Understanding Idiomatic Traversals Backwards and Forwards

Richard Bird, Jeremy Gibbons, Stefan Mehner, Tom Schrijvers, and Janis Voigtländer

$$
\text { July 3rd, } 2013
$$

Traversals

- What is a traversal (strategy), for a given datatype $\mathrm{T}:: * \rightarrow *$?
- J.G. and B.O. in "The Essence of the Iterator Pattern": A function of type

$$
\text { traverse }::(a \rightarrow \mathrm{M} b) \rightarrow \mathrm{T} a \rightarrow \mathrm{M}(\mathrm{~T} b)
$$

- ... where $\mathrm{M}:: * \rightarrow *$ is a type constructor that captures effectful computations (think: monads, or idioms)
- ... where in fact traverse should be polymorphic in such M (which hence should be written m), but not polymorphic in T
- ... and where the behaviour of traverse should be governed by some laws

Traversals - Examples

Let: data Tree $a=$ Tip $a \mid \operatorname{Bin}($ Tree $a)($ Tree $a)$.
Depth-first-traversal (left-to-right):
traverse :: Monad $m \Rightarrow(a \rightarrow m b) \rightarrow$ Tree $a \rightarrow m$ (Tree b) traverse $f(\operatorname{Tip} x)=\boldsymbol{d o} x^{\prime} \leftarrow f x$ return (Tip x^{\prime})
traverse $f(\operatorname{Bin} u v)=$ do $u^{\prime} \leftarrow$ traverse $f u$
$v^{\prime} \leftarrow$ traverse $f v$
return ($\operatorname{Bin} u^{\prime} v^{\prime}$)
or (equivalently):
traverse :: Applicative $m \Rightarrow(a \rightarrow m b) \rightarrow$ Tree $a \rightarrow m$ (Tree b) traverse $f(\operatorname{Tip} x)=$ pure Tip $<*>f x$
traverse $f(\operatorname{Bin} u v)=$ pure $\operatorname{Bin}<*>$ traverse $f u$

$$
\text { <*> traverse } f v
$$

Traversals - Examples

Let: data Tree $a=$ Tip $a \mid \operatorname{Bin}($ Tree $a)($ Tree $a)$.
Depth-first-traversal (right-to-left):
traverse :: Monad $m \Rightarrow(a \rightarrow m b) \rightarrow$ Tree $a \rightarrow m$ (Tree b) traverse $f(\operatorname{Tip} x)=\boldsymbol{d o} x^{\prime} \leftarrow f x$ return (Tip x^{\prime})
traverse $f(\operatorname{Bin} u v)=$ do $v^{\prime} \leftarrow$ traverse $f v$ $u^{\prime} \leftarrow$ traverse $f u$ return ($\operatorname{Bin} u^{\prime} v^{\prime}$)
or (equivalently):
traverse :: Applicative $m \Rightarrow(a \rightarrow m b) \rightarrow$ Tree $a \rightarrow m$ (Tree b) traverse $f(\operatorname{Tip} x)=$ pure Tip $<*>f x$
traverse $f(\operatorname{Bin} u v)=$ pure (flip Bin) <*> traverse $f v$ <* traverse $f u$

Traversals - Examples

Let: data Tree $a=$ Tip $a \mid \operatorname{Bin}($ Tree $a)($ Tree $a)$.
Breadth-first-traversal: left as an exercise
What about implementations like:
traverse :: Applicative $m \Rightarrow(a \rightarrow m b) \rightarrow$ Tree $a \rightarrow m$ (Tree b) traverse $f(\operatorname{Tip} x)=$ pure Tip $\langle *>f x$ traverse $f(\operatorname{Bin} u v)=\operatorname{pure}\left(\lambda u^{\prime} \rightarrow \operatorname{Bin} u^{\prime} u^{\prime}\right)<*>$ traverse $f u$ or:
traverse :: Applicative $m \Rightarrow(a \rightarrow m b) \rightarrow$ Tree $a \rightarrow m$ (Tree b)
traverse $f($ Tip $x)=$ pure Tip $<*>f x$
traverse $f(\operatorname{Bin} u v)=$ pure $\operatorname{Bin}<*>$ traverse $f v$
<*> traverse $f u$

Traversals - Examples

Let: data Tree $a=$ Tip $a \mid \operatorname{Bin}($ Tree $a)($ Tree $a)$.
Breadth-first-traversal: left as an exercise
What about implementations like:
or:
traverse :: Applicative $m \Rightarrow(a \rightarrow m b) \rightarrow$ Tree $a \rightarrow m$ (Tree b) traverse $f(\operatorname{Tip} x)=$ pure Tip $<*>f x$
traverse $f(\operatorname{Bin} u v)=$ pure $\operatorname{Bin}<*>$ traverse $f v$ <*> traverse $f u$
or:
traverse :: Applicative $m \Rightarrow(a \rightarrow m b) \rightarrow$ Tree $a \rightarrow m$ (Tree b) traverse $f(\operatorname{Tip} x)=\operatorname{pure}\left(\lambda x^{\prime} _\rightarrow \operatorname{Tip} x^{\prime}\right)<*>f x<*>f x$ traverse $f(\operatorname{Bin} u v)=\ldots$

Traversals - Examples and Need for Laws

Let: data Tree $a=$ Tip $a \mid \operatorname{Bin}($ Tree $a)($ Tree $a)$.
Breadth-first-traversal: left as an exercise
What about implementations like:
???

That's what laws are for, right?

- Set of laws proposed in "The Essence of the Iterator Pattern".
- Further studied by Mauro Jaskelioff and Ondřej Rypáček in "An Investigation of the Laws of Traversals".
- No comprehensive characterization (but according conjectures).
- Useful for answering concrete questions?

A Concrete Question about Inverse Traversals

- One can generically, without knowing T, define an inverse version treverse for each traverse.
- The idea is to use traverse with a variant of $<*\rangle$ defined via: $g<*>^{\prime} y=$ pure $\left(\lambda y^{\prime} g^{\prime} \rightarrow g^{\prime} y^{\prime}\right)<*>y<*>g$.
- For the special case of monads, one can feed the value result of one effectful function into another effectful function, and get the combined effects (Kleisli composition):
$(\Leftarrow<)::$ Monad $m \Rightarrow(b \rightarrow m c) \rightarrow(a \rightarrow m b) \rightarrow(a \rightarrow m c)$ $(g \Leftarrow<f) x=$ do $\left\{x^{\prime} \leftarrow f x ; g x^{\prime}\right\}$
- Now, does the following property hold?

$$
\begin{aligned}
& g \Leftarrow<f=\text { return } \\
\Rightarrow \quad & \text { treverse } g \Leftarrow<\text { traverse } f=\text { return }
\end{aligned}
$$

A Concrete Question about Inverse Traversals

From Jeremy's talk at the last meeting:

The Un of Programming

4.5. Linking forwards and backwards traversal

Inverse traversal law

$$
f \cdot g=\text { return } \Rightarrow \quad \text { treverse } f \bullet \text { traverse } g=\text { return }
$$

does not seem to follow from other properties.
Nevertheless, I don't know of a traverse that respects idiom composition and idiom morphisms but not reversal.

Is it the consequence of some deeper structure?

By now we know. And more!

Backdrop: The Applicative Class (Idioms)

class Functor $m \Rightarrow$ Applicative m where

$$
\begin{aligned}
& \text { pure }:: a \rightarrow m a \\
& (<*>):: m(a \rightarrow b) \rightarrow m a \rightarrow m b
\end{aligned}
$$

Laws (along with fmap id $=i d, f m a p(g \circ f)=f m a p g \circ f m a p f):$

$$
\begin{array}{ll}
\text { fmap } f x & =\operatorname{pure} f<*\rangle x \\
\text { pure }(0)<*>u<*>v<*>w & =u<*>(v<*>w) \\
\text { pure } f<*>\text { pure } x & \\
u<*>\text { pure } x & \\
u \text { pure }(f x) \\
& =\operatorname{pure}(\$ x)<*>u
\end{array}
$$

An example:
newtype ConstM $a_{-}=$Const [a]
instance Applicative (ConstM _) where
pure _ $=$ Const []
Const $x s<*>$ Const $y s=$ Const ($x s+y s$)

The (Undebated) Laws about Traversals

- traverse Id = Id (for the identity idiom)
- traverse $g\langle 0\rangle$ traverse $f=$ traverse $(g\langle 0\rangle f)$, where
(<<>) :: (Applicative m, Applicative n) \Rightarrow $(b \rightarrow n c) \rightarrow(a \rightarrow m b) \rightarrow a \rightarrow$ Compose $m n c$ $g<0\rangle f=$ Compose $\circ f m a p g \circ f$
for the composition of idioms:

$$
\text { data Compose } m n a=\text { Compose }(m(n a))
$$

(with canonical definition of the Applicative instance)

- $\phi \circ$ traverse $f=$ traverse $(\phi \circ f)$ if ϕ is an idiom morphism
- two naturality properties concerning the a and b in traverse :: Applicative $m \Rightarrow(a \rightarrow m b) \rightarrow \mathrm{T} a \rightarrow m(\mathrm{~T} b)$

Analysing Traversals

Plan of attack:

- Use $\phi \circ$ traverse $f=$ traverse $(\phi \circ f)$ law to relate results of traversals in different idioms.
- Choose specific idioms that reveal information about the traversal behaviour.
- For example, generically accessing the contents of a traversable object:

```
contents:: T a > [a]
contents t= case traverse ( }\lambdaa->\mathrm{ Const [a])t of
    Const as }->\mathrm{ as
```

Problems with initial attempts (as I saw them):

- missing point of reference (connect contents to what?)
- calculationally not very pleasing

Analysing Traversals - The Free Idiom

Actually use the free/initial structure:
data Free $f c=\mathrm{P} c \mid \forall b$. Free $f(b \rightarrow c): *: f b$

Specifically for analysing traversals, refine by specialising f to F a b, where:
data $\mathrm{F}:: * \rightarrow * \rightarrow * \rightarrow *$ where

$$
\mathrm{F}:: a \rightarrow \mathrm{~F} a b b
$$

Then Free $(\mathrm{F} a b) c$ is equivalent to Batch $a b c$, where:
data Batch $a b c=P c \mid$ Batch $a b(b \rightarrow c): *: a$

Values of type Batch A B C take the form

$$
\text { P f:*: } x_{1}: *: \ldots: *: x_{n}
$$

where $f:: \mathrm{B} \rightarrow \ldots \rightarrow \mathrm{B} \rightarrow \mathrm{C}$ with n arguments, and $x_{i}:: \mathrm{A}$.

Analysing Traversals - The Batch Idiom

Values of type Batch A B C take the form

$$
\text { Pf:*: } x_{1}: *: \ldots: *: x_{n}
$$

where $f:: \mathrm{B} \rightarrow \ldots \rightarrow \mathrm{B} \rightarrow \mathrm{C}$ with n arguments, and $x_{i}:: \mathrm{A}$.
How is this an idiom?
instance Applicative (Batch ab) where
such that

$$
\begin{gathered}
\left(\mathrm{Pg}: *_{:}^{m} x_{i=1}^{m} x_{i}<*>\left(\mathrm{P} f: *_{i=m+1}^{n} x_{i}\right)\right. \\
= \\
\mathrm{P}\left(\lambda y_{1} \ldots y_{n} \rightarrow g y_{1} \ldots y_{m}\left(f y_{m+1} \ldots y_{n}\right)\right): *_{i=1}^{n} x_{i}
\end{gathered}
$$

Analysing Traversals - The Batch Idiom

Given a concrete $t:: \mathrm{T}$ A, let's consider a specific use of traverse now:

$$
\text { traverse batch } t:: \text { Batch A b(T b) }
$$

where:
batch :: $a \rightarrow$ Batch $a b b$
batch $x=\mathrm{P}$ id :*: x

Crucially, traverse batch t is still polymorphic in b, i.e., takes the form, for some n,

$$
\text { P f:*: } x_{1}: *: \ldots: *: x_{n}
$$

where $f:: b \rightarrow \ldots \rightarrow b \rightarrow \mathrm{~T} b$ of arity n is polymorphic, and $x_{i}:: \mathrm{A}$.
This is extremely useful!

Analysing Traversals - The Batch Idiom

Crucially, traverse batch t is still polymorphic in b, i.e., takes the form, for some n,

$$
\text { P f:*: } x_{1}: *: \ldots: *: x_{n}
$$

where $f:: b \rightarrow \ldots \rightarrow b \rightarrow \mathrm{~T} b$ of arity n is polymorphic, and $x_{i}:: \mathrm{A}$.
This is extremely useful!
Some things we can show (using the laws about traverse):

1. $t=f x_{1} \ldots x_{n}$
2. contents $\left(f y_{1} \ldots y_{n}\right)=\left[y_{1}, \ldots, y_{n}\right]$
3. traverse $g\left(f y_{1} \ldots y_{n}\right)=$ pure $f<*>g y_{1}<*>\ldots<*>g y_{n}$

This is enough to prove the inversion law.

Proving the Inversion Law

Assume $g \Leftarrow<h=$ return, and $t=f x_{1} \ldots x_{n}$ as given. Then:
(treverse $g \ll$ traverse h) t
$=\boldsymbol{d o}\left\{t^{\prime} \leftarrow\right.$ traverse $h t$; treverse $\left.g t^{\prime}\right\}$
$=$ do $\left\{t^{\prime} \leftarrow\right.$ pure $f<*>h x_{1}<*>\ldots<*>h x_{n}$; treverse $\left.g t^{\prime}\right\}$
$=\mathbf{d o}\left\{y_{1} \leftarrow h x_{1} ; \ldots ; y_{n} \leftarrow h x_{n} ;\right.$ treverse $\left.g\left(f y_{1} \ldots y_{n}\right)\right\}$
$=\mathbf{d o}\left\{y_{1} \leftarrow h x_{1} ; \ldots ; y_{n} \leftarrow h x_{n}\right.$;
pure $\left.\left(\lambda z_{n} \ldots z_{1} \rightarrow f z_{1} \ldots z_{n}\right)<*>g y_{n}<*>\ldots<*>g y_{1}\right\}$
$=\boldsymbol{d o}\left\{y_{1} \leftarrow h x_{1} ; \ldots ; y_{n} \leftarrow h x_{n} ;\right.$
$z_{n} \leftarrow g y_{n} ; \ldots ; z_{1} \leftarrow g y_{1} ;$
return $\left.\left(f z_{1} \ldots z_{n}\right)\right\}$
$=\boldsymbol{d o}\left\{y_{1} \leftarrow h x_{1} ; \ldots ; y_{n-1} \leftarrow h x_{n-1}\right.$;
$z_{n} \leftarrow$ return x_{n};
$z_{n-1} \leftarrow g y_{n-1} ; \ldots ; z_{1} \leftarrow g y_{1} ;$
return $\left.\left(f z_{1} \ldots z_{n}\right)\right\}$
$=\ldots$.
$=\boldsymbol{d o}\left\{\operatorname{return}\left(f x_{1} \ldots x_{n}\right)\right\}=$ return t

Doing without the Batch Idiom

Crucially, traverse batch t is still polymorphic in b, i.e., takes the form, for some n,

$$
\text { P f:*: } x_{1}: *: \ldots: *: x_{n}
$$

where $f:: b \rightarrow \ldots \rightarrow b \rightarrow \mathrm{~T} b$ of arity n is polymorphic, and $x_{i}:: \mathrm{A}$.
This is extremely useful!
Some things we can show (using the laws about traverse):

1. $t=f x_{1} \ldots x_{n}$
2. contents $\left(f y_{1} \ldots y_{n}\right)=\left[y_{1}, \ldots, y_{n}\right]$
3. traverse $g\left(f y_{1} \ldots y_{n}\right)=$ pure $f<*>g y_{1}<*>\ldots<*>g y_{n}$

This is enough to prove the inversion law.
Moreover: 1. and 2. are enough to determine n, f, and the x_{i}.

The Representation Theorem

Theorem: Let $t:: \mathrm{T} \mathrm{A}$ and a definition of traverse be given.
There is a unique n, a unique polymorphic function $f:: b \rightarrow \ldots \rightarrow b \rightarrow \mathrm{~T} b$ of arity n, and unique values x_{1}, \ldots, x_{n}, all of type A , such that $t=f x_{1} \ldots x_{n}$ and, for arbitrary y_{i} of arbitrary type, contents $\left(f y_{1} \ldots y_{n}\right)=\left[y_{1}, \ldots, y_{n}\right]$. Furthermore, traverse $g\left(f y_{1} \ldots y_{n}\right)=$ pure $\left.f<*>g y_{1}<*>\ldots .<*\right\rangle g y_{n}$ for all g and y_{i} (of/for arbitrary types and idiom).

Beside the inversion law this also gives:

- Lawful instances of Traversable exactly correspond to finitary containers. (In particular, types containing infinite structures are not lawfully traversable.)
- Different lawful instances of Traversable for the same T only differ by fixed (per "shape") permutation of positions.
- A coherence/naturality property holds for lawful instances of Traversable on $\mathrm{T}, \mathrm{T}^{\prime}$.

References

固 J. Gibbons and B. Oliveira.
The Essence of the Iterator Pattern.
J. Funct. Program., 19(3-4):377-402, 2009.

國 M. Jaskelioff and O. Rypáček.
An Investigation of the Laws of Traversals.
In MSFP, Proceedings, volume 76 of EPTCS, pages 40-49, 2012.

