Strictification of Circular Programs

J.P. Fernandes¹ J. Saraiva¹

D. Seidel² J. Voigtländer²

¹University of Minho

²University of Bonn

IFIP WG 2.1 meeting #66

Multi-Traversal Programs

data Tree $a = \text{Leaf } a \mid \text{Fork}$ (Tree a) (Tree a) treemin :: Tree Int \rightarrow Int treemin (Leaf n) = ntreemin (Fork / r) = min (treemin /) (treemin r) replace :: Tree Int \rightarrow Int \rightarrow Tree Int replace (Leaf n) m = Leaf mreplace (Fork I r) m = Fork (replace I m) (replace r m)

run :: Tree Int \rightarrow Tree Int run t = replace t (treemin t)

Circular Programs [Bird 1984]

The previous can be transformed into:

$$\begin{array}{l} \texttt{repmin}:: \texttt{Tree Int} \to \texttt{Int} \to (\texttt{Tree Int},\texttt{Int}) \\ \texttt{repmin} (\texttt{Leaf } n) \quad m = (\texttt{Leaf } m, n) \\ \texttt{repmin} (\texttt{Fork } l \ r) \ m = (\texttt{Fork } l' \ r',\texttt{min } m_1 \ m_2) \\ \texttt{where} (l', m_1) = \texttt{repmin} \ l \ m \\ (r', m_2) = \texttt{repmin} \ r \ m \end{array}$$

run :: Tree Int \rightarrow Tree Int run t =let (nt, m) =repmin t m in nt

Only one traversal!

Circular Programs

Other uses/appearances of circular programs:

as attribute grammar realization
 [Johnsson 1987, Kuiper & Swierstra 1987]

Circular Programs

Other uses/appearances of circular programs:

- as attribute grammar realization
 [Johnsson 1987, Kuiper & Swierstra 1987]
- as algorithmic tool
 [Jones & Gibbons 1993, Okasaki 2000]

Circular Programs

▶ . . .

Other uses/appearances of circular programs:

- as attribute grammar realization
 [Johnsson 1987, Kuiper & Swierstra 1987]
- as algorithmic tool
 [Jones & Gibbons 1993, Okasaki 2000]
- as target for deforestation/fusion techniques
 [V. 2004, Fernandes et al. 2007]

But:

4

The Aim

Getting Started

Let us have a look at:

$$\begin{array}{l} \texttt{repmin}:: \texttt{Tree Int} \to \texttt{Int} \to (\texttt{Tree Int},\texttt{Int}) \\ \texttt{repmin} (\texttt{Leaf } n) \quad m = (\texttt{Leaf } m, n) \\ \texttt{repmin} (\texttt{Fork } l \ r) \ m = (\texttt{Fork } l' \ r',\texttt{min } m_1 \ m_2) \\ \texttt{where} (l', m_1) = \texttt{repmin} \ l \ m \\ (r', m_2) = \texttt{repmin} \ r \ m \end{array}$$

and try to learn something about it.

Getting Started

Let us have a look at:

$$\begin{array}{l} \texttt{repmin}:: \texttt{Tree Int} \to \texttt{Int} \to (\texttt{Tree Int},\texttt{Int}) \\ \texttt{repmin} (\texttt{Leaf } n) \quad m = (\texttt{Leaf } m, n) \\ \texttt{repmin} (\texttt{Fork } l \ r) \ m = (\texttt{Fork } l' \ r',\texttt{min } m_1 \ m_2) \\ \texttt{where} (l', m_1) = \texttt{repmin} \ l \ m \\ (r', m_2) = \texttt{repmin} \ r \ m \end{array}$$

and try to learn something about it.

What better way to learn something about a function than looking at its inferred type?

It turns out that (from the given equations): repmin :: Tree Int $\rightarrow b \rightarrow$ (Tree b, Int)

It turns out that (from the given equations): repmin :: Tree Int $\rightarrow b \rightarrow$ (Tree b, Int)

Very interesting: the second output cannot possibly depend on the second input!

It turns out that (from the given equations): repmin :: Tree Int $\rightarrow b \rightarrow$ (Tree b, Int)

Very interesting: the second output cannot possibly depend on the second input!

Hence, for every t:: Tree Int and m_1, m_2 : snd (repmin $t m_1$) \equiv snd (repmin $t m_2$)

It turns out that (from the given equations): repmin :: Tree Int $\rightarrow b \rightarrow$ (Tree b, Int)

Very interesting: the second output cannot possibly depend on the second input!

Hence, for every t :: Tree Int and m_1, m_2 : snd (repmin $t m_1$) \equiv snd (repmin $t m_2$)

Indeed, for every t :: Tree Int and m: snd (repmin t m) \equiv snd (repmin $t \perp$)

Achieving Noncircularity

$$\operatorname{run} t = \operatorname{let} (nt, m) = \operatorname{repmin} t m \operatorname{in} nt$$

Achieving Noncircularity

run
$$t =$$
let $(nt, m) =$ repmin $t m$ in nt

$$\downarrow by referential transparency$$
run $t =$ let $(nt, _) =$ repmin $t m$
 $(_, m) =$ repmin $t m$
in nt

Achieving Noncircularity

run
$$t =$$
let $(nt, m) =$ repmin $t m$ in nt

$$\downarrow by referential transparency$$
run $t =$ let $(nt, _) =$ repmin $t m$
 $(_, m) =$ repmin $t m$
in nt

 $\downarrow \quad \text{by snd} (\text{repmin } t \ m) \ \equiv \ \text{snd} \ (\text{repmin } t \ \bot)$

$$run t = let (nt, _) = repmin t m$$
$$(_, m) = repmin t \bot$$
in nt

Instead of having:

$$(_,m) = \texttt{repmin} \ t \perp$$

Instead of having:

 $(-, m) = \operatorname{repmin} t \perp$

let us define a specialized function:

 $\operatorname{repmin}_{\operatorname{snd}}$:: Tree Int \rightarrow Int repmin_{snd} $t = \operatorname{snd}(\operatorname{repmin} t \perp)$

Instead of having:

 $(-, m) = \operatorname{repmin} t \perp$

let us define a specialized function:

$$\texttt{repmin}_{\texttt{snd}} :: \texttt{Tree Int} \to \texttt{Int}$$

 $\texttt{repmin}_{\texttt{snd}} t = \texttt{snd} (\texttt{repmin} t \perp)$

which then lets us replace the above binding with:

 $m = \operatorname{repmin}_{\operatorname{snd}} t$

Instead of having:

 $(-, m) = \operatorname{repmin} t \perp$

let us define a specialized function:

$$\texttt{repmin}_{\texttt{snd}} :: \texttt{Tree Int} \to \texttt{Int}$$

 $\texttt{repmin}_{\texttt{snd}} t = \texttt{snd} (\texttt{repmin} t \perp)$

which then lets us replace the above binding with:

 $m = \operatorname{repmin}_{\operatorname{snd}} t$

Using fold/unfold-transformations, it is easy to derive a direct definition for repmin_{snd}!

Resulting definition: $repmin_{snd}$:: Tree Int \rightarrow Int $repmin_{snd}$ (Leaf n) = n $repmin_{snd}$ (Fork l r) = min (repmin_{snd} l) (repmin_{snd} r)

Resulting definition: $repmin_{snd}$:: Tree Int \rightarrow Int $repmin_{snd}$ (Leaf n) = n $repmin_{snd}$ (Fork l r) = min (repmin_{snd} l) (repmin_{snd} r)

Similarly, for $(nt, _) = \operatorname{repmin} t m$: $\operatorname{repmin_{fst}}$:: Tree Int $\rightarrow b \rightarrow$ Tree b $\operatorname{repmin_{fst}}$ (Leaf n) $m = \operatorname{Leaf} m$ $\operatorname{repmin_{fst}}$ (Fork l r) $m = \operatorname{Fork} (\operatorname{repmin_{fst}} l m)$ $(\operatorname{repmin_{fst}} r m)$

Final Program

run :: Tree Int → Tree Int
run
$$t =$$
let $(nt, _) =$ repmin $t m$
 $(_, m) =$ repmin $t \perp$
in nt

run :: Tree Int \rightarrow Tree Int run $t = \operatorname{repmin}_{fst} t (\operatorname{repmin}_{snd} t)$

A General Strategy

 Detect dependencies of outputs of a circular call on its inputs. Preferrably, do this light-weight. As far as possible, type-based [Kobayashi 2001].

A General Strategy

- Detect dependencies of outputs of a circular call on its inputs. Preferrably, do this light-weight. As far as possible, type-based [Kobayashi 2001].
- 2. Naively split the circular call into several ones, each computing only one of the outputs. Exploit information from above to decouple these calls.

A General Strategy

- Detect dependencies of outputs of a circular call on its inputs. Preferrably, do this light-weight. As far as possible, type-based [Kobayashi 2001].
- 2. Naively split the circular call into several ones, each computing only one of the outputs. Exploit information from above to decouple these calls.
- 3. Specialize the different calls (using partial evaluation, slicing, ...) to work only with those pieces of input and output that are relevant.

A More Challenging Example: Breadth-First Numbering [Okasaki 2000]

data Tree a = Empty | Fork a (Tree a) (Tree a)

$$\begin{array}{ll} \texttt{bfn} :: \texttt{Tree } a \to [\texttt{Int}] \to (\texttt{Tree Int}, [\texttt{Int}]) \\ \texttt{bfn} \texttt{Empty} & ks &= (\texttt{Empty}, ks) \\ \texttt{bfn} (\texttt{Fork} _ l \ r) \ \tilde{} (k : ks) = (\texttt{Fork} \ k \ l' \ r', (k+1) : ks'') \\ \texttt{where} \ (l', ks') &= \texttt{bfn} \ l \ ks \\ & (r', ks'') = \texttt{bfn} \ r \ ks' \end{array}$$

run :: Tree $a \rightarrow$ Tree Int run t =let (nt, ks) =bfn t (1 : ks) in nt

Let us Try the General Strategy

data Tree a = Empty | Fork a (Tree a) (Tree a)bfn :: Tree $a \rightarrow [\text{Int}] \rightarrow (\text{Tree Int}, [\text{Int}])$ bfn Empty ks = (Empty, ks)bfn (Fork _ / r) ~ (k : ks) = (Fork $k \ l' \ r', (k+1) : ks''$) where (l', ks') = bfn / ks(r', ks'') = bfn r ks'

Inferred type of bfn is still

Tree $a \rightarrow [Int] \rightarrow (Tree Int, [Int])$

Let us Try the General Strategy

data Tree a = Empty | Fork a (Tree a) (Tree a)bfn :: Tree $a \rightarrow [\text{Int}] \rightarrow (\text{Tree Int}, [\text{Int}])$ bfn Empty ks = (Empty, ks)bfn (Fork _ / r) ~ (k : ks) = (Fork $k \ l' \ r', (k+1) : ks''$) where (l', ks') = bfn / ks(r', ks'') = bfn r ks'

Inferred type of **bfn** is still

Tree $a \rightarrow [Int] \rightarrow (Tree Int, [Int])$

Precise dependency of output list on input list too intricate for type system to figure out!

A Little Help

Note that second output of **bfn** always built from second input by (potentially repeatedly) incrementing list elements.

A Little Help

Note that second output of **bfn** always built from second input by (potentially repeatedly) incrementing list elements.

So let us derive a variant with:

$$\begin{array}{l} \texttt{bfn} \ t \ ks \ \equiv \ \mathbf{let} \ (nt, ds) = \texttt{bfn}_{\texttt{Off}} \ t \ ks \\ \mathbf{in} \ (nt, \texttt{zipPlus} \ ks \ ds) \end{array}$$

where:

 $\begin{array}{l} \texttt{zipPlus} :: [\mathsf{Int}] \to [\mathsf{Int}] \to [\mathsf{Int}] \\ \texttt{zipPlus} [] & ds &= ds \\ \texttt{zipPlus} \ ks & [] &= ks \\ \texttt{zipPlus} \ (k:ks) \ (d:ds) = (k+d) : (\texttt{zipPlus} \ ks \ ds) \end{array}$

A Little Help

The pretty straightforward derivation result:

 $\begin{array}{ll} & \texttt{bfn}_{\texttt{Off}} :: \texttt{Tree } a \rightarrow [\texttt{Int}] \rightarrow (\texttt{Tree Int}, [\texttt{Int}]) \\ & \texttt{bfn}_{\texttt{Off}} \texttt{Empty} \quad ks & = (\texttt{Empty}, []) \\ & \texttt{bfn}_{\texttt{Off}} (\texttt{Fork} _ \textit{I} \textit{r}) ~(\textit{k} : \textit{ks}) = (\texttt{Fork} \textit{k} \textit{l'} \textit{r'}, \\ & 1 : (\texttt{zipPlus} \textit{ds} \textit{ds'})) \\ & \texttt{where} (\textit{l'}, \textit{ds}) &= \texttt{bfn}_{\texttt{Off}} \textit{I} \textit{ks} \\ & (\textit{r'}, \textit{ds'}) &= \texttt{bfn}_{\texttt{Off}} \textit{r} (\texttt{zipPlus} \textit{ks} \textit{ds}) \end{array}$

run :: Tree a → Tree Int run t = let (nt, ds) = bfn_{0ff} t (1 : ks) ks = zipPlus (1 : ks) ds in nt Applying our General Strategy

$$run t = let (nt, ds) = bfn_{Off} t (1:ks)$$

ks = zipPlus (1:ks) ds
in nt

$$run t = let (nt, _) = bfn_{Off} t (1:ks)$$
$$(_, ds) = bfn_{Off} t (1:ks)$$
$$ks = zipPlus (1:ks) ds$$
in nt

Removing One of the Two Circularities

From

$$(-, ds) = \texttt{bfn}_{\texttt{Off}} t (1: ks)$$

to

$$(-, ds) = bfn_{Off} t \perp$$

where:

$$\begin{array}{ll} \texttt{bfn}_{\texttt{Off}} :: \texttt{Tree } a \to b \to (c, [\texttt{Int}]) \\ \texttt{bfn}_{\texttt{Off}} \; \texttt{Empty} & ks &= (\bot, []) \\ \texttt{bfn}_{\texttt{Off}} \; (\texttt{Fork} _ I \; r) \; \tilde{} \; (k : ks) = (\bot, \\ & 1 : (\texttt{zipPlus} \; ds \; ds')) \\ \texttt{where} \; (I', ds) \;= \texttt{bfn}_{\texttt{Off}} \; I \perp \\ & (r', ds') = \texttt{bfn}_{\texttt{Off}} \; r \perp \end{array}$$

Specializing ...

... leads to:

$$\begin{array}{l} \texttt{bfn}_{\texttt{Off,snd}} :: \texttt{Tree } a \to [\texttt{Int}] \\ \texttt{bfn}_{\texttt{Off,snd}} \; \texttt{Empty} &= [] \\ \texttt{bfn}_{\texttt{Off,snd}} \; (\texttt{Fork} _ \textit{I} \textit{r}) = 1 : (\texttt{zipPlus } \textit{ds } \textit{ds'}) \\ \texttt{where } \textit{ds} \;= \texttt{bfn}_{\texttt{Off,snd}} \textit{I} \\ \textit{ds'} \;= \texttt{bfn}_{\texttt{Off,snd}} \textit{r} \end{array}$$

run :: Tree $a \rightarrow$ Tree Int run t = let nt =fst (bfn_{0ff} t (1 : ks)) ds =bfn_{0ff,snd} tks =zipPlus (1 : ks) dsin nt

$$\begin{bmatrix} k_0, k_1, \ldots \end{bmatrix}$$

$$\equiv \texttt{zipPlus} [1, k_0, k_1, \ldots] [d_0, d_1, \ldots, d_n]$$

$$\begin{bmatrix} k_0, k_1, \ldots \end{bmatrix}$$

$$\equiv \texttt{zipPlus} [1, k_0, k_1, \ldots] [d_0, d_1, \ldots, d_n]$$

$$\equiv (1 + d_0) : (\texttt{zipPlus} [k_0, k_1, \ldots] [d_1, \ldots, d_n])$$

$$\begin{array}{l} [k_0, k_1, \ldots] \\ \equiv & \texttt{zipPlus} [1, k_0, k_1, \ldots] [d_0, d_1, \ldots, d_n] \\ \equiv & (1 + d_0) : (\texttt{zipPlus} [k_0, k_1, \ldots] [d_1, \ldots, d_n]) \\ \equiv & (1 + d_0) : ((1 + d_0) + d_1) : \\ & (\texttt{zipPlus} [k_1, \ldots] [d_2, \ldots, d_n]) \end{array}$$

$$\begin{array}{l} [k_0, k_1, \ldots] \\ \equiv \ \texttt{zipPlus} \ [1, k_0, k_1, \ldots] \ [d_0, d_1, \ldots, d_n] \\ \equiv \ (1 + d_0) : (\texttt{zipPlus} \ [k_0, k_1, \ldots] \ [d_1, \ldots, d_n]) \\ \equiv \ (1 + d_0) : ((1 + d_0) + d_1) : (\texttt{zipPlus} \ldots) \\ \equiv \ (1 + d_0) : ((1 + d_0) + d_1) : (((1 + d_0) + d_1) + d_2) : \\ (\texttt{zipPlus} \ [k_2, \ldots] \ [d_3, \ldots, d_n]) \end{array}$$

$$\begin{array}{l} [k_0, k_1, \ldots] \\ \equiv \ \texttt{zipPlus} \ [1, k_0, k_1, \ldots] \ [d_0, d_1, \ldots, d_n] \\ \equiv \ (1 + d_0) : (\texttt{zipPlus} \ [k_0, k_1, \ldots] \ [d_1, \ldots, d_n]) \\ \equiv \ (1 + d_0) : ((1 + d_0) + d_1) : (\texttt{zipPlus} \ldots) \\ \equiv \ (1 + d_0) : ((1 + d_0) + d_1) : (((1 + d_0) + d_1) + d_2) : \\ (\texttt{zipPlus} \ [k_2, \ldots] \ [d_3, \ldots, d_n]) \\ \equiv \ \ldots \end{array}$$

$$\begin{bmatrix} k_0, k_1, \dots \end{bmatrix} \\ \equiv \text{ zipPlus } [1, k_0, k_1, \dots] [d_0, d_1, \dots, d_n] \\ \equiv (1 + d_0) : (\text{zipPlus } [k_0, k_1, \dots] [d_1, \dots, d_n]) \\ \equiv (1 + d_0) : ((1 + d_0) + d_1) : (\text{zipPlus } \dots) \\ \equiv (1 + d_0) : ((1 + d_0) + d_1) : (((1 + d_0) + d_1) + d_2) : \\ (\text{zipPlus } [k_2, \dots] [d_3, \dots, d_n]) \\ \equiv \dots$$

 $\equiv (\texttt{tail}(\texttt{scanl}(+) 1 [d_0, d_1, \dots, d_n])) + (\texttt{zipPlus}[k_n, \dots][])$

$$\begin{array}{l} [k_0, k_1, \ldots] \\ \equiv \ \texttt{zipPlus} \ [1, k_0, k_1, \ldots] \ [d_0, d_1, \ldots, d_n] \\ \equiv \ (1 + d_0) : (\texttt{zipPlus} \ [k_0, k_1, \ldots] \ [d_1, \ldots, d_n]) \\ \equiv \ (1 + d_0) : ((1 + d_0) + d_1) : (\texttt{zipPlus} \ldots) \\ \equiv \ (1 + d_0) : ((1 + d_0) + d_1) : (((1 + d_0) + d_1) + d_2) : \\ (\texttt{zipPlus} \ [k_2, \ldots] \ [d_3, \ldots, d_n]) \\ \equiv \ \ldots \\ \equiv \ (\texttt{tail} \ (\texttt{scanl} \ (+) \ 1 \ [d_0, d_1, \ldots, d_n])) + \end{array}$$

 $(\texttt{zipPlus} [k_n, \ldots] []) \\ \equiv (\texttt{tail} (\texttt{scanl} (+) 1 ds)) + [k_n, \ldots]$

$$\begin{bmatrix} k_0, k_1, \dots \end{bmatrix} \\ \equiv \text{ zipPlus } [1, k_0, k_1, \dots] [d_0, d_1, \dots, d_n] \\ \equiv (1 + d_0) : (\text{zipPlus } [k_0, k_1, \dots] [d_1, \dots, d_n]) \\ \equiv (1 + d_0) : ((1 + d_0) + d_1) : (\text{zipPlus } \dots) \\ \equiv (1 + d_0) : ((1 + d_0) + d_1) : (((1 + d_0) + d_1) + d_2) : \\ (\text{zipPlus } [k_2, \dots] [d_3, \dots, d_n]) \\ \equiv \dots \\ \equiv (\text{tail } (\text{scanl } (+) 1 [d_0, d_1, \dots, d_n])) + \\ (\text{zipPlus } [k_n, \dots] [])$$

- $\equiv (\texttt{tail}(\texttt{scanl}(+) \ 1 \ ds)) + [k_n, \ldots]$
- $\equiv (\texttt{tail}(\texttt{scanl}(+) \ 1 \ ds)) + (\texttt{repeat}(\texttt{last}(\texttt{scanl}(+) \ 1 \ ds)))$

(Almost) Finally:

$$\begin{array}{l} \operatorname{run}:: \operatorname{Tree} a \to \operatorname{Tree} \operatorname{Int} \\ \operatorname{run} t = \operatorname{let} nt = \operatorname{fst} \left(\operatorname{bfn}_{\operatorname{Off}} t \left(1 : ks \right) \right) \\ ds = \operatorname{bfn}_{\operatorname{Off,snd}} t \\ ks = \left(\operatorname{tail} \left(\operatorname{scanl} \left(+ \right) 1 \, ds \right) \right) + \\ \left(\operatorname{repeat} \left(\operatorname{last} \left(\operatorname{scanl} \left(+ \right) 1 \, ds \right) \right) \right) \\ \operatorname{in} nt \end{array}$$

Can be directly transliterated to OCaml!

(Almost) Finally:

$$\begin{array}{l} \texttt{run} :: \texttt{Tree } a \to \texttt{Tree Int} \\ \texttt{run} \ t = \texttt{let} \ nt = \texttt{fst} \ (\texttt{bfn}_{\texttt{Off}} \ t \ (1:ks)) \\ ds = \texttt{bfn}_{\texttt{Off,snd}} \ t \\ ks = (\texttt{tail} \ (\texttt{scanl} \ (+) \ 1 \ ds)) \ + \\ & (\texttt{repeat} \ (\texttt{last} \ (\texttt{scanl} \ (+) \ 1 \ ds)))) \\ \texttt{in} \ nt \end{array}$$

Can be directly transliterated to OCaml!

And/or optimized a bit:

 $\begin{array}{l} \texttt{run} :: \texttt{Tree } a \to \texttt{Tree Int} \\ \texttt{run } t = \texttt{let } ds = \texttt{bfn}_{\texttt{Off,snd}} t \\ \texttt{in fst} (\texttt{bfn}_{\texttt{Off}} t (\texttt{scanl} (+) 1 ds)) \end{array}$

Inefficiency Lurking

 $\begin{array}{ll} \texttt{bfn}_{\texttt{Off},\texttt{snd}} \; \texttt{Empty} &= [] \\ \texttt{bfn}_{\texttt{Off},\texttt{snd}} \; (\texttt{Fork} \;_ \textit{I} \; \textit{r}) = 1 : (\texttt{zipPlus} \; (\texttt{bfn}_{\texttt{Off},\texttt{snd}} \; \textit{I}) \\ & (\texttt{bfn}_{\texttt{Off},\texttt{snd}} \; \textit{r})) \end{array}$

 $\begin{aligned} & \texttt{bfn}_{\texttt{Off}} \; \texttt{Empty} \quad ks &= (\texttt{Empty}, []) \\ & \texttt{bfn}_{\texttt{Off}} \; (\texttt{Fork} _ I \ r) \; \tilde{} \; (k : ks) &= (\texttt{Fork} \ k \ l' \ r', \\ & 1 : (\texttt{zipPlus} \ ds \ ds')) \\ & \texttt{where} \; (l', ds) \; = \; \texttt{bfn}_{\texttt{Off}} \ l \ ks \\ & (r', ds') \; = \; \texttt{bfn}_{\texttt{Off}} \ r \; (\texttt{zipPlus} \ ks \ ds) \end{aligned}$

 $run \ t = let \ ds = bfn_{Off,snd} \ t$ $in \ fst \ (bfn_{Off} \ t \ (scanl \ (+) \ 1 \ ds))$

One Alternative

Exploit

$$bfn t ks \equiv let (nt, ds) = bfn_{0ff} t ks$$

in (nt, zipPlus ks ds)

One Alternative

Exploit

$$bfn \ t \ ks \ \equiv \ \mathbf{let} \ (nt, ds) = bfn_{Off} \ t \ ks$$
$$in \ (nt, \mathtt{zipPlus} \ ks \ ds)$$

to get:

 $\begin{array}{ll} \texttt{bfn Empty} & ks &= (\texttt{Empty}, ks) \\ \texttt{bfn (Fork } _ \textit{I } r) ~~(k:ks) = (\texttt{Fork } k ~ \textit{I' } r', (k+1):ks'') \\ \texttt{where } (\textit{I'}, ks') &= \texttt{bfn } \textit{I } ks \\ & (r', ks'') = \texttt{bfn } r ~ ks' \\ \end{array}$

 $run \ t = let \ ds = bfn_{Off,snd} \ t$ $in \ fst (bfn \ t \ (scanl \ (+) \ 1 \ ds))$

Taking Stock

We now have an essentially two-phase solution:

1. First phase to compute (in *ds*) the widths of levels:

 $\begin{array}{ll} \texttt{bfn}_{\texttt{Off,snd}} \; \texttt{Empty} &= [] \\ \texttt{bfn}_{\texttt{Off,snd}} \; (\texttt{Fork} \;_ \; \textit{I} \; \textit{r}) = 1 : (\texttt{zipPlus} \; (\texttt{bfn}_{\texttt{Off,snd}} \; \textit{I}) \\ & (\texttt{bfn}_{\texttt{Off,snd}} \; \textit{r})) \end{array}$

Taking Stock

We now have an essentially two-phase solution:

1. First phase to compute (in *ds*) the widths of levels:

 $\begin{array}{ll} \texttt{bfn}_{\texttt{Off,snd}} \; \texttt{Empty} &= [] \\ \texttt{bfn}_{\texttt{Off,snd}} \; (\texttt{Fork} \;_ \textit{I} \; \textit{r}) = 1 : (\texttt{zipPlus} \; (\texttt{bfn}_{\texttt{Off,snd}} \; \textit{I}) \\ & (\texttt{bfn}_{\texttt{Off,snd}} \; \textit{r})) \end{array}$

 An intermediate step (scan1 (+) 1 ds) to compute level beginnings.

Taking Stock

We now have an essentially two-phase solution:

1. First phase to compute (in *ds*) the widths of levels:

$$\begin{array}{ll} \texttt{bfn}_{\texttt{Off,snd}} \; \texttt{Empty} &= [] \\ \texttt{bfn}_{\texttt{Off,snd}} \; (\texttt{Fork} \;_ \textit{I} \; \textit{r}) = 1 : (\texttt{zipPlus} \; (\texttt{bfn}_{\texttt{Off,snd}} \; \textit{I}) \\ & (\texttt{bfn}_{\texttt{Off,snd}} \; \textit{r})) \end{array}$$

- An intermediate step (scan1 (+) 1 ds) to compute level beginnings.
- 3. The second phase doing the actual numbering, using the original bfn-function (but without circular dependency).

References I

R.S. Bird.

Using circular programs to eliminate multiple traversals of data.

Acta Informatica, 21(3):239-250, 1984.

- J.P. Fernandes, A. Pardo, and J. Saraiva.
 A shortcut fusion rule for circular program calculation.
 In *Haskell Workshop, Proceedings*, pages 95–106. ACM Press, 2007.
- J.P. Fernandes and J. Saraiva.

Tools and libraries to model and manipulate circular programs. In Partial Evaluation and Semantics-Based Program Manipulation, Proceedings, pages 102–111. ACM Press, 2007.

References II

G. Jones and J. Gibbons.

Linear-time breadth-first tree algorithms: An exercise in the arithmetic of folds and zips.

Technical Report 71, Department of Computer Science, University of Auckland, 1993.

IFIP Working Group 2.1 working paper 705 WIN-2.

📔 T. Johnsson.

Attribute grammars as a functional programming paradigm.

In Functional Programming Languages and Computer Architecture, Proceedings, volume 274 of LNCS, pages 154–173. Springer-Verlag, 1987.

🔋 N. Kobayashi.

Type-based useless-variable elimination.

Higher-Order and Symbolic Computation, 14(2–3):221–260, 2001.

References III

M.F. Kuiper and S.D. Swierstra.

Using attribute grammars to derive efficient functional programs.

In *Computing Science in the Netherlands, Proceedings*, pages 39–52. SION, 1987.

C. Okasaki.

Breadth-first numbering: Lessons from a small exercise in algorithm design.

In International Conference on Functional Programming, Proceedings, pages 131–136. ACM Press, 2000.

J. Voigtländer.

Using circular programs to deforest in accumulating parameters.

Higher-Order and Symbolic Computation, 17:129–163, 2004.