
ICFP, October 4, 2002

Concatenate, Reverse and Map Vanish For Free

Janis Voigtländer
Dresden University of Technology

http://wwwtcs.inf.tu-dresden.de/∼voigt

Supported by the “Deutsche Forschungsgemeinschaft” under grant KU 1290/2-1 and by the

“Gesellschaft von Freunden und Förderern der TU Dresden” with a travel grant.

1

List-Producers using ++, reverse and map:

part even [1..10] = [2, 4, 6, 8, 10, 1, 3, 5, 7, 9]

part :: (α → Bool) → [α] → [α]

part p l = let f [] z = z

f (x : xs) z = if p x then x : (f xs z)

else f xs (z ++ [x])
in f l []

shuffle “whatever” = “waeervth”

shuffle :: [α] → [α]

shuffle [] = []

shuffle (x : xs) = x : (reverse (shuffle xs))

inits [1..4] = [[], [1], [1, 2], [1, 2, 3], [1, 2, 3, 4]]

inits :: [α] → [[α]]

inits [] = [[]]

inits (x : xs) = [] : (map (x :) (inits xs))

2

Runtimes dominated by repeated List-Operations:

0

1

2

3

4

5

6

7

8

9

0 2000 4000 6000 8000 10000 12000

3

3

3

3

3

+

+

+

+

+

2

2

2

2

2

part even [1..n] 3

shuffle [1..n] +
inits [1..n] 2

(s)

n =

3

Efficiency by List Abstraction (part):

part :: (α → Bool) → [α] → [α]

part p l = let f [] z = z

f (x : xs) z = if p x then x : (f xs z)

else f xs (z ++ (x : []))
in f l []

⇓

part
�

:: (α → Bool) → [α] → [α]

part
�

p l = vanish++ (λn c a →

let f [] z = z

f (x : xs) z = if p x then x ‘c‘ (f xs z)

else f xs (z ‘a ‘ (x ‘c‘ n))
in f l n)

vanish++ :: (∀β . β → (α → β → β)

→ (β → β → β) → β) → [α]
vanish++ g = g [] (:) (++)

Such list abstraction can be performed automat-

ically, based on the rank-2 polymorphic type of

vanish++ and partial type inference [Chitil, 1999]!

Runtimes: n = 3000 5000 7000 9000 11000

part even [1..n] 0.4 1.1 2.2 3.5 5.6 (s)

part
�

even [1..n] 0.004 0.006 0.009 0.012 0.015 (s)

4

Efficiency by List Abstraction (shuffle):

shuffle :: [α] → [α]

shuffle [] = []

shuffle (x : xs) = x : (reverse (shuffle xs))

⇓

shuffle

�

:: [α] → [α]

shuffle

�

l = vanishrev (λn c r →

let f [] = n

f (x : xs) = x ‘c‘ (r (f xs))
in f l)

vanishrev :: (∀β . β → (α → β → β) → (β → β) → β) → [α]

vanishrev g w g [] (:) reverse

Runtimes: n = 2000 4000 6000 8000 10000

shuffle [1..n] 0.33 1.3 2.8 5.0 8.0 (s)

shuffle
�

[1..n] 0.005 0.01 0.016 0.02 0.025 (s)

5

Efficiency by List Abstraction (inits):

inits :: [α] → [[α]]

inits [] = [] : []

inits (x : xs) = [] : (map (x :) (inits xs))

⇓

inits

�

:: [α] → [[α]]

inits

�

l = vanish++ �rev �map (λn c a r m →

let f [] = [] ‘c‘ n

f (x : xs) = [] ‘c‘ (m (x :) (f xs))
in f l)

vanish++ �rev �map :: (∀β . · · ·) → [α]

vanish++ �rev �map g w g [] (:) (++) reverse map

Runtimes: n = 1000 2000 3000 4000 5000

inits [1..n] 0.35 1.3 3.2 6.0 9.0 (s)

inits
�

[1..n] 0.08 0.3 0.7 1.3 2.0 (s)

6

Actual Definitions of the vanish-Combinators:

vanish++ :: (∀β . β → (α → β → β) → (β → β → β) → β) → [α]

vanish++ g = g id (λx h ys → x : (h ys)) (◦) []

vanishrev :: (∀β . β → (α → β → β) → (β → β) → β) → [α]

vanishrev g = fst (g (λys → (ys, ys))

(λx h ys → (x : (fst (h ys)), snd (h (x : ys))))

(λh ys → swap (h ys)) [])

vanish++ �rev �map :: (∀β . β → (α → β → β) → (β → β → β) → (β → β)

→ ((α → α) → β → β) → β) → [α]
vanish++ �rev �map g = fst (g (λf ys → (ys, ys))

(λx h f ys → ((f x) : (fst (h f ys)),

snd (h f ((f x) : ys))))
(λh1 h2 f ys → (fst (h1 f (fst (h2 f ys))),

snd (h2 f (snd (h1 f ys)))))
(λh f ys → swap (h f ys))

(λk h f ys → h (f ◦ k) ys) id [])

7

User-Exposed Semantics of the vanish-Combinators:

vanish++ :: (∀β . β → (α → β → β) → (β → β → β) → β) → [α]

vanish++ g = g [] (:) (++)

vanishrev :: (∀β . β → (α → β → β) → (β → β) → β) → [α]

vanishrev g w g [] (:) reverse

vanish++ �rev �map :: (∀β . β → (α → β → β) → (β → β → β) → (β → β)

→ ((α → α) → β → β) → β) → [α]
vanish++ �rev �map g w g [] (:) (++) reverse map

Proven using free theorems [Wadler, 1989], driven by the alge-
braic laws:

(xs ++ ys) ++ zs = xs ++ (ys ++ zs) (1)

reverse (reverse xs) v xs (2)

map f (map k xs) = map (f ◦ k) xs (3)

8

Proof: vanish++ g = g [] (:) (++)

Parametricity [Reynolds, 1983] gives for the type of

g :: ∀β . β → (A → β → β) → (β → β → β) → β

the following free theorem [Wadler, 1989]:

(n , n

�

) ∈ R ∧ (∀x :: A, (l , l

�

) ∈ R . (c x l , c

�

x l

�

) ∈ R)

∧ (∀(l1, l

�

1) ∈ R, (l2, l

�

2) ∈ R . (a l1 l2, a
�

l
�

1 l
�

2) ∈ R)

⇒ (g n c a , g n

�

c

�

a

�

) ∈ R.

Instantiate with n = [], c = (:), a = (++), n
�

= id , c

�

= (λx h ys → x : (h ys)),

a

�

= (◦), and R = {(l , l

�

) | ∀ys :: [A] . l ++ ys = l

�

ys}:

(∀ys . [] ++ ys = ys)

∧ (∀x , l , l

�

. (∀ys . l ++ ys = l
�

ys) ⇒ (∀ys . (x : l) ++ ys = x : (l

�

ys)))

∧ (∀l1, l

�

1, l2, l

�

2 . (∀ys . l1 ++ ys = l

�

1 ys) ∧ (∀ys . l2 ++ ys = l

�

2 ys)

⇒ (∀ys . (l1 ++ l2) ++ ys = l

�

1 (l

�

2 ys)))
⇒ (∀ys . (g [] (:) (++)) ++ ys = g id (λx h ys → x : (h ys)) (◦) ys).

The preconditions of this implication are fulfilled by the definition of (++)

and by law (1), hence: (g [] (:) (++)) ++ [] = vanish++ g .

9

A general Methodology (e.g.: the filter vanishes)

nub :: Eq α ⇒ [α] → [α]

nub [] = []

nub (x : xs) = x : (filter (x 6=) (nub xs))

1. Freezing and Efficient Conversion:

data List α = Nil | Cons α (List α) | Filter (α → Bool) (List α)

nub

�

:: Eq α ⇒ [α] → List α

nub

�

[] = Nil

nub

�

(x : xs) = Cons x (Filter (x 6=) (nub

�

xs))

convert

�

:: List α → [α]

convert

�

l = let h Nil p = []

h (Cons x xs) p = if (p x) then (x : (h xs p)) else (h xs p)

h (Filter q xs) p = h xs (λx → q x && p x)
in h l (λx → True)

10

2. Preparing Shortcut Fusion [Gill et al., 1993]:

buildList g = g Nil Cons Filter

nub

�

:: Eq α ⇒ [α] → List α

nub

�

l = buildList (λn c f → let h [] = n

h (x : xs) = c x (f (x 6=) (h xs))
in h l)

foldList Nil n c f = n

foldList (Cons x xs) n c f = c x (foldList xs n c f)

foldList (Filter q xs) n c f = f q (foldList xs n c f)

convert

�

:: List α → [α]

convert

�

l = foldList l

(λp → [])

(λx h p → if (p x) then (x : (h p)) else (h p))

(λq h p → h (λx → q x && p x))

(λx → True)

11

3. Calculate using Fusion Law: foldList (buildList g) = g

convert

�

(nub

�

l)

= foldList (buildList (λn c f → let h [] = n

h (x : xs) = c x (f (x 6=) (h xs))
in h l))

(λp → [])

(λx h p → if (p x) then (x : (h p)) else (h p))

(λq h p → h (λx → q x && p x))

(λx → True)
= (λn c f → let h [] = n

h (x : xs) = c x (f (x 6=) (h xs))
in h l)

(λp → [])

(λx h p → if (p x) then (x : (h p)) else (h p))

(λq h p → h (λx → q x && p x))

(λx → True)

12

4. Abstract into Combinator:

vanishfilter g = g (λp → []) (λx h p → if (p x) then (x : (h p)) else (h p))

(λq h p → h (λx → q x && p x)) (λx → True)

nub

�

:: Eq α ⇒ [α] → [α]

nub

�

l = vanishfilter (λn c f → let h [] = n

h (x : xs) = c x (f (x 6=) (h xs))
in h l)

5. Prove Correctness:

vanishfilter :: (∀β .β → (α → β → β) → ((α → Bool) → β → β) → β) → [α]

vanishfilter g = g [] (:) filter

Using a free theorem and the following law:

filter p (filter q xs) = filter (λx → q x && p x) xs (4)

13

Proof: vanishfilter g = g [] (:) filter

From the type of g follows the free theorem:

(n , n
�

) ∈ R

∧ (∀x :: A, (l , l
�

) ∈ R . (c x l , c
�

x l
�

) ∈ R)

∧ (∀q :: A→Bool, (l , l
�

) ∈ R . (f q l , f
�

q l
�

) ∈ R)

⇒ (g n c f , g n
�

c
�

f
�

) ∈ R.

Instantiate with n = [], c = (:), f = filter , n
�

= (λp → []),

c
�

= (λx h p → if (p x) then (x : (h p)) else (h p)),

f
�

= (λq h p → h (λx → q x && p x)), and

R = {(l , l
�

) | ∀p :: A→Bool . filter p l = l
�

p}:

(∀p . filter p [] = [])

∧ (∀x , l , l
�

. (∀p . filter p l = l
�

p)

⇒ (∀p . filter p (x : l) = if (p x) then (x : (l
�

p))

else (l
�

p)))
∧ (∀q , l , l

�

. (∀p . filter p l = l
�

p)

⇒ (∀p . filter p (filter q l) = l
�

(λx → q x && p x)))
⇒ (∀p . filter p (g [] (:) filter)

= g (λp → [])

(λx h p → if (p x) then (x : (h p)) else (h p))

(λq h p → h (λx → q x && p x)) p).

The preconditions of this implication are fulfilled

by the definition of filter and by law (4), hence:

filter (λx → True) (g [] (:) filter) = vanishfilter g .

14

Summary:

• Variation of list abstraction: abstract not only over data

constructors, but also over manipulating operations.

• Methodology: “freezing” plus “efficient conversion as a fold”

for synthesizing optimized list implementations.

(also applicable to other algebraic data types)

• Encapsulate essence of optimizations in reusable rank-2 poly-

morphic combinators.

⇒ Allows automation and proofs using free theorems.

References

[Chitil, 1999] Chitil, O. (1999). Type inference builds a short cut to deforestation. Pages

249–260 of: International Conference on Functional Programming, Paris, France.

ACM Press.

[Gill et al., 1993] Gill, A., Launchbury, J., & Peyton Jones, S.L. (1993). A short cut to

deforestation. Pages 223–232 of: Functional Programming Languages and Computer

Architecture, Copenhagen, Denmark. ACM Press.

[Hughes, 1986] Hughes, R.J.M. (1986). A novel representation of lists and its application

to the function “reverse”. Information Processing Letters, 22, 141–144.

[Reynolds, 1983] Reynolds, J.C. (1983). Types, abstraction and parametric polymor-

phism. Pages 513–523 of: Information Processing, Paris, France. Elsevier Science

Publishers B.V.

[Wadler, 1987] Wadler, P. (1987). The concatenate vanishes. Note, University of Glas-

gow, Scotland.

[Wadler, 1989] Wadler, P. (1989). Theorems for free! Pages 347–359 of: Functional

Programming Languages and Computer Architecture, London, England. ACM Press.

