Free Theorems Involving
Type Constructor Classes

Janis Voigtlander

Technische Universitat Dresden

ICFP'09

Monads in Haskell [Wadler '92, Peyton Jones & W. '93]

Example 1:
echo :: 10 ()
echo =do ¢ « getChar
when (c # '*") $
do putChar ¢
echo

1-1/8

Monads in Haskell [Wadler '92, Peyton Jones & W. '93]

Example 1:
echo :: 10 ()
echo =do ¢ « getChar
when (c # '*") $
do putChar ¢
echo
Example 2:

sequence :: Monad m = [m a] — m [a]
sequence [] = return]
sequence (m: ms) =do a < m
as « sequence ms
return (a: as)

1-2/8

Monads in Haskell [Wadler '92, Peyton Jones & W. '93]

Example 1:
echo 1 10 ()
echo = do ¢ « getChar
when (c # ‘%) $ Effectf.ul
do putChar ¢ operations!
echo
Example 2:

sequence :: Monad m = [m a] — m [a]
sequence [] = return]
sequence (m: ms) =do a < m
as « sequence ms
return (a: as)

1-3/8

Monads in Haskell [Wadler '92, Peyton Jones & W. '93]

Example 1: A specific monad!
echo 1 10 ()
echo = do ¢ < getChar
when (¢ # '*') $ Effectf.ul
do putChar ¢ operations!
echo
Example 2:

sequence :: Monad m = [m a] — m [a]
sequence [] = return]
sequence (m: ms) =do a < m
as « sequence ms
return (a: as)

1-4/8

Monads in Haskell [Wadler '92, Peyton Jones & W. '93]

Example 1: A specific monad!
echo 1 10 ()
echo = do ¢ < getChar hoct
when (c # '*’) $ Effect .ul
do putChar ¢ operations!
echo
Example 2:

Parametric over a monad!

sequence :: Monad m = [m a] — m [a]
sequence [] = return]
sequence (m: ms) =do a < m
as « sequence ms
return (a: as)

1-5/8

Monads in Haskell [Wadler '92, Peyton Jones & W. '93]

Example 1: A specific monad!
echo 1 10 ()
echo = do ¢ < getChar hoct
when (c # '*’) $ Effect .ul
do putChar ¢ operations!
echo
Example 2:

Parametric over a monad!

sequence :: Monad m = [m a] — m [a]
sequence [] = return]
sequence (m: ms) =do a < m

as « sequence ms

No specific return (a: as)
(new) effects!

1-6/8

Monads in Haskell [Wadler '92, Peyton Jones & W. '93]

Example 2:)
Parametric over a monad!

sequence :: Monad m = [m a] — m [a]
sequence [] = return]
sequence (m: ms) =do a < m

as « sequence ms

No specific return (a: as)
(new) effects!

1-7/8

Monads in Haskell [Wadler '92, Peyton Jones & W. '93]

Example 2:)
Parametric over a monad!

sequence :: Monad m = [m a] — m [a]

No specific
(new) effects!

1-38/8

A Slightly More Simple Example

f:Monadm=ma—ma—ma
fm my =

2-9/33

A Slightly More Simple Example

f:Monadm=ma—ma—ma
fm my=dom

2 -10/33

A Slightly More Simple Example

f:Monadm=ma—ma—ma
fm my=dom
a<— nm

2-11/33

A Slightly More Simple Example

f:Monadm=ma—ma—ma
fm my=dom

a<— nm

my

2 -12/33

A Slightly More Simple Example

f:Monadm=ma—ma—ma
fm my=dom

a<— nm

my

b<—m1

2 -13/33

A Slightly More Simple Example

f:Monadm=ma—ma—ma
fm my=dom

a<— nm

my

b<—m1

C <— mp

2 —14/33

A Slightly More Simple Example

f:Monadm=ma—ma—ma
fm my=dom

a<— nm

my

b<—m1

C <— mp

return b

2 —-15/33

A Slightly More Simple Example

f:Monadm=ma—ma—ma
fm my=dom

a<— nm

my No effects
b+— m introduced!
C <— mp

return b

2 -16/33

A Slightly More Simple Example

f:Monadm=ma—ma—ma
fm m2=d0m1

a<— nm
my No effects
But my, my may b—m introduced!
M
encapsulate ones! € < M2

return b

2-17/33

A Slightly More Simple Example

Assume my, my are pure.

f:Monadm=ma—ma—ma
fm my=dom

a<— nm

my

b<—m1

C <— mp

return b

2 -18/33

A Slightly More Simple Example

Assume my, my are pure.

That is, m; = (return u) and my = (return v) for some u, v.

f:Monadm=ma—ma—ma
fm my=dom

a<— nm

my

b<—m1

C <— mp

return b

2 -19/33

A Slightly More Simple Example

Assume my, my are pure.

That is, m; = (return u) and my = (return v) for some u, v.
Then:

fi:Monadm=ma—ma—ma
f my my =do return u
a < return u
return v
b« return u
C <« return v
return b

2 —20/33

A Slightly More Simple Example

Assume my, my are pure.

That is, m; = (return u) and my = (return v) for some u, v.
Then:

fi:Monadm=ma—ma—ma
f my my =do return u
a3« return u
return v
b« return u
C < return v
return b

(returnw) > m = m

2 -21/33

A Slightly More Simple Example

Assume my, my are pure.

That is, m; = (return u) and my = (return v) for some u, v.
Then:

fi:Monadm=ma—ma—ma
f my my =do return u
a3« return u
return v
b« return u
C < return v
return b

(returnw) > m = m

2 —-22/33

A Slightly More Simple Example

Assume my, my are pure.

That is, m; = (return u) and my = (return v) for some u, v.
Then:

fi:Monadm=ma—ma—ma
fmgmy = do
a <« return u
return v
b« return u
C < return v
return b

(returnw) > m = m

2 —23/33

A Slightly More Simple Example

Assume my, my are pure.

That is, m; = (return u) and my = (return v) for some u, v.
Then:

f:Monadm=ma—ma—ma
fmgmy = do
a < return u
return v
b« return u
C «— return v
return b

(return u) >=(A\a—m) = mlu/a

2 —24/33

A Slightly More Simple Example

Assume my, my are pure.

That is, m; = (return u) and my = (return v) for some u, v.
Then:

f:Monadm=ma—ma—ma
fm m2:d0

return v
b« return u
C < return v
return b

(return u) >=(A\a—m) = mlu/a

2 —25/33

A Slightly More Simple Example

Assume my, my are pure.

That is, m; = (return u) and my = (return v) for some u, v.
Then:

f:Monadm=ma—ma—ma
fm m2:d0

return v
b« return u

C <« return v
return b

(returnv) > m = m

2 —26/33

A Slightly More Simple Example

Assume my, my are pure.
That is, m; = (return u) and my = (return v) for some u, v.

Then:

f:Monadm=ma—ma—ma
fm m2:d0

b« return u
C <« return v
return b

(returnv) > m = m

2 —-27/33

A Slightly More Simple Example

Assume my, my are pure.

That is, m; = (return u) and my = (return v) for some u, v.
Then:

f:Monadm=ma—ma—ma

fm m2:d0

b« return u
C <« return v
return b

(return u) =>=(Ab—m) = mlu/b]

2 —28/33

A Slightly More Simple Example

Assume my, my are pure.

That is, m; = (return u) and my = (return v) for some u, v.
Then:

f:Monadm=ma—ma—ma
fm m2:d0

C <« return v
return u

(return u) =>=(Ab—m) = mlu/b]

2 —129/33

A Slightly More Simple Example

Assume my, my are pure.

That is, m; = (return u) and my = (return v) for some u, v.
Then:

f:Monadm=ma—ma—ma
fm m2:d0

C <« return v
return u

(return v) >=(Ac—>m) = m|v/c]

2 —-30/33

A Slightly More Simple Example

Assume my, my are pure.

That is, m; = (return u) and my = (return v) for some u, v.
Then:

f:Monadm=ma—ma—ma
fm m2:d0

return u

(return v) >=(Ac—>m) = m|v/c]

2 -31/33

A Slightly More Simple Example

Assume my, my are pure.

That is, m; = (return u) and my = (return v) for some u, v.
Then:

f:Monadm=ma—ma—ma
fm m2:d0

return u

Purity is propagated!

2 —-32/33

A Slightly More Simple Example

Assume my, my are pure.

That is, m; = (return u) and my = (return v) for some u, v.
Then:

f:Monadm=ma—ma—ma
fm m2:d0

return u

Purity is propagated!

What about other “invariants”?

2 - 33/33

Propagating Invariants

fu:Monadm=ma—ma—ma
fm my=dom

a<— nm

my

b<—m1

C <— my

return b

3 -34/71

Propagating Invariants

Assume my, my :: State o T,

fu:Monadm=ma—ma—ma
fm my=dom

a<— nm

my

b<—m1

C <— my

return b

3 -35/71

Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

fu:Monadm=ma—ma—ma
fm my=dom

a<— nm

my

b<—m1

C <— my

return b

3 —36/71

Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

fu:Monadm=ma—ma—ma
f m my=do m

a<— nm

my

b<—m1

C <— my

return b

3-37/71

Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

f:Monadm==ma—ma—ma
5
f m my=dom
a<— nm
my
b<—m1
C <— my
return b

3 —38/71

Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

f:Monadm==ma—ma—ma
s s

f my my=do m

a<— nm
my

b<—m1
C <— My
return b

3 -39/71

Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

f:Monadm==ma—ma—ma
s s
f my my=do m
5
a<— nma
my
b<—m1
C <— my
return b

3 —40/71

Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

f:Monadm==ma—ma—ma
s s

f my my=do m

s s
a<— nma
my
b<—m1
C <— my
return b

3—ayn

Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

f:Monadm==ma—ma—ma
s s
f my my=do m
s s
a<— nm
5
my
b<—m1
C <— my

return b

3-42/71

Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

f:Monadm==ma—ma—ma
s s
f my my=do m
s s
a<— nm
s s
my
b<—m1
C <— my

return b

3 —43/71

Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) =1id?

f:Monadm==ma—ma—ma
s s
f my my=do m
s s
a<— nm
s s
my
5
b<—m1
C <— my
return b

3 —44/71

Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) =1id?

f:Monadm==ma—ma—ma
s s
f my my=do m
s s
a<— nma
s s
my
s s
b<—m1
C <— my

return b

3 —45/71

Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) =1id?

f:Monadm==ma—ma—ma
s s
f my my=do m
s s
a<— nm
s s
my
s s
b<—m1
C<—Sm2
return b

3 —46/71

Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) =1id?

f:Monadm==ma—ma—ma
s s
f my my=do m
s s
a<— nm
s s
my
s s
b<—m1
C<—Sm25
return b

3 —47/71

Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) =1id?

f:Monadm==ma—ma—ma
s s
f my my=do m
s s
a<— nm
s s
my
s s
b<—m1
C<—Sm25
Sreturn b

3 —4g/71

Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) =1id?

f:Monadm==ma—ma—ma
s s
f my my=do m
s s
a<— nm
s s
my
s s
b<—m1
C<—Sm25
Sreturn b°

3 —49/71

Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

fu:Monadm=ma—ma—ma
f m my=do m

a<— nm

my

b<—m1

C <— my

return b

3 —50/71

Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

fu:Monadm=ma—ma—ma
fm my=dom

a<— nm

my

b<—m1

C <— my

State (As — (b, s))

3 -5171

Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

fu:Monadm=ma—ma—ma
fm my=dom
a<— nm
my
b<—m1
¢ < State (As — (--+,5))
State (As — (b, s))

3 -52/71

Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

fu:Monadm=ma—ma—ma
fm my=dom
a<— nm
my
b<—m1
¢ < State (As — (--+,5))
State (As — (b, s))

(State (As — (--+,5))) == (Ac — State (As — (b,s))) = 7

3 —53/71

Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

fu:Monadm=ma—ma—ma
fm my=dom

a<— nm

my

b<—m1

State (As — (b, s))

(State (As — (--+,5))) == (Ac — State (As — (b,s))) = 7

3 —54/71

Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

fu:Monadm=ma—ma—ma
fm my=dom

a<— nm

my

b<—m1

State (As — (b, s))

3 —55/71

Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

fu:Monadm=ma—ma—ma
fm my=dom
a<— nm
my
b — State (As — (---,5))
State (As — (b, s))

3 —56/71

Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

fu:Monadm=ma—ma—ma
fm my=dom
a<— nm
my
b — State (As — (---,5))
State (As — (b, s))

(State (As — (---,5))) == (Ab — State (As — (b,s))) = ?

3-57/71

Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

fu:Monadm=ma—ma—ma
fm my=dom

a<— nm

my

State (As — (--+,s))

(State (As — (--+,s))) == (Ab — State (As — (b,s))) = 7

3 —58/71

Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

fu:Monadm=ma—ma—ma
fm my=dom

a<— nm

my

State (As — (--+,s))

3 —59/71

Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

fu:Monadm=ma—ma—ma
fm my=dom
a<— nm
State (As — (---,s))
State (As — (--+,s))

3 - 60/71

Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

fu:Monadm=ma—ma—ma
fm my=dom
a<— nm
State (As — (---,s))
State (As — (--+,s))

(State (As — (---,s))) = (State (As — (---,s))) = 7

3 -61/71

Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

f:Monadm==ma—ma—ma
fm my=dom
a<— nm

State (As — (---,s))

(State (As — (---,s))) = (State (As — (---,s))) = 7

3 -62/71

Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

f:Monadm==ma—ma—ma
fm my=dom
a<— nm

State (As — (---,s))

3 -63/71

Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

fu:Monadm=ma—ma—ma
fm my=dom
a < State (As — (---,))
State (As — (---,s))

3 —64/71

Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

fu:Monadm=ma—ma—ma
fm my=dom
a < State (As — (---,))
State (As — (---,s))

(State (As — (--+,s))) == (Xa — State (A\s — (--+,s))) = 7

3 —65/71

Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

f:Monadm==ma—ma—ma
f m my=do m
State (As — (--+,s))

(State (As — (- -+, 5))) >>=(\a — State (As — (-~

3 - 66/71

Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

f:Monadm==ma—ma—ma
f m my=do m
State (As — (--+,s))

3-67/71

Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

f:Monadm==ma—ma—ma
£ my mp = do State (As — (--+,5s))
State (As — (--+,s))

3 —68/71

Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

f:Monadm==ma—ma—ma
£ my mp = do State (As — (--+,5s))
State (As — (--+,s))

(State (As — (---,s))) = (State (As — (---,s))) = 7

3 —69/71

Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

f:Monadm==ma—ma—ma
£ my mp = do State (As — (--+,5s))

(State (As — (---,s))) = (State (As — (---,s))) = 7

3 -70/71

Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

f:Monadm==ma—ma—ma
f my mp = do State (As — (--+,s))

Yes!

3-7ymn

Why So?

Crucially used:

» for every a,
execState (return a) = id

4-72/73

Why So?

Crucially used:

» for every a,

execState (return a) = id

» for every m and k,
execState (m >>= k) = id
provided:

» execState m=id

» for every a, execState (k a) = id

4-73/73

Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) = id?

f:Monadm==ma—ma—ma
f my mp = do State (As — (--+,s))

Yes!

5 —74/75

Propagating Invariants

Assume my, my :: State o 7, but execState m; = id.

Can we show that execState (f my mp) =1id?

f:Monadm==ma—ma—ma
f my mp = do State (As — (--+,s))

Yes!

What about other invariants, other monads, ...?

5 —75/75

Consider a More Specific Type

Instead of
fi:Monad m=ma—ma—ma

now
f::Monad m= mInt — mlInt — m Int

6 — 76/78

Consider a More Specific Type

Instead of
fi:Monad m=ma—ma—ma

now
f::Monad m= mInt — mlInt — m Int

Then more possible behaviours of £ are possible:

f:Monad m= miInt - mlInt — mInt
fm my=dom

a<— nm

my

b<—m1

C < My

return b

6 —77/78

Consider a More Specific Type

Instead of
fi:Monad m=ma—ma—ma

now
f::Monad m= mInt — mlInt — m Int

Then more possible behaviours of £ are possible:

f:Monad m= miInt - mlInt — mInt
fm my=dom

a<— nm

my

b~ mp

if b> 0 then return (a+ b)

else do c +— my
return b

6 — 78/78

Reasoning via Monad Embedding

Assume my, my :: State o 7, but execState m; = id.

fi:Monadm=ma—ma—ma
f m my=do m

a<—m

my

b<—m1

C < My

return b

7 —79/98

Reasoning via Monad Embedding

Assume my, my :: State o 7, but execState m; = id.
An m has this property iff it is an h-image for

h:: Reader 0 a — State 0 a
h (Reader g) = State (As — (g s, s))

fi:Monadm=ma—ma—ma
f m my=do m

a<—m

my

b<—m1

C < My

return b

7 —80/98

Reasoning via Monad Embedding

Assume my, my :: State o 7, but execState m; = id.
An m has this property iff it is an h-image for

h:: Reader 0 a — State 0 a
h (Reader g) = State (As — (g s, s))

Then:
fi:Monad m=ma—ma—ma

! / _ ! ! ! !

f (h my) (h my)=do h mj f mp m), =do mj
a«—hmj a«—mj

! !

h my my
b—hmj b — mj
c— hmj ¢ — mh

return b return

b

7 —81/98

Reasoning via Monad Embedding

Assume my, my :: State o 7, but execState m; = id.
An m has this property iff it is an h-image for

h:: Reader 0 a — State 0 a
h (Reader g) = State (As — (g s, s))

Then:
fi:Monad m=ma—ma—ma

! / _ ! ! ! !

f (h my) (h my)=do h mj f mp m), =do mj
a«—hmj a«—mj

! !

h my my
b—hmj b — mj
c— hmj ¢ — mh

return b return

b

7 —82/98

Reasoning via Monad Embedding

Assume my, my :: State o 7, but execState m; = id.
An m has this property iff it is an h-image for

h:: Reader 0 a — State 0 a
h (Reader g) = State (As — (g s, s))

Then:
fi:Monad m=ma—ma—ma
! / _ ! ! ! !
f (h my) (h my)=do h mj f mp m), =do mj
a«—hmj a«—mj
! !
h my my
b—hmj b — mj
c— hmj ¢ — mh
return b return b

return b = h (return b)

7 — 83/98

Reasoning via Monad Embedding

Assume my, my :: State o 7, but execState m; = id.
An m has this property iff it is an h-image for

h:: Reader 0 a — State 0 a
h (Reader g) = State (As — (g s, s))

Then:
fi:Monad m=ma—ma—ma

! / _ ! ! ! !

f (h my) (h my)=do h mj f mp m), =do mj
a«—hmj a«—mj

! !

h my my
b—hmj b — mj
c— hmj ¢ — mh

h (return b) return b

7 — 84/98

Reasoning via Monad Embedding

Assume my, my :: State o 7, but execState m; = id.
An m has this property iff it is an h-image for

h:: Reader 0 a — State 0 a
h (Reader g) = State (As — (g s, s))

Then:
fi:Monad m=ma—ma—ma

! / _ ! ! ! !

f (h my) (h my)=do h mj f mp m), =do mj
a«—hmj a«—mj

! !

h my my
b—hmj b — mj
c— hm ¢ — mh

h (return b) return b

7 —85/98

Reasoning via Monad Embedding

Assume my, my :: State o 7, but execState m; = id.
An m has this property iff it is an h-image for

h:: Reader 0 a — State 0 a
h (Reader g) = State (As — (g s, s))

Then:
f:Monadm=ma—ma—ma
£ (h mj) (h m}) =do h mj f mj my =do mj
a«—hmj a«—mj
/ /
h my my
b—hmj b — mj
c— hm ¢ — mh
h (return b) return b

(h mb) >=(Ac — h (return b)) = 7

7 — 86/98

Reasoning via Monad Embedding

Assume my, my :: State o 7, but execState m; = id.
An m has this property iff it is an h-image for

h:: Reader 0 a — State 0 a
h (Reader g) = State (As — (g s, s))

Then:
fu:Monadm=ma—ma—ma
£ (h mj) (h m}) =do h mj f mj my =do mj
a«—hmj a«—mj
/ /
h my my
b—hmj b — mj
¢« hm) ¢ «— m,
h (return b) return b

(h mb) >=(Ac — h (return b)) = h (m) >=(Ac — return b))

7 —87/98

Reasoning via Monad Embedding

Assume my, my :: State o 7, but execState m; = id.
An m has this property iff it is an h-image for

h:: Reader 0 a — State 0 a
h (Reader g) = State (As — (g s, s))

Then:
fu:Monadm=ma—ma—ma

£ (h mj) (h m}) =do h mj f mj my =do mj
a«—hmj a«—mj

/ /

h my my
b—hmj b — mj
h (do ¢ — mj c «— mj
return b) return b

(h mb) >=(Ac — h (return b)) = h (m) >=(Ac — return b))

7 — 88/98

Reasoning via Monad Embedding

Assume my, my :: State o 7, but execState m; = id.
An m has this property iff it is an h-image for

h:: Reader 0 a — State 0 a
h (Reader g) = State (As — (g s, s))

Then:
f::Monadm=ma—ma—ma

£ (h mj) (h m}) =do h mj f mj my =do mj
a«—hmj a«—mj

/ /

h my my
b—hmj b — mj
h (do ¢ « m, ¢ — mj,

return b) return b

7 —89/98

Reasoning via Monad Embedding

Assume my, my :: State o 7, but execState m; = id.
An m has this property iff it is an h-image for

h:: Reader 0 a — State 0 a
h (Reader g) = State (As — (g s, s))

Then:
f::Monadm=ma—ma—ma

£ (h mj) (h m}) =do h mj f mj my =do mj
a«—hmj a«—mj

/ /

h my my
b— hmj b — mj
h (do ¢ «— m, ¢ «— m,

return b) return b

7 —90/98

Reasoning via Monad Embedding

Assume my, my :: State o 7, but execState m; = id.
An m has this property iff it is an h-image for

h:: Reader 0 a — State 0 a
h (Reader g) = State (As — (g s, s))

Then:
f::Monadm=ma—ma—ma

£ (h mj) (h m}) =do h mj f mj my =do mj
a«—hmj a«—mj

/ /

h my my
b— hmj b — mj
h (do ¢ «— m, ¢ «— m,
return b) return b

(hm) >=(hok) = 7

7 —91/98

Reasoning via Monad Embedding

Assume my, my :: State o 7, but execState m; = id.
An m has this property iff it is an h-image for

h:: Reader 0 a — State 0 a
h (Reader g) = State (As — (g s, s))

Then:
f::Monadm=ma—ma—ma

£ (h mj) (h m}) =do h mj f mj my =do mj
a«—hmj a«—mj

/ /

h my my
b— hmj b — mj
h (do ¢ «— m, ¢ «— m,
return b) return b

(hm) >=(hok) = h(m>=k)

7 — 92/98

Reasoning via Monad Embedding

Assume my, my :: State o 7, but execState m; = id.
An m has this property iff it is an h-image for

h:: Reader 0 a — State 0 a
h (Reader g) = State (As — (g s, s))

Then:
f::Monadm=ma—ma—ma

£ (h mj) (h m}) =do h mj f mj my =do mj
a«—hmj a«—mj

/ /

h my my
h (do b — m] b — mj
C«— mj c «— mj
return b) return b

(hm) >=(hok) = h(m>=k)

7 — 93/98

Reasoning via Monad Embedding

Assume my, my :: State o 7, but execState m; = id.
An m has this property iff it is an h-image for

h:: Reader 0 a — State 0 a
h (Reader g) = State (As — (g s, s))

Then:
f::Monadm=ma—ma—ma

£ (h mj) (h m}) =do h mj f mj my =do mj
a«—hmj a«—mj

/ /

h my my
h (do b — m] b — mj
C«— mj C«— mj

return b) return b

7 — 94/98

Reasoning via Monad Embedding

Assume my, my :: State o 7, but execState m; = id.
An m has this property iff it is an h-image for

h:: Reader 0 a — State 0 a
h (Reader g) = State (As — (g s, s))

Then:
f::Monadm=ma—ma—ma

£ (h mj) (h m}) =do h mj f mj my =do mj
/ /
a<— hm a«<— mj

h (do m, m
b — mj b — mj
/ /

return b) return b

7 — 95/98

Reasoning via Monad Embedding

Assume my, my :: State o 7, but execState m; = id.
An m has this property iff it is an h-image for

h:: Reader 0 a — State 0 a
h (Reader g) = State (As — (g s, s))

Then:
f::Monadm=ma—ma—ma

£ (h mj) (h m}) =do h mj f mj my =do mj
h (do a — mj a«— mj

my my
/ /
b«— m b«— m
/ /

return b) return

b

7 — 96/98

Reasoning via Monad Embedding

Assume my, my :: State o 7, but execState m; = id.
An m has this property iff it is an h-image for

h:: Reader 0 a — State 0 a
h (Reader g) = State (As — (g s, s))

Then:
fi:Monad m=ma—ma—ma

£ (h m}) (h m}) =do h (do mj f m; m = do mj
/ /
a«— m a«—m

m, m,
b — mj b — mj
/ /

return b) return b

7 —97/98

Reasoning via Monad Embedding

Assume my, my :: State o 7, but execState m; = id.
An m has this property iff it is an h-image for

h:: Reader 0 a — State 0 a
h (Reader g) = State (As — (g s, s))

Then:
f::Monadm=ma—ma—ma

£ (h m}) (h m}) =do h (do mj f mj my =do mj
/ /
a«— mj a«— mj

/ /

my my
/ /
b«— m b«— m
/ /

return b) return b

£ (hmi) (hmh) = (s m m))

7 — 98/98

A More General Theorem

Let
fi:Monad m=ma—ma—ma
Let
h: ki a— ko a
such that

> K1, kp are monads

» horeturn,, = return,,
» for every mand k, h (m ==, k)= (hm) ==, (ho k)

Then for every my and mo,

f (h m1) (h m2) = h (f mq m2)

8 —99/101

A More General Theorem

Let
fi:Monad m=ma—ma—ma
Let
h: ki a— ko a
such that

> K1, kp are monads
» horeturn,, = return,,
» for every mand k, h (m ==, k)= (hm) ==, (ho k)

Then for every my and mo,

f (h m1) (h m2) = h (f mq m2)

The same for

f:Monad m= miInt — mInt — m Int

8 — 100/101

A More General Theorem

Let
fi:Monad m=ma—ma—ma
Let
h: ki a— ko a
such that

> K1, kp are monads
» horeturn,, = return,,
» for every mand k, h (m ==, k)= (h m) ==, (ho k)

Then for every my and mo,

f (h m1) (h m2) = h (f mq m2)

The same for

f:Monad m= miInt — mInt — m Int

8 — 101/101

Looking Back at the Concrete Invariant

For
h :: Reader o a — State 0 a
h (Reader g) = State (As — (g s,s))

9 — 102/104

Looking Back at the Concrete Invariant

For
h :: Reader o a — State 0 a
h (Reader g) = State (As — (g s,s))

the conditions
» horeturnRreaders = returnsiate o

» for every m and k,
h (m >>= Reader o k) = (h m) >>= State o (h © k)

9 — 103/104

Looking Back at the Concrete Invariant

For
h :: Reader o a — State 0 a
h (Reader g) = State (As — (g s,s))

the conditions
» horeturnRreaders = returnsiate o

» for every m and k,
h (m >>= Reader o k) = (h m) >>= State o (h © k)

imply that
» for every a, execState (returngite, @) = id

> for every m and k, execState (m >>=giates k) = id,
provided ... (as given earlier)

9 — 104/104

A More General Theorem

Let
fi:Monad m=ma—ma—ma
Let
h: ki a— ko a
such that

> K1, kp are monads
» horeturn,, = return,,
» for every mand k, h (m ==, k)= (hm) ==, (ho k)

Then for every my and mo,

f (h m1) (h m2) = h (f mq m2)

The same for

f:Monad m= miInt — mInt — m Int

10 - 105/105

Conceptual Ingredients
» Exploiting polymorphism

» Relational parametricity [Reynolds '83]
» Free theorems [Wadler '89]

11 - 106/109

Conceptual Ingredients
» Exploiting polymorphism

» Relational parametricity [Reynolds '83]
» Free theorems [Wadler '89]

» Extension to type classes:

» Folklore
» Dictionary translation [Wadler & Blott '89]

11 - 107/109

Conceptual Ingredients
» Exploiting polymorphism

» Relational parametricity [Reynolds '83]
» Free theorems [Wadler '89]

» Extension to type classes:
» Folklore

» Dictionary translation [Wadler & Blott '89]

» Extension to type constructors:

» Folklore?

11 - 108/109

Conceptual Ingredients
» Exploiting polymorphism

» Relational parametricity [Reynolds '83]
» Free theorems [Wadler '89]

» Extension to type classes:
» Folklore
» Dictionary translation [Wadler & Blott '89]

» Extension to type constructors:

» Folklore?

» Monad morphisms:
» Representation independence for effects
[Filinski & Stgvring '07]

11 - 109/109

Example Uses

» Purity preservation

12 - 110/115

Example Uses
» Purity preservation

» Safe value extraction, e.g.
» Discard logging

» Pick from a nondeterministic manifold

12 —111/115

Example Uses
» Purity preservation

» Safe value extraction, e.g.
» Discard logging

» Pick from a nondeterministic manifold

» Invariant propagation, e.g.
» Independence criteria for stateful computations

» Restrictions on 1O

12 - 112/115

Example Uses
» Purity preservation

» Safe value extraction, e.g.
» Discard logging

» Pick from a nondeterministic manifold

» Invariant propagation, e.g.
» Independence criteria for stateful computations

» Restrictions on 1O

» Effect abstraction, e.g.

» From exceptions to partiality

12 - 113/115

Example Uses

» Purity preservation

v

Safe value extraction, e.g.
» Discard logging

» Pick from a nondeterministic manifold

v

Invariant propagation, e.g.
» Independence criteria for stateful computations

» Restrictions on 1O

v

Effect abstraction, e.g.

» From exceptions to partiality

v

Proper generalisations of standard free theorems

12 - 114/115

Example Uses

» Purity preservation

» Safe value extraction, e.g.
» Discard logging
» Pick from a nondeterministic manifold
» Invariant propagation, e.g.
» Independence criteria for stateful computations
» Restrictions on 10
» Effect abstraction, e.g.
» From exceptions to partiality
» Proper generalisations of standard free theorems
» Transparent introduction of data improvements [V. '08]

12 - 115/115

References |

@ A. Filinski and K. Stgvring.
Inductive reasoning about effectful data types.
In International Conference on Functional Programming,
Proceedings, pages 97-110. ACM Press, 2007.

@ E. Moggi.
Notions of computation and monads.
Information and Computation, 93(1):55-92, 1991.

@ S.L. Peyton Jones and P. Wadler.
Imperative functional programming.

In Principles of Programming Languages, Proceedings, pages
71-84. ACM Press, 1993.

13 - 116/118

References |l

@ J.C. Reynolds.
Types, abstraction and parametric polymorphism.
In Information Processing, Proceedings, pages 513-523.
Elsevier, 1983.

@ J. Voigtlander.
Asymptotic improvement of computations over free monads.
In Mathematics of Program Construction, Proceedings,
volume 5133 of LNCS, pages 388—403. Springer-Verlag, 2008.

@ P. Wadler.
Theorems for free!
In Functional Programming Languages and Computer
Architecture, Proceedings, pages 347-359. ACM Press, 1989.

14 - 117/118

References ||

@ P. Wadler.
The essence of functional programming (Invited talk).
In Principles of Programming Languages, Proceedings, pages
1-14. ACM Press, 1992.

@ P. Wadler and S. Blott.
How to make ad-hoc polymorphism less ad hoc.

In Principles of Programming Languages, Proceedings, pages
60-76. ACM Press, 1989.

15 — 118/118

	Monads in Haskell
	Purity Preservation
	Propagating Invariants
	Monad Embedding
	A Free Theorem
	Conceptual Ingredients
	Example Uses
	References

