Free Theorems Involving Type Constructor Classes

Janis Voigtländer

Technische Universität Dresden

ICFP'09

Example 1:

```
echo :: IO ()
echo = \mathbf{do} \ c \leftarrow \operatorname{getChar}
when (c \neq `*`) $
\mathbf{do} \ \operatorname{putChar} \ c
echo
```

Example 1:

```
echo :: IO ()

echo = \mathbf{do} c \leftarrow \mathbf{getChar}

when (c \neq `*') $

\mathbf{do} putChar c

echo
```

Example 2:

Example 1:

```
echo :: IO ()
echo = \mathbf{do} \ c \leftarrow \mathbf{getChar}
when (c \neq `*`) $
\mathbf{do} \ \mathbf{putChar} \ c
echo
```

Example 2:

```
Example 1: A specific monad!

echo :: IO ()

echo = do c \leftarrow \text{getChar}

when (c \neq `*`) $

do putChar c

echo
```

Example 2:

```
Example 1: A specific monad!

echo :: IO()

echo = do c \leftarrow getChar

when (c \neq `*) $

do putChar c

echo
```

Example 2:

Parametric over a monad!

```
sequence :: Monad m \Rightarrow [m \ a] \rightarrow m \ [a]

sequence [] = \text{return} \ []

sequence (m : ms) = \text{do } a \leftarrow m

as \leftarrow \text{sequence } ms

return \ (a : as)
```

```
Example 1: A specific monad!

echo :: IO ()

echo = do c \leftarrow \text{getChar}

when (c \neq `*') $

do putChar c

echo
```

Example 2:

Parametric over a monad!

```
sequence :: Monad m \Rightarrow [m \ a] \rightarrow m [a]
sequence [] = return []
sequence (m : ms) = \mathbf{do} \ a \leftarrow m
as \leftarrow sequence ms
No specific
(new) effects!
```

```
Example 2: Parametric over a monad!

sequence :: Monad m \Rightarrow [m \ a] \rightarrow m [a]

sequence [] = return []

sequence (m : ms) = do \ a \leftarrow m

as \leftarrow sequence \ ms

No specific

(new) effects!
```

Example 2:

Parametric over a monad!

sequence :: Monad $m \Rightarrow [m \ a] \rightarrow m \ [a]$

No specific (new) effects!

```
f :: Monad <math>m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a

f m_1 m_2 =
```

```
f :: Monad m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a
f m_1 \ m_2 = do m_1
```

```
f:: Monad <math>m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a
f \ m_1 \ m_2 = \mathbf{do} \ m_1
a \leftarrow m_1
```

```
\mathbf{f}:: \mathsf{Monad}\ m \Rightarrow m\ a \rightarrow m\ a \rightarrow m\ a \mathbf{f}\ m_1\ m_2 = \mathbf{do}\ m_1 a \leftarrow m_1 m_2
```

```
\mathbf{f}:: \mathsf{Monad}\ m \Rightarrow m\ a \rightarrow m\ a \rightarrow m\ a
\mathbf{f}\ m_1\ m_2 = \mathbf{do}\ m_1
a \leftarrow m_1
m_2
b \leftarrow m_1
```

```
f:: Monad <math>m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a
f \ m_1 \ m_2 = \mathbf{do} \ m_1
a \leftarrow m_1
m_2
b \leftarrow m_1
c \leftarrow m_2
```

```
\mathbf{f}:: \mathsf{Monad}\ m \Rightarrow m\ a \rightarrow m\ a \rightarrow m\ a
\mathbf{f}\ m_1\ m_2 = \mathbf{do}\ m_1
a \leftarrow m_1
m_2
b \leftarrow m_1
c \leftarrow m_2
\mathbf{return}\ b
```

```
\mathbf{f}:: \mathsf{Monad}\ m\Rightarrow m\ a \to m\ a \to m\ a \mathbf{f}\ m_1\ m_2 = \mathbf{do}\ m_1 a\leftarrow m_1 m_2 No effects b\leftarrow m_1 introduced! c\leftarrow m_2 return b
```

Assume m_1, m_2 are pure.

```
\mathbf{f}:: \mathsf{Monad}\ m\Rightarrow m\ a\to m\ a\to m\ a \mathbf{f}\ m_1\ m_2=\mathbf{do}\ m_1\ a\leftarrow m_1\ m_2\ b\leftarrow m_1\ c\leftarrow m_2\ \mathbf{return}\ b
```

```
Assume m_1, m_2 are pure.
That is, m_1 = (\text{return } u) and m_2 = (\text{return } v) for some u, v.
```

```
\mathbf{f}:: \mathsf{Monad}\ m \Rightarrow m\ a \rightarrow m\ a \rightarrow m\ a \mathbf{f}\ m_1\ m_2 = \mathbf{do}\ m_1 a \leftarrow m_1 m_2 b \leftarrow m_1 c \leftarrow m_2 \mathbf{return}\ b
```

```
Assume m_1, m_2 are pure.
```

```
f:: Monad m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a
f m_1 \ m_2 = \mathbf{do} return u
a \leftarrow \mathbf{return} \ u
return \ v
b \leftarrow \mathbf{return} \ u
c \leftarrow \mathbf{return} \ v
return \ b
```

```
Assume m_1, m_2 are pure. That is, m_1 = (\text{return } u) and m_2 = (\text{return } v) for some u, v. Then:
```

```
f:: Monad m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a
f m_1 \ m_2 = \mathbf{do} \ \mathbf{return} \ u
a \leftarrow \mathbf{return} \ u
\mathbf{return} \ v
b \leftarrow \mathbf{return} \ u
\mathbf{c} \leftarrow \mathbf{return} \ v
\mathbf{return} \ b
(\mathbf{return} \ u) \gg m = m
```

Then:

```
Assume m_1, m_2 are pure.
That is, m_1 = (\text{return } u) and m_2 = (\text{return } v) for some u, v.
```

```
f:: Monad m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a
f m_1 \ m_2 = \mathbf{do} return u
a \leftarrow \text{return } u
return \ v
b \leftarrow \text{return } u
c \leftarrow \text{return } v
\text{return } b
(\text{return } u) \gg m = m
```

```
Assume m_1, m_2 are pure.
That is, m_1 = (\text{return } u) and m_2 = (\text{return } v) for some u, v.
Then:
                 f :: Monad m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a
                 f m_1 m_2 = do
                                     a \leftarrow \text{return } u
                                     return v
                                     b \leftarrow \text{return } u
                                     c \leftarrow \text{return } v
                                     return b
                           (return u) \gg m = m
```

```
Assume m_1, m_2 are pure.
That is, m_1 = (\text{return } u) and m_2 = (\text{return } v) for some u, v.
```

Then:

f:: Monad
$$m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a$$
f $m_1 \ m_2 = \mathbf{do}$

$$a \leftarrow \mathbf{return} \ u$$

$$\mathbf{return} \ v$$

$$b \leftarrow \mathbf{return} \ u$$

$$\mathbf{c} \leftarrow \mathbf{return} \ v$$

$$\mathbf{return} \ b$$

$$(\mathbf{return} \ u) \gg = (\lambda a \rightarrow m) = m[u/a]$$

```
Assume m_1, m_2 are pure.
That is, m_1 = (\text{return } u) and m_2 = (\text{return } v) for some u, v.
```

Then:

$$(\mathbf{return}\ u) \gg (\lambda a \to m) = m[u/a]$$

```
Assume m_1, m_2 are pure.
```

That is, $m_1 = (\text{return } u)$ and $m_2 = (\text{return } v)$ for some u, v. Then:

$$f :: Monad $m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a$
 $f m_1 m_2 = \mathbf{do}$$$

return v
b ← return u
c ← return v
return b

$$(return \ v) \gg m = m$$

Assume m_1, m_2 are pure.

f :: Monad
$$m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a$$
 f $m_1 \ m_2 = \mathbf{do}$

$$b \leftarrow \text{return } u$$
 $c \leftarrow \text{return } v$
 $\text{return } b$

$$(return \ v) \gg m = m$$

Assume m_1, m_2 are pure.

f :: Monad
$$m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a$$
 f $m_1 \ m_2 = \mathbf{do}$

$$b \leftarrow \text{return } u$$
 $c \leftarrow \text{return } v$
 $\text{return } b$

$$(\text{return } u) \gg (\lambda b \rightarrow m) = m[u/b]$$

Assume m_1, m_2 are pure.

f :: Monad
$$m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a$$
 f $m_1 \ m_2 = \mathbf{do}$

$$c \leftarrow \text{return } v$$
return u

$$(\text{return } u) \gg (\lambda b \rightarrow m) = m[u/b]$$

Assume m_1, m_2 are pure.

That is, $m_1 = (\text{return } u)$ and $m_2 = (\text{return } v)$ for some u, v. Then:

f :: Monad
$$m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a$$

f $m_1 \ m_2 = \mathbf{do}$

 $c \leftarrow \text{return } v$ return u

$$(\text{return } v) \gg (\lambda c \rightarrow m) = m[v/c]$$

Assume m_1, m_2 are pure.

That is, $m_1 = (\text{return } u)$ and $m_2 = (\text{return } v)$ for some u, v. Then:

f :: Monad
$$m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a$$

f $m_1 \ m_2 = \mathbf{do}$

return u

$$(\text{return } v) \gg (\lambda c \rightarrow m) = m[v/c]$$

Assume m_1, m_2 are pure.

That is, $m_1 = (\text{return } u)$ and $m_2 = (\text{return } v)$ for some u, v. Then:

f :: Monad
$$m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a$$
 f $m_1 \ m_2 = \mathbf{do}$

return u

Purity is propagated!

Assume m_1, m_2 are pure.

That is, $m_1 = (\text{return } u)$ and $m_2 = (\text{return } v)$ for some u, v. Then:

f :: Monad
$$m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a$$

f $m_1 \ m_2 = \mathbf{do}$

return u

Purity is propagated!

What about other "invariants"?

Propagating Invariants

```
\mathbf{f}:: \mathsf{Monad}\ m \Rightarrow m\ a \rightarrow m\ a \rightarrow m\ a
\mathbf{f}\ m_1\ m_2 = \mathbf{do}\ m_1
a \leftarrow m_1
m_2
b \leftarrow m_1
c \leftarrow m_2
\mathbf{return}\ b
```

Propagating Invariants

Assume m_1, m_2 :: State $\sigma \tau$,

```
\mathbf{f}:: \mathsf{Monad}\ m \Rightarrow m\ a \rightarrow m\ a \rightarrow m\ a
\mathbf{f}\ m_1\ m_2 = \mathbf{do}\ m_1
a \leftarrow m_1
m_2
b \leftarrow m_1
c \leftarrow m_2
\mathbf{return}\ b
```

Assume m_1, m_2 :: State $\sigma \tau$, but execState $m_i = id$.

```
\mathbf{f}:: \mathsf{Monad}\ m\Rightarrow m\ a	o m\ a	o m\ a
\mathbf{f}\ m_1\ m_2 = \mathbf{do}\ m_1
a\leftarrow m_1
m_2
b\leftarrow m_1
c\leftarrow m_2
\mathbf{return}\ b
```

```
Assume m_1, m_2:: State \sigma \tau, but execState m_i = id.
Can we show that execState (f m_1 m_2) = id?
                f :: Monad m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a
                f m_1 m_2 = do m_1
                                    a \leftarrow m_1
                                    m_2
                                    b \leftarrow m_1
                                    c \leftarrow m_2
                                    return b
```

```
Assume m_1, m_2:: State \sigma \tau, but execState m_i = id. Can we show that execState (f m_1 m_2) = id?
```

```
\mathbf{f}:: \mathsf{Monad}\ m \Rightarrow m\ a \rightarrow m\ a \rightarrow m\ a
\mathbf{f}\ m_1\ m_2 = \mathbf{do}^{S}m_1
a \leftarrow m_1
m_2
b \leftarrow m_1
c \leftarrow m_2
\mathbf{return}\ b
```

```
Assume m_1, m_2:: State \sigma \tau, but execState m_i = id.
Can we show that execState (f m_1 m_2) = id?
```

```
\mathbf{f}:: \mathsf{Monad}\ m \Rightarrow m\ a \rightarrow m\ a \rightarrow m\ a
\mathbf{f}\ m_1\ m_2 = \mathbf{do}^{\mathbf{5}}m_1^{\mathbf{5}}
a \leftarrow m_1
m_2
b \leftarrow m_1
c \leftarrow m_2
\mathbf{return}\ b
```

```
Assume m_1, m_2:: State \sigma \tau, but execState m_i = id. Can we show that execState (f m_1 m_2) = id?
```

```
\mathbf{f}:: \mathsf{Monad}\ m \Rightarrow m\ a \rightarrow m\ a \rightarrow m\ a
\mathbf{f}\ m_1\ m_2 = \mathbf{do}\ m_1\ a \leftarrow m_1\ m_2\ b \leftarrow m_1\ c \leftarrow m_2\ \mathbf{return}\ b
```

```
Assume m_1, m_2:: State \sigma \tau, but execState m_i = id. Can we show that execState (f m_1 m_2) = id?
```

```
\mathbf{f}: \mathsf{Monad}\ m \Rightarrow m\ a \rightarrow m\ a \rightarrow m\ a
\mathbf{f}\ m_1\ m_2 = \mathbf{do}^{\mathbf{5}}m_1^{\mathbf{5}}
a \leftarrow^{\mathbf{5}}m_1^{\mathbf{5}}
m_2
b \leftarrow m_1
c \leftarrow m_2
\mathbf{return}\ b
```

```
Assume m_1, m_2:: State \sigma \tau, but execState m_i = id. Can we show that execState (f m_1 m_2) = id?
```

```
\mathbf{f}: \mathsf{Monad}\ m \Rightarrow m\ a \rightarrow m\ a \rightarrow m\ a
\mathbf{f}\ m_1\ m_2 = \mathbf{do}\ m_1^{\mathbf{S}}
a \leftarrow m_1^{\mathbf{S}}
b \leftarrow m_1
c \leftarrow m_2
\mathbf{return}\ b
```

```
Assume m_1, m_2:: State \sigma \tau, but execState m_i = id. Can we show that execState (f m_1 m_2) = id?
```

```
\mathbf{f}: \mathsf{Monad}\ m \Rightarrow m\ a \to m\ a \to m\ a
\mathbf{f}\ m_1\ m_2 = \mathbf{do}\ m_1^{\mathsf{S}}
a \leftarrow m_1^{\mathsf{S}}
b \leftarrow m_1
c \leftarrow m_2
\mathsf{return}\ b
```

```
Assume m_1, m_2:: State \sigma \tau, but execState m_i = id. Can we show that execState (f m_1 m_2) = id?
```

```
\mathbf{f}: \mathsf{Monad}\ m \Rightarrow m\ a \rightarrow m\ a \rightarrow m\ a
\mathbf{f}\ m_1\ m_2 = \mathbf{do}\ m_1^{\mathsf{S}}
a \leftarrow m_2^{\mathsf{S}}
b \leftarrow m_2
\mathsf{return}\ b
```

```
Assume m_1, m_2:: State \sigma \tau, but execState m_i = id. Can we show that execState (f m_1 m_2) = id?
```

```
\mathbf{f} :: \mathsf{Monad} \ m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a
\mathbf{f} \ m_1 \ m_2 = \mathbf{do}^{S} m_1^{S}
a \leftarrow^{S} m_2^{S}
b \leftarrow^{S} m_1^{S}
c \leftarrow m_2
\mathbf{return} \ b
```

```
Assume m_1, m_2:: State \sigma \tau, but execState m_i = id. Can we show that execState (f m_1 m_2) = id?
```

```
\mathbf{f} :: \mathsf{Monad} \ m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a
\mathbf{f} \ m_1 \ m_2 = \mathbf{do}^{\mathbf{S}} m_1^{\mathbf{S}}
a \leftarrow^{\mathbf{S}} m_2^{\mathbf{S}}
b \leftarrow^{\mathbf{S}} m_2^{\mathbf{S}}
c \leftarrow^{\mathbf{S}} m_2
return \ b
```

```
Assume m_1, m_2:: State \sigma \tau, but execState m_i = id. Can we show that execState (f m_1 m_2) = id?
```

```
\mathbf{f} :: \mathsf{Monad} \ m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a
\mathbf{f} \ m_1 \ m_2 = \mathbf{do} \ m_1^{\mathsf{S}}
a \leftarrow^{\mathsf{S}} m_1^{\mathsf{S}}
s_{m_2}^{\mathsf{S}}
b \leftarrow^{\mathsf{S}} m_1^{\mathsf{S}}
c \leftarrow^{\mathsf{S}} m_2^{\mathsf{S}}
return \ b
```

```
Assume m_1, m_2:: State \sigma \tau, but execState m_i = id. Can we show that execState (f m_1 m_2) = id?
```

```
\mathbf{f} :: \mathsf{Monad} \ m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a
\mathbf{f} \ m_1 \ m_2 = \mathbf{do} \ m_1^{\mathsf{S}}
a \leftarrow^{\mathsf{S}} m_2^{\mathsf{S}}
b \leftarrow^{\mathsf{S}} m_2^{\mathsf{S}}
c \leftarrow^{\mathsf{S}} m_2^{\mathsf{S}}
return \ b
```

```
Assume m_1, m_2:: State \sigma \tau, but execState m_i = id. Can we show that execState (f m_1 m_2) = id?
```

```
\mathbf{f} :: \mathsf{Monad} \ m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a
\mathbf{f} \ m_1 \ m_2 = \mathbf{do}^{S} m_1^{S}
a \leftarrow^{S} m_2^{S}
b \leftarrow^{S} m_2^{S}
c \leftarrow^{S} m_2^{S}
return \ b^{S}
```

```
Assume m_1, m_2:: State \sigma \tau, but execState m_i = id.
Can we show that execState (f m_1 m_2) = id?
                f :: Monad m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a
                f m_1 m_2 = do m_1
                                    a \leftarrow m_1
                                    m_2
                                    b \leftarrow m_1
                                    c \leftarrow m_2
                                    return b
```

```
Assume m_1, m_2:: State \sigma \tau, but execState m_i = id.
Can we show that execState (f m_1 m_2) = id?
                 f :: Monad m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a
                 f m_1 m_2 = do m_1
                                      a \leftarrow m_1
                                      m_2
                                      b \leftarrow m_1
                                      c \leftarrow m_2
                                      State (\lambda s \rightarrow (b, s))
```

```
Assume m_1, m_2:: State \sigma \tau, but execState m_i = id.
Can we show that execState (f m_1 m_2) = id?
                   f :: Monad m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a
                   f m_1 m_2 = do m_1
                                          a \leftarrow m_1
                                          m_2
                                          b \leftarrow m_1
                                          c \leftarrow \mathsf{State} \; (\lambda s \rightarrow (\cdots, s))
                                          State (\lambda s \rightarrow (b, s))
```

```
Assume m_1, m_2:: State \sigma \tau, but execState m_i = id.
Can we show that execState (f m_1 m_2) = id?
                    f :: Monad m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a
                    f m_1 m_2 = do m_1
                                            a \leftarrow m_1
                                            m_2
                                            b \leftarrow m_1
                                            c \leftarrow \mathsf{State} \; (\lambda s \rightarrow (\cdots, s))
                                            State (\lambda s \rightarrow (b, s))
  (State (\lambda s \rightarrow (\cdots, s))) \gg (\lambda c \rightarrow State (\lambda s \rightarrow (b, s)))
```

```
Assume m_1, m_2:: State \sigma \tau, but execState m_i = id.
Can we show that execState (f m_1 m_2) = id?
                 f :: Monad m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a
                 f m_1 m_2 = do m_1
                                     a \leftarrow m_1
                                     m_2
                                     b \leftarrow m_1
                                     State (\lambda s \rightarrow (b, s))
```

(State
$$(\lambda s \to (\dots, s))$$
) $\Longrightarrow (\lambda c \to \text{State } (\lambda s \to (b, s))) = ?$

```
Assume m_1, m_2:: State \sigma \tau, but execState m_i = id.
Can we show that execState (f m_1 m_2) = id?
                 f :: Monad m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a
                 f m_1 m_2 = do m_1
                                      a \leftarrow m_1
                                      m_2
                                      b \leftarrow m_1
                                     State (\lambda s \rightarrow (b, s))
```

```
Assume m_1, m_2:: State \sigma \tau, but execState m_i = id.
Can we show that execState (f m_1 m_2) = id?
                   f :: Monad m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a
                   f m_1 m_2 = do m_1
                                         a \leftarrow m_1
                                         m_2
                                         b \leftarrow \mathsf{State} \; (\lambda s \rightarrow (\cdots, s))
                                         State (\lambda s \rightarrow (b, s))
```

```
Assume m_1, m_2:: State \sigma \tau, but execState m_i = id.
Can we show that execState (f m_1 m_2) = id?
                  f :: Monad m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a
                  f m_1 m_2 = do m_1
                                         a \leftarrow m_1
                                         m_2
                                         b \leftarrow \mathsf{State} \; (\lambda s \rightarrow (\cdots, s))
                                         State (\lambda s \rightarrow (b, s))
```

(State
$$(\lambda s \to (\cdots, s))$$
) $\Longrightarrow (\lambda b \to \text{State } (\lambda s \to (b, s))) = ?$

```
Assume m_1, m_2 :: State \sigma \tau, but execState m_i = \mathrm{id}. Can we show that execState (f m_1 m_2) = id?

f :: Monad m \Rightarrow m a \to m a \to m a f m_1 m_2 = \mathrm{do}\ m_1 a \leftarrow m_1 m_2 State (\lambda s \to (\cdots, s))
```

(State
$$(\lambda s \to (\cdots, s))$$
) $\Longrightarrow (\lambda b \to \text{State } (\lambda s \to (b, s))) = ?$

```
Assume m_1, m_2 :: State \sigma \tau, but execState m_i = \mathrm{id}. Can we show that execState (f m_1 m_2) = id?

f :: Monad m \Rightarrow m a \rightarrow m a \rightarrow m a f m_1 m_2 = \mathrm{do}\ m_1 a \leftarrow m_1 m_2 State (\lambda s \rightarrow (\cdots, s))
```

```
Assume m_1, m_2 :: State \sigma \tau, but execState m_i = \mathrm{id}. Can we show that execState (f \ m_1 \ m_2) = \mathrm{id}?

f :: \mathsf{Monad} \ m \Rightarrow m \ a \to m \ a \to m \ a
f \ m_1 \ m_2 = \mathbf{do} \ m_1
a \leftarrow m_1
\mathsf{State} \ (\lambda s \to (\cdots, s))
\mathsf{State} \ (\lambda s \to (\cdots, s))
```

```
Assume m_1, m_2:: State \sigma \tau, but execState m_i = \text{id}.
Can we show that execState (f m_1 m_2) = id?
```

$$extbf{f}:: \mathsf{Monad}\ m \Rightarrow m\ a \rightarrow m\ a \rightarrow m\ a$$

$$extbf{f}\ m_1\ m_2 = \mathbf{do}\ m_1 \ a \leftarrow m_1 \ \mathsf{State}\ (\lambda s \rightarrow (\cdots, s)) \ \mathsf{State}\ (\lambda s \rightarrow (\cdots, s))$$

(State
$$(\lambda s \rightarrow (\cdots, s))) \gg (\text{State } (\lambda s \rightarrow (\cdots, s))) = ?$$

```
Assume m_1, m_2:: State \sigma \tau, but execState m_i = id.
Can we show that execState (f m_1 m_2) = id?
```

$$\mathbf{f}::\mathsf{Monad}\ m\Rightarrow m\ a o m\ a o m\ a$$
 $\mathbf{f}\ m_1\ m_2=\mathbf{do}\ m_1\ a\leftarrow m_1\ \mathsf{State}\ (\lambda s o (\cdots,s))$

(State
$$(\lambda s \rightarrow (\cdots, s))) \gg (\text{State } (\lambda s \rightarrow (\cdots, s))) = ?$$

```
Assume m_1, m_2 :: State \sigma \tau, but execState m_i = \mathrm{id}. Can we show that execState (f \ m_1 \ m_2) = \mathrm{id}?

f :: \mathsf{Monad} \ m \Rightarrow m \ a \to m \ a \to m \ a
f \ m_1 \ m_2 = \mathbf{do} \ m_1
a \leftarrow m_1
\mathsf{State} \ (\lambda s \to (\cdots, s))
```

```
Assume m_1, m_2 :: State \sigma \tau, but execState m_i = \mathrm{id}. Can we show that execState (f m_1 m_2) = id?

f :: Monad m \Rightarrow m a \rightarrow m a \rightarrow m a f m_1 m_2 = \mathbf{do} m_1 a \leftarrow \mathrm{State} \; (\lambda s \rightarrow (\cdots, s)) State (\lambda s \rightarrow (\cdots, s))
```

```
Assume m_1, m_2:: State \sigma \tau, but execState m_i = id.
Can we show that execState (f m_1 m_2) = id?
```

$$\mathbf{f}:: \mathsf{Monad}\ m \Rightarrow m\ a \to m\ a \to m\ a$$
 $\mathbf{f}\ m_1\ m_2 = \mathbf{do}\ m_1$
 $a \leftarrow \mathsf{State}\ (\lambda s \to (\cdots, s))$
 $\mathsf{State}\ (\lambda s \to (\cdots, s))$

(State
$$(\lambda s \to (\dots, s))$$
) $\gg (\lambda a \to \text{State } (\lambda s \to (\dots, s))) = ?$

```
Assume m_1, m_2:: State \sigma \tau, but execState m_i = id.
Can we show that execState (f m_1 m_2) = id?
```

$$\mathbf{f}:: \mathsf{Monad}\ m \Rightarrow m\ a \rightarrow m\ a \rightarrow m\ a$$
 $\mathbf{f}\ m_1\ m_2 = \mathbf{do}\ m_1$ State $(\lambda s \rightarrow (\cdots, s))$

(State
$$(\lambda s \to (\cdots, s))) \gg (\lambda a \to \text{State } (\lambda s \to (\cdots, s))) = ?$$

```
Assume m_1, m_2:: State \sigma \tau, but execState m_i = id. Can we show that execState (f m_1 m_2) = id?
```

```
\mathbf{f}::\mathsf{Monad}\ m\Rightarrow m\ a	o m\ a	o m\ a \mathbf{f}\ m_1\ m_2=\mathbf{do}\ m_1 State (\lambda s	o (\cdots,s))
```

```
Assume m_1, m_2:: State \sigma \tau, but execState m_i = id. Can we show that execState (f m_1 m_2) = id?
```

```
\mathbf{f}:: \mathsf{Monad}\ m \Rightarrow m\ a \rightarrow m\ a \rightarrow m\ a \mathbf{f}\ m_1\ m_2 = \mathbf{do}\ \mathsf{State}\ (\lambda s \rightarrow (\cdots, s)) \mathsf{State}\ (\lambda s \rightarrow (\cdots, s))
```

```
Assume m_1, m_2:: State \sigma \tau, but execState m_i = id.
Can we show that execState (f m_1 m_2) = id?
```

$$\mathbf{f}:: \mathsf{Monad}\ m \Rightarrow m\ a \rightarrow m\ a \rightarrow m\ a$$
 $\mathbf{f}\ m_1\ m_2 = \mathbf{do}\ \mathsf{State}\ (\lambda s \rightarrow (\cdots, s))$ $\mathsf{State}\ (\lambda s \rightarrow (\cdots, s))$

(State
$$(\lambda s \rightarrow (\cdots, s))) \gg (\text{State } (\lambda s \rightarrow (\cdots, s))) = ?$$

Assume m_1, m_2 :: State σ τ , but execState $m_i = id$. Can we show that execState (f m_1 m_2) = id?

$$\mathbf{f}:: \mathsf{Monad}\ m \Rightarrow m\ a \rightarrow m\ a \rightarrow m\ a$$
 $\mathbf{f}\ m_1\ m_2 = \mathbf{do}\ \mathsf{State}\ (\lambda s \rightarrow (\cdots, s))$

(State
$$(\lambda s \rightarrow (\cdots, s))) \gg (\text{State } (\lambda s \rightarrow (\cdots, s))) = ?$$

```
Assume m_1, m_2:: State \sigma \tau, but execState m_i = id.
Can we show that execState (f m_1 m_2) = id?
```

```
f :: Monad m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a

f m_1 \ m_2 = \mathbf{do} \ \mathsf{State} \ (\lambda s \rightarrow (\cdots, s))
```

Yes!

Why So?

Crucially used:

▶ for every *a*,

execState(return a) = id

Why So?

Crucially used:

▶ for every *a*,

$$execState(return a) = id$$

▶ for every m and k,

execState
$$(m \gg k) = id$$

provided:

- ightharpoonup execState m = id
- ▶ for every a, execState $(k \ a) = id$

Propagating Invariants

```
Assume m_1, m_2:: State \sigma \tau, but execState m_i = id.
Can we show that execState (f m_1 m_2) = id?
```

```
f :: Monad m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a

f m_1 \ m_2 = \mathbf{do} \ \mathsf{State} \ (\lambda s \rightarrow (\cdots, s))
```

Yes!

Propagating Invariants

```
Assume m_1, m_2:: State \sigma \tau, but execState m_i = id.
Can we show that execState (f m_1 m_2) = id?
```

f :: Monad
$$m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a$$

f $m_1 \ m_2 = \mathbf{do} \ \mathsf{State} \ (\lambda s \rightarrow (\cdots, s))$

Yes!

What about other invariants, other monads, ...?

Consider a More Specific Type

Instead of

f :: Monad $m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a$

now

f :: Monad $m \Rightarrow m \text{ Int } \rightarrow m \text{ Int } \rightarrow m \text{ Int }$

Consider a More Specific Type

Instead of

f :: Monad
$$m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a$$

now

f :: Monad
$$m \Rightarrow m \text{ Int } \rightarrow m \text{ Int } \rightarrow m \text{ Int }$$

Then more possible behaviours of **f** are possible:

```
\mathbf{f}::\mathsf{Monad}\ m\Rightarrow m\ \mathsf{Int} 	o m\ \mathsf{Int} \to m\ \mathsf{Int} \mathbf{f}\ m_1\ m_2=\mathbf{do}\ m_1 a\leftarrow m_1 m_2 b\leftarrow m_1 c\leftarrow m_2 return b
```

Consider a More Specific Type

Instead of

f :: Monad $m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a$

now

f :: Monad $m \Rightarrow m \text{ Int } \rightarrow m \text{ Int } \rightarrow m \text{ Int }$

Then more possible behaviours of f are possible:

```
\mathbf{f}:: \mathsf{Monad}\ m \Rightarrow m \ \mathsf{Int} \to m \ \mathsf{Int} \to m \ \mathsf{Int}
\mathbf{f}\ m_1\ m_2 = \mathbf{do}\ m_1
a \leftarrow m_1
m_2
b \leftarrow m_1
\mathbf{if}\ b > 0 \ \mathbf{then}\ \mathbf{return}\ (a+b)
\mathbf{else}\ \mathbf{do}\ c \leftarrow m_2
\mathbf{return}\ b
```

Assume m_1, m_2 :: State $\sigma \tau$, but execState $m_i = id$.

```
\mathbf{f}:: \mathsf{Monad}\ m \Rightarrow m\ a \rightarrow m\ a \rightarrow m\ a
\mathbf{f}\ m_1\ m_2 = \mathbf{do}\ m_1
a \leftarrow m_1
m_2
b \leftarrow m_1
c \leftarrow m_2
\mathbf{return}\ b
```

```
Assume m_1, m_2:: State \sigma \tau, but execState m_i = id.
An m has this property iff it is an h-image for
                    h :: Reader \sigma a \rightarrow State \sigma a
                    h (Reader g) = State (\lambda s \rightarrow (g \ s, s))
                     f :: Monad m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a
                     f m_1 m_2 = do m_1
                                          a \leftarrow m_1
                                          m_2
                                          b \leftarrow m_1
                                          c \leftarrow m_2
                                          return b
```

Assume m_1, m_2 :: State $\sigma \tau$, but execState $m_i = id$.

An m has this property iff it is an h-image for

$$h :: \mathsf{Reader} \ \sigma \ a \to \mathsf{State} \ \sigma \ a$$

 $h \ (\mathsf{Reader} \ g) = \mathsf{State} \ (\lambda s \to (g \ s, s))$

f :: Monad
$$m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a$$

Assume m_1, m_2 :: State $\sigma \tau$, but execState $m_i = id$.

An m has this property iff it is an h-image for

$$h :: \mathsf{Reader} \ \sigma \ a \to \mathsf{State} \ \sigma \ a$$

 $h \ (\mathsf{Reader} \ g) = \mathsf{State} \ (\lambda s \to (g \ s, s))$

f :: Monad
$$m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a$$

Assume m_1, m_2 :: State $\sigma \tau$, but execState $m_i = id$.

An m has this property iff it is an h-image for

$$h :: \mathsf{Reader} \ \sigma \ a \to \mathsf{State} \ \sigma \ a$$

 $h \ (\mathsf{Reader} \ g) = \mathsf{State} \ (\lambda s \to (g \ s, s))$

Then:

f :: Monad
$$m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a$$

 $\mathbf{return} \ b = h \ (\mathbf{return} \ b)$

Assume m_1, m_2 :: State $\sigma \tau$, but execState $m_i = id$.

An m has this property iff it is an h-image for

$$h :: \mathsf{Reader} \ \sigma \ a \to \mathsf{State} \ \sigma \ a$$

 $h \ (\mathsf{Reader} \ g) = \mathsf{State} \ (\lambda s \to (g \ s, s))$

f :: Monad
$$m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a$$

Assume m_1, m_2 :: State $\sigma \tau$, but execState $m_i = id$.

An m has this property iff it is an h-image for

$$h :: \mathsf{Reader} \ \sigma \ a \to \mathsf{State} \ \sigma \ a$$

 $h \ (\mathsf{Reader} \ g) = \mathsf{State} \ (\lambda s \to (g \ s, s))$

f :: Monad
$$m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a$$

Assume m_1, m_2 :: State $\sigma \tau$, but execState $m_i = id$.

An m has this property iff it is an h-image for

$$h :: \mathsf{Reader} \ \sigma \ a \to \mathsf{State} \ \sigma \ a$$

 $h \ (\mathsf{Reader} \ g) = \mathsf{State} \ (\lambda s \to (g \ s, s))$

f :: Monad
$$m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a$$

$$(h m_2') \gg (\lambda c \rightarrow h (\mathbf{return} \ b)) = ?$$

Assume m_1, m_2 :: State $\sigma \tau$, but execState $m_i = id$.

An m has this property iff it is an h-image for

$$h :: \mathsf{Reader} \ \sigma \ a \to \mathsf{State} \ \sigma \ a$$

 $h \ (\mathsf{Reader} \ g) = \mathsf{State} \ (\lambda s \to (g \ s, s))$

f :: Monad
$$m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a$$

$$(h m_2') \gg = (\lambda c \rightarrow h \text{ (return } b)) = h (m_2' \gg = (\lambda c \rightarrow \text{return } b))$$

Assume m_1, m_2 :: State $\sigma \tau$, but execState $m_i = id$.

An m has this property iff it is an h-image for

$$h :: \mathsf{Reader} \ \sigma \ a \to \mathsf{State} \ \sigma \ a$$

 $h \ (\mathsf{Reader} \ g) = \mathsf{State} \ (\lambda s \to (g \ s, s))$

f :: Monad
$$m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a$$

$$(h m_2') \gg = (\lambda c \rightarrow h \text{ (return } b)) = h (m_2' \gg = (\lambda c \rightarrow \text{return } b))$$

Assume m_1, m_2 :: State $\sigma \tau$, but execState $m_i = id$.

An m has this property iff it is an h-image for

$$h :: \mathsf{Reader} \ \sigma \ a \to \mathsf{State} \ \sigma \ a$$

 $h \ (\mathsf{Reader} \ g) = \mathsf{State} \ (\lambda s \to (g \ s, s))$

f :: Monad
$$m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a$$

Assume m_1, m_2 :: State $\sigma \tau$, but execState $m_i = id$.

An m has this property iff it is an h-image for

$$h :: Reader \ \sigma \ a \rightarrow State \ \sigma \ a$$

 $h \ (Reader \ g) = State \ (\lambda s \rightarrow (g \ s, s))$

f :: Monad
$$m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a$$

Assume m_1, m_2 :: State $\sigma \tau$, but execState $m_i = id$.

An m has this property iff it is an h-image for

$$h :: \mathsf{Reader} \ \sigma \ a \to \mathsf{State} \ \sigma \ a$$

 $h \ (\mathsf{Reader} \ g) = \mathsf{State} \ (\lambda s \to (g \ s, s))$

f :: Monad
$$m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a$$

$$(h m) \gg (h \circ k) = ?$$

Assume m_1, m_2 :: State $\sigma \tau$, but execState $m_i = id$.

An m has this property iff it is an h-image for

$$h :: \mathsf{Reader} \ \sigma \ a \to \mathsf{State} \ \sigma \ a$$

 $h \ (\mathsf{Reader} \ g) = \mathsf{State} \ (\lambda s \to (g \ s, s))$

f :: Monad
$$m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a$$

$$(h m) \gg (h \circ k) = h (m \gg k)$$

Assume m_1, m_2 :: State $\sigma \tau$, but execState $m_i = id$.

An m has this property iff it is an h-image for

$$h :: \mathsf{Reader} \ \sigma \ a \to \mathsf{State} \ \sigma \ a$$

 $h \ (\mathsf{Reader} \ g) = \mathsf{State} \ (\lambda s \to (g \ s, s))$

f :: Monad
$$m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a$$

$$(h m) \gg (h \circ k) = h (m \gg k)$$

Assume m_1, m_2 :: State σ τ , but execState $m_i = id$.

An m has this property iff it is an h-image for

$$h :: \mathsf{Reader} \ \sigma \ a \to \mathsf{State} \ \sigma \ a$$

 $h \ (\mathsf{Reader} \ g) = \mathsf{State} \ (\lambda s \to (g \ s, s))$

f :: Monad
$$m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a$$

Assume m_1, m_2 :: State $\sigma \tau$, but execState $m_i = id$.

An m has this property iff it is an h-image for

$$h :: \mathsf{Reader} \ \sigma \ a \to \mathsf{State} \ \sigma \ a$$

 $h \ (\mathsf{Reader} \ g) = \mathsf{State} \ (\lambda s \to (g \ s, s))$

f :: Monad
$$m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a$$

Assume m_1, m_2 :: State $\sigma \tau$, but execState $m_i = id$.

An m has this property iff it is an h-image for

$$h :: \mathsf{Reader} \ \sigma \ a \to \mathsf{State} \ \sigma \ a$$

 $h \ (\mathsf{Reader} \ g) = \mathsf{State} \ (\lambda s \to (g \ s, s))$

f :: Monad
$$m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a$$

$$f (h m'_1) (h m'_2) = do h m'_1$$

$$h (do a \leftarrow m'_1$$

$$b \leftarrow m'_1$$

$$c \leftarrow m'_2$$

$$b \leftarrow m'_1$$

$$c \leftarrow m'_2$$

$$return b$$

Assume m_1, m_2 :: State $\sigma \tau$, but execState $m_i = id$.

An m has this property iff it is an h-image for

$$h:: \mathsf{Reader} \ \sigma \ a o \mathsf{State} \ \sigma \ a \ h \ (\mathsf{Reader} \ g) = \mathsf{State} \ (\lambda s o (g \ s, s))$$

Then:

f :: Monad
$$m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a$$

return b

Assume m_1, m_2 :: State $\sigma \tau$, but execState $m_i = id$.

An *m* has this property iff it is an *h*-image for

$$h :: \mathsf{Reader} \ \sigma \ a \to \mathsf{State} \ \sigma \ a$$

 $h \ (\mathsf{Reader} \ g) = \mathsf{State} \ (\lambda s \to (g \ s, s))$

f :: Monad
$$m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a$$

$$f(h m'_1) (h m'_2) = h (f m'_1 m'_2)$$

Let

f :: Monad
$$m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a$$

Let

$$h:: \kappa_1 \ a \rightarrow \kappa_2 \ a$$

such that

- $ightharpoonup \kappa_1, \kappa_2$ are monads
- $ightharpoonup h \circ \operatorname{return}_{\kappa_1} = \operatorname{return}_{\kappa_2}$
- ▶ for every m and k, h $(m >>= <math>\kappa_1 k) = (h m) >>= \kappa_2 (h \circ k)$

Then for every m_1 and m_2 ,

$$f(h m_1) (h m_2) = h (f m_1 m_2)$$

Let

f :: Monad
$$m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a$$

Let

$$h:: \kappa_1 \ a \rightarrow \kappa_2 \ a$$

such that

- \triangleright κ_1, κ_2 are monads
- $h \circ \operatorname{return}_{\kappa_1} = \operatorname{return}_{\kappa_2}$
- ▶ for every m and k, h $(m >>= <math>\kappa_1 k) = (h m) >>= \kappa_2 (h \circ k)$

Then for every m_1 and m_2 ,

$$f(h m_1) (h m_2) = h (f m_1 m_2)$$

The same for

f :: Monad $m \Rightarrow m \text{ Int } \rightarrow m \text{ Int } \rightarrow m \text{ Int }$

Let

f :: Monad
$$m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a$$

Let

$$h:: \kappa_1 \ a \rightarrow \kappa_2 \ a$$

such that

- \triangleright κ_1, κ_2 are monads
- $h \circ \operatorname{return}_{\kappa_1} = \operatorname{return}_{\kappa_2}$
- for every m and k, h $(m >>= <math>\kappa_1 k) = (h m) >>= \kappa_2 (h \circ k)$

Then for every m_1 and m_2 ,

$$f(h m_1) (h m_2) = h (f m_1 m_2)$$

The same for

 $f :: Monad m \Rightarrow m Int \rightarrow m Int \rightarrow m Int$

Looking Back at the Concrete Invariant

For

$$h:: \mathsf{Reader}\ \sigma\ a \to \mathsf{State}\ \sigma\ a$$

 $h\ (\mathsf{Reader}\ g) = \mathsf{State}\ (\lambda s \to (g\ s,s))$

Looking Back at the Concrete Invariant

For

$$h :: Reader \ \sigma \ a \rightarrow State \ \sigma \ a$$

 $h \ (Reader \ g) = State \ (\lambda s \rightarrow (g \ s, s))$

the conditions

- $h \circ \operatorname{return}_{\operatorname{Reader} \sigma} = \operatorname{return}_{\operatorname{State} \sigma}$
- ▶ for every m and k, $h(m \gg Reader \sigma k) = (h m) \gg State \sigma (h \circ k)$

Looking Back at the Concrete Invariant

For

$$h :: \mathsf{Reader} \ \sigma \ a \to \mathsf{State} \ \sigma \ a$$

 $h \ (\mathsf{Reader} \ g) = \mathsf{State} \ (\lambda s \to (g \ s, s))$

the conditions

- $h \circ return_{Reader \sigma} = return_{State \sigma}$
- ▶ for every m and k, $h(m) >= Reader \sigma(k) = (h m) >= State \sigma(h \circ k)$

imply that

- ▶ for every a, execState (return_{State σ} a) = id
- ▶ for every m and k, execState $(m \gg S_{tate \sigma} k) = id$, provided ... (as given earlier)

Let

f :: Monad
$$m \Rightarrow m \ a \rightarrow m \ a \rightarrow m \ a$$

Let

$$h:: \kappa_1 \ a \rightarrow \kappa_2 \ a$$

such that

- \triangleright κ_1, κ_2 are monads
- $ightharpoonup h \circ \operatorname{return}_{\kappa_1} = \operatorname{return}_{\kappa_2}$
- ▶ for every m and k, h $(m >>= <math>\kappa_1 k) = (h m) >>= \kappa_2 (h \circ k)$

Then for every m_1 and m_2 ,

$$f(h m_1) (h m_2) = h (f m_1 m_2)$$

The same for

 $f :: Monad m \Rightarrow m Int \rightarrow m Int \rightarrow m Int$

- Exploiting polymorphism
 - ▶ Relational parametricity [Reynolds '83]
 - ► Free theorems [Wadler '89]

- Exploiting polymorphism
 - Relational parametricity [Reynolds '83]
 - ► Free theorems [Wadler '89]
- Extension to type classes:
 - ► Folklore
 - ▶ Dictionary translation [Wadler & Blott '89]

- Exploiting polymorphism
 - ▶ Relational parametricity [Reynolds '83]
 - ► Free theorems [Wadler '89]
- Extension to type classes:
 - ► Folklore
 - Dictionary translation [Wadler & Blott '89]
- Extension to type constructors:
 - ► Folklore?

- Exploiting polymorphism
 - Relational parametricity [Reynolds '83]
 - ► Free theorems [Wadler '89]
- Extension to type classes:
 - ► Folklore
 - ▶ Dictionary translation [Wadler & Blott '89]
- Extension to type constructors:
 - ► Folklore?
- Monad morphisms:
 - Representation independence for effects [Filinski & Støvring '07]

▶ Purity preservation

- Purity preservation
- ▶ Safe value extraction, e.g.
 - ► Discard logging
 - ▶ Pick from a nondeterministic manifold

- Purity preservation
- ► Safe value extraction, e.g.
 - Discard logging
 - Pick from a nondeterministic manifold
- Invariant propagation, e.g.
 - ▶ Independence criteria for stateful computations
 - ▶ Restrictions on IO

- Purity preservation
- Safe value extraction, e.g.
 - Discard logging
 - ▶ Pick from a nondeterministic manifold
- ▶ Invariant propagation, e.g.
 - ▶ Independence criteria for stateful computations
 - Restrictions on IO
- Effect abstraction, e.g.
 - ► From exceptions to partiality

- Purity preservation
- Safe value extraction, e.g.
 - Discard logging
 - Pick from a nondeterministic manifold
- Invariant propagation, e.g.
 - ▶ Independence criteria for stateful computations
 - Restrictions on IO
- Effect abstraction, e.g.
 - From exceptions to partiality
- Proper generalisations of standard free theorems

- Purity preservation
- Safe value extraction, e.g.
 - Discard logging
 - Pick from a nondeterministic manifold
- Invariant propagation, e.g.
 - Independence criteria for stateful computations
 - Restrictions on IO
- Effect abstraction, e.g.
 - From exceptions to partiality
- Proper generalisations of standard free theorems
- Transparent introduction of data improvements [V. '08]

References I

Inductive reasoning about effectful data types.

In *International Conference on Functional Programming, Proceedings*, pages 97–110. ACM Press, 2007.

Notions of computation and monads.

Information and Computation, 93(1):55–92, 1991.

Imperative functional programming.

In *Principles of Programming Languages, Proceedings*, pages 71–84. ACM Press, 1993.

References II

Types, abstraction and parametric polymorphism. In *Information Processing, Proceedings*, pages 513–523. Elsevier, 1983.

J. Voigtländer.

Asymptotic improvement of computations over free monads. In *Mathematics of Program Construction, Proceedings*, volume 5133 of *LNCS*, pages 388–403. Springer-Verlag, 2008.

P. Wadler.

Theorems for free!

In Functional Programming Languages and Computer Architecture, Proceedings, pages 347–359. ACM Press, 1989.

References III

The essence of functional programming (Invited talk). In *Principles of Programming Languages, Proceedings*, pages 1–14. ACM Press, 1992.

P. Wadler and S. Blott.

How to make ad-hoc polymorphism less ad hoc.

In *Principles of Programming Languages, Proceedings*, pages 60–76. ACM Press, 1989.