
Haskell+ Program Transformation System

C. Lescher, M. Höff, R. Vater, A. Maletti,

A. Kühnemann, J. Voigtländer

January 13, 2003

Copyright notice

This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your op-
tion) any later version.

This program is distributed in the hope that it will be useful, but WITH-
OUT ANY WARRANTY; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc., 59
Temple Place, Suite 330, Boston, MA 02111-1307 USA

email: voigt@tcs.inf.tu-dresden.de

letter: Janis Voigtländer

Department of Computer Science

Dresden University of Technology

01062 Dresden

GERMANY

1

Haskell+ Program Transformation System Version 1.0

1 Introduction

This program was developed to demonstrate the constructions presented in
[VK01]. It may be used to automatically compose two macro tree transducers
given certain restrictions. It uses an extension of Haskell (namely Haskell+)
as specification language, but is able to output Haskell code on demand. Fur-
thermore it enables the user to apply some post-processing to the result and
also allows for a direct comparison to classical deforestation, which is also im-
plemented in the system.

2 Input syntax

Since Haskell+ is an extension of Haskell you can write standard Haskell

code as well as specify tree transducers using two new block constructs, namely
the data block and the mag block.

2.1 The data block

Example:

begindata Data

data Nat = S Nat | Z

data List = A List | B List | Nil

data Tree = Node Tree Tree | Leaf

enddata

Obviously a data block is started with the keyword begindata followed by an
identifier (block name) for that particular data block. Note that identifiers
consists of letters solely and start with an uppercase character. Inside the block
the syntax is very similar to the one of Haskell. The keyword data is followed
by another identifier (type name) and equals-sign (=) and a nonempty sequence
of constructor declarations separated by bars (|). A constructor declaration
consists of an identifier (constructor name) in front of type names (possibly
none). Note that identifiers should be unique (i.e. an identifier should either
be a type name or a constructor name). The whole block thus defines algebraic
data types. The block is closed with the keyword enddata.

2.2 The mag block

Example:

beginmag Rev

input Data

syn rev :: List -> List -> List

syn id :: Nat -> Nat

TU-Dresden, CS Dept. 2 January 13, 2003

Haskell+ Program Transformation System Version 1.0

rev (A x) y = rev x (A y)

rev (B x) y = rev x (B y)

rev Nil y = y

id (S x) = S (id x)

id Z = Z

endmag

The mag block uses a similar tagging technique, where the keywords are beginmag
and endmag. The block name here is also the name of the tree transducer. Each
mag block imports data type definitions using the keyword input at the begin-
ning of the block followed by a data block name. Note that only one data block
name is allowed. The next part of the mag block consists of state (function
symbol) declarations using the keyword syn in front of a nonempty sequence of
letters starting with a lowercase character. Optionally you separate the type of
the function symbol by a double colon (::) sign from the function symbol. The
type itself comprises of type names interleaved by arrow (−>) symbols.

The last part of a mag block contains the rewrite equations as defined in
the accompanying paper (see introduction), where the arrow is replaced by the
equals (=) sign.

3 Example session

Let’s assume the following file rev.hp:

begindata Data

data List = A List | B List | E

enddata

beginmag Rev

input Data

syn rev :: List -> List -> List

rev (A u) y = rev u (A y)

rev (B u) y = rev u (B y)

rev E y = y

endmag

also supplied with the examples.

TU-Dresden, CS Dept. 3 January 13, 2003

Haskell+ Program Transformation System Version 1.0

The execution of the program will eventually yield the following menu:

(1) Just compose [nc-MAC with wsu-MAC; MAC with TOP; TOP with MAC]

(2) Compose [nc-MAC with wsu-MAC; MAC with TOP; TOP with MAC]

and apply post-processing

(3) Apply deforestation

(0) Exit

Please select (0-3):

We select 2, input the filename without suffix (rev) and the names of the tree
transducers to compose (in our case two times Rev). Haskell output is accord-
ing to the Haskell language specification (found under http://www.haskell.org/).

The Haskell+ output has some additional annotations.

beginmag Rev_Rev [Mac,Mat,Su,Wp,Wsu,Xlin,Xnd,Ylin]

The list behind the tree transducer name contains the detected properties of
that particular tree transducer. Amongst the most important are the following:

Top Top-down tree transducer
Mac Macro tree transducer
Wsu weakly single use
Ylin non-copying
Su single use

Note that the construction is only applied, if the input tree transducers meet the
given requirements. Another unique feature is the presence of so-called Rules-
pragmas. They are introduced in the Glasgow Haskell Compilation System
(GHC) documentation of version 5 and later.

{-# RULES "REMOVE SUPERFLUOUS CONTEXT PARAMETERS" forall u y1 y2.

rev_rev u y1 y2 = rev_rev’ u y1

#-}

References

[VK01] J. Voigtländer and A. Kühnemann. Composition of functions with ac-
cumulating parameters. Technical Report TUD-FI01-08, Dresden Uni-
versity of Technology, August 2001.
http://wwwtcs.inf.tu-dresden.de/∼voigt/TUD-FI01-08.ps.gz

Revised version to appear in Journal of Functional Programming.

TU-Dresden, CS Dept. 4 January 13, 2003

