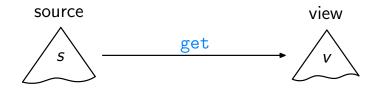
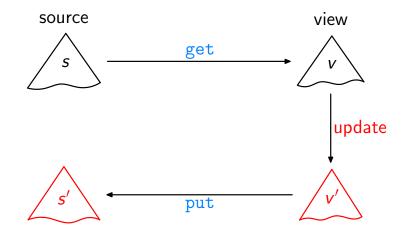
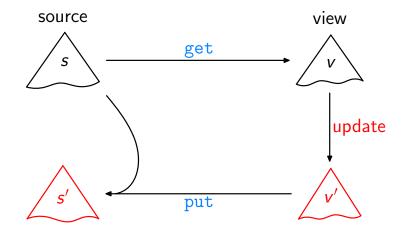
Combining Syntactic and Semantic Bidirectionalization

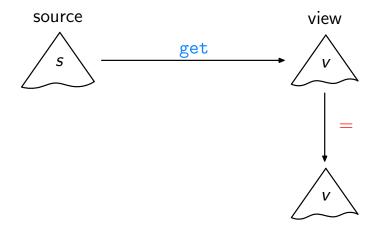
J. Voigtländer¹ Z. Hu² K. Matsuda³ M. Wang⁴

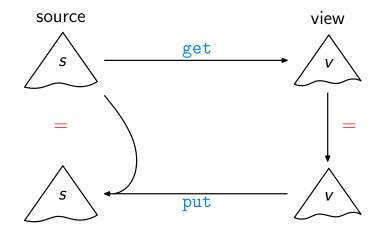

¹University of Bonn

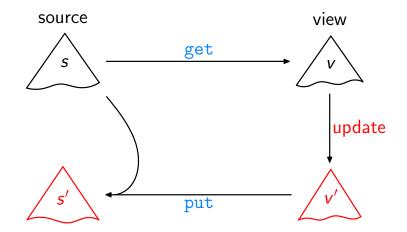
²NII Tokyo

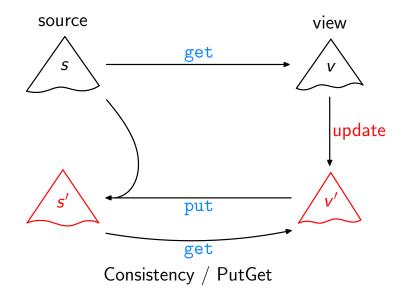

³Tohoku University

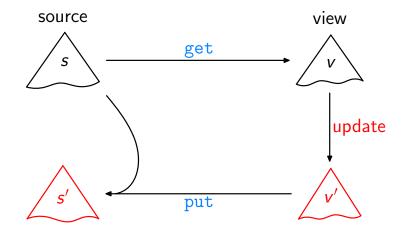

⁴University of Oxford

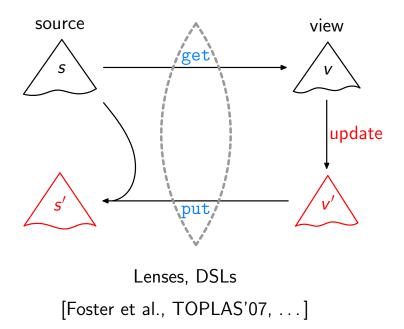

ICFP'10

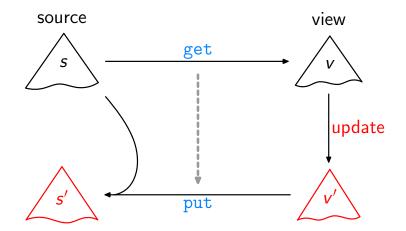




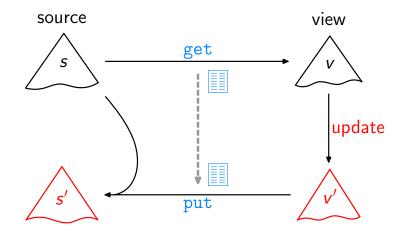

Acceptability / GetPut

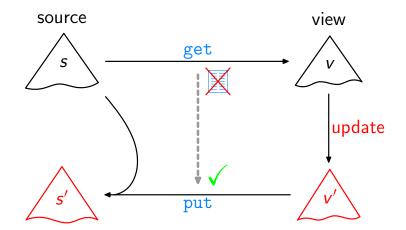



Acceptability / GetPut



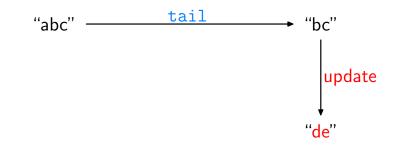
Consistency / PutGet



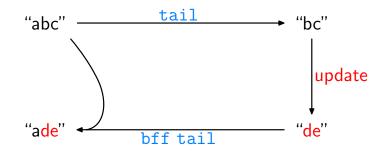


Bidirectionalization [Matsuda et al., ICFP'07]

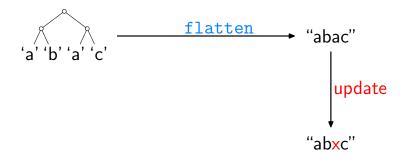
Syntactic Bidirectionalization [Matsuda et al., ICFP'07]

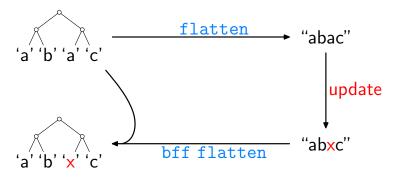

Semantic Bidirectionalization [V., POPL'09]

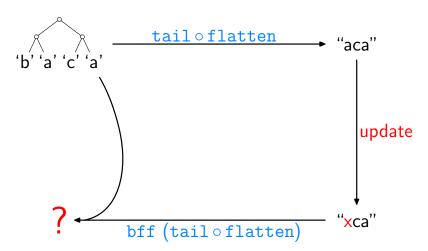
Idea: Have higher-order function bff[†] such that any get and bff get satisfy GetPut, PutGet,

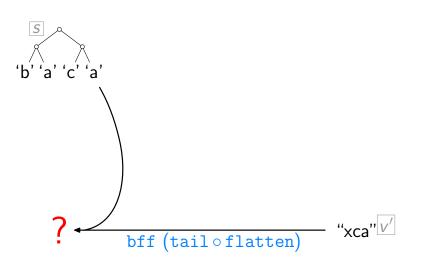

Idea: Have higher-order function bff[†] such that any get and bff get satisfy GetPut, PutGet,

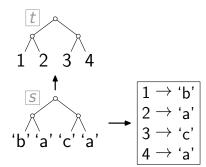
Idea: Have higher-order function bff[†] such that any get and bff get satisfy GetPut, PutGet,

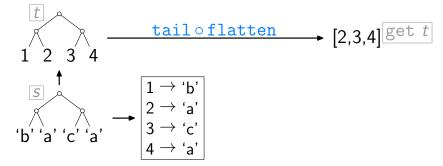

Idea: Have higher-order function bff[†] such that any get and bff get satisfy GetPut, PutGet,

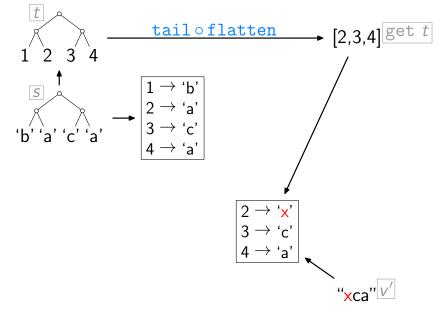

Idea: Have higher-order function bff[†] such that any get and bff get satisfy GetPut, PutGet,

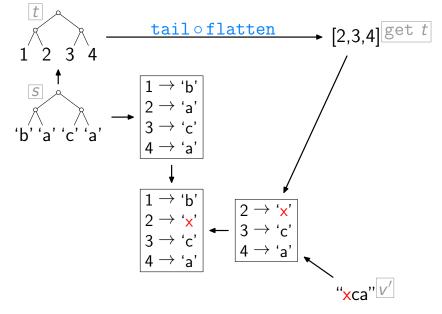

Idea: Have higher-order function bff[†] such that any get and bff get satisfy GetPut, PutGet,

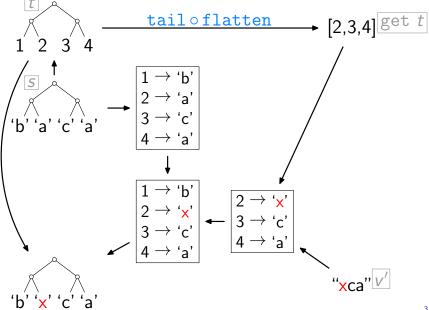


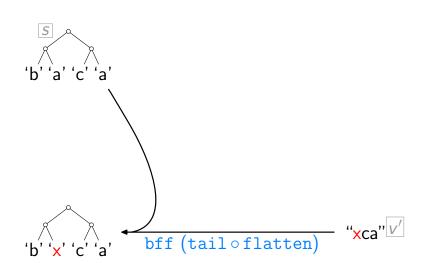

Idea: Have higher-order function bff[†] such that any get and bff get satisfy GetPut, PutGet,

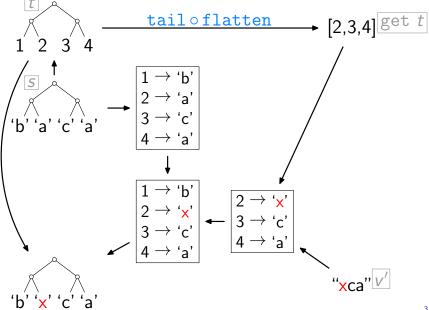

[†] "Bidirectionalization for free!"











"Status Quo"

[V., POPL'09]:

- very lightweight, easy access to bidirectionality
- proofs by free theorems [Wadler, FPCA'89]
- major problem: rejects shape-changing updates

"Status Quo"

[V., POPL'09]:

- very lightweight, easy access to bidirectionality
- proofs by free theorems [Wadler, FPCA'89]
- major problem: rejects shape-changing updates

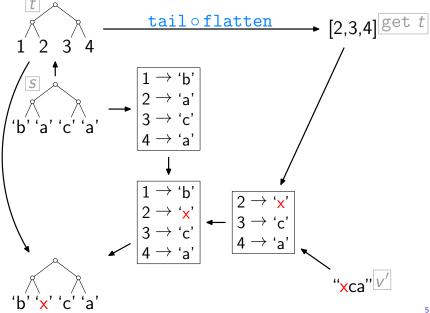
[Matsuda et al., ICFP'07]:

- heavily depends on syntactic restraints
- allows (ad-hoc) also shape-changing updates

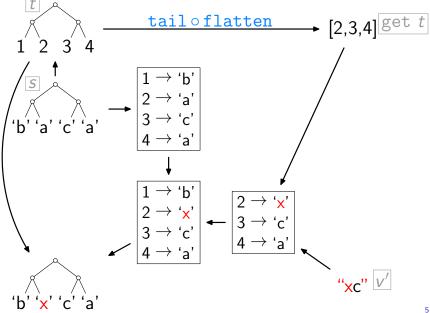
"Status Quo"

[V., POPL'09]:

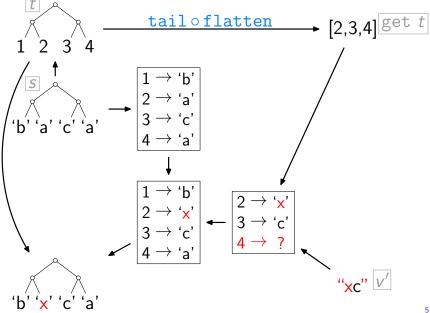
- very lightweight, easy access to bidirectionality
- proofs by free theorems [Wadler, FPCA'89]
- major problem: rejects shape-changing updates

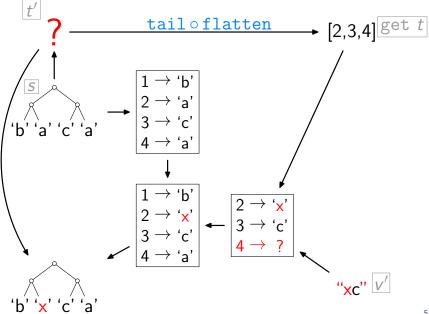

[Matsuda et al., ICFP'07]:

- heavily depends on syntactic restraints
- allows (ad-hoc) also shape-changing updates


Here:

- synthesis of the two techniques
- inherits limitations in program coverage from both
- strictly better in terms of updatability than either


More Shape-Flexibility



More Shape-Flexibility

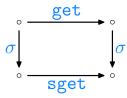
More Shape-Flexibility

Let σ be a function which given a data structure computes a representation of its shape.

Then we want:

1.
$$\sigma(\text{get } t') = \sigma(v')$$

2. if $\sigma(v') = \sigma(\text{get } s)$, then $\sigma(t') = \sigma(s)$


Let σ be a function which given a data structure computes a representation of its shape.

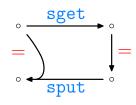
Then we want:

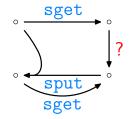
1.
$$\sigma(\text{get } t') = \sigma(v')$$

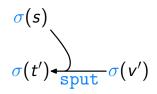
2. if $\sigma(v') = \sigma(\text{get } s)$, then $\sigma(t') = \sigma(s)$

Key Idea: Abstraction!

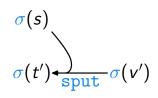
Find sget such that:

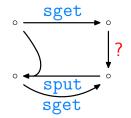

"Bootstrapping"


For sget, find sput such that GetPut and PutGet hold:


"Bootstrapping"

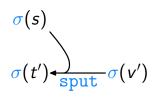
For sget, find sput such that GetPut and PutGet hold:

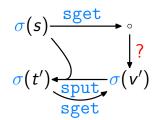

Then, set t' such that:

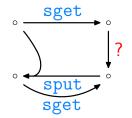


1.
$$\sigma(\text{get }t') = \sigma(v')$$
 ?

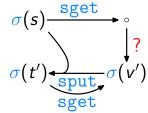
1.
$$\sigma(\texttt{get }t') = \sigma(v')$$
 ?

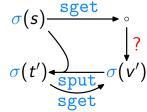

From:

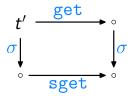



1.
$$\sigma(\texttt{get }t') = \sigma(v')$$
 ?

From:

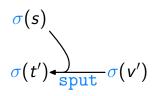

follows:

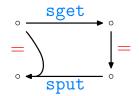

1.
$$\sigma(\texttt{get }t') = \sigma(v')$$
 ?


From:

1.
$$\sigma(\texttt{get }t') = \sigma(v')$$
 ?

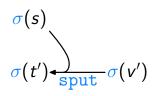
From:

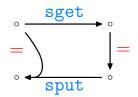


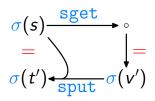

follows: $\sigma(\text{get } t') = \sigma(v').$

2. if
$$\sigma(v') = \sigma(\text{get } s)$$
, then $\sigma(t') = \sigma(s)$?

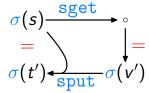
2. if
$$\sigma(v') = \sigma(\texttt{get } s)$$
, then $\sigma(t') = \sigma(s)$?


From:




2. if
$$\sigma(v') = \sigma(\texttt{get } s)$$
, then $\sigma(t') = \sigma(s)$?

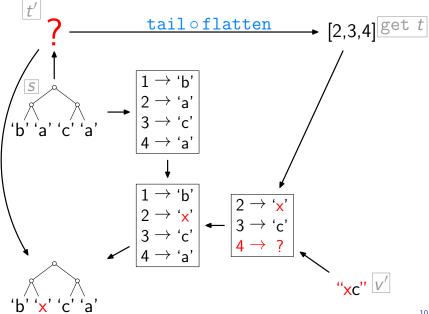
From:

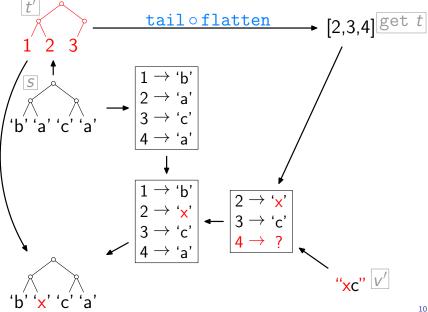


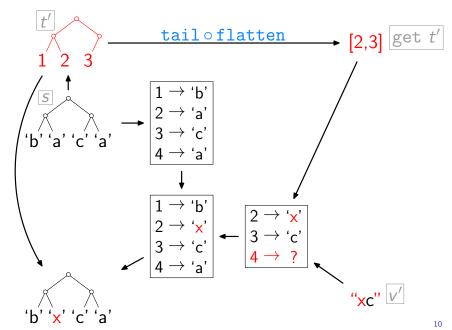
follows:

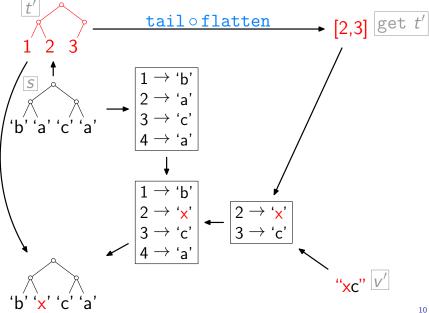
2. if
$$\sigma(v') = \sigma(\texttt{get } s)$$
, then $\sigma(t') = \sigma(s)$?

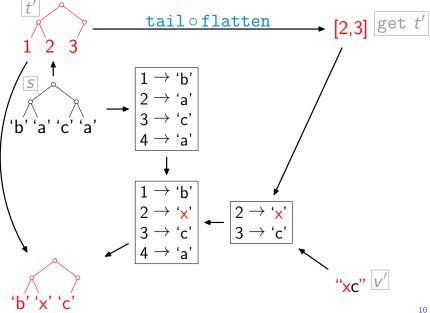
From:

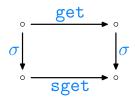


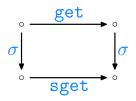

2. if
$$\sigma(v') = \sigma(\texttt{get } s)$$
, then $\sigma(t') = \sigma(s)$?

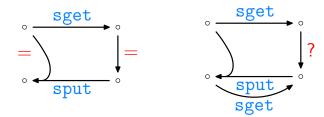

From:

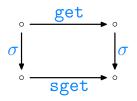



follows that if $\sigma(v') = \sigma(\text{get } s)$, then $\sigma(t') = \sigma(s)$.

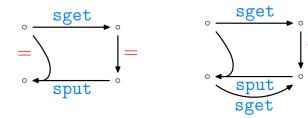




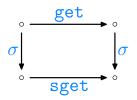

The crucial point is to find sget with:


The crucial point is to find sget with:

as well as **sput** such that:

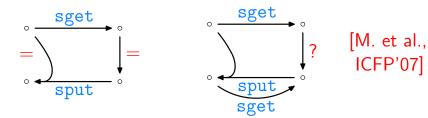


The crucial point is to find sget with:



syntactic abstraction

as well as **sput** such that:



The crucial point is to find sget with:

syntactic abstraction

as well as **sput** such that:

$$\begin{array}{l} \texttt{get} :: [\alpha] \to [\alpha] \\ \texttt{get} [] &= [] \\ \texttt{get} [x] &= [] \\ \texttt{get} (x: y: zs) = y: (\texttt{get} zs) \end{array}$$

$$\begin{array}{l} \texttt{get} :: [\alpha] \to [\alpha] \\ \texttt{get} [] &= [] \\ \texttt{get} [x] &= [] \\ \texttt{get} (x : y : zs) = y : (\texttt{get} zs) \end{array}$$

∜

 $\begin{array}{ll} \texttt{compl}\left[\right] &= \mathsf{C}_1 \\ \texttt{compl}\left[x\right] &= \mathsf{C}_2 \ x \\ \texttt{compl}\left(x: y: zs\right) = \mathsf{C}_3 \ x \ (\texttt{compl} \ zs) \end{array}$

get :: $[\alpha] \rightarrow [\alpha]$ get [] = [] get[x] = []get(x:y:zs) = y:(get zs) $compl[] = C_1$ $compl[x] = C_2 x$ $\operatorname{compl}(x:y:zs) = C_3 x (\operatorname{compl} zs)$ put $(x: y: zs) (y': v') = \cdots$

$$get :: [\alpha] \rightarrow [\alpha]$$

$$get [] = []$$

$$get [x] = []$$

$$get (x : y : zs) = y : (get zs)$$

∜

Ш

sget :: Int \rightarrow Int sget 0 = 0 sget 1 = 0 sget (n+2) = 1 + (sget n)

 $\begin{array}{l} \texttt{compl}\left[\right] &= \mathsf{C}_1\\ \texttt{compl}\left[x\right] &= \mathsf{C}_2 \ x\\ \texttt{compl}\left(x: y: zs\right) = \mathsf{C}_3 \ x \ (\texttt{compl} \ zs) \end{array}$

$$\begin{array}{c} & & \\ \texttt{put} [] & [] & = [] \\ \texttt{put} [x] & [] & = [x] \\ \texttt{put} (x : y : zs) (y' : v') = \cdots \end{array}$$

$$get :: [\alpha] \rightarrow [\alpha]$$

$$get [] = []$$

$$get [x] = []$$

$$get (x : y : zs) = y : (get zs)$$

∜

Ш

 $\begin{array}{l} \texttt{sget} :: \texttt{Int} \to \texttt{Int} \\ \texttt{sget} \ 0 &= 0 \\ \texttt{sget} \ 1 &= 0 \\ \texttt{sget} \ (n+2) = 1 + (\texttt{sget} \ n) \end{array}$

 $\begin{array}{ll} \operatorname{compl}[] &= \operatorname{C}_1 & \operatorname{compl} 0 &= \operatorname{C}_1 \\ \operatorname{compl}[x] &= \operatorname{C}_2 x & \operatorname{compl} 1 &= \operatorname{C}_2 \\ \operatorname{compl}(x:y:zs) &= \operatorname{C}_3 x (\operatorname{compl} zs) & \operatorname{compl}(n+2) &= \operatorname{compl} n \end{array}$

$$\begin{array}{c} & & \\ \texttt{put} [] & [] & = [] \\ \texttt{put} [x] & [] & = [x] \\ \texttt{put} (x : y : zs) (y' : v') = \cdots \end{array}$$

$$\begin{array}{cccc} \operatorname{get} :: [\alpha] \to [\alpha] \\ \operatorname{get} [] &= [] \\ \operatorname{get} [x] &= [] \\ \operatorname{get} [x] &= [] \\ \operatorname{get} (x:y:zs) = y: (\operatorname{get} zs) \end{array} \Rightarrow \begin{array}{cccc} \operatorname{sget} 0 &= 0 \\ \operatorname{sget} 1 &= 0 \\ \operatorname{sget} (n+2) = 1 + (\operatorname{sget} n) \\ & & & & & & \\ \end{array}$$

$$\begin{array}{cccc} \operatorname{compl} [] &= C_1 \\ \operatorname{compl} [x] &= C_2 x \\ \operatorname{compl} (x:y:zs) = C_3 x (\operatorname{compl} zs) \end{array} \xrightarrow{compl} 1 &= C_2 \\ \operatorname{compl} (x:y:zs) = C_3 x (\operatorname{compl} zs) \end{array} \xrightarrow{compl} (n+2) = \operatorname{compl} n \\ & & & & & & \\ \end{array}$$

$$\begin{array}{cccc} \operatorname{put} [] &= [] \\ \operatorname{put} [x] &= [x] \\ \operatorname{put} (x:y:zs) (y':v') = \cdots \end{array} \xrightarrow{sput} 0 &= 0 \\ \operatorname{sput} (n+2) 0 &= \cdots \\ \operatorname{sput} (n+2) 0 &= \cdots \\ \operatorname{sput} n & (v'+1) = \cdots \end{array}$$

Taking Stock

- Semantic Approach:
 - lightweight, "as a library"
 - essential role: polymorphic function types

Taking Stock

- Semantic Approach:
 - lightweight, "as a library"
 - essential role: polymorphic function types
- Syntactic Approach:
 - classical program transformation
 - "constant-complement" [Banc. & Sp., TODS'81]

Taking Stock

- Semantic Approach:
 - lightweight, "as a library"
 - essential role: polymorphic function types
- Syntactic Approach:
 - classical program transformation
 - "constant-complement" [Banc. & Sp., TODS'81]
- Combination per "Separation of Concerns":
 - separate data into shape and content
 - treat shape via syntactic approach
 - treat content via semantic approach

Try it out: link to implementation in the paper!

- Try it out: link to implementation in the paper!
- Side effect: syntactic applicability improved (by using additional program transformations)

- Try it out: link to implementation in the paper!
- Side effect: syntactic applicability improved (by using additional program transformations)
- Parametrization via "bias" and default values

- Try it out: link to implementation in the paper!
- Side effect: syntactic applicability improved (by using additional program transformations)
- Parametrization via "bias" and default values
- Efficiency: (still) rather bad

- Try it out: link to implementation in the paper!
- Side effect: syntactic applicability improved (by using additional program transformations)
- Parametrization via "bias" and default values
- Efficiency: (still) rather bad
- (More) future work: general types, type classes

References I

- F. Bancilhon and N. Spyratos.
 Update semantics of relational views.
 ACM Transactions on Database Systems, 6(3):557–575, 1981.
- J.N. Foster, M.B. Greenwald, J.T. Moore, B.C. Pierce, and A. Schmitt.

Combinators for bidirectional tree transformations: A linguistic approach to the view-update problem.

ACM Transactions on Programming Languages and Systems, 29(3):17, 2007.

References II

K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi.

Bidirectionalization transformation based on automatic derivation of view complement functions.

In International Conference on Functional Programming, Proceedings, pages 47–58. ACM Press, 2007.

References III

J. Voigtländer.

Bidirectionalization for free!

In *Principles of Programming Languages, Proceedings*, pages 165–176. ACM Press, 2009.

P. Wadler.

Theorems for free!

In Functional Programming Languages and Computer Architecture, Proceedings, pages 347–359. ACM Press, 1989.