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Multi-Traversal Programs

data Tree a = Leaf a | Fork (Tree a) (Tree a)

treemin :: Tree Int→ Int
treemin (Leaf n) = n
treemin (Fork l r) = min (treemin l) (treemin r)

replace :: Tree Int→ Int→ Tree Int
replace (Leaf n) m = Leaf m
replace (Fork l r) m = Fork (replace l m)

(replace r m)

run :: Tree Int→ Tree Int
run t = replace t (treemin t)
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Circular Programs [Bird 1984]

The previous can be transformed into:

repmin :: Tree Int→ Int→ (Tree Int, Int)
repmin (Leaf n) m = (Leaf m, n)
repmin (Fork l r) m = (Fork l ′ r ′, min m1 m2)

where (l ′,m1) = repmin l m
(r ′,m2) = repmin r m

run :: Tree Int→ Tree Int
run t = let (nt,m) = repmin t m in nt

Only one traversal!
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Circular Programs

Other uses/appearances of circular programs:

I as attribute grammar realization
[Johnsson 1987, Kuiper & Swierstra 1987]

I as algorithmic tool
[Jones & Gibbons 1993, Okasaki 2000]

I as target for deforestation/fusion techniques
[V. 2004, Fernandes et al. 2007]

I . . .
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But:
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The Aim

repmin (Leaf n) m = (Leaf m, n)
repmin (Fork l r) m = (Fork l ′ r ′, min m1 m2)

where (l ′,m1) = repmin l m
(r ′,m2) = repmin r m

run t = let (nt,m) = repmin t m in nt

treemin (Leaf n) = n
treemin (Fork l r) = min (treemin l) (treemin r)

replace (Leaf n) m = Leaf m
replace (Fork l r) m = Fork (replace l m) (replace r m)

run t = replace t (treemin t)

?
��
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Getting Started

Let us have a look at:

repmin :: Tree Int→ Int→ (Tree Int, Int)
repmin (Leaf n) m = (Leaf m, n)
repmin (Fork l r) m = (Fork l ′ r ′, min m1 m2)

where (l ′,m1) = repmin l m
(r ′,m2) = repmin r m

and try to learn something about it.

What better way to learn something about a
function than looking at its inferred type?
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Dependency Analysis for Free

It turns out that (from the given equations):

repmin :: Tree Int→ b → (Tree b, Int)

Very interesting: the second output cannot possibly
depend on the second input!

Hence, for every t :: Tree Int and m1,m2:

snd (repmin t m1) ≡ snd (repmin t m2)

Indeed, for every t :: Tree Int and m:

snd (repmin t m) ≡ snd (repmin t ⊥)
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Achieving Noncircularity

run t = let (nt,m) = repmin t m in nt
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Achieving Noncircularity

run t = let (nt,m) = repmin t m in nt

run t = let (nt, ) = repmin t m
( ,m) = repmin t m

in nt

by referential transparency
��
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Achieving Noncircularity

run t = let (nt,m) = repmin t m in nt

run t = let (nt, ) = repmin t m
( ,m) = repmin t m

in nt

run t = let (nt, ) = repmin t m
( ,m) = repmin t ⊥

in nt

by referential transparency
��

by snd (repmin t m) ≡ snd (repmin t ⊥)
��
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Towards Efficiency

Instead of having:

( ,m) = repmin t ⊥

let us define a specialized function:

repminsnd :: Tree Int→ Int
repminsnd t = snd (repmin t ⊥)

which then lets us replace the above binding with:

m = repminsnd t

Using fold/unfold-transformations, it is easy to
derive a direct definition for repminsnd!
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Towards Efficiency

Resulting definition:

repminsnd :: Tree Int→ Int
repminsnd (Leaf n) = n
repminsnd (Fork l r) = min (repminsnd l)

(repminsnd r)

Similarly, for (nt, ) = repmin t m:

repminfst :: Tree Int→ b → Tree b
repminfst (Leaf n) m = Leaf m
repminfst (Fork l r) m = Fork (repminfst l m)

(repminfst r m)
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Final Program

run :: Tree Int→ Tree Int
run t = let (nt, ) = repmin t m

( ,m) = repmin t ⊥
in nt

run :: Tree Int→ Tree Int
run t = repminfst t (repminsnd t)

by fst (repmin t m) ≡ repminfst t m,
snd (repmin t ⊥) ≡ repminsnd t

��
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A General Strategy

1. Detect dependencies of outputs of a circular call
on its inputs. Preferrably, do this light-weight.
As far as possible, type-based [Kobayashi 2001].

2. Naively split the circular call into several ones,
each computing only one of the outputs. Exploit
information from above to decouple these calls.

3. Specialize the different calls (using partial
evaluation, slicing, . . . ) to work only with those
pieces of input and output that are relevant.
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A More Challenging Example:
Breadth-First Numbering [Okasaki 2000]

data Tree a = Empty | Fork a (Tree a) (Tree a)

bfn :: Tree a→ [ Int]→ (Tree Int, [ Int])
bfn Empty ks = (Empty, ks)
bfn (Fork l r) ˜(k : ks) = (Fork k l ′ r ′, (k + 1) : ks ′′)

where (l ′, ks ′) = bfn l ks
(r ′, ks ′′) = bfn r ks ′

run :: Tree a→ Tree Int
run t = let (nt, ks) = bfn t (1 : ks) in nt
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Let us Try the General Strategy

data Tree a = Empty | Fork a (Tree a) (Tree a)

bfn :: Tree a→ [ Int]→ (Tree Int, [ Int])
bfn Empty ks = (Empty, ks)
bfn (Fork l r) ˜(k : ks) = (Fork k l ′ r ′, (k + 1) : ks ′′)

where (l ′, ks ′) = bfn l ks
(r ′, ks ′′) = bfn r ks ′

Inferred type of bfn is still

Tree a→ [ Int]→ (Tree Int, [ Int])

Precise dependency of output list on input list too
intricate for type system to figure out!
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A Little Help

Note that second output of bfn always built from
second input by (potentially repeatedly)
incrementing list elements.

So let us derive a variant with:

bfn t ks ≡ let (nt, ds) = bfnOff t ks
in (nt, zipPlus ks ds)

where:

zipPlus :: [ Int]→ [ Int]→ [ Int]
zipPlus [ ] ds = ds
zipPlus ks [ ] = ks
zipPlus (k : ks) (d : ds) = (k + d) : (zipPlus ks ds)
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A Little Help

The pretty straightforward derivation result:

bfnOff :: Tree a→ [ Int]→ (Tree Int, [ Int])
bfnOff Empty ks = (Empty, [ ])
bfnOff (Fork l r) ˜(k : ks) = (Fork k l ′ r ′,

1 : (zipPlus ds ds ′))
where (l ′, ds) = bfnOff l ks

(r ′, ds ′) = bfnOff r (zipPlus ks ds)

run :: Tree a→ Tree Int
run t = let (nt, ds) = bfnOff t (1 : ks)

ks = zipPlus (1 : ks) ds
in nt
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Applying our General Strategy

run t = let (nt, ds) = bfnOff t (1 : ks)
ks = zipPlus (1 : ks) ds

in nt

run t = let (nt, ) = bfnOff t (1 : ks)
( , ds) = bfnOff t (1 : ks)
ks = zipPlus (1 : ks) ds

in nt

by splitting calls
��
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Removing One of the Two Circularities

From
( , ds) = bfnOff t (1 : ks)

to
( , ds) = bfnOff t ⊥

where:

bfnOff :: Tree a→ b → (c , [ Int])
bfnOff Empty ks = (⊥, [ ])
bfnOff (Fork l r) ˜(k : ks) = (⊥,

1 : (zipPlus ds ds ′))
where (l ′, ds) = bfnOff l ⊥

(r ′, ds ′) = bfnOff r ⊥
18



Specializing . . .

. . . leads to:

bfnOff,snd :: Tree a→ [ Int]
bfnOff,snd Empty = [ ]
bfnOff,snd (Fork l r) = 1 : (zipPlus ds ds ′)

where ds = bfnOff,snd l
ds ′ = bfnOff,snd r

run :: Tree a→ Tree Int
run t = let nt = fst (bfnOff t (1 : ks))

ds = bfnOff,snd t
ks = zipPlus (1 : ks) ds

in nt
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Looking at ks = zipPlus (1 : ks) ds

[k0, k1, . . .]
≡ zipPlus [1, k0, k1, . . .] [d0, d1, . . . , dn ]

20



Looking at ks = zipPlus (1 : ks) ds

[k0, k1, . . .]
≡ zipPlus [1, k0, k1, . . .] [d0, d1, . . . , dn ]
≡ (1 + d0) : (zipPlus [k0, k1, . . .] [d1, . . . , dn ])

20



Looking at ks = zipPlus (1 : ks) ds

[k0, k1, . . .]
≡ zipPlus [1, k0, k1, . . .] [d0, d1, . . . , dn ]
≡ (1 + d0) : (zipPlus [k0, k1, . . .] [d1, . . . , dn ])
≡ (1 + d0) : ((1 + d0) + d1) :

(zipPlus [k1, . . .] [d2, . . . , dn ])

20



Looking at ks = zipPlus (1 : ks) ds

[k0, k1, . . .]
≡ zipPlus [1, k0, k1, . . .] [d0, d1, . . . , dn ]
≡ (1 + d0) : (zipPlus [k0, k1, . . .] [d1, . . . , dn ])
≡ (1 + d0) : ((1 + d0) + d1) : (zipPlus . . .)
≡ (1 + d0) : ((1 + d0) + d1) : (((1 + d0) + d1) + d2) :

(zipPlus [k2, . . .] [d3, . . . , dn ])

20



Looking at ks = zipPlus (1 : ks) ds

[k0, k1, . . .]
≡ zipPlus [1, k0, k1, . . .] [d0, d1, . . . , dn ]
≡ (1 + d0) : (zipPlus [k0, k1, . . .] [d1, . . . , dn ])
≡ (1 + d0) : ((1 + d0) + d1) : (zipPlus . . .)
≡ (1 + d0) : ((1 + d0) + d1) : (((1 + d0) + d1) + d2) :

(zipPlus [k2, . . .] [d3, . . . , dn ])
≡ . . .

20



Looking at ks = zipPlus (1 : ks) ds

[k0, k1, . . .]
≡ zipPlus [1, k0, k1, . . .] [d0, d1, . . . , dn ]
≡ (1 + d0) : (zipPlus [k0, k1, . . .] [d1, . . . , dn ])
≡ (1 + d0) : ((1 + d0) + d1) : (zipPlus . . .)
≡ (1 + d0) : ((1 + d0) + d1) : (((1 + d0) + d1) + d2) :

(zipPlus [k2, . . .] [d3, . . . , dn ])
≡ . . .
≡ (tail (scanl (+) 1 [d0, d1, . . . , dn ])) ++

(zipPlus [kn, . . .] [ ])

20



Looking at ks = zipPlus (1 : ks) ds

[k0, k1, . . .]
≡ zipPlus [1, k0, k1, . . .] [d0, d1, . . . , dn ]
≡ (1 + d0) : (zipPlus [k0, k1, . . .] [d1, . . . , dn ])
≡ (1 + d0) : ((1 + d0) + d1) : (zipPlus . . .)
≡ (1 + d0) : ((1 + d0) + d1) : (((1 + d0) + d1) + d2) :

(zipPlus [k2, . . .] [d3, . . . , dn ])
≡ . . .
≡ (tail (scanl (+) 1 [d0, d1, . . . , dn ])) ++

(zipPlus [kn, . . .] [ ])
≡ (tail (scanl (+) 1 ds)) ++ [kn, . . .]

20



Looking at ks = zipPlus (1 : ks) ds

[k0, k1, . . .]
≡ zipPlus [1, k0, k1, . . .] [d0, d1, . . . , dn ]
≡ (1 + d0) : (zipPlus [k0, k1, . . .] [d1, . . . , dn ])
≡ (1 + d0) : ((1 + d0) + d1) : (zipPlus . . .)
≡ (1 + d0) : ((1 + d0) + d1) : (((1 + d0) + d1) + d2) :

(zipPlus [k2, . . .] [d3, . . . , dn ])
≡ . . .
≡ (tail (scanl (+) 1 [d0, d1, . . . , dn ])) ++

(zipPlus [kn, . . .] [ ])
≡ (tail (scanl (+) 1 ds)) ++ [kn, . . .]
≡ (tail (scanl (+) 1 ds)) ++

(repeat (last (scanl (+) 1 ds)))

20



(Almost) Finally:

run :: Tree a→ Tree Int
run t = let nt = fst (bfnOff t (1 : ks))

ds = bfnOff,snd t
ks = (tail (scanl (+) 1 ds)) ++

(repeat (last (scanl (+) 1 ds)))
in nt

Can be directly transliterated to OCaml!

And/or optimized a bit:

run :: Tree a→ Tree Int
run t = let ds = bfnOff,snd t

in fst (bfnOff t (scanl (+) 1 ds))
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Inefficiency Lurking

bfnOff,snd Empty = [ ]
bfnOff,snd (Fork l r) = 1 : (zipPlus (bfnOff,snd l)

(bfnOff,snd r))

bfnOff Empty ks = (Empty, [ ])
bfnOff (Fork l r) ˜(k : ks) = (Fork k l ′ r ′,

1 : (zipPlus ds ds ′))
where (l ′, ds) = bfnOff l ks

(r ′, ds ′) = bfnOff r (zipPlus ks ds)

run t = let ds = bfnOff,snd t
in fst (bfnOff t (scanl (+) 1 ds))
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One Alternative

Exploit

bfn t ks ≡ let (nt, ds) = bfnOff t ks
in (nt, zipPlus ks ds)

to get:

bfn Empty ks = (Empty, ks)
bfn (Fork l r) ˜(k : ks) = (Fork k l ′ r ′, (k + 1) : ks ′′)

where (l ′, ks ′) = bfn l ks
(r ′, ks ′′) = bfn r ks ′

run t = let ds = bfnOff,snd t
in fst (bfn t (scanl (+) 1 ds))
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Taking Stock

We now have an essentially two-phase solution:

1. First phase to compute (in ds) the widths of
levels:

bfnOff,snd Empty = [ ]
bfnOff,snd (Fork l r) = 1 : (zipPlus (bfnOff,snd l)

(bfnOff,snd r))

2. An intermediate step (scanl (+) 1 ds) to
compute level beginnings.

3. The second phase doing the actual numbering,
using the original bfn-function (but without
circular dependency).
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