
Free Theorems for Bidirectional Transformation

Janis Voigtländer

Technische Universität Dresden

GRACE-BX’08

Free theorems: Example in Haskell

For every
g :: [α] → [α]

2

Free theorems: Example in Haskell

For every
g :: [α] → [α]

and the standard function

map :: (α → β) → [α] → [β]
map f [] = []
map f (a : as) = (f a) : (map f as)

2

Free theorems: Example in Haskell

For every
g :: [α] → [α]

and the standard function

map :: (α → β) → [α] → [β]
map f [] = []
map f (a : as) = (f a) : (map f as)

holds, with arbitrary choice for f and l ,

map f (g l) = g (map f l)

2

Free theorems: Example in Haskell

For every
g :: [α] → [α]

and the standard function

map :: (α → β) → [α] → [β]
map f [] = []
map f (a : as) = (f a) : (map f as)

holds, with arbitrary choice for f and l ,

map f (g l) = g (map f l)

◮ P. Wadler.
Theorems for Free!
In Functional Programming Languages and Computer

Architecture, Proceedings. ACM Press, 1989.

2

What does this have to do with Bidirectionalization?

Assume we are given some

get :: [α] → [α]

3

What does this have to do with Bidirectionalization?

Assume we are given some

get :: [α] → [α]

and would like to produce from it a reasonable

put :: [α] → [α] → [α]

3

What does this have to do with Bidirectionalization?

Assume we are given some

get :: [α] → [α]

and would like to produce from it a reasonable

put :: [α] → [α] → [α]

with

put s (get s) = s

get (put s v) = v

...

3

What does this have to do with Bidirectionalization?

Assume we are given some

get :: [α] → [α]

and would like to produce from it a reasonable

put :: [α] → [α] → [α]

with

put s (get s) = s

get (put s v) = v

...

Clearly, we need to be able to analyze get somehow.

3

What have free theorems to do with Bidirectionalization?

How about doing this analysis by applying get to some input?

4

What have free theorems to do with Bidirectionalization?

How about doing this analysis by applying get to some input?

Like:

get [0..n] =

[1..n] if get = tail

[n..0] if get = reverse

[0..(min 4 n)] if get = take 5
...

4

What have free theorems to do with Bidirectionalization?

How about doing this analysis by applying get to some input?

Like:

get [0..n] =

[1..n] if get = tail

[n..0] if get = reverse

[0..(min 4 n)] if get = take 5
...

Using the free theorem

map f (g l) = g (map f l)

established earlier, the insights thus gained can be transferred to
source lists other than [0..n].

4

What have free theorems to do with Bidirectionalization?

How about doing this analysis by applying get to some input?

Like:

get [0..n] =

[1..n] if get = tail

[n..0] if get = reverse

[0..(min 4 n)] if get = take 5
...

Using the free theorem

map f (g l) = g (map f l)

established earlier, the insights thus gained can be transferred to
source lists other than [0..n].

Given an arbitrary list s of length n + 1, set g = get, f = (s !!),
and l = [0..n], leading to:

map (s !!) (get [0..n]) = get (map (s !!) [0..n])

4

What have free theorems to do with Bidirectionalization?

How about doing this analysis by applying get to some input?

Like:

get [0..n] =

[1..n] if get = tail

[n..0] if get = reverse

[0..(min 4 n)] if get = take 5
...

Using the free theorem

map f (g l) = g (map f l)

established earlier, the insights thus gained can be transferred to
source lists other than [0..n].

Given an arbitrary list s of length n + 1, set g = get, f = (s !!),
and l = [0..n], leading to:

map (s !!) (get [0..n]) = get (map (s !!) [0..n])
= get s

4

What have free theorems to do with Bidirectionalization?

How about doing this analysis by applying get to some input?

Like:

get [0..n] =

[1..n] if get = tail

[n..0] if get = reverse

[0..(min 4 n)] if get = take 5
...

Using the free theorem

map f (g l) = g (map f l)

established earlier, the insights thus gained can be transferred to
source lists other than [0..n].

Given an arbitrary list s of length n + 1,

map (s !!) (get [0..n])
= get s

4

The resulting Bidirectionalization scheme (almost):

put :: [α] → [α] → [α]
put s v = let n = (length s) − 1

s ′ = [0..n]
g = zip s ′ s

h = zip (get s ′) v

h′ = h ++ g

in map (λi → fromJust (lookup i h′)) s ′

5

The resulting Bidirectionalization scheme (almost):

put :: [α] → [α] → [α]
put s v = let n = (length s) − 1

s ′ = [0..n]
g = zip s ′ s

h = zip (get s ′) v

h′ = h ++ g

in map (λi → fromJust (lookup i h′)) s ′

5

The resulting Bidirectionalization scheme (almost):

put :: [α] → [α] → [α]
put s v = let n = (length s) − 1

s ′ = [0..n]
g = zip s ′ s

h = zip (get s ′) v

h′ = h ++ g

in map (λi → fromJust (lookup i h′)) s ′

5

The resulting Bidirectionalization scheme (almost):

put :: [α] → [α] → [α]
put s v = let n = (length s) − 1

s ′ = [0..n]
g = zip s ′ s

h = zip (get s ′) v

h′ = h ++ g

in map (λi → fromJust (lookup i h′)) s ′

5

The resulting Bidirectionalization scheme (almost):

put :: [α] → [α] → [α]
put s v = let n = (length s) − 1

s ′ = [0..n]
g = zip s ′ s

h = zip (get s ′) v

h′ = h ++ g

in map (λi → fromJust (lookup i h′)) s ′

5

The resulting Bidirectionalization scheme (almost):

put :: [α] → [α] → [α]
put s v = let n = (length s) − 1

s ′ = [0..n]
g = zip s ′ s

h = zip (get s ′) v

h′ = h ++ g

in map (λi → fromJust (lookup i h′)) s ′

5

The resulting Bidirectionalization scheme (almost):

put :: [α] → [α] → [α]
put s v = let n = (length s) − 1

s ′ = [0..n]
g = zip s ′ s

h = zip (get s ′) v

h′ = h ++ g

in map (λi → fromJust (lookup i h′)) s ′

5

The resulting Bidirectionalization scheme (almost):

put :: [α] → [α] → [α]
put s v = let n = (length s) − 1

s ′ = [0..n]
g = zip s ′ s

h = zip (get s ′) v

h′ = h ++ g

in map (λi → fromJust (lookup i h′)) s ′

5

The resulting Bidirectionalization scheme (almost):

put :: [α] → [α] → [α]
put s v = let n = (length s) − 1

s ′ = [0..n]
g = zip s ′ s

h = zip (get s ′) v

h′ = h ++ g

in map (λi → fromJust (lookup i h′)) s ′

For the full story, see:

◮ J. Voigtländer.
Bidirectionalization for Free!
In Principles of Programming Languages, Proceedings.
ACM Press, 2009.

5

What I would like to tell you more about

Technical presentation:

◮ a constant-complement perspective on my method
(rephrasing/deconstructing the POPL paper’s approach)

◮ expanding the scope of semantic bidirectionalization
by throwing in additional assumptions

◮ ideas for future work

6

	Free theorems

