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Monads in Haskell [Wadler '92, Peyton Jones & W. '93]

Example 1:
echo :: 10 ()
echo =do ¢ « getChar
when (c # '*") $
do putChar ¢
echo
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Monads in Haskell [Wadler '92, Peyton Jones & W. '93]

Example 1:
echo :: 10 ()
echo =do ¢ « getChar
when (c # '*") $
do putChar ¢
echo
Example 2:

sequence :: Monad m = [m a] — m [a]
sequence [] = return ]
sequence (m: ms) =do a < m
as « sequence ms
return (a: as)
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Monads in Haskell [Wadler '92, Peyton Jones & W. '93]

Example 1:
echo 1 10 ()
echo = do ¢ « getChar
when (c # ‘%) $ Effectf.ul
do putChar ¢ operations!
echo
Example 2:

sequence :: Monad m = [m a] — m [a]
sequence [] = return ]
sequence (m: ms) =do a < m
as « sequence ms
return (a: as)
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Monads in Haskell [Wadler '92, Peyton Jones & W. '93]

Example 1: A specific monad!
echo 1 10 ()
echo = do ¢ < getChar
when (¢ # '*') $ Effectf.ul
do putChar ¢ operations!
echo
Example 2:

sequence :: Monad m = [m a] — m [a]
sequence [] = return ]
sequence (m: ms) =do a < m
as « sequence ms
return (a: as)
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Monads in Haskell [Wadler '92, Peyton Jones & W. '93]

Example 1: A specific monad!
echo 1 10 ()
echo = do ¢ < getChar hoct
when (c # '*’) $ Effect .ul
do putChar ¢ operations!
echo
Example 2:

Parametric over a monad!

sequence :: Monad m = [m a] — m [a]
sequence [] = return ]
sequence (m: ms) =do a < m
as « sequence ms
return (a: as)
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Monads in Haskell [Wadler '92, Peyton Jones & W. '93]

Example 1: A specific monad!
echo 1 10 ()
echo = do ¢ < getChar hoct
when (c # '*’) $ Effect .ul
do putChar ¢ operations!
echo
Example 2:

Parametric over a monad!

sequence :: Monad m = [m a] — m [a]
sequence [] = return ]
sequence (m: ms) =do a < m

as « sequence ms

No specific return (a: as)
(new) effects!
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Monads in Haskell [Wadler '92, Peyton Jones & W. '93]

Example 2: )
Parametric over a monad!

sequence :: Monad m = [m a] — m [a]
sequence [] = return ]
sequence (m: ms) =do a < m

as « sequence ms

No specific return (a: as)
(new) effects!
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Monads in Haskell [Wadler '92, Peyton Jones & W. '93]

Example 2: )
Parametric over a monad!

sequence :: Monad m = [m a] — m [a]

No specific
(new) effects!
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A Slightly More Simple Example

f:Monadm=ma—ma—ma
fm my =
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A Slightly More Simple Example

f:Monadm=ma—ma—ma
fm my=dom
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A Slightly More Simple Example

f:Monadm=ma—ma—ma
fm my=dom
a<— nm
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A Slightly More Simple Example

f:Monadm=ma—ma—ma
fm my=dom

a<— nm

my
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A Slightly More Simple Example

f:Monadm=ma—ma—ma
fm my=dom

a<— nm

my

b<—m1
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A Slightly More Simple Example

f:Monadm=ma—ma—ma
fm my=dom

a<— nm

my

b<—m1

C <— mp

2 —14/33



A Slightly More Simple Example

f:Monadm=ma—ma—ma
fm my=dom

a<— nm

my

b<—m1

C <— mp

return b
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A Slightly More Simple Example

f:Monadm=ma—ma—ma
fm my=dom

a<— nm

my No effects
b+— m introduced!
C <— mp

return b
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A Slightly More Simple Example

f:Monadm=ma—ma—ma
fm m2=d0m1

a<— nm
my No effects
But my, my may b—m introduced!
M
encapsulate ones! € < M2

return b
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A Slightly More Simple Example

Assume my, my are pure.

f:Monadm=ma—ma—ma
fm my=dom

a<— nm

my

b<—m1

C <— mp

return b
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A Slightly More Simple Example

Assume my, my are pure.

That is, m; = (return u) and my = (return v) for some u, v.

f:Monadm=ma—ma—ma
fm my=dom

a<— nm

my

b<—m1

C <— mp

return b

2 -19/33



A Slightly More Simple Example

Assume my, my are pure.

That is, m; = (return u) and my = (return v) for some u, v.
Then:

fi:Monadm=ma—ma—ma
f my my =do return u
a < return u
return v
b« return u
C <« return v
return b
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A Slightly More Simple Example

Assume my, my are pure.

That is, m; = (return u) and my = (return v) for some u, v.
Then:

fi:Monadm=ma—ma—ma
f my my =do return u
a3« return u
return v
b« return u
C < return v
return b

(returnw) > m = m
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A Slightly More Simple Example

Assume my, my are pure.

That is, m; = (return u) and my = (return v) for some u, v.
Then:

fi:Monadm=ma—ma—ma
f my my =do return u
a3« return u
return v
b« return u
C < return v
return b

(returnw) > m = m
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A Slightly More Simple Example

Assume my, my are pure.

That is, m; = (return u) and my = (return v) for some u, v.
Then:

fi:Monadm=ma—ma—ma
fmgmy = do
a <« return u
return v
b« return u
C < return v
return b

(returnw) > m = m
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A Slightly More Simple Example

Assume my, my are pure.

That is, m; = (return u) and my = (return v) for some u, v.
Then:

f:Monadm=ma—ma—ma
fmgmy = do
a < return u
return v
b« return u
C «— return v
return b

(return u) >=(A\a—m) = mlu/a
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A Slightly More Simple Example

Assume my, my are pure.

That is, m; = (return u) and my = (return v) for some u, v.
Then:

f:Monadm=ma—ma—ma
fm m2:d0

return v
b« return u
C < return v
return b

(return u) >=(A\a—m) = mlu/a
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A Slightly More Simple Example

Assume my, my are pure.

That is, m; = (return u) and my = (return v) for some u, v.
Then:

f:Monadm=ma—ma—ma
fm m2:d0

return v
b« return u

C <« return v
return b

(returnv) > m = m
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A Slightly More Simple Example

Assume my, my are pure.
That is, m; = (return u) and my = (return v) for some u, v.

Then:

f:Monadm=ma—ma—ma
fm m2:d0

b« return u
C <« return v
return b

(returnv) > m = m
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A Slightly More Simple Example

Assume my, my are pure.

That is, m; = (return u) and my = (return v) for some u, v.
Then:

f:Monadm=ma—ma—ma

fm m2:d0

b« return u
C <« return v
return b

(return u) =>=(Ab—m) = mlu/b]
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A Slightly More Simple Example

Assume my, my are pure.

That is, m; = (return u) and my = (return v) for some u, v.
Then:

f:Monadm=ma—ma—ma
fm m2:d0

C <« return v
return u

(return u) =>=(Ab—m) = mlu/b]
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A Slightly More Simple Example

Assume my, my are pure.

That is, m; = (return u) and my = (return v) for some u, v.
Then:

f:Monadm=ma—ma—ma
fm m2:d0

C <« return v
return u

(return v) >=(Ac—>m) = m|v/c]
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A Slightly More Simple Example

Assume my, my are pure.

That is, m; = (return u) and my = (return v) for some u, v.
Then:

f:Monadm=ma—ma—ma
fm m2:d0

return u

(return v) >=(Ac—>m) = m|v/c]
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A Slightly More Simple Example

Assume my, my are pure.

That is, m; = (return u) and my = (return v) for some u, v.
Then:

f:Monadm=ma—ma—ma
fm m2:d0

return u

Purity is propagated!
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A Slightly More Simple Example

Assume my, my are pure.

That is, m; = (return u) and my = (return v) for some u, v.
Then:

f:Monadm=ma—ma—ma
fm m2:d0

return u

Purity is propagated!

What about other “invariants”?
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Propagating Invariants

fu:Monadm=ma—ma—ma
fm my=dom

a<— nm

my

b<—m1

C <— my

return b
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Propagating Invariants

Assume my, my :: State o T,

fu:Monadm=ma—ma—ma
fm my=dom

a<— nm

my

b<—m1

C <— my

return b
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Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

fu:Monadm=ma—ma—ma
fm my=dom

a<— nm

my

b<—m1

C <— my

return b
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Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

fu:Monadm=ma—ma—ma
f m my=do m

a<— nm

my

b<—m1

C <— my

return b
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Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

f:Monadm==ma—ma—ma
5
f m my=dom
a<— nm
my
b<—m1
C <— my
return b
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Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

f:Monadm==ma—ma—ma
s s

f my my=do m

a<— nm
my

b<—m1
C <— My
return b
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Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

f:Monadm==ma—ma—ma
s s
f my my=do m
5
a<— nma
my
b<—m1
C <— my
return b
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Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

f:Monadm==ma—ma—ma
s s

f my my=do m

s s
a<— nma
my
b<—m1
C <— my
return b
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Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

f:Monadm==ma—ma—ma
s s
f my my=do m
s s
a<— nm
5
my
b<—m1
C <— my

return b
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Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

f:Monadm==ma—ma—ma
s s
f my my=do m
s s
a<— nm
s s
my
b<—m1
C <— my

return b
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Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) =1id?

f:Monadm==ma—ma—ma
s s
f my my=do m
s s
a<— nm
s s
my
5
b<—m1
C <— my
return b
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Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) =1id?

f:Monadm==ma—ma—ma
s s
f my my=do m
s s
a<— nma
s s
my
s s
b<—m1
C <— my

return b
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Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) =1id?

f:Monadm==ma—ma—ma
s s
f my my=do m
s s
a<— nm
s s
my
s s
b<—m1
C<—Sm2
return b
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Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) =1id?

f:Monadm==ma—ma—ma
s s
f my my=do m
s s
a<— nm
s s
my
s s
b<—m1
C<—Sm25
return b
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Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) =1id?

f:Monadm==ma—ma—ma
s s
f my my=do m
s s
a<— nm
s s
my
s s
b<—m1
C<—Sm25
Sreturn b
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Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) =1id?

f:Monadm==ma—ma—ma
s s
f my my=do m
s s
a<— nm
s s
my
s s
b<—m1
C<—Sm25
Sreturn b°
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Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

fu:Monadm=ma—ma—ma
f m my=do m

a<— nm

my

b<—m1

C <— my

return b
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Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

fu:Monadm=ma—ma—ma
fm my=dom

a<— nm

my

b<—m1

C <— my

State (As — (b, s))
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Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

fu:Monadm=ma—ma—ma
fm my=dom
a<— nm
my
b<—m1
¢ < State (As — (--+,5))
State (As — (b, s))
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Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

fu:Monadm=ma—ma—ma
fm my=dom
a<— nm
my
b<—m1
¢ < State (As — (--+,5))
State (As — (b, s))

(State (As — (--+,5))) == (Ac — State (As — (b,s))) = 7
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Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

fu:Monadm=ma—ma—ma
fm my=dom

a<— nm

my

b<—m1

State (As — (b, s))
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Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

fu:Monadm=ma—ma—ma
fm my=dom

a<— nm

my

b<—m1

State (As — (b, s))
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Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

fu:Monadm=ma—ma—ma
fm my=dom
a<— nm
my
b — State (As — (---,5))
State (As — (b, s))
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Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

fu:Monadm=ma—ma—ma
fm my=dom
a<— nm
my
b — State (As — (---,5))
State (As — (b, s))

(State (As — (---,5))) == (Ab — State (As — (b,s))) = ?
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Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

fu:Monadm=ma—ma—ma
fm my=dom

a<— nm

my

State (As — (--+,s))

(State (As — (--+,s))) == (Ab — State (As — (b,s))) = 7
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Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

fu:Monadm=ma—ma—ma
fm my=dom

a<— nm

my

State (As — (--+,s))
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Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

fu:Monadm=ma—ma—ma
fm my=dom
a<— nm
State (As — (---,s))
State (As — (--+,s))
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Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

fu:Monadm=ma—ma—ma
fm my=dom
a<— nm
State (As — (---,s))
State (As — (--+,s))

(State (As — (---,s))) = (State (As — (---,s))) = 7
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Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

f:Monadm==ma—ma—ma
fm my=dom
a<— nm

State (As — (---,s))

(State (As — (---,s))) = (State (As — (---,s))) = 7
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Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

f:Monadm==ma—ma—ma
fm my=dom
a<— nm

State (As — (---,s))
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Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

fu:Monadm=ma—ma—ma
fm my=dom
a < State (As — (---,))
State (As — (---,s))
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Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

fu:Monadm=ma—ma—ma
fm my=dom
a < State (As — (---,))
State (As — (---,s))

(State (As — (--+,s))) == (Xa — State (A\s — (--+,s))) = 7
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Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

f:Monadm==ma—ma—ma
f m my=do m
State (As — (--+,s))

(State (As — (- -+, 5))) >>=(\a — State (As — (-~
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Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

f:Monadm==ma—ma—ma
f m my=do m
State (As — (--+,s))
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Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

f:Monadm==ma—ma—ma
£ my mp = do State (As — (--+,5s))
State (As — (--+,s))
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Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

f:Monadm==ma—ma—ma
£ my mp = do State (As — (--+,5s))
State (As — (--+,s))

(State (As — (---,s))) = (State (As — (---,s))) = 7

3 —69/71



Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

f:Monadm==ma—ma—ma
£ my mp = do State (As — (--+,5s))

(State (As — (---,s))) = (State (As — (---,s))) = 7
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Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

f:Monadm==ma—ma—ma
f my mp = do State (As — (--+,s))

Yes!
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Why So?

Crucially used:

» for every a,
execState (return a) = id
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Why So?

Crucially used:

» for every a,

execState (return a) = id

» for every m and k,
execState (m >>= k) = id
provided:

» execState m=id

» for every a, execState (k a) = id
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Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

f:Monadm==ma—ma—ma
f my mp = do State (As — (--+,s))

Yes!
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Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) =1id?

f:Monadm==ma—ma—ma
f my mp = do State (As — (--+,s))

Yes!

What about other invariants, other monads, ...?
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Consider a More Specific Type

Instead of
fi:Monad m=ma—ma—ma

now
f::Monad m= mInt — mlInt — m Int
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Consider a More Specific Type

Instead of
fi:Monad m=ma—ma—ma

now
f::Monad m= mInt — mlInt — m Int

Then more possible behaviours of £ are possible:

f:Monad m= miInt - mlInt — mInt
fm my=dom

a<— nm

my

b<—m1

C < My

return b
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Consider a More Specific Type

Instead of
fi:Monad m=ma—ma—ma

now
f::Monad m= mInt — mlInt — m Int

Then more possible behaviours of £ are possible:

f:Monad m= miInt - mlInt — mInt
fm my=dom

a<— nm

my

b~ mp

if b> 0 then return (a+ b)

else do c +— my
return b
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Reasoning via Monad Embedding

Assume my, my :: State o 7, but execState m; = id.

fi:Monadm=ma—ma—ma
f m my=do m

a<—m

my

b<—m1

C < My

return b
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Reasoning via Monad Embedding

Assume my, my :: State o 7, but execState m; = id.
An m has this property iff it is an h-image for

h:: Reader 0 a — State 0 a
h (Reader g) = State (As — (g s, s))

fi:Monadm=ma—ma—ma
f m my=do m

a<—m

my

b<—m1

C < My

return b
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Reasoning via Monad Embedding

Assume my, my :: State o 7, but execState m; = id.
An m has this property iff it is an h-image for

h:: Reader 0 a — State 0 a
h (Reader g) = State (As — (g s, s))

Then:
fi:Monad m=ma—ma—ma

! / _ ! ! ! !

f (h my) (h my)=do h mj f mp m), =do mj
a«—hmj a«—mj

! !

h my my
b—hmj b — mj
c— hmj ¢ — mh

return b return

b
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h:: Reader 0 a — State 0 a
h (Reader g) = State (As — (g s, s))

Then:
fi:Monad m=ma—ma—ma

! / _ ! ! ! !

f (h my) (h my)=do h mj f mp m), =do mj
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Reasoning via Monad Embedding

Assume my, my :: State o 7, but execState m; = id.
An m has this property iff it is an h-image for

h:: Reader 0 a — State 0 a
h (Reader g) = State (As — (g s, s))

Then:
fi:Monad m=ma—ma—ma
! / _ ! ! ! !
f (h my) (h my)=do h mj f mp m), =do mj
a«—hmj a«—mj
! !
h my my
b—hmj b — mj
c— hmj ¢ — mh
return b return b

return b = h (return b)
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Reasoning via Monad Embedding

Assume my, my :: State o 7, but execState m; = id.
An m has this property iff it is an h-image for

h:: Reader 0 a — State 0 a
h (Reader g) = State (As — (g s, s))

Then:
fi:Monad m=ma—ma—ma

! / _ ! ! ! !

f (h my) (h my)=do h mj f mp m), =do mj
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A More General Theorem

Let
fi:Monad m=ma—ma—ma
Let
h: ki a— ko a
such that

> K1, kp are monads

» horeturn,, = return,,
» for every mand k, h (m ==, k)= (hm) ==, (ho k)

Then for every my and mo,

f (h m1) (h m2) = h (f mq m2)
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Looking Back at the Concrete Invariant

For
h :: Reader o a — State 0 a
h (Reader g) = State (As — (g s,s))
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For
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h (Reader g) = State (As — (g s,s))

the conditions
» horeturnRreaders = returnsiate o

» for every m and k,
h (m >>= Reader o k) = (h m) >>= State o (h © k)

imply that
» for every a, execState (returngite, @) = id

> for every m and k, execState (m >>=giates k) = id,
provided ... (as given earlier)
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Conceptual Ingredients
» Exploiting polymorphism

» Relational parametricity [Reynolds '83]
» Free theorems [Wadler '89]
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» Relational parametricity [Reynolds '83]
» Free theorems [Wadler '89]

» Extension to type classes:
» Folklore
» Dictionary translation [Wadler & Blott '89]

» Extension to type constructors:

» Folklore?

» Monad morphisms:
» Representation independence for effects
[Filinski & Stgvring '07]
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Example Uses

» Purity preservation
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Example Uses

» Purity preservation

» Safe value extraction, e.g.
» Discard logging
» Pick from a nondeterministic manifold
» Invariant propagation, e.g.
» Independence criteria for stateful computations
» Restrictions on 10
» Effect abstraction, e.g.
» From exceptions to partiality
» Proper generalisations of standard free theorems
» Transparent introduction of data improvements [V. '08]
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