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“Status Quo”

[V., POPL’09]:

I very lightweight, easy access to bidirectionality

I proofs by free theorems [Wadler, FPCA’89]

I major problem: rejects shape-changing updates

[Matsuda et al., ICFP’07]:

I heavily depends on syntactic restraints

I allows (ad-hoc) also shape-changing updates

Here:

I synthesis of the two techniques

I inherits limitations in program coverage from both

I strictly better in terms of updatability than either
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Expectations on t′

Let σ be a function which given a data structure
computes a representation of its shape.

Then we want:

1. σ(get t ′) = σ(v ′)
2. if σ(v ′) = σ(get s), then σ(t ′) = σ(s)

Key Idea: Abstraction!

Find sget such that:

get

sget

σσ
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The Benefits of Abstraction
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get [ ] = [ ]
get [x ] = [ ]
get (x : y : zs) = y : (get zs)
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Taking Stock

I Semantic Approach:

I lightweight, “as a library”
I essential role: polymorphic function types

I Syntactic Approach:

I classical program transformation
I “constant-complement” [Banc. & Sp., TODS’81]

I Combination per “Separation of Concerns”:

I separate data into shape and content
I treat shape via syntactic approach
I treat content via semantic approach
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Looking Further

I Try it out: link to implementation in the paper!

I Side effect: syntactic applicability improved
(by using additional program transformations)

I Parametrization via “bias” and default values

I Efficiency: (still) rather bad

I (More) future work: general types, type classes
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