Understanding Idiomatic Traversals
Backwards and Forwards

Richard Bird, Jeremy Gibbons, Stefan Mehner, Tom Schrijvers,
and Janis Voigtlander

July 3rd, 2013

Traversals

» What is a traversal (strategy), for a given datatype
Tox—%7?

v

J.G. and B.O. in “The Essence of the lterator Pattern”:
A function of type

traverse:(a—Mb) - T a— M (T b)

> ... where M :: x — x is a type constructor that captures
effectful computations (think: monads, or idioms)

> ... where in fact traverse should be polymorphic in such M
(which hence should be written m), but not polymorphic in T

v

. and where the behaviour of traverse should be governed
by some laws

Traversals — Examples

Let: data Tree a = Tip a | Bin (Tree a) (Tree a).
Depth-first-traversal (left-to-right):

traverse :: Monad m = (a — m b) — Tree a — m (Tree b)
traverse f (Tipx) =dox' + f x

return (Tip x’)
traverse f (Bin u v) =do v/ + traverse f u

v/ < traverse f v

return (Bin o' V')

or (equivalently):

traverse :: Applicative m = (a — m b) — Tree a — m (Tree b)
traverse f (Tip x) = pure Tip <> f x
traverse f (Bin u v) = pure Bin <> traverse f u

<#> traverse f v

Traversals — Examples

Let: data Tree a = Tip a | Bin (Tree a) (Tree a).
Depth-first-traversal (right-to-left):

traverse :: Monad m = (a — m b) — Tree a — m (Tree b)
traverse f (Tipx) =dox’ + fx

return (Tip x’)
traverse f (Bin uv) =do v/ + traverse f v

v < traverse f u

return (Bin o' V')

or (equivalently):

traverse :: Applicative m = (a — m b) — Tree a — m (Tree b)

traverse f (Tip x) = pure Tip <> f x

traverse f (Bin u v) = pure (f1ip Bin) <¥> traverse f v
<#> traverse f u

Traversals — Examples
Let: data Tree a = Tip a | Bin (Tree a) (Tree a).

Breadth-first-traversal: left as an exercise
What about implementations like:

traverse :: Applicative m = (a — m b) — Tree a — m (Tree b)
traverse f (Tip x) = pure Tip <& f x
traverse f (Bin u v) = pure (Au/ — Bin v/ u') <> traverse f u

or:

traverse :: Applicative m = (a — m b) — Tree a — m (Tree b)
traverse f (Tip x) = pure Tip <> f x
traverse f (Bin u v) = pure Bin <« traverse f v

<#> traverse f u

Traversals — Examples
Let: data Tree a = Tip a | Bin (Tree a) (Tree a).
Breadth-first-traversal: left as an exercise

What about implementations like:

or:

traverse :: Applicative m = (a — m b) — Tree a — m (Tree b)
traverse f (Tip x) = pure Tip <> f x
traverse f (Bin v v) = pure Bin <« traverse f v
<#> traverse f u
or:

traverse :: Applicative m = (a — m b) — Tree a — m (Tree b)
traverse f (Tipx) = pure (Ax' _ — Tipx') <> f x <& f x
traverse f (Binuv)=...

Traversals — Examples and Need for Laws
Let: data Tree a = Tip a | Bin (Tree a) (Tree a).

Breadth-first-traversal: left as an exercise

What about implementations like:
7?

That’s what laws are for, right?
» Set of laws proposed in “The Essence of the lterator Pattern”.

» Further studied by Mauro Jaskelioff and Ondfej Rypééek in
“An Investigation of the Laws of Traversals”.

» No comprehensive characterization
(but according conjectures).

» Useful for answering concrete questions?

A Concrete Question about Inverse Traversals

» One can generically, without knowing T, define an inverse
version treverse for each traverse.

» The idea is to use traverse with a variant of <¥> defined
via: g <>’y =pure (N g = g'y) <oy <o g

» For the special case of monads, one can feed the value result
of one effectful function into another effectful function, and
get the combined effects (Kleisli composition):
(<<)::Monad m= (b—mc)— (a— mb)— (a— mc)
(g=<f)x=do{x «+ fx gx'}

» Now, does the following property hold?

g <=<f =return
= treverse g <=< traverse f = return

A Concrete Question about Inverse Traversals

From Jeremy’s talk at the last meeting:

The Un of Programming

4.5. Linking forwards and backwards traversal

Inverse traversal law
f g return) treversef traverseg return

does not seem to follow from other properties.

Nevertheless, | don’t know of a traverse that respects idiom composition
and idiom morphisms but not reversal.

Is it the consequence of some deeper structure?

By now we know. And more!

Backdrop: The Applicative Class (Idioms)

class Functor m = Applicative m where
pure :a—+ma
(c>):m(a—=b)—>ma—mb

Laws (along with fmap id = id, fmap (g o f) = fmap g o fmap f):

fmap f x = pure f <> X

pure (0) <> u <> v <& w = u <> (v <& w)

pure f <> pure x = pure (f x)

u <> pure x = pure ($x) <> u
An example:

newtype ConstM a _ = Const [3]

instance Applicative (ConstM _) where
pure _ = Const []
Const xs <> Const ys = Const (xs H ys)

The (Undebated) Laws about Traversals

» traverse Id = Id (for the identity idiom)

> traverse g <o> traverse f = traverse (g <o> f), where

(<o>) :: (Applicative m, Applicative n) =
(b—nc)— (a— mb)— a— Compose mnc
g <o> f = Compose o fmap g o f

for the composition of idioms:
data Compose m n a = Compose (m (n a))

(with canonical definition of the Applicative instance)
» ¢otraverse f = traverse (¢of) if ¢ is an idiom morphism

> two naturality properties concerning the a and b in
traverse :: Applicative m= (a —» mb) — T a— m (T b)

Analysing Traversals

Plan of attack:
» Use ¢ otraverse f = traverse (¢ o f) law to relate results

of traversals in different idioms.

» Choose specific idioms that reveal information about the
traversal behaviour.

» For example, generically accessing the contents of a
traversable object:

contents 1 T a — [a]
contents t = case traverse (Aa — Const [a]) t of
Const as — as

Problems with initial attempts (as | saw them):
» missing point of reference (connect contents to what?)

» calculationally not very pleasing

Analysing Traversals — The Free Idiom

Actually use the free/initial structure:

data Free f c =P c |Vb. Freef (b—c) = f b

Specifically for analysing traversals, refine by specialising f to
F a b, where:

data F:: * — ¥ — ¥ — x where
F:a—Fabb

Then Free (F a b) c is equivalent to Batch a b ¢, where:

data Batchabc=Pc|Batchab(b— c)x* a

Values of type Batch A B C take the form
Pfooxg ... %X,

where f :: B — ... — B — C with n arguments, and x; :: A.

Analysing Traversals — The Batch Idiom

Values of type Batch A B C take the form

Pfoxgx ... %X,
where f :: B — ... — B — C with n arguments, and x; :: A.
How is this an idiom?

instance Applicative (Batch a b) where

such that

(Pg =Ty x) <> (PFf 1 x)

POyi-coyn—=8Y1 - Ym (f Ymy1 .- yn)) 1y X

Analysing Traversals — The Batch Idiom

Given a concrete t:: T A, let's consider a specific use of traverse
now:

traverse batch t:: Batch A b (T b)
where:

batch::a— Batchab b
batch x = P id *: x

Crucially, traverse batch t is still polymorphic in b, i.e., takes
the form, for some n,

Pfooxxg ... %X,

where f ::b— ... — b — T b of arity n is polymorphic, and x; :: A.

This is extremely useful!

10

Analysing Traversals — The Batch Idiom

Crucially, traverse batch t is still polymorphic in b, i.e., takes
the form, for some n,

Pfooxg ... %X,
where f ::b— ... — b — T b of arity n is polymorphic, and x; :: A.

This is extremely useful!

Some things we can show (using the laws about traverse):

1. t=Ffx1 ... Xxp

2. contents (fy1 ... yn) =[¥1,-- - ¥n]
3. traverse g (fy1 ... yn) =pure f <> gy <6 ... <> g Yy

This is enough to prove the inversion law.

10

Proving the Inversion Law

Assume g <=< h = return, and t = f x1 ... x, as given. Then:

(treverse g << traverse h) t
=do {t' < traverse h t;treverse g t'}
=do {t' + pure f <> h x; <& ... <> h xp,; treverse g t'}
=do{y1 < hxy; ...;yn< hxy treverse g (fy1 ... yn)}

=do{y; < hxi; ...;yn < hxp;

pure (Azp ... 21 > fz1 ... 2,) <K gyn <> ... <> gy}
=do{y; < hxi; ...;yn < hxp;

Zn g Yn -1 8N

return (f z; ... zp)}
=do{y1 < hxi; ...;¥n-1 ¢ hxp_1;

Zp < Teturn xp;

Zn-1 4 & Yn-1; .- 21 < & Y1,

return (f z; ... z,)}

=do {return (f xy ... xp)} = returnt

11

Doing without the Batch Idiom

Crucially, traverse batch t is still polymorphic in b, i.e., takes
the form, for some n,

Pfooxg ... %X,
where f ::b— ... — b — T b of arity n is polymorphic, and x; :: A.

This is extremely useful!

Some things we can show (using the laws about traverse):
1. t=Ffx1 ... Xxp
2. contents (fy1 ... yn) =[¥1,-- - ¥n]
3. traverse g (fy1 ... yn) =pure f <> gy <6 ... <> g Yy

This is enough to prove the inversion law.

Moreover: 1. and 2. are enough to determine n, f, and the x;.

12

The Representation Theorem

Theorem: Let t:: T A and a definition of traverse be given.
There is a unique n, a unique polymorphic function

fiob—...— b—Tbof arity n, and unique values xi, ..., x,, all
of type A, such that t = f x; ... x, and, for arbitrary y; of
arbitrary type, contents (f y1 ... ¥n) = [¥1,. .., ¥n]. Furthermore,
traverse g (f y1...yn) = pure f <&> g y1 <> ... <& gy, for all
g and y; (of /for arbitrary types and idiom).

Beside the inversion law this also gives:

» Lawful instances of Traversable exactly correspond to finitary
containers. (In particular, types containing infinite structures
are not lawfully traversable.)

» Different lawful instances of Traversable for the same T only
differ by fixed (per “shape”) permutation of positions.

» A coherence/naturality property holds for lawful instances of
Traversable on T, T'.

13

References

[@ J. Gibbons and B. Oliveira.
The Essence of the lterator Pattern.
J. Funct. Program., 19(3-4):377-402, 2009.

M M. Jaskelioff and O. Rypétek.
An Investigation of the Laws of Traversals.
In MSFP, Proceedings, volume 76 of EPTCS, pages 40-49,
2012.

14

