Free Theorems for Bidirectional Transformation

Janis Voigtländer
Technische Universität Dresden

GRACE-BX'08

Free theorems: Example in Haskell
For every

$$
\mathbf{g}::[\alpha] \rightarrow[\alpha]
$$

Free theorems: Example in Haskell

For every

$$
\mathrm{g}::[\alpha] \rightarrow[\alpha]
$$

and the standard function

$$
\begin{aligned}
& \text { map }::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta] \\
& \operatorname{map} f[] \quad=[] \\
& \operatorname{map} f(a: a s)=(f a):(\operatorname{map} f a s)
\end{aligned}
$$

Free theorems: Example in Haskell

For every

$$
\mathbf{g}::[\alpha] \rightarrow[\alpha]
$$

and the standard function

$$
\begin{aligned}
& \operatorname{map}::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta] \\
& \operatorname{map} f[]=[] \\
& \operatorname{map} f(a: a s)=(f a):(\operatorname{map} f a s)
\end{aligned}
$$

holds, with arbitrary choice for f and I,

$$
\operatorname{map} f(\mathrm{~g} I)=\operatorname{g}(\operatorname{map} f l)
$$

Free theorems: Example in Haskell

For every

$$
\mathrm{g}::[\alpha] \rightarrow[\alpha]
$$

and the standard function

$$
\begin{aligned}
& \text { map }::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta] \\
& \operatorname{map} f[] \quad=[] \\
& \operatorname{map} f(a: a s)=(f a):(\operatorname{map} f a s)
\end{aligned}
$$

holds, with arbitrary choice for f and I,

$$
\operatorname{map} f(\mathrm{~g} I)=\operatorname{g}(\operatorname{map} f l)
$$

- P. Wadler.

Theorems for Free!
In Functional Programming Languages and Computer Architecture, Proceedings. ACM Press, 1989.

What does this have to do with Bidirectionalization?

Assume we are given some

$$
\text { get }::[\alpha] \rightarrow[\alpha]
$$

What does this have to do with Bidirectionalization?

Assume we are given some

$$
\text { get }::[\alpha] \rightarrow[\alpha]
$$

and would like to produce from it a reasonable

$$
\text { put }::[\alpha] \rightarrow[\alpha] \rightarrow[\alpha]
$$

What does this have to do with Bidirectionalization?

Assume we are given some

$$
\text { get }::[\alpha] \rightarrow[\alpha]
$$

and would like to produce from it a reasonable

$$
\text { put }::[\alpha] \rightarrow[\alpha] \rightarrow[\alpha]
$$

with

$$
\begin{aligned}
& \text { put } s(\text { get } s)=s \\
& \text { get }(\text { put } s v)=v
\end{aligned}
$$

What does this have to do with Bidirectionalization?

Assume we are given some

$$
\text { get }::[\alpha] \rightarrow[\alpha]
$$

and would like to produce from it a reasonable

$$
\text { put }::[\alpha] \rightarrow[\alpha] \rightarrow[\alpha]
$$

with

$$
\begin{aligned}
& \text { put } s(\text { get } s)=s \\
& \text { get }(\text { put } s v)=v
\end{aligned}
$$

Clearly, we need to be able to analyze get somehow.

What have free theorems to do with Bidirectionalization?

How about doing this analysis by applying get to some input?

What have free theorems to do with Bidirectionalization?

How about doing this analysis by applying get to some input? Like:

$$
\text { get }[0 . . n]= \begin{cases}{[1 . . n]} & \text { if get }=\text { tail } \\ {[n . .0]} & \text { if get }=\text { reverse } \\ {[0 . .(\min 4 n)]} & \text { if get }=\text { take } 5 \\ \vdots\end{cases}
$$

What have free theorems to do with Bidirectionalization?

How about doing this analysis by applying get to some input?
Like:

$$
\text { get }[0 . . n]= \begin{cases}{[1 . . n]} & \text { if get }=\text { tail } \\ {[n . .0]} & \text { if get }=\text { reverse } \\ {[0 . .(\min 4 n)]} & \text { if get }=\text { take } 5 \\ & \vdots\end{cases}
$$

Using the free theorem

$$
\operatorname{map} f(g l)=\operatorname{g}(\operatorname{map} f l)
$$

established earlier, the insights thus gained can be transferred to source lists other than $[0 . . n]$.

What have free theorems to do with Bidirectionalization?

How about doing this analysis by applying get to some input?
Like:

$$
\text { get }[0 . . n]= \begin{cases}{[1 . . n]} & \text { if get }=\text { tail } \\ {[n . .0]} & \text { if get }=\text { reverse } \\ {[0 . .(\min 4 n)]} & \text { if get }=\text { take } 5 \\ & \vdots\end{cases}
$$

Using the free theorem

$$
\operatorname{map} f(\mathrm{~g} I)=\operatorname{g}(\operatorname{map} f l)
$$

established earlier, the insights thus gained can be transferred to source lists other than $[0 . . n]$.
Given an arbitrary list s of length $n+1$, set $g=$ get, $f=(s!!)$, and $I=[0 . . n]$, leading to:

$$
\operatorname{map}(s!!)(\operatorname{get}[0 . . n])=\operatorname{get}(\operatorname{map}(s!!)[0 . . n])
$$

What have free theorems to do with Bidirectionalization?

How about doing this analysis by applying get to some input?
Like:

$$
\text { get }[0 . . n]= \begin{cases}{[1 . . n]} & \text { if get }=\text { tail } \\ {[n . .0]} & \text { if get }=\text { reverse } \\ {[0 . .(\min 4 n)]} & \text { if get }=\text { take } 5 \\ & \vdots\end{cases}
$$

Using the free theorem

$$
\operatorname{map} f(\mathrm{~g} I)=\operatorname{g}(\operatorname{map} f l)
$$

established earlier, the insights thus gained can be transferred to source lists other than $[0 . . n]$.
Given an arbitrary list s of length $n+1$, set $g=$ get, $f=(s!!)$, and $I=[0 . . n]$, leading to:

$$
\begin{aligned}
\operatorname{map}(s!!)(\operatorname{get}[0 . . n]) & =\operatorname{get}(\operatorname{map}(s!!)[0 . . n]) \\
& =\operatorname{get} s
\end{aligned}
$$

What have free theorems to do with Bidirectionalization?

How about doing this analysis by applying get to some input?
Like:

$$
\text { get }[0 . . n]= \begin{cases}{[1 . . n]} & \text { if get }=\text { tail } \\ {[n . .0]} & \text { if get }=\text { reverse } \\ {[0 . .(\min 4 n)]} & \text { if get }=\text { take } 5 \\ & \vdots\end{cases}
$$

Using the free theorem

$$
\operatorname{map} f(g l)=\operatorname{g}(\operatorname{map} f l)
$$

established earlier, the insights thus gained can be transferred to source lists other than $[0 . . n]$.
Given an arbitrary list s of length $n+1$,

$$
\operatorname{map}(s!!)(\operatorname{get}[0 . . n])=\operatorname{get} s
$$

The resulting Bidirectionalization scheme (almost):

$$
\begin{aligned}
& \text { put }::[\alpha] \rightarrow[\alpha] \rightarrow[\alpha] \\
& \text { put } s v=\text { let } n=(\text { length } s)-1 \\
& \qquad \begin{aligned}
s^{\prime} & =[0 . . n] \\
g & =\operatorname{zip} s^{\prime} s \\
h & =\operatorname{zip}\left(\text { get } s^{\prime}\right) v \\
h^{\prime} & =h+g \\
\text { in } \operatorname{map} & \left(\lambda i \rightarrow \text { fromJust }\left(\text { lookup } i h^{\prime}\right)\right) s^{\prime}
\end{aligned}
\end{aligned}
$$

The resulting Bidirectionalization scheme (almost):

$$
\begin{aligned}
& \text { put }::[\alpha] \rightarrow[\alpha] \rightarrow[\alpha] \\
& \text { put } s v=\text { let } n=(\text { length } s)-1 \\
& \qquad \begin{aligned}
s^{\prime} & =[0 . . n] \\
g & =\operatorname{zip} s^{\prime} s \\
h & =\operatorname{zip}\left(\text { get } s^{\prime}\right) v \\
h^{\prime} & =h+g \\
\text { in } \operatorname{map} & \left(\lambda i \rightarrow \text { fromJust }\left(\text { lookup } i h^{\prime}\right)\right) s^{\prime}
\end{aligned}
\end{aligned}
$$

The resulting Bidirectionalization scheme (almost):

$$
\begin{aligned}
& \text { put }::[\alpha] \rightarrow[\alpha] \rightarrow[\alpha] \\
& \text { put } s v=\text { let } n=(\text { length } s)-1 \\
& \qquad \begin{aligned}
s^{\prime} & =[0 . . n] \\
g & =\operatorname{zip} s^{\prime} s \\
h & =\operatorname{zip}\left(\text { get } s^{\prime}\right) v \\
h^{\prime} & =h+g \\
\text { in } \operatorname{map} & \left(\lambda i \rightarrow \text { fromJust }\left(\text { lookup } i h^{\prime}\right)\right) s^{\prime}
\end{aligned}
\end{aligned}
$$

The resulting Bidirectionalization scheme (almost):

$$
\begin{aligned}
& \text { put }::[\alpha] \rightarrow[\alpha] \rightarrow[\alpha] \\
& \text { put } s v=\text { let } n=(\text { length } s)-1 \\
& \qquad \begin{aligned}
s^{\prime} & =[0 . . n] \\
g & =\text { zip } s^{\prime} s \\
h & =\operatorname{zip}\left(\text { get } s^{\prime}\right) v \\
h^{\prime} & =h+g
\end{aligned} \\
& \text { in } \operatorname{map}\left(\lambda i \rightarrow \text { fromJust }\left(\text { lookup } i h^{\prime}\right)\right) s^{\prime}
\end{aligned}
$$

The resulting Bidirectionalization scheme (almost):

$$
\begin{aligned}
& \text { put }::[\alpha] \rightarrow[\alpha] \rightarrow[\alpha] \\
& \text { put } s v=\text { let } n=(\text { length } s)-1 \\
& \qquad \begin{aligned}
s^{\prime} & =[0 . . n] \\
g & =\operatorname{zip} s^{\prime} s \\
h & =\operatorname{zip}\left(\text { get } s^{\prime}\right) v \\
h^{\prime} & =h+g \\
\text { in } \operatorname{map} & \left(\lambda i \rightarrow \text { fromJust }\left(\text { lookup } i h^{\prime}\right)\right) s^{\prime}
\end{aligned}
\end{aligned}
$$

The resulting Bidirectionalization scheme (almost):

$$
\begin{aligned}
& \text { put }::[\alpha] \rightarrow[\alpha] \rightarrow[\alpha] \\
& \text { put } s v=\text { let } n=(\text { length } s)-1 \\
& \qquad \begin{aligned}
s^{\prime} & =[0 . . n] \\
g & =\operatorname{zip} s^{\prime} s \\
h & =\operatorname{zip}\left(\text { get } s^{\prime}\right) v \\
h^{\prime} & =h+g \\
\text { in } \operatorname{map} & \left(\lambda i \rightarrow \text { fromJust }\left(\text { lookup } i h^{\prime}\right)\right) s^{\prime}
\end{aligned}
\end{aligned}
$$

The resulting Bidirectionalization scheme (almost):

$$
\begin{aligned}
& \text { put }::[\alpha] \rightarrow[\alpha] \rightarrow[\alpha] \\
& \text { put } s v=\text { let } n=(\text { length } s)-1 \\
& \qquad \begin{aligned}
s^{\prime} & =[0 . . n] \\
g & =\operatorname{zip} s^{\prime} s \\
h & =\operatorname{zip}\left(\text { get } s^{\prime}\right) v \\
h^{\prime} & =h+g \\
\text { in } \operatorname{map} & \left(\lambda i \rightarrow \text { fromJust }\left(\text { lookup } i h^{\prime}\right)\right) s^{\prime}
\end{aligned}
\end{aligned}
$$

The resulting Bidirectionalization scheme (almost):

$$
\begin{aligned}
& \text { put }::[\alpha] \rightarrow[\alpha] \rightarrow[\alpha] \\
& \text { put } s v=\text { let } n=(\text { length } s)-1 \\
& \qquad \begin{aligned}
s^{\prime} & =[0 . . n] \\
g & =\operatorname{zip} s^{\prime} s \\
h & =\operatorname{zip}\left(\text { get } s^{\prime}\right) v \\
h^{\prime} & =h+g \\
\text { in } \operatorname{map} & \left(\lambda i \rightarrow \text { fromJust }\left(\text { lookup } i h^{\prime}\right)\right) s^{\prime}
\end{aligned}
\end{aligned}
$$

The resulting Bidirectionalization scheme (almost):

$$
\begin{aligned}
& \text { put }::[\alpha] \rightarrow[\alpha] \rightarrow[\alpha] \\
& \text { put } s v=\text { let } n=(\text { length } s)-1 \\
& \qquad \begin{aligned}
s^{\prime} & =[0 . . n] \\
g & =\operatorname{zip} s^{\prime} s \\
h & =\operatorname{zip}\left(\text { get } s^{\prime}\right) v \\
h^{\prime} & =h+g \\
\text { in } \operatorname{map} & \left(\lambda i \rightarrow \text { fromJust }\left(\text { lookup } i h^{\prime}\right)\right) s^{\prime}
\end{aligned}
\end{aligned}
$$

For the full story, see:

- J. Voigtländer.

Bidirectionalization for Free!
In Principles of Programming Languages, Proceedings. ACM Press, 2009.

What I would like to tell you more about

Technical presentation:

- a constant-complement perspective on my method (rephrasing/deconstructing the POPL paper's approach)
- expanding the scope of semantic bidirectionalization by throwing in additional assumptions
- ideas for future work

