Combining Syntactic and Semantic Bidirectionalization

J. Voigtländer ${ }^{1}$ Z. Hu^{2} K. Matsuda ${ }^{3}$ M. Wang ${ }^{4}$
${ }^{1}$ University of Bonn

${ }^{2}$ NII Tokyo

${ }^{3}$ Tohoku University
${ }^{4}$ University of Oxford
ICFP'10

Bidirectional Transformation

Acceptability / GetPut

Bidirectional Transformation

Acceptability / GetPut

Bidirectional Transformation

Consistency / PutGet

Bidirectional Transformation

Bidirectional Transformation

Bidirectional Transformation

[Foster et al., TOPLAS'07, ...]

Bidirectional Transformation

Bidirectionalization
[Matsuda et al., ICFP'07]

Bidirectional Transformation

Syntactic Bidirectionalization
[Matsuda et al., ICFP'07]

Bidirectional Transformation

Semantic Bidirectionalization
[V., POPL'09]

Semantic Bidirectionalization

Idea: Have higher-order function bff^{\dagger} such that any get and bff get satisfy GetPut, PutGet,

Semantic Bidirectionalization

Idea: Have higher-order function bff^{\dagger} such that any get and bff get satisfy GetPut, PutGet,

Examples:

$$
\text { "abc" } \xrightarrow{\text { tail }} \text { "bc" }
$$

Semantic Bidirectionalization

Idea: Have higher-order function bff^{\dagger} such that any get and bff get satisfy GetPut, PutGet,

Examples:

Semantic Bidirectionalization

Idea: Have higher-order function bff^{\dagger} such that any get and bff get satisfy GetPut, PutGet,

Examples:

Semantic Bidirectionalization

Idea: Have higher-order function bff^{\dagger} such that any get and bff get satisfy GetPut, PutGet,

Examples:

Semantic Bidirectionalization

Idea: Have higher-order function bff^{\dagger} such that any get and bff get satisfy GetPut, PutGet,

Examples:

Semantic Bidirectionalization

Idea: Have higher-order function bff^{\dagger} such that any get and bff get satisfy GetPut, PutGet,

Examples:

The Semantic Approach by Example

"Status Quo"

[V., POPL'09]:

- very lightweight, easy access to bidirectionality
- proofs by free theorems [Wadler, FPCA'89]
- major problem: rejects shape-changing updates

"Status Quo"

[V., POPL'09]:

- very lightweight, easy access to bidirectionality
- proofs by free theorems [Wadler, FPCA'89]
- major problem: rejects shape-changing updates
[Matsuda et al., ICFP'07]:
- heavily depends on syntactic restraints
- allows (ad-hoc) also shape-changing updates

"Status Quo"

[V., POPL'09]:

- very lightweight, easy access to bidirectionality
- proofs by free theorems [Wadler, FPCA'89]
- major problem: rejects shape-changing updates
[Matsuda et al., ICFP'07]:
- heavily depends on syntactic restraints
- allows (ad-hoc) also shape-changing updates

Here:

- synthesis of the two techniques
- inherits limitations in program coverage from both
- strictly better in terms of updatability than either

More Shape-Flexibility

More Shape-Flexibility

More Shape-Flexibility

More Shape-Flexibility

$$
5
$$

Expectations on \mathbf{t}^{\prime}

Let σ be a function which given a data structure computes a representation of its shape.

Then we want:

1. $\sigma\left(\right.$ get $\left.t^{\prime}\right)=\sigma\left(v^{\prime}\right)$
2. if $\sigma\left(v^{\prime}\right)=\sigma$ (get $\left.s\right)$, then $\sigma\left(t^{\prime}\right)=\sigma(s)$

Expectations on \mathbf{t}^{\prime}

Let σ be a function which given a data structure computes a representation of its shape.

Then we want:

1. $\sigma\left(\right.$ get $\left.t^{\prime}\right)=\sigma\left(v^{\prime}\right)$
2. if $\sigma\left(v^{\prime}\right)=\sigma$ (get $\left.s\right)$, then $\sigma\left(t^{\prime}\right)=\sigma(s)$

Key Idea: Abstraction!
Find sget such that:

"Bootstrapping"

For sget, find sput such that GetPut and PutGet hold:

"Bootstrapping"

For sget, find sput such that GetPut and PutGet hold:

Then, set t^{\prime} such that:

$$
\begin{aligned}
& \sigma(s) \\
& \sigma\left(t^{\prime}\right) ڭ_{\text {sput }} \sigma\left(v^{\prime}\right)
\end{aligned}
$$

Expectations on t^{\prime}

$$
\text { 1. } \sigma\left(\text { get } t^{\prime}\right)=\sigma\left(v^{\prime}\right) \text { ? }
$$

Expectations on t^{\prime}

1. $\sigma\left(\right.$ get $\left.t^{\prime}\right)=\sigma\left(v^{\prime}\right)$?

From:

$$
\begin{aligned}
& \sigma(s) \\
& \sigma\left(t^{\prime}\right) ڭ_{\text {sput }} \sigma\left(v^{\prime}\right)
\end{aligned}
$$

Expectations on t^{\prime}

1. $\sigma\left(\right.$ get $\left.t^{\prime}\right)=\sigma\left(v^{\prime}\right)$?

From:

$$
\begin{aligned}
& \sigma(s) \\
& \sigma\left(t^{\prime}\right) ڭ_{\text {sput }} \\
& \\
& \\
& \left.v^{\prime}\right)
\end{aligned}
$$

follows:

Expectations on t^{\prime}

1. $\sigma\left(\right.$ get $\left.t^{\prime}\right)=\sigma\left(v^{\prime}\right)$?

From:

Expectations on t^{\prime}

1. $\sigma\left(\right.$ get $\left.t^{\prime}\right)=\sigma\left(v^{\prime}\right)$?

From:

follows: $\sigma\left(\right.$ get $\left.t^{\prime}\right)=\sigma\left(v^{\prime}\right)$.

Expectations on t^{\prime}

2. if $\sigma\left(v^{\prime}\right)=\sigma$ (get $\left.s\right)$, then $\sigma\left(t^{\prime}\right)=\sigma(s)$?

Expectations on t^{\prime}

2. if $\sigma\left(v^{\prime}\right)=\sigma($ get $s)$, then $\sigma\left(t^{\prime}\right)=\sigma(s)$?

From:

$$
\sigma\left(t^{\prime}\right) \sum_{\text {sput }} \sigma\left(v^{\prime}\right)
$$

Expectations on t^{\prime}

2. if $\sigma\left(v^{\prime}\right)=\sigma($ get $s)$, then $\sigma\left(t^{\prime}\right)=\sigma(s)$?

From:

$$
\begin{aligned}
& \sigma(s) \\
& \sigma\left(t^{\prime}\right) ڭ_{\text {sput }} \sigma\left(v^{\prime}\right)
\end{aligned}
$$

follows:

Expectations on t^{\prime}

2. if $\sigma\left(v^{\prime}\right)=\sigma($ get $s)$, then $\sigma\left(t^{\prime}\right)=\sigma(s)$?

From:

$$
\begin{aligned}
& \sigma(s) \xrightarrow{\text { sget }} \circ \\
& \quad=\downarrow_{\text {sput }} \sigma\left(v^{\prime}\right)
\end{aligned}
$$

Expectations on t^{\prime}

2. if $\sigma\left(v^{\prime}\right)=\sigma($ get $s)$, then $\sigma\left(t^{\prime}\right)=\sigma(s)$?

From:

follows that if $\sigma\left(v^{\prime}\right)=\sigma($ get $s)$, then $\sigma\left(t^{\prime}\right)=\sigma(s)$.

More Shape-Flexibility

More Shape-Flexibility

'b' 'x' 'c' 'a'

More Shape-Flexibility

'b' 'x' 'c' 'a'

More Shape-Flexibility

'b' 'x' 'c' 'a'

More Shape-Flexibility

Essential Ingredients

The crucial point is to find sget with:

Essential Ingredients

The crucial point is to find sget with:

as well as sput such that:

Essential Ingredients

The crucial point is to find sget with:

syntactic abstraction

as well as sput such that:

Essential Ingredients

The crucial point is to find sget with:

syntactic
abstraction
[M. et al., ICFP'07]

The Benefits of Abstraction

$$
\begin{aligned}
& \text { get }::[\alpha] \rightarrow[\alpha] \\
& \text { get }[] \\
& \text { get }[x] \\
& \text { get }(x: y: z s)=[] \\
& =y:(\text { get } z s)
\end{aligned}
$$

The Benefits of Abstraction

```
get \(::[\alpha] \rightarrow[\alpha]\)
get [] \(=[]\)
get \([x]=[]\)
get \((x: y: z s)=y:(\) get \(z s)\)
```

\Downarrow
$\begin{array}{ll}\text { compl [] } & =\mathrm{C}_{1} \\ \operatorname{compl}[x] & =\mathrm{C}_{2} x \\ \operatorname{compl}(x: y: z s) & =\mathrm{C}_{3} x(\operatorname{compl} z s)\end{array}$

The Benefits of Abstraction

```
get \(::[\alpha] \rightarrow[\alpha]\)
get [] \(=[]\)
get \([x]=[]\)
get \((x: y: z s)=y:(\) get \(z s)\)
```

\Downarrow
$\begin{array}{ll}\text { compl [] } & =\mathrm{C}_{1} \\ \text { compl }[x] & =\mathrm{C}_{2} x \\ \operatorname{compl}(x: y: z s) & =\mathrm{C}_{3} x(\operatorname{compl} z s)\end{array}$
\downarrow
put []
[] $=[]$
put [x]
$=[x]$
put $(x: y: z s)\left(y^{\prime}: v^{\prime}\right)=\cdots$

The Benefits of Abstraction

$$
\begin{array}{ll}
\text { get }::[\alpha] \rightarrow[\alpha] & \\
\begin{array}{ll}
\operatorname{get}[] & =[]
\end{array} \quad \begin{array}{l}
\text { sget }:: \operatorname{lnt} \rightarrow \text { Int } \\
\text { get }[x] \\
\text { get } 0
\end{array}=[] & =0 \\
\text { get }(x: y: z s)=y:(\text { get } z s) & \\
\text { sget } 1 & =0 \\
\text { sget }(n+2) & =1+(\text { sget } n)
\end{array}
$$

The Benefits of Abstraction

$$
\Downarrow
$$

```
put []
    [] = []
put [x]
\[
=[x]
\]
\[
\text { put }(x: y: z s)\left(y^{\prime}: v^{\prime}\right)=\cdots
\]
```

$$
\begin{aligned}
& \text { get }::[\alpha] \rightarrow[\alpha] \\
& \begin{array}{ll}
\operatorname{get}[] & =[] \\
\operatorname{get}[x] & =[]
\end{array} \\
& \text { get }(x: y: z s)=y:(\text { get } z s) \\
& \text { sget :: Int } \rightarrow \text { Int } \\
& \text { sget } 0=0 \\
& \text { sget } 1=0 \\
& \text { sget }(n+2)=1+(\text { sget } n) \\
& \Downarrow \\
& \begin{array}{llll}
\text { compl [] } & =\mathrm{C}_{1} & \text { compl 0 } & =\mathrm{C}_{1} \\
\operatorname{compl}[x] & =\mathrm{C}_{2} x & \text { compl 1 } & =\mathrm{C}_{2} \\
\operatorname{compl}(x: y: z s) & =\mathrm{C}_{3} x(\text { compl zs) } & \text { compl }(n+2) & =\text { compl } n
\end{array}
\end{aligned}
$$

The Benefits of Abstraction

$$
\begin{aligned}
& \text { get }::[\alpha] \rightarrow[\alpha] \\
& \begin{array}{ll}
\operatorname{get}[] & =[] \\
\operatorname{get}[x] & =[]
\end{array} \\
& \text { get }(x: y: z s)=y:(\text { get } z s) \\
& \text { sget :: Int } \rightarrow \text { Int } \\
& \text { sget } 0=0 \\
& \text { sget } 1=0 \\
& \text { sget }(n+2)=1+(\text { sget } n) \\
& \begin{array}{llll}
\text { compl [] } & =\mathrm{C}_{1} & \text { compl 0 } & =\mathrm{C}_{1} \\
\operatorname{compl}[x] & =\mathrm{C}_{2} x & \text { compl 1 } & =\mathrm{C}_{2} \\
\operatorname{compl}(x: y: z s) & =\mathrm{C}_{3} x(\text { compl zs) } & \text { compl }(n+2) & =\text { compl } n
\end{array} \\
& \Downarrow \\
& \begin{array}{lll}
\operatorname{put}[] \quad[] & =[] \\
\text { put }[x] \quad[] & =[x] \\
\text { put }(x: y: z s) & \left(y^{\prime}: v^{\prime}\right) & =\cdots
\end{array}
\end{aligned}
$$

Taking Stock

- Semantic Approach:
- lightweight, "as a library"
- essential role: polymorphic function types

Taking Stock

- Semantic Approach:
- lightweight, "as a library"
- essential role: polymorphic function types
- Syntactic Approach:
- classical program transformation
- "constant-complement" [Banc. \& Sp., TODS'81]

Taking Stock

- Semantic Approach:
- lightweight, "as a library"
- essential role: polymorphic function types
- Syntactic Approach:
- classical program transformation
- "constant-complement" [Banc. \& Sp., TODS'81]
- Combination per "Separation of Concerns":
- separate data into shape and content
- treat shape via syntactic approach
- treat content via semantic approach

Looking Further

- Try it out: link to implementation in the paper!

Looking Further

- Try it out: link to implementation in the paper!
- Side effect: syntactic applicability improved (by using additional program transformations)

Looking Further

- Try it out: link to implementation in the paper!
- Side effect: syntactic applicability improved (by using additional program transformations)
- Parametrization via "bias" and default values

Looking Further

- Try it out: link to implementation in the paper!
- Side effect: syntactic applicability improved (by using additional program transformations)
- Parametrization via "bias" and default values
- Efficiency: (still) rather bad

Looking Further

- Try it out: link to implementation in the paper!
- Side effect: syntactic applicability improved (by using additional program transformations)
- Parametrization via "bias" and default values
- Efficiency: (still) rather bad
- (More) future work: general types, type classes

References I

国 F. Bancilhon and N. Spyratos.
Update semantics of relational views.
ACM Transactions on Database Systems, 6(3):557-575, 1981.
© J.N. Foster, M.B. Greenwald, J.T. Moore, B.C. Pierce, and A. Schmitt.
Combinators for bidirectional tree transformations: A linguistic approach to the view-update problem.
ACM Transactions on Programming Languages and Systems, 29(3):17, 2007.

References II

国 K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi.
Bidirectionalization transformation based on automatic derivation of view complement functions.
In International Conference on Functional
Programming, Proceedings, pages 47-58. ACM Press, 2007.

References III

图 J. Voigtländer.
Bidirectionalization for free!
In Principles of Programming Languages,
Proceedings, pages 165-176. ACM Press, 2009.
园 P. Wadler.
Theorems for free!
In Functional Programming Languages and
Computer Architecture, Proceedings, pages 347-359. ACM Press, 1989.

