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Free Theorems

Statements about polymorphic functions based solely on their
types, obtained from relational parametricity [Rey83, Wad89].

For example,

I for every f :: [α ]→ [α ] and every g and x ,

map g (f x) = f (map g x)

I for every f :: (α→ Bool)→ [α ]→ Maybe α and every g , h, x ,

fmap g (f (h ◦ g) x) = f h (map g x)

I for every f :: (α→ Bool)→ α→ Int and every g , h and x ,

f (h ◦ g) x = f h (g x)

I for every f :: (([α ]→ Int)→ α)→ α and every g and h,

g (f h) = f (λk → g (h (k ◦map g)))
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Free Theorems – How they are usually derived

Take polymorphic type, say f :: (α→ Bool)→ ([α ]→ Maybe α),

replace type variables by relation variables, for the example yielding
(R → Bool)→ ([R]→ Maybe R), invoke a parametricity theorem
stating (f , f ) ∈ . . . , unfold a given set of definitions, such as:

I base types like Bool and Int are read as identity relations,

I R1 → R2 = {(f , g) | ∀(a, b) ∈ R1. (f a, g b) ∈ R2}
I Maybe R = {(N,N)}∪{(J a, J b) | (a, b) ∈ R}

. . . and then try to massage and simplify the resulting statement.

For example:

(f , f ) ∈ (R → id)→ ([R]→ Maybe R)
⇔ [[ definition of R1 → R2 ]]
∀(a, b) ∈ R → id . (f a, f b) ∈ [R]→ Maybe R
⇔ [[ again ]]
∀(a, b) ∈ R → id , (c , d) ∈ [R].(f a c , f b d) ∈ Maybe R
⇔ . . .
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Observations:

I Even when we in principle “know” what the free theorem is,
we have to go through these steps.

I We have no guarantee that we will end up with a nice enough
statement (depends on the massage/simplification heuristics).

I Depending on what language we are actually interested in,
there will be deviations in the relation unfolding definitions,
hence also in the derivations.
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Relational Parametricity

Usually,

I definition of a family of relations ∆ρ,τ capturing the
interpretation of types by relations, such that, e.g.,
∆[α 7→R],(α→Bool)→([α]→α) = (R → id)→ ([R]→ R)

I proof that for closed type τ , ∆∅,τ is the identity relation

I proof that for each valid typing judgement Γ ` e :: τ , if for
each x :: τ ′ in Γ we choose ex1 and ex2 with (ex1 , e

x
2 ) ∈ ∆ρ,τ ′ ,

then (e[ex1/x ], e[ex2/x ]) ∈ ∆ρ,τ

From the above, we prove the “conjuring lemma of parametricity”.
Crucially, it does not even mention ∆.
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The Conjuring Lemma

Let τ , τ1 and τ2 be closed types. Let e :: τ be a term possibly
involving α (but not in its own overall type, which is closed by
assumption) and term variables pre :: τ1 → α and post :: α→ τ2,
but no other free variables. Then for every g :: τ1 → τ2,

e[τ1/α, idτ1/pre, g/post] = e[τ2/α, g/pre, idτ2/post]

(∗)

I How could such an e look like?

For example e = λxs → map post (f (map pre xs)) with
f :: [α ]→ [α ].

I Why is this interesting?

Because in this case, (∗) specializes to

λxs → map g (f (map id xs)) = λxs → map id (f (map g xs))
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Turning this into a Generator

Given some f of polymorphic type, can we come up with some
term e of closed type and only pre :: τ1 → α and post :: α→ τ2
(for any closed types τ1 and τ2) as free term variables?

Well, e should of course use f in some interesting way.
In essence, we want to build e around f , using pre and post to do
away with the polymorphism of f .

Let’s see on a few examples:

I f :: [α ]→ [α ]  e = map post ◦ f ◦map pre :: [τ1 ]→ [τ2 ]

I f :: (α→ Bool)→ [α ]→ Maybe α
 e = λh→ fmap post ◦ f (h ◦ post) ◦map pre

:: (τ2 → Bool)→ [τ1 ]→ Maybe τ2
I f :: (α→ Bool)→ α→ Int
 e = λh→ f (h ◦ post) ◦ pre

:: (τ2 → Bool)→ τ1 → Int

6
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Turning this into a Generator

The following does the trick:

monopre,post(α) = post
monopre,post(Bool) = id
monopre,post(Int) = id
monopre,post([σ ]) = map monopre,post(σ)
monopre,post(Maybe σ) = fmap monopre,post(σ)
monopre,post(σ1 → σ2) = λh→ monopre,post(σ2)

◦ h ◦
monopost,pre(σ1)

. . . in the sense that e = monopre,post(σ) f is the term we seek
if f has polymorphic type σ.

In other words, given f :: σ, we now generate the free theorem

mono id ,g (σ) f = monog ,id(σ) f
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. . . and doing deterministic Simplifications

Well, actually, we generate

bmono id ,g (σ) f c = bmonog ,id(σ) f c

where:

bid tc = t
bmap f tc = map (λv → bf vc) t
bfmap f tc = fmap (λv → bf vc) t
b(λh→ body) tc = λv → bbody [t/h] vc
b(f ◦ g) tc = bf bg tcc
bf tc = f t

Thanks to the types used for syntax in the implementation, and
GHC’s exhaustiveness checker, we know that this simple recursive
definition cannot accidentally skip any simplification opportunities.

8
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bfmap f tc = fmap (λv → bf vc) t
b(λh→ body) tc = λv → bbody [t/h] vc
b(f ◦ g) tc = bf bg tcc
bf tc = f t

Thanks to the types used for syntax in the implementation, and
GHC’s exhaustiveness checker, we know that this simple recursive
definition cannot accidentally skip any simplification opportunities.
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When it “doesn’t work”

For types like f :: (α→ α)→ (α→ α) we lose some generality.

The general free theorem would be:

(g ◦ h = k ◦ g)⇒ (g ◦ f h = f k ◦ g)

We instead generate:

g ◦ f (p ◦ g) = f (g ◦ p) ◦ g

Why? And what does “like” mean above?

In a nutshell, “because” of: (α+ → α−)− → (α− → α+)+
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