
Combining
Syntactic and Semantic

Bidirectionalization

J. Voigtländer1 Z. Hu2 K. Matsuda3 M. Wang4

1University of Bonn

2NII Tokyo

3Tohoku University

4University of Oxford

ICFP’10

Bidirectional Transformation

source view

s v

s ′ v ′

get

1

Bidirectional Transformation

source view

s v

s ′ v ′

get

update

1

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

1

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

1

Bidirectional Transformation

source view

s v

s v

get

=

Acceptability / GetPut

1

Bidirectional Transformation

source view

s v

s v

get

put

==

Acceptability / GetPut

1

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

Consistency / PutGet

1

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

get

Consistency / PutGet

1

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

1

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

Lenses, DSLs

[Foster et al., TOPLAS’07, . . .]
1

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

Syntactic

Bidirectionalization

[Matsuda et al., ICFP’07]
1

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

Syntactic Bidirectionalization

[Matsuda et al., ICFP’07]
1

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

X

Semantic Bidirectionalization

[V., POPL’09]
1

Semantic Bidirectionalization

Idea: Have higher-order function bff† such
that any get and bff get satisfy
GetPut, PutGet,

Examples:

† “Bidirectionalization for free!”
2

Semantic Bidirectionalization

Idea: Have higher-order function bff† such
that any get and bff get satisfy
GetPut, PutGet,

Examples:

“abc” “bc”

“ade” “de”

tail

† “Bidirectionalization for free!”
2

Semantic Bidirectionalization

Idea: Have higher-order function bff† such
that any get and bff get satisfy
GetPut, PutGet,

Examples:

“abc” “bc”

“ade” “de”

tail

update

† “Bidirectionalization for free!”
2

Semantic Bidirectionalization

Idea: Have higher-order function bff† such
that any get and bff get satisfy
GetPut, PutGet,

Examples:

“abc” “bc”

“ade” “de”

tail

bff tail

update

† “Bidirectionalization for free!”
2

Semantic Bidirectionalization

Idea: Have higher-order function bff† such
that any get and bff get satisfy
GetPut, PutGet,

Examples:

‘a’ ‘b’ ‘a’ ‘c’
“abac”

‘a’ ‘b’ ‘x’ ‘c’
“abxc”

flatten

† “Bidirectionalization for free!”
2

Semantic Bidirectionalization

Idea: Have higher-order function bff† such
that any get and bff get satisfy
GetPut, PutGet,

Examples:

‘a’ ‘b’ ‘a’ ‘c’
“abac”

‘a’ ‘b’ ‘x’ ‘c’
“abxc”

flatten

update

† “Bidirectionalization for free!”
2

Semantic Bidirectionalization

Idea: Have higher-order function bff† such
that any get and bff get satisfy
GetPut, PutGet,

Examples:

‘a’ ‘b’ ‘a’ ‘c’
“abac”

‘a’ ‘b’ ‘x’ ‘c’
“abxc”

flatten

bff flatten

update

† “Bidirectionalization for free!”
2

The Semantic Approach by Example

1 2 3 4
[2,3,4]

‘b’ ‘a’ ‘c’ ‘a’

1 → ‘b’
2 → ‘a’
3 → ‘c’
4 → ‘a’

“aca”

1 → ‘b’
2 → ‘x’
3 → ‘c’
4 → ‘a’

2 → ‘x’
3 → ‘c’
4 → ‘a’

? “xca”
bff (tail ◦ flatten)

tail ◦ flatten

update

t

3

The Semantic Approach by Example

1 2 3 4
[2,3,4]

‘b’ ‘a’ ‘c’ ‘a’

1 → ‘b’
2 → ‘a’
3 → ‘c’
4 → ‘a’

“aca”

1 → ‘b’
2 → ‘x’
3 → ‘c’
4 → ‘a’

2 → ‘x’
3 → ‘c’
4 → ‘a’

? “xca”
bff (tail ◦ flatten)

v ′

s

t

3

The Semantic Approach by Example

1 2 3 4
[2,3,4]

‘b’ ‘a’ ‘c’ ‘a’

1 → ‘b’
2 → ‘a’
3 → ‘c’
4 → ‘a’

“aca”

1 → ‘b’
2 → ‘x’
3 → ‘c’
4 → ‘a’

2 → ‘x’
3 → ‘c’
4 → ‘a’

? “xca”v
′

s

t

3

The Semantic Approach by Example

1 2 3 4
[2,3,4]

‘b’ ‘a’ ‘c’ ‘a’

1 → ‘b’
2 → ‘a’
3 → ‘c’
4 → ‘a’

“aca”

1 → ‘b’
2 → ‘x’
3 → ‘c’
4 → ‘a’

2 → ‘x’
3 → ‘c’
4 → ‘a’

? “xca”

tail ◦ flatten

v ′

s

t
get t

3

The Semantic Approach by Example

1 2 3 4
[2,3,4]

‘b’ ‘a’ ‘c’ ‘a’

1 → ‘b’
2 → ‘a’
3 → ‘c’
4 → ‘a’

“aca”

1 → ‘b’
2 → ‘x’
3 → ‘c’
4 → ‘a’

2 → ‘x’
3 → ‘c’
4 → ‘a’

? “xca”

tail ◦ flatten

v ′

s

t
get t

3

The Semantic Approach by Example

1 2 3 4
[2,3,4]

‘b’ ‘a’ ‘c’ ‘a’

1 → ‘b’
2 → ‘a’
3 → ‘c’
4 → ‘a’

“aca”

1 → ‘b’
2 → ‘x’
3 → ‘c’
4 → ‘a’

2 → ‘x’
3 → ‘c’
4 → ‘a’

? “xca”

tail ◦ flatten

v ′

s

t
get t

3

The Semantic Approach by Example

1 2 3 4
[2,3,4]

‘b’ ‘a’ ‘c’ ‘a’

1 → ‘b’
2 → ‘a’
3 → ‘c’
4 → ‘a’

“aca”

1 → ‘b’
2 → ‘x’
3 → ‘c’
4 → ‘a’

2 → ‘x’
3 → ‘c’
4 → ‘a’

‘b’ ‘x’ ‘c’ ‘a’
“xca”

tail ◦ flatten

v ′

s

t
get t

3

The Semantic Approach by Example

1 2 3 4
[2,3,4]

‘b’ ‘a’ ‘c’ ‘a’

1 → ‘b’
2 → ‘a’
3 → ‘c’
4 → ‘a’

“aca”

1 → ‘b’
2 → ‘x’
3 → ‘c’
4 → ‘a’

2 → ‘x’
3 → ‘c’
4 → ‘a’

‘b’ ‘x’ ‘c’ ‘a’
“xca”

bff (tail ◦ flatten)
v ′

s

t

3

The Semantic Approach by Example

1 2 3 4
[2,3,4]

‘b’ ‘a’ ‘c’ ‘a’

1 → ‘b’
2 → ‘a’
3 → ‘c’
4 → ‘a’

“aca”

1 → ‘b’
2 → ‘x’
3 → ‘c’
4 → ‘a’

2 → ‘x’
3 → ‘c’
4 → ‘a’

‘b’ ‘x’ ‘c’ ‘a’
“xca”

tail ◦ flatten

v ′

s

t
get t

3

“Status Quo”

[V., POPL’09]:

I very lightweight, easy access to bidirectionality

I proofs by free theorems [Wadler, FPCA’89]

I major problem: rejects shape-changing updates

[Matsuda et al., ICFP’07]:

I heavily depends on syntactic restraints

I allows (ad-hoc) also shape-changing updates

Here:

I synthesis of the two techniques

I inherits limitations in program coverage from both

I strictly better in terms of updatability than either

4

“Status Quo”

[V., POPL’09]:

I very lightweight, easy access to bidirectionality

I proofs by free theorems [Wadler, FPCA’89]

I major problem: rejects shape-changing updates

[Matsuda et al., ICFP’07]:

I heavily depends on syntactic restraints

I allows (ad-hoc) also shape-changing updates

Here:

I synthesis of the two techniques

I inherits limitations in program coverage from both

I strictly better in terms of updatability than either

4

“Status Quo”

[V., POPL’09]:

I very lightweight, easy access to bidirectionality

I proofs by free theorems [Wadler, FPCA’89]

I major problem: rejects shape-changing updates

[Matsuda et al., ICFP’07]:

I heavily depends on syntactic restraints

I allows (ad-hoc) also shape-changing updates

Here:

I synthesis of the two techniques

I inherits limitations in program coverage from both

I strictly better in terms of updatability than either
4

More Shape-Flexibility

1 2 3 4
[2,3,4]

‘b’ ‘a’ ‘c’ ‘a’

1 → ‘b’
2 → ‘a’
3 → ‘c’
4 → ‘a’

“aca”

1 → ‘b’
2 → ‘x’
3 → ‘c’
4 → ‘a’

2 → ‘x’
3 → ‘c’
4 → ‘a’

‘b’ ‘x’ ‘c’ ‘a’
“xca”

tail ◦ flatten

v ′

s

t
get t

5

More Shape-Flexibility

1 2 3 4
[2,3,4]

‘b’ ‘a’ ‘c’ ‘a’

1 → ‘b’
2 → ‘a’
3 → ‘c’
4 → ‘a’

“aca”

1 → ‘b’
2 → ‘x’
3 → ‘c’
4 → ‘a’

2 → ‘x’
3 → ‘c’
4 → ‘a’

‘b’ ‘x’ ‘c’ ‘a’
“xc”

tail ◦ flatten

v ′

s

t
get t

5

More Shape-Flexibility

1 2 3 4
[2,3,4]

‘b’ ‘a’ ‘c’ ‘a’

1 → ‘b’
2 → ‘a’
3 → ‘c’
4 → ‘a’

“aca”

1 → ‘b’
2 → ‘x’
3 → ‘c’
4 → ‘a’

2 → ‘x’
3 → ‘c’
4 → ?

‘b’ ‘x’ ‘c’ ‘a’
“xc”

tail ◦ flatten

v ′

s

t
get t

5

More Shape-Flexibility

? [2,3,4]

‘b’ ‘a’ ‘c’ ‘a’

1 → ‘b’
2 → ‘a’
3 → ‘c’
4 → ‘a’

“aca”

1 → ‘b’
2 → ‘x’
3 → ‘c’
4 → ‘a’

2 → ‘x’
3 → ‘c’
4 → ?

‘b’ ‘x’ ‘c’ ‘a’
“xc”

tail ◦ flatten

v ′

s

tt ′
get t

5

Expectations on t′

Let σ be a function which given a data structure
computes a representation of its shape.

Then we want:

1. σ(get t ′) = σ(v ′)
2. if σ(v ′) = σ(get s), then σ(t ′) = σ(s)

Key Idea: Abstraction!

Find sget such that:

get

sget

σσ

6

Expectations on t′

Let σ be a function which given a data structure
computes a representation of its shape.

Then we want:

1. σ(get t ′) = σ(v ′)
2. if σ(v ′) = σ(get s), then σ(t ′) = σ(s)

Key Idea: Abstraction!

Find sget such that:

get

sget

σσ

6

“Bootstrapping”

For sget, find sput such that GetPut and PutGet
hold:

sget

sput

==

sget

sput

?

sget

Then, set t ′ such that:

σ(s)

σ(t ′) σ(v ′)sput

7

“Bootstrapping”

For sget, find sput such that GetPut and PutGet
hold:

sget

sput

==

sget

sput

?

sget

Then, set t ′ such that:

σ(s)

σ(t ′) σ(v ′)sput
7

Expectations on t ′

1. σ(get t ′) = σ(v ′) ?

From:

σ(s)

σ(t ′) σ(v ′)sput

sget

sput

?

sget

follows:

σ(s)

σ(t ′) σ(v ′)

sget

sput

?

sget

t ′
get

sget

σσ

follows: σ(get t ′) = σ(v ′).

8

Expectations on t ′

1. σ(get t ′) = σ(v ′) ?

From:

σ(s)

σ(t ′) σ(v ′)sput

sget

sput

?

sget

follows:

σ(s)

σ(t ′) σ(v ′)

sget

sput

?

sget

t ′
get

sget

σσ

follows: σ(get t ′) = σ(v ′).

8

Expectations on t ′

1. σ(get t ′) = σ(v ′) ?

From:

σ(s)

σ(t ′) σ(v ′)sput

sget

sput

?

sget

follows:

σ(s)

σ(t ′) σ(v ′)

sget

sput

?

sget

t ′
get

sget

σσ

follows: σ(get t ′) = σ(v ′).

8

Expectations on t ′

1. σ(get t ′) = σ(v ′) ?

From:

σ(s)

σ(t ′) σ(v ′)

sget

sput

?

sget

t ′
get

sget

σσ

follows: σ(get t ′) = σ(v ′).

8

Expectations on t ′

1. σ(get t ′) = σ(v ′) ?

From:

σ(s)

σ(t ′) σ(v ′)

sget

sput

?

sget

t ′
get

sget

σσ

follows: σ(get t ′) = σ(v ′).

8

Expectations on t ′

2. if σ(v ′) = σ(get s), then σ(t ′) = σ(s) ?

From:

σ(s)

σ(t ′) σ(v ′)sput

sget

sput

==

follows:

σ(s)

σ(t ′) σ(v ′)

sget

sput

==

s
get

sget

σσ

follows that if σ(v ′) = σ(get s), then σ(t ′) = σ(s).

9

Expectations on t ′

2. if σ(v ′) = σ(get s), then σ(t ′) = σ(s) ?

From:

σ(s)

σ(t ′) σ(v ′)sput

sget

sput

==

follows:

σ(s)

σ(t ′) σ(v ′)

sget

sput

==

s
get

sget

σσ

follows that if σ(v ′) = σ(get s), then σ(t ′) = σ(s).

9

Expectations on t ′

2. if σ(v ′) = σ(get s), then σ(t ′) = σ(s) ?

From:

σ(s)

σ(t ′) σ(v ′)sput

sget

sput

==

follows:

σ(s)

σ(t ′) σ(v ′)

sget

sput

==

s
get

sget

σσ

follows that if σ(v ′) = σ(get s), then σ(t ′) = σ(s).

9

Expectations on t ′

2. if σ(v ′) = σ(get s), then σ(t ′) = σ(s) ?

From:

σ(s)

σ(t ′) σ(v ′)

sget

sput

==

s
get

sget

σσ

follows that if σ(v ′) = σ(get s), then σ(t ′) = σ(s).

9

Expectations on t ′

2. if σ(v ′) = σ(get s), then σ(t ′) = σ(s) ?

From:

σ(s)

σ(t ′) σ(v ′)

sget

sput

==

s
get

sget

σσ

follows that if σ(v ′) = σ(get s), then σ(t ′) = σ(s).

9

More Shape-Flexibility

? [2,3,4]

‘b’ ‘a’ ‘c’ ‘a’

1 → ‘b’
2 → ‘a’
3 → ‘c’
4 → ‘a’

“aca”

1 → ‘b’
2 → ‘x’
3 → ‘c’
4 → ‘a’

2 → ‘x’
3 → ‘c’
4 → ?

‘b’ ‘x’ ‘c’ ‘a’
“xc”

tail ◦ flatten

v ′

s

tt ′
get t

10

More Shape-Flexibility

1 2 3
[2,3,4]

‘b’ ‘a’ ‘c’ ‘a’

1 → ‘b’
2 → ‘a’
3 → ‘c’
4 → ‘a’

“aca”

1 → ‘b’
2 → ‘x’
3 → ‘c’
4 → ‘a’

2 → ‘x’
3 → ‘c’
4 → ?

‘b’ ‘x’ ‘c’ ‘a’
“xc”

tail ◦ flatten

v ′

s

tt ′
get t

10

More Shape-Flexibility

1 2 3
[2,3]

‘b’ ‘a’ ‘c’ ‘a’

1 → ‘b’
2 → ‘a’
3 → ‘c’
4 → ‘a’

“aca”

1 → ‘b’
2 → ‘x’
3 → ‘c’
4 → ‘a’

2 → ‘x’
3 → ‘c’
4 → ?

‘b’ ‘x’ ‘c’ ‘a’
“xc”

tail ◦ flatten

v ′

s

tt ′
get t ′

10

More Shape-Flexibility

1 2 3
[2,3]

‘b’ ‘a’ ‘c’ ‘a’

1 → ‘b’
2 → ‘a’
3 → ‘c’
4 → ‘a’

“aca”

1 → ‘b’
2 → ‘x’
3 → ‘c’
4 → ‘a’

2 → ‘x’
3 → ‘c’

‘b’ ‘x’ ‘c’ ‘a’
“xc”

tail ◦ flatten

v ′

s

tt ′
get t ′

10

More Shape-Flexibility

1 2 3
[2,3]

‘b’ ‘a’ ‘c’ ‘a’

1 → ‘b’
2 → ‘a’
3 → ‘c’
4 → ‘a’

“aca”

1 → ‘b’
2 → ‘x’
3 → ‘c’
4 → ‘a’

2 → ‘x’
3 → ‘c’

‘b’ ‘x’ ‘c’
“xc”

tail ◦ flatten

v ′

s

tt ′
get t ′

10

Essential Ingredients

The crucial point is to find sget with:

get

sget

σσ

as well as sput such that:

sget

sput

==

sget

sput

?

sget

syntactic
abstraction

[M. et al.,
ICFP’07]

11

Essential Ingredients

The crucial point is to find sget with:

get

sget

σσ

as well as sput such that:

sget

sput

==

sget

sput

?

sget

syntactic
abstraction

[M. et al.,
ICFP’07]

11

Essential Ingredients

The crucial point is to find sget with:

get

sget

σσ

as well as sput such that:

sget

sput

==

sget

sput

?

sget

syntactic
abstraction

[M. et al.,
ICFP’07]

11

Essential Ingredients

The crucial point is to find sget with:

get

sget

σσ

as well as sput such that:

sget

sput

==

sget

sput

?

sget

syntactic
abstraction

[M. et al.,
ICFP’07]

11

The Benefits of Abstraction

get :: [α]→ [α]
get [] = []
get [x] = []
get (x : y : zs) = y : (get zs)

12

The Benefits of Abstraction

get :: [α]→ [α]
get [] = []
get [x] = []
get (x : y : zs) = y : (get zs)

compl [] = C1

compl [x] = C2 x
compl (x : y : zs) = C3 x (compl zs)

��

12

The Benefits of Abstraction

get :: [α]→ [α]
get [] = []
get [x] = []
get (x : y : zs) = y : (get zs)

compl [] = C1

compl [x] = C2 x
compl (x : y : zs) = C3 x (compl zs)

put [] [] = []
put [x] [] = [x]
put (x : y : zs) (y ′ : v ′) = · · ·

��

��

12

The Benefits of Abstraction

get :: [α]→ [α]
get [] = []
get [x] = []
get (x : y : zs) = y : (get zs)

compl [] = C1

compl [x] = C2 x
compl (x : y : zs) = C3 x (compl zs)

put [] [] = []
put [x] [] = [x]
put (x : y : zs) (y ′ : v ′) = · · ·

sget :: Int→ Int
sget 0 = 0
sget 1 = 0
sget (n + 2) = 1 + (sget n)

��

��

+3

12

The Benefits of Abstraction

get :: [α]→ [α]
get [] = []
get [x] = []
get (x : y : zs) = y : (get zs)

compl [] = C1

compl [x] = C2 x
compl (x : y : zs) = C3 x (compl zs)

put [] [] = []
put [x] [] = [x]
put (x : y : zs) (y ′ : v ′) = · · ·

sget :: Int→ Int
sget 0 = 0
sget 1 = 0
sget (n + 2) = 1 + (sget n)

compl 0 = C1

compl 1 = C2

compl (n + 2) = compl n

��

��

��

+3

12

The Benefits of Abstraction

get :: [α]→ [α]
get [] = []
get [x] = []
get (x : y : zs) = y : (get zs)

compl [] = C1

compl [x] = C2 x
compl (x : y : zs) = C3 x (compl zs)

put [] [] = []
put [x] [] = [x]
put (x : y : zs) (y ′ : v ′) = · · ·

sget :: Int→ Int
sget 0 = 0
sget 1 = 0
sget (n + 2) = 1 + (sget n)

compl 0 = C1

compl 1 = C2

compl (n + 2) = compl n

sput 0 0 = 0
sput 1 0 = 1
sput (n + 2) 0 = · · ·
sput n (v ′ + 1) = · · ·

��

��

��

��

+3

12

Taking Stock

I Semantic Approach:

I lightweight, “as a library”
I essential role: polymorphic function types

I Syntactic Approach:

I classical program transformation
I “constant-complement” [Banc. & Sp., TODS’81]

I Combination per “Separation of Concerns”:

I separate data into shape and content
I treat shape via syntactic approach
I treat content via semantic approach

13

Taking Stock

I Semantic Approach:

I lightweight, “as a library”
I essential role: polymorphic function types

I Syntactic Approach:

I classical program transformation
I “constant-complement” [Banc. & Sp., TODS’81]

I Combination per “Separation of Concerns”:

I separate data into shape and content
I treat shape via syntactic approach
I treat content via semantic approach

13

Taking Stock

I Semantic Approach:

I lightweight, “as a library”
I essential role: polymorphic function types

I Syntactic Approach:

I classical program transformation
I “constant-complement” [Banc. & Sp., TODS’81]

I Combination per “Separation of Concerns”:

I separate data into shape and content
I treat shape via syntactic approach
I treat content via semantic approach

13

Looking Further

I Try it out: link to implementation in the paper!

I Side effect: syntactic applicability improved
(by using additional program transformations)

I Parametrization via “bias” and default values

I Efficiency: (still) rather bad

I (More) future work: general types, type classes

14

http://www-ps.iai.uni-bonn.de/cgi-bin/b18n-combined-cgi

Looking Further

I Try it out: link to implementation in the paper!

I Side effect: syntactic applicability improved
(by using additional program transformations)

I Parametrization via “bias” and default values

I Efficiency: (still) rather bad

I (More) future work: general types, type classes

14

http://www-ps.iai.uni-bonn.de/cgi-bin/b18n-combined-cgi

Looking Further

I Try it out: link to implementation in the paper!

I Side effect: syntactic applicability improved
(by using additional program transformations)

I Parametrization via “bias” and default values

I Efficiency: (still) rather bad

I (More) future work: general types, type classes

14

http://www-ps.iai.uni-bonn.de/cgi-bin/b18n-combined-cgi

Looking Further

I Try it out: link to implementation in the paper!

I Side effect: syntactic applicability improved
(by using additional program transformations)

I Parametrization via “bias” and default values

I Efficiency: (still) rather bad

I (More) future work: general types, type classes

14

http://www-ps.iai.uni-bonn.de/cgi-bin/b18n-combined-cgi

Looking Further

I Try it out: link to implementation in the paper!

I Side effect: syntactic applicability improved
(by using additional program transformations)

I Parametrization via “bias” and default values

I Efficiency: (still) rather bad

I (More) future work: general types, type classes

14

http://www-ps.iai.uni-bonn.de/cgi-bin/b18n-combined-cgi

References I

F. Bancilhon and N. Spyratos.
Update semantics of relational views.
ACM Transactions on Database Systems,
6(3):557–575, 1981.

J.N. Foster, M.B. Greenwald, J.T. Moore, B.C.
Pierce, and A. Schmitt.
Combinators for bidirectional tree
transformations: A linguistic approach to the
view-update problem.
ACM Transactions on Programming Languages
and Systems, 29(3):17, 2007.

15

References II

K. Matsuda, Z. Hu, K. Nakano, M. Hamana,
and M. Takeichi.
Bidirectionalization transformation based on
automatic derivation of view complement
functions.
In International Conference on Functional
Programming, Proceedings, pages 47–58. ACM
Press, 2007.

16

References III

J. Voigtländer.
Bidirectionalization for free!
In Principles of Programming Languages,
Proceedings, pages 165–176. ACM Press, 2009.

P. Wadler.
Theorems for free!
In Functional Programming Languages and
Computer Architecture, Proceedings, pages
347–359. ACM Press, 1989.

17

	Bidirectional Transformation
	Semantic Bidirectionalization
	Combining with Syntactic Bidirectionalization
	Conclusion
	References

