
Understanding Idiomatic Traversals
Backwards and Forwards

Richard Bird, Jeremy Gibbons, Stefan Mehner, Tom Schrijvers,
and Janis Voigtländer

July 3rd, 2013



Traversals

I What is a traversal (strategy), for a given datatype
T :: ∗ → ∗ ?

I J.G. and B.O. in “The Essence of the Iterator Pattern”:
A function of type

traverse :: (a→ M b)→ T a→ M (T b)

I . . . where M :: ∗ → ∗ is a type constructor that captures
effectful computations (think: monads, or idioms)

I . . . where in fact traverse should be polymorphic in such M
(which hence should be written m), but not polymorphic in T

I . . . and where the behaviour of traverse should be governed
by some laws

1



Traversals — Examples

and Need for Laws

Let: data Tree a = Tip a | Bin (Tree a) (Tree a).

Depth-first-traversal (left-to-right):

traverse :: Monad m⇒ (a→ m b)→ Tree a→ m (Tree b)
traverse f (Tip x) = do x ′ ← f x

return (Tip x ′)
traverse f (Bin u v) = do u′ ← traverse f u

v ′ ← traverse f v
return (Bin u′ v ′)

or (equivalently):

traverse :: Applicative m⇒ (a→ m b)→ Tree a→ m (Tree b)
traverse f (Tip x) = pure Tip<∗> f x
traverse f (Bin u v) = pure Bin<∗> traverse f u

<∗> traverse f v

2



Traversals — Examples

and Need for Laws

Let: data Tree a = Tip a | Bin (Tree a) (Tree a).

Depth-first-traversal (right-to-left):

traverse :: Monad m⇒ (a→ m b)→ Tree a→ m (Tree b)
traverse f (Tip x) = do x ′ ← f x

return (Tip x ′)
traverse f (Bin u v) = do v ′ ← traverse f v

u′ ← traverse f u
return (Bin u′ v ′)

or (equivalently):

traverse :: Applicative m⇒ (a→ m b)→ Tree a→ m (Tree b)
traverse f (Tip x) = pure Tip<∗> f x
traverse f (Bin u v) = pure (flip Bin)<∗> traverse f v

<∗> traverse f u

2



Traversals — Examples

and Need for Laws

Let: data Tree a = Tip a | Bin (Tree a) (Tree a).

Breadth-first-traversal: left as an exercise

What about implementations like:

traverse :: Applicative m⇒ (a→ m b)→ Tree a→ m (Tree b)
traverse f (Tip x) = pure Tip<∗> f x
traverse f (Bin u v) = pure (λu′ → Bin u′ u′)<∗> traverse f u

or:

traverse :: Applicative m⇒ (a→ m b)→ Tree a→ m (Tree b)
traverse f (Tip x) = pure Tip<∗> f x
traverse f (Bin u v) = pure Bin<∗> traverse f v

<∗> traverse f u

or:

traverse :: Applicative m⇒ (a→ m b)→ Tree a→ m (Tree b)
traverse f (Tip x) = pure (λx ′ → Tip x ′)<∗> f x <∗> f x
traverse f (Bin u v) = . . .

That’s what laws are for, right?

I Set of laws proposed in “The Essence of the Iterator Pattern”.

I Further studied by Mauro Jaskelioff and Onďrej Rypáček in
“An Investigation of the Laws of Traversals”.

I No comprehensive characterization
(but according conjectures).

I Useful for answering concrete questions?

2



Traversals — Examples

and Need for Laws

Let: data Tree a = Tip a | Bin (Tree a) (Tree a).

Breadth-first-traversal: left as an exercise

What about implementations like:

. . .

or:

traverse :: Applicative m⇒ (a→ m b)→ Tree a→ m (Tree b)
traverse f (Tip x) = pure Tip<∗> f x
traverse f (Bin u v) = pure Bin<∗> traverse f v

<∗> traverse f u
or:

traverse :: Applicative m⇒ (a→ m b)→ Tree a→ m (Tree b)
traverse f (Tip x) = pure (λx ′ → Tip x ′)<∗> f x <∗> f x
traverse f (Bin u v) = . . .

That’s what laws are for, right?

I Set of laws proposed in “The Essence of the Iterator Pattern”.

I Further studied by Mauro Jaskelioff and Onďrej Rypáček in
“An Investigation of the Laws of Traversals”.

I No comprehensive characterization
(but according conjectures).

I Useful for answering concrete questions?

2



Traversals — Examples and Need for Laws

Let: data Tree a = Tip a | Bin (Tree a) (Tree a).

Breadth-first-traversal: left as an exercise

What about implementations like:

. . .

???

That’s what laws are for, right?

I Set of laws proposed in “The Essence of the Iterator Pattern”.

I Further studied by Mauro Jaskelioff and Onďrej Rypáček in
“An Investigation of the Laws of Traversals”.

I No comprehensive characterization
(but according conjectures).

I Useful for answering concrete questions?

2



A Concrete Question about Inverse Traversals

I One can generically, without knowing T, define an inverse
version treverse for each traverse.

I The idea is to use traverse with a variant of <∗> defined
via: g <∗>′ y = pure (λy ′ g ′ → g ′ y ′)<∗> y <∗> g .

I For the special case of monads, one can feed the value result
of one effectful function into another effectful function, and
get the combined effects (Kleisli composition):

(<=<) :: Monad m⇒ (b → m c)→ (a→ m b)→ (a→ m c)
(g <=< f ) x = do {x ′ ← f x ; g x ′}

I Now, does the following property hold?

g <=< f = return

⇒ treverse g <=< traverse f = return

3



A Concrete Question about Inverse Traversals

From Jeremy’s talk at the last meeting:

The Un of Programming 22

4.5. Linking forwards and backwards traversal

Inverse traversal law

f � g � return ) treverse f � traverse g � return

does not seem to follow from other properties.

Nevertheless, I don’t know of a traverse that respects idiom composition
and idiom morphisms but not reversal.

Is it the consequence of some deeper structure?

By now we know. And more!

4



Backdrop: The Applicative Class (Idioms)

class Functor m⇒ Applicative m where
pure :: a→ m a
(<∗>) :: m (a→ b)→ m a→ m b

Laws (along with fmap id = id, fmap (g ◦ f ) = fmap g ◦ fmap f ):

fmap f x = pure f <∗> x
pure (◦)<∗> u <∗> v <∗> w = u <∗> (v <∗> w)
pure f <∗> pure x = pure (f x)
u <∗> pure x = pure ($x)<∗> u

An example:

newtype ConstM a = Const [a ]

instance Applicative (ConstM ) where
pure = Const [ ]
Const xs <∗> Const ys = Const (xs ++ ys)

5



The (Undebated) Laws about Traversals

I traverse Id = Id (for the identity idiom)

I traverse g <◦> traverse f = traverse (g <◦> f ), where

(<◦>) :: (Applicative m,Applicative n)⇒
(b → n c)→ (a→ m b)→ a→ Compose m n c

g <◦> f = Compose ◦ fmap g ◦ f

for the composition of idioms:

data Compose m n a = Compose (m (n a))

(with canonical definition of the Applicative instance)

I φ ◦ traverse f = traverse (φ ◦ f ) if φ is an idiom morphism

I two naturality properties concerning the a and b in
traverse :: Applicative m⇒ (a→ m b)→ T a→ m (T b)

6



Analysing Traversals

Plan of attack:

I Use φ ◦ traverse f = traverse (φ ◦ f ) law to relate results
of traversals in different idioms.

I Choose specific idioms that reveal information about the
traversal behaviour.

I For example, generically accessing the contents of a
traversable object:

contents :: T a→ [a ]
contents t = case traverse (λa→ Const [a ]) t of

Const as → as

Problems with initial attempts (as I saw them):

I missing point of reference (connect contents to what?)

I calculationally not very pleasing

7



Analysing Traversals — The Free Idiom

Actually use the free/initial structure:

data Free f c = P c | ∀b. Free f (b → c) :∗: f b

Specifically for analysing traversals, refine by specialising f to
F a b, where:

data F :: ∗ → ∗ → ∗ → ∗ where
F :: a→ F a b b

Then Free (F a b) c is equivalent to Batch a b c, where:

data Batch a b c = P c | Batch a b (b → c) :∗: a

Values of type Batch A B C take the form

P f :∗: x1 :∗: . . . :∗: xn
where f :: B→ . . .→ B→ C with n arguments, and xi :: A.

8



Analysing Traversals — The Batch Idiom

Values of type Batch A B C take the form

P f :∗: x1 :∗: . . . :∗: xn

where f :: B→ . . .→ B→ C with n arguments, and xi :: A.

How is this an idiom?

instance Applicative (Batch a b) where
. . .

such that

(P g :∗:mi=1 xi ) <∗> (P f :∗:ni=m+1 xi )
=

P (λy1 . . . yn → g y1 . . . ym (f ym+1 . . . yn)) :∗:ni=1 xi

9



Analysing Traversals — The Batch Idiom

Given a concrete t :: T A, let’s consider a specific use of traverse
now:

traverse batch t :: Batch A b (T b)

where:

batch :: a→ Batch a b b
batch x = P id :∗: x

Crucially, traverse batch t is still polymorphic in b, i.e., takes
the form, for some n,

P f :∗: x1 :∗: . . . :∗: xn
where f :: b → . . .→ b → T b of arity n is polymorphic, and xi :: A.

This is extremely useful!

Some things we can show (using the laws about traverse):

1. t = f x1 . . . xn
2. contents (f y1 . . . yn) = [y1, . . ., yn ]
3. traverse g (f y1 . . . yn) = pure f <∗> g y1 <∗> . . . <∗> g yn

This is enough to prove the inversion law.

Moreover: 1. and 2. are enough to determine n, f , and the xi .

10



Analysing Traversals — The Batch Idiom

Crucially, traverse batch t is still polymorphic in b, i.e., takes
the form, for some n,

P f :∗: x1 :∗: . . . :∗: xn

where f :: b → . . .→ b → T b of arity n is polymorphic, and xi :: A.

This is extremely useful!

Some things we can show (using the laws about traverse):

1. t = f x1 . . . xn

2. contents (f y1 . . . yn) = [y1, . . ., yn ]

3. traverse g (f y1 . . . yn) = pure f <∗> g y1 <∗> . . . <∗> g yn

This is enough to prove the inversion law.

Moreover: 1. and 2. are enough to determine n, f , and the xi .

10



Proving the Inversion Law

Assume g <=< h = return, and t = f x1 . . . xn as given. Then:

(treverse g <=< traverse h) t
= do {t ′ ← traverse h t; treverse g t ′}
= do {t ′ ← pure f <∗> h x1 <∗> . . . <∗> h xn; treverse g t ′}
= do {y1 ← h x1; . . .; yn ← h xn; treverse g (f y1 . . . yn)}
= do {y1 ← h x1; . . .; yn ← h xn;

pure (λzn . . . z1 → f z1 . . . zn)<∗> g yn <∗> . . . <∗> g y1}
= do {y1 ← h x1; . . .; yn ← h xn;

zn ← g yn; . . .; z1 ← g y1;
return (f z1 . . . zn)}

= do {y1 ← h x1; . . .; yn−1 ← h xn−1;
zn ← return xn;
zn−1 ← g yn−1; . . .; z1 ← g y1;
return (f z1 . . . zn)}

= . . .
= do {return (f x1 . . . xn)} = return t

11



Doing without the Batch Idiom

Crucially, traverse batch t is still polymorphic in b, i.e., takes
the form, for some n,

P f :∗: x1 :∗: . . . :∗: xn

where f :: b → . . .→ b → T b of arity n is polymorphic, and xi :: A.

This is extremely useful!

Some things we can show (using the laws about traverse):

1. t = f x1 . . . xn

2. contents (f y1 . . . yn) = [y1, . . ., yn ]

3. traverse g (f y1 . . . yn) = pure f <∗> g y1 <∗> . . . <∗> g yn

This is enough to prove the inversion law.

Moreover: 1. and 2. are enough to determine n, f , and the xi .

12



The Representation Theorem

Theorem: Let t :: T A and a definition of traverse be given.
There is a unique n, a unique polymorphic function
f :: b → . . .→ b → T b of arity n, and unique values x1, . . ., xn, all
of type A, such that t = f x1 . . . xn and, for arbitrary yi of
arbitrary type, contents (f y1 . . . yn) = [y1, . . ., yn ]. Furthermore,
traverse g (f y1. . .yn) = pure f <∗> g y1 <∗> .... <∗> g yn for all
g and yi (of/for arbitrary types and idiom).

Beside the inversion law this also gives:

I Lawful instances of Traversable exactly correspond to finitary
containers. (In particular, types containing infinite structures
are not lawfully traversable.)

I Different lawful instances of Traversable for the same T only
differ by fixed (per “shape”) permutation of positions.

I A coherence/naturality property holds for lawful instances of
Traversable on T,T′.

13



References

J. Gibbons and B. Oliveira.
The Essence of the Iterator Pattern.
J. Funct. Program., 19(3–4):377–402, 2009.

M. Jaskelioff and O. Rypáček.
An Investigation of the Laws of Traversals.
In MSFP, Proceedings, volume 76 of EPTCS, pages 40–49,
2012.

14


