentally skip any simplification opportunities.

## When it "doesn't work"

For types like $f::(\alpha \rightarrow \alpha) \rightarrow(\alpha \rightarrow \alpha)$ we lose some generality. The general free theorem would be:

$$
(g \circ h=k \circ g) \Rightarrow(g \circ f h=f k \circ g)
$$

## When it "doesn't work"

For types like $f::(\alpha \rightarrow \alpha) \rightarrow(\alpha \rightarrow \alpha)$ we lose some generality. The general free theorem would be:

$$
(g \circ h=k \circ g) \Rightarrow(g \circ f h=f k \circ g)
$$

We instead generate:

$$
g \circ f(p \circ g)=f(g \circ p) \circ g
$$

## When it "doesn't work"

For types like $f::(\alpha \rightarrow \alpha) \rightarrow(\alpha \rightarrow \alpha)$ we lose some generality.
The general free theorem would be:

$$
(g \circ h=k \circ g) \Rightarrow(g \circ f h=f k \circ g)
$$

We instead generate:

$$
g \circ f(p \circ g)=f(g \circ p) \circ g
$$

Why? And what does "like" mean above?

## When it "doesn't work"

For types like $f::(\alpha \rightarrow \alpha) \rightarrow(\alpha \rightarrow \alpha)$ we lose some generality. The general free theorem would be:

$$
(g \circ h=k \circ g) \Rightarrow(g \circ f h=f k \circ g)
$$

We instead generate:

$$
g \circ f(p \circ g)=f(g \circ p) \circ g
$$

Why? And what does "like" mean above?
In a nutshell, "because" of: $\left(\alpha^{+} \rightarrow \alpha^{-}\right)^{-} \rightarrow\left(\alpha^{-} \rightarrow \alpha^{+}\right)^{+}$

## References

嗇 J.C. Reynolds.
Types, abstraction and parametric polymorphism.
In Information Processing, Proceedings, pages 513-523.
Elsevier, 1983.
E P. Wadler.
Theorems for free!
In Functional Programming Languages and Computer
Architecture, Proceedings, pages 347-359. ACM Press, 1989.

