Concatenate, Reverse and Map Vanish For Free

Janis Voigtländer
Dresden University of Technology
http://wwwtcs.inf.tu-dresden.de/~voigt

[^0]
List-Producers using + , reverse and map:

part even $[1 . .10]=[2,4,6,8,10,1,3,5,7,9]$

$$
\begin{aligned}
& \text { part }:(\alpha \rightarrow \text { Bool }) \rightarrow[\alpha] \rightarrow[\alpha] \\
& \text { part pl= let } f \quad[] \quad z=z \\
& \qquad \quad f(x: x s) z=\text { if } p x \text { then } x:(f x s z) \\
& \quad \text { in } f l[]
\end{aligned}
$$

shuffle "whatever" = "waeervth"

```
shuffle :: \([\boldsymbol{\alpha}] \rightarrow[\alpha]\)
shuffle [] = []
shuffle \((x: x s)=x:(\) reverse \((\) shuffle \(x s))\)
```

 inits \([1 . .4]=[[],[1],[1,2],[1,2,3],[1,2,3,4]]\)
 inits : : \([\boldsymbol{\alpha}] \rightarrow[[\alpha]]\)
 inits [] = [[]]
 inits \((x: x s)=[]:(\operatorname{map}(x:)(\) inits \(x s))\)

Runtimes dominated by repeated List-Operations:

Efficiency by List Abstraction (part):

part $::(\boldsymbol{\alpha} \rightarrow$ Boor $) \rightarrow[\boldsymbol{\alpha}] \rightarrow[\boldsymbol{\alpha}]$
$\operatorname{part} p l=\operatorname{let} f \quad[] \quad z=z$

$$
f(x: x s) z=\text { if } p x \text { then } x:(f x s z)
$$

$$
\text { else } f x s(z H(x:[]))
$$

in $f l[]$
\Downarrow
part* $::(\boldsymbol{\alpha} \rightarrow$ Boor $) \rightarrow[\boldsymbol{\alpha}] \rightarrow[\boldsymbol{\alpha}]$
part * pl $=$ vanish $_{+}(\lambda n c a \rightarrow$
 else $f x s\left(z^{6} a^{6}\left(x^{6} c^{6} n\right)\right)$

$$
\text { in } f l n)
$$

$$
\begin{aligned}
& \text { vanish }_{++}::(\forall \beta \cdot \beta \rightarrow(\alpha \rightarrow \beta \rightarrow \beta) \\
&\rightarrow(\beta \rightarrow \beta \rightarrow \beta) \rightarrow \beta) \rightarrow[\alpha] \\
& \text { vanish }_{++} g=g[](:)(+)
\end{aligned}
$$

Such list abstraction can be performed automatically, based on the rank-2 polymorphic type of vanish $_{+}$and partial type inference [Chitil, 1999]!

Runtimes: $n=$	3000	5000	7000	9000	11000	
part even $[1 . . n]$	0.4	1.1	2.2	3.5	5.6	$(\mathrm{~s})$
part^ ${ }^{\star}$ even $[1 . . n]$	0.004	0.006	0.009	0.012	0.015	$(\mathrm{~s})$

Efficiency by List Abstraction (shuffle):

$$
\begin{aligned}
& \text { shuffle :: }[\boldsymbol{\alpha}] \rightarrow[\boldsymbol{\alpha}] \\
& \text { shuffle [] = [] } \\
& \text { shuffle }(x: x s)=x:(\text { reverse }(\text { shuffle } x s)) \\
& \Downarrow \\
& \text { shuffle }{ }^{\star}::[\boldsymbol{\alpha}] \rightarrow[\boldsymbol{\alpha}] \\
& \text { shuffle }^{\star} l=\text { vanish }_{\text {rev }}(\lambda n \text { cr } \rightarrow \\
& \text { let } f \quad[] \quad=n \\
& f(x: x s)=x^{6} c^{6}(r(f x s)) \\
& \text { in } f l \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { vanish }_{\text {rev }}::(\forall \beta \cdot \beta \rightarrow(\alpha \rightarrow \beta \rightarrow \beta) \rightarrow(\beta \rightarrow \beta) \rightarrow \beta) \rightarrow[\alpha] \\
& \text { vanish }_{\text {rev }} \boldsymbol{g} \sqsupseteq \boldsymbol{g}[](:) \text { reverse }
\end{aligned}
$$

Runtimes: $n=$	2000	4000	6000	8000	10000	
shuffle $[1 . . n]$	0.33	1.3	2.8	5.0	8.0	(s)
shuffle ${ }^{\star}[1 . . n]$	0.005	0.01	0.016	0.02	0.025	(s)

Efficiency by List Abstraction (inits):

```
inits : : \([\boldsymbol{\alpha}] \rightarrow[[\boldsymbol{\alpha}]]\)
inits [] \(=[]:[]\)
inits \((x: x s)=[]:(\operatorname{map}(x:)(\) inits \(x s))\)
```

\Downarrow

```
inits \(^{\star}::[\boldsymbol{\alpha}] \rightarrow[[\boldsymbol{\alpha}]]\)
inits \(^{\star} l=\) vanish \(_{++, \text {rev }, \text { map }}(\boldsymbol{\lambda} n\) car \(m \rightarrow\)
        let \(f \quad[] \quad=[]{ }^{6} c^{6} n\)
        \(f(x: x s)=[]{ }^{6} c^{\iota}(m(x:)(f x s))\)
        in \(f l\) )
```

```
vanish \(_{++ \text {,rev, map }}::(\forall \beta \ldots) \rightarrow[\alpha]\)
    vanish \(_{+ \text {,rev, map }} \boldsymbol{g} \sqsupseteq \boldsymbol{g}[](:)(H)\) reverse map
```

Runtimes: $n=$	1000	2000	3000	4000	5000
inits $[1 . . n]$	0.35	1.3	3.2	6.0	$9.0(\mathrm{~s})$
inits $^{\star}[1 . . n]$	0.08	0.3	0.7	1.3	$2.0(\mathrm{~s})$

Actual Definitions of the vanish-Combinators:

```
vanish++ :: }(\forall\beta.\beta->(\alpha->\beta->\beta)->(\beta->\beta->\beta)->\beta)->[\alpha
vanish++g=gid (\lambdaxhys }\mp@subsup{|}{|}{\prime
```

```
vanish rev :: }(\forall\beta.\beta->(\alpha->\beta->\beta)->(\beta->\beta)->\beta)->[\alpha
vanish}\mp@subsup{h}{\mathrm{ rev }}{g}=fst(g(\lambdays->(ys,ys)
    (\lambdaxhys->(x:(fst (hys)), snd (h(x:ys))))
    (\lambdahys }->\mathrm{ swap (hys)) [])
```

```
\(v^{\text {anish }}+\), rev, map \(::(\forall \beta \cdot \beta \rightarrow(\alpha \rightarrow \beta \rightarrow \beta) \rightarrow(\beta \rightarrow \beta \rightarrow \beta) \rightarrow(\beta \rightarrow \beta)\)
    \(\rightarrow((\alpha \rightarrow \alpha) \rightarrow \beta \rightarrow \beta) \rightarrow \beta) \rightarrow[\alpha]\)
\(v a n i s h_{++, \text {rev }, \text { map }} g=f s t(g(\lambda f y s \rightarrow(y s, y s))\)
    \((\lambda x h f y s \rightarrow((f x):(f s t(h f y s))\),
                                snd (hf((fx):ys))))
    \(\left(\lambda h_{1} h_{2} f y s \rightarrow\left(f s t\left(h_{1} f\left(f s t\left(h_{2} f y s\right)\right)\right)\right.\right.\),
        snd \(\left.\left.\left(h_{2} f\left(s n d\left(h_{1} f y s\right)\right)\right)\right)\right)\)
    ( \(\lambda h f y s \rightarrow \operatorname{swap}(h f y s)\) )
    \((\lambda k h f y s \rightarrow h(f \circ k) y s) i d[])\)
```


User-Exposed Semantics of the vanish-Combinators:

```
vanish++ :: (\forall\beta.\beta->(\alpha->\beta->\beta)->(\beta->\beta->\beta)->\beta)->[\alpha]
vanish+}\mp@subsup{|}{+}{}\boldsymbol{g}=\boldsymbol{g}[](:)(+
```

```
vanish rev :: }(\forall\beta,\beta->(\alpha->\beta->\beta)->(\beta->\beta)->\beta)->[\alpha
vanish }\mp@subsup{\mp@code{rev }}{\boldsymbol{g}}{\textrm{g}}\boldsymbol{g}[](:)revers
```

```
vanish+#,rev,map :: (\forall\beta.\beta->(\alpha)\beta->\beta)->(\beta->\beta->\beta)}->(\beta->\beta
    ->((\alpha->\alpha)->\beta->\beta)->\beta)->[\alpha]
vanish}\mp@subsup{|}{+,rev,map}{}\boldsymbol{g}\sqsupseteq\boldsymbol{g}[](:)(+)\mathrm{ reverse map
```

Proven using free theorems [Wadler, 1989], driven by the algebraic laws:

$$
\begin{gather*}
(x s+y s)+z s=x s+(y s+z s) \tag{1}\\
\text { reverse }(\text { reverse } x s) \sqsubseteq x s \tag{2}\\
\text { map } f(\text { map } k x s)=\operatorname{map}(f \circ k) x s \tag{3}
\end{gather*}
$$

Proof: vanish ${ }_{+} \boldsymbol{g}=\boldsymbol{g}[](:)(+)$

Parametricity [Reynolds, 1983] gives for the type of

$$
g:: \forall \beta \cdot \beta \rightarrow(\mathrm{A} \rightarrow \beta \rightarrow \beta) \rightarrow(\beta \rightarrow \beta \rightarrow \beta) \rightarrow \beta
$$

the following free theorem [Wadler, 1989]:

$$
\begin{aligned}
& \left(n, n^{\prime}\right) \in \mathcal{R} \wedge\left(\forall x:: \mathrm{A},\left(l, l^{\prime}\right) \in \mathcal{R} .\left(c x l, c^{\prime} x l^{\prime}\right) \in \mathcal{R}\right) \\
\wedge & \left(\forall\left(l_{1}, l_{1}^{\prime}\right) \in \mathcal{R},\left(l_{2}, l_{2}^{\prime}\right) \in \mathcal{R} .\left(a l_{1} l_{2}, a^{\prime} l_{1}^{\prime} l_{2}^{\prime}\right) \in \mathcal{R}\right) \\
\Rightarrow & \left(g n c a, g n^{\prime} c^{\prime} a^{\prime}\right) \in \mathcal{R} .
\end{aligned}
$$

Instantiate with $\boldsymbol{n}=[], \boldsymbol{c}=(:), \boldsymbol{a}=(+), \boldsymbol{n}^{\prime}=i d, \boldsymbol{c}^{\prime}=(\lambda x h y s \rightarrow x:(h y s))$, $a^{\prime}=(\circ)$, and $\mathcal{R}=\left\{\left(l, l^{\prime}\right) \mid \forall y s::[\mathbf{A}] . l+y s=l^{\prime} y s\right\}:$

$$
\begin{aligned}
& (\forall y s \cdot[]+y s=y s) \\
\wedge & \left(\forall x, l, l^{\prime} \cdot\left(\forall y s \cdot l+y s=l^{\prime} y s\right) \Rightarrow\left(\forall y s \cdot(x: l)+y s=x:\left(l^{\prime} y s\right)\right)\right) \\
\wedge & \left(\forall l_{1}, l_{1}^{\prime}, l_{2}, l_{2}^{\prime} \cdot\left(\forall y s \cdot l_{1}+y s=l_{1}^{\prime} y s\right) \wedge\left(\forall y s \cdot l_{2} H y s=l_{2}^{\prime} y s\right)\right. \\
\Rightarrow & \left.\Rightarrow\left(\forall y s \cdot \cdot\left(l_{1}+l_{2}\right)+y s=l_{1}^{\prime}\left(l_{2}^{\prime} y s\right)\right)\right) \\
\Rightarrow & (\forall y s \cdot(\boldsymbol{g}[](:)(H))+y s=\boldsymbol{g} \text { id }(\lambda x h y s \rightarrow x:(h y s))(\circ) y s) .
\end{aligned}
$$

The preconditions of this implication are fulfilled by the definition of $(+)$ and by law (1), hence: $(g[](:)(+))+[]=$ vanish $_{+} \boldsymbol{g}$.

A general Methodology (e.g.: the filter vanishes)

$$
\begin{array}{ll}
\hline n u b:: \operatorname{Eq} \alpha & \Rightarrow[\alpha] \rightarrow[\alpha] \\
n u b \quad[] & =[] \\
n u b(x: x s) & =x:(\text { filter }(x \neq)(n u b x s))
\end{array}
$$

1. Freezing and Efficient Conversion:

$$
\begin{aligned}
& \hline \text { data List } \alpha=\text { Nil } \mid \text { Cons } \alpha(\text { List } \alpha) \mid \text { Filter }(\alpha \rightarrow \text { Bool) (List } \alpha) \\
& n u b^{\prime}:: \mathrm{Eq} \alpha \Rightarrow[\alpha] \rightarrow \text { List } \alpha \\
& n u b^{\prime} \quad[] \quad=\text { Nil } \\
& n u b^{\prime}(x: x s) \\
& =\text { Cons } x\left(\text { Filter }(x \neq)\left(n u b^{\prime} x s\right)\right)
\end{aligned}
$$

```
convert* :: List \(\boldsymbol{\alpha} \rightarrow[\boldsymbol{\alpha}]\)
convert \(^{\star} l=\) let \(h \quad\) Nil \(\quad p=\) []
    \(h\) (Cons \(x x s) p=\) if \((p x)\) then \((x:(h x s p))\) else \((h x s p)\)
    \(h(\) Filter \(q x s) p=h x s(\lambda x \rightarrow q x \& \& x)\)
    in \(h l(\lambda x \rightarrow\) True \()\)
```

2. Preparing Shortcut Fusion [Gill et al., 1993]:

build $_{\text {List }} g=g$ Nil Cons Filter

$$
\begin{aligned}
& n u b^{\prime}:: \operatorname{Eq} \alpha \Rightarrow[\alpha] \rightarrow \text { List } \alpha \\
& n u b^{\prime} l=b u i l d_{\text {List }}(\lambda n c f \rightarrow \operatorname{let} h \quad[] \quad=n \\
& \quad h(x: x s)=c x(f(x \neq)(h x s))
\end{aligned}
$$

$$
\begin{aligned}
& \text { fold }_{\text {List }} \quad \text { Nil } \quad n c f=n \\
& \text { fold }_{\text {List }}(\text { Cons } x x s) n c f=c x\left(\text { fold }_{\text {List }} x s n c f\right) \\
& \text { fold }_{\text {List }}(\text { Filter } q x s) n c f=f q\left(\text { fold }_{\text {List }} x s n c f\right)
\end{aligned}
$$

```
convert* :: List \alpha }->[\alpha
convert*}l=\mp@subsup{\mathrm{ fold List }}{l}{
```

$$
\begin{aligned}
& (\lambda p \rightarrow[]) \\
& (\lambda x h p \rightarrow \text { if }(p x) \text { then }(x:(h p)) \text { else }(h p)) \\
& (\lambda q h p \rightarrow h(\lambda x \rightarrow q x \& \& x)) \\
& (\lambda x \rightarrow \text { True })
\end{aligned}
$$

3. Calculate using Fusion Law: fold $_{\text {List }}\left(\right.$ build $\left._{\text {List }} g\right)=g$

4. Abstract into Combinator:

$$
\begin{gathered}
\text { vanish }_{\text {filter }} g=g(\lambda p \rightarrow[])(\lambda x h p \rightarrow \text { if }(p x) \text { then }(x:(h p)) \text { else }(h p)) \\
(\lambda q h p \rightarrow h(\lambda x \rightarrow q x \& \& x))(\lambda x \rightarrow \text { True }) \\
\hline
\end{gathered}
$$

$$
\begin{aligned}
& n u b^{\star}:: \mathbf{E q} \boldsymbol{\alpha} \Rightarrow[\boldsymbol{\alpha}] \rightarrow[\boldsymbol{\alpha}] \\
& n u b^{\star} l=\text { vanish }_{\text {filter }}(\lambda n c f \rightarrow \operatorname{let} h \quad[] \quad=n \\
& h(x: x s)=c x(f(x \neq)(h x s)) \\
& \text { in } h l)
\end{aligned}
$$

5. Prove Correctness:

```
vanish \(_{\text {filter }}::(\forall \beta . \beta \rightarrow(\alpha \rightarrow \beta \rightarrow \beta) \rightarrow((\alpha \rightarrow\) Bool \() \rightarrow \beta \rightarrow \beta) \rightarrow \beta) \rightarrow[\alpha]\)
vanish \(_{\text {filter }} \boldsymbol{g}=\boldsymbol{g}[](:)\) filter
```

Using a free theorem and the following law:

$$
\begin{equation*}
\text { filter } p(\text { filter } q x s)=\text { filter }(\lambda x \rightarrow q x \text { \&\& } p x) x s \tag{4}
\end{equation*}
$$

Proof: vanish filter $^{g}=\boldsymbol{g}$ [] (:) filter

From the type of g follows the free theorem:

$$
\begin{aligned}
& \left(n, n^{\prime}\right) \in \mathcal{R} \\
\wedge & \left(\forall x:: \mathrm{A},\left(l, l^{\prime}\right) \in \mathcal{R} .\left(c x l, c^{\prime} x l^{\prime}\right) \in \mathcal{R}\right) \\
\wedge & \left(\forall q:: \mathrm{A} \rightarrow \text { Boor, }\left(l, l^{\prime}\right) \in \mathcal{R} .\left(f q l, f^{\prime} q l^{\prime}\right) \in \mathcal{R}\right) \\
\Rightarrow & \left(g n c f, g n^{\prime} c^{\prime} f^{\prime}\right) \in \mathcal{R}
\end{aligned}
$$

Instantiate with $n=[], \boldsymbol{c}=(:), \boldsymbol{f}=$ filter, $\boldsymbol{n}^{\prime}=(\lambda p \rightarrow[])$, $\boldsymbol{c}^{\prime}=(\lambda x h p \rightarrow$ if $(p x)$ then $(x:(h p))$ else $(h p))$, $f^{\prime}=(\lambda q h p \rightarrow h(\lambda x \rightarrow q x$ \&\& $p x))$, and $\mathcal{R}=\left\{\left(l, l^{\prime}\right) \mid \forall p:: \mathbf{A} \rightarrow\right.$ Col. filter $\left.p l=l^{\prime} p\right\}:$
$(\forall p$. filter $p[]=[])$
$\wedge\left(\forall x, l, l^{\prime} .\left(\forall p\right.\right.$. filter $\left.p l=l^{\prime} p\right)$
$\Rightarrow\left(\forall \boldsymbol{p}\right.$. filter $\boldsymbol{p}(x: l)=$ if $(p x)$ then $\left(x:\left(l^{\prime} p\right)\right)$ else $\left.\left(l^{\prime} p\right)\right)$)
$\wedge\left(\forall q, l, l^{\prime} .\left(\forall p\right.\right.$. filter $\left.p l=l^{\prime} p\right)$
$\Rightarrow\left(\forall p\right.$. filter $p($ filter $\left.\left.q l)=l^{\prime}(\lambda x \rightarrow q x \& \& x)\right)\right)$
$\Rightarrow(\forall p$. filter $p(g[]$ (:) filter $)$
$=\boldsymbol{g}(\lambda p \rightarrow[])$
$(\lambda x h p \rightarrow$ if $(p x)$ then $(x:(h p))$ else $(h p))$
$(\lambda q h p \rightarrow h(\lambda x \rightarrow q x \& \& p x)) p)$.
The preconditions of this implication are fulfilled by the definition of filter and by law (4), hence:
filter $(\boldsymbol{\lambda} \boldsymbol{x} \rightarrow$ True $)(\boldsymbol{g}[](:)$ filter $)=$ vanish $_{\text {filter }} \boldsymbol{g}$.

Summary:

- Variation of list abstraction: abstract not only over data constructors, but also over manipulating operations.
- Methodology: "freezing" plus "efficient conversion as a fold" for synthesizing optimized list implementations. (also applicable to other algebraic data types)
- Encapsulate essence of optimizations in reusable rank-2 polymorphic combinators.
\Rightarrow Allows automation and proofs using free theorems.

References

[Chitil, 1999] Chitil, O. (1999). Type inference builds a short cut to deforestation. Pages 249-260 of: International Conference on Functional Programming, Paris, France. ACM Press.
[Gill et al., 1993] Gill, A., Launchbury, J., \& Peyton Jones, S.L. (1993). A short cut to deforestation. Pages 223-232 of: Functional Programming Languages and Computer Architecture, Copenhagen, Denmark. ACM Press.
[Hughes, 1986] Hughes, R.J.M. (1986). A novel representation of lists and its application to the function "reverse". Information Processing Letters, 22, 141-144.
[Reynolds, 1983] Reynolds, J.C. (1983). Types, abstraction and parametric polymorphism. Pages 513-523 of: Information Processing, Paris, France. Elsevier Science Publishers B.V.
[Wadler, 1987] Wadler, P. (1987). The concatenate vanishes. Note, University of Glasgow, Scotland.
[Wadler, 1989] Wadler, P. (1989). Theorems for free! Pages 347-359 of: Functional Programming Languages and Computer Architecture, London, England. ACM Press.

[^0]: Supported by the "Deutsche Forschungsgemeinschaft" under grant KU 1290/2-1 and by the "Gesellschaft von Freunden und Förderern der TU Dresden" with a travel grant.

