
Yesterday:

put :: [α]→ [α]→ [α]
put s v = let n = (length s)− 1

s ′ = [0..n]
g = zip s ′ s

h = zip (get s ′) v

h′ = h ++ g

in map (λi → fromJust (lookup i h′)) s ′

For the full story, see:

◮ J. Voigtländer.
Bidirectionalization for Free!
In Principles of Programming Languages, Proceedings.
ACM Press, 2009.
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In general, given
get :: S → V

define a V ′ and
compl :: S → V ′

such that
λs → (get s, compl s)

is injective and has an inverse

inv :: (V ,V ′)→ S

Then:
put :: S → V → S

put s v = inv (v , compl s)

Important: compl should “collapse” as much as possible.
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The Constant-Complement Approach

For our setting,
get :: [α]→ [α]

what should be V ′ and

compl :: [α]→ V ′ ???

To make
λs → (get s, compl s)

injective, need to record information discarded by get.

Candidates:

1. length of the source list

2. discarded list elements

For the moment, be maximally conservative with those.
3



The Complement Function

type IntMap α = [(Int, α)]

compl :: [α]→ (Int, IntMap α)
compl s = let n = (length s)− 1

s ′ = [0..n]
g = zip s ′ s

g ′ = filter (λ(i , )→ notElem i (get s ′)) g

in (n + 1, g ′)
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The Complement Function

type IntMap α = [(Int, α)]

compl :: [α]→ (Int, IntMap α)
compl s = let n = (length s)− 1

s ′ = [0..n]
g = zip s ′ s

g ′ = filter (λ(i , )→ notElem i (get s ′)) g

in (n + 1, g ′)

For example:

get = tail  compl “abcde” = (5, [(0, ’a’)])

get = take 3  compl “abcde” = (5, [(3, ’d’), (4, ’e’)])

get = reverse  compl “abcde” = (5, [ ])
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An Inverse of λs → (get s, compl s)

inv :: [α]→ (Int, IntMap α)→ [α]
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inv v (n + 1, g ′) = let s ′ = [0..n]

h = zip (get s ′) v

h′ = h ++ g ′

in map (λi → fromJust (lookup i h′)) s ′

For example:

get = tail  inv “bcde” (5, [(0, ’a’)]) = “abcde”

get = take 3  inv “xyz” (5, [(3, ’d’), (4, ’e’)]) = “xyzde”
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An Inverse of λs → (get s, compl s)

inv :: [α]→ (Int, IntMap α)→ [α]
inv v (n + 1, g ′) = let s ′ = [0..n]

h = zip (get s ′) v

h′ = h ++ g ′

in map (λi → fromJust (lookup i h′)) s ′

For example:

get = tail  inv “bcde” (5, [(0, ’a’)]) = “abcde”

get = take 3  inv “xyz” (5, [(3, ’d’), (4, ’e’)]) = “xyzde”

To prove formally:

◮ inv (get s) (compl s) = s

◮ if inv v c defined, then get (inv v c) = v

◮ if inv v c defined, then compl (inv v c) = c
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Altogether:

type IntMap α = [(Int, α)]

compl :: [α]→ (Int, IntMap α)
compl s = let n = (length s)− 1

s ′ = [0..n]
g = zip s ′ s

g ′ = filter (λ(i , )→ notElem i (get s ′)) g

in (n + 1, g ′)

inv :: [α]→ (Int, IntMap α)→ [α]
inv v (n + 1, g ′) = let s ′ = [0..n]

h = zip (get s ′) v

h′ = h ++ g ′

in map (λi → fromJust (lookup i h′)) s ′

put :: [α]→ [α]→ [α]
put s v = inv v (compl s)
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“Fusion”

Inlining compl and inv into put:

put :: [α]→ [α]→ [α]
put s v = let n = (length s)− 1

s ′ = [0..n]
g = zip s ′ s

g ′ = filter (λ(i , )→ notElem i (get s ′)) g

h = zip (get s ′) v

h′ = h ++ g ′

in map (λi → fromJust (lookup i h′)) s ′

But the “decomposed” perspective via compl and inv better
enables us to develop extensions of the technique!
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Assuming Shape-Injectivity

Our approach to making

λs → (get s, compl s)

injective was to record, via compl, the following information:

1. length of the source list

2. discarded list elements

But for many get-functions it is impossible to have two sources of
different lengths whose views have the same length.

In these cases, recording the length of the original source leads to
unnecessary restrictions.

For example:

get = tail  put “abcde” “xyz” fails, precisely because
compl “abcde” = (5, [(0, ’a’)])
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Assuming Shape-Injectivity

inv :: [α]→ IntMap α → [α]
inv v g ′ = let n = shapeInv (length v)− 1

s ′ = [0..n]
h = zip (get s ′) v

h′ = h ++ g ′

in map (λi → fromJust (lookup i h′)) s ′

But how to obtain shapeInv ???

One possibility: provided by user.

Another possibility:

shapeInv :: Int→ Int
shapeInv l = head [n + 1 | n← [0..], length (get [0..n]) == l ]

10
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Not Quite There, Yet

Works quite nicely in some cases:

get = tail  put “abcde” “xyz” = “axyz”, using
compl “abcde” = [(0, ’a’)]

But not so in others:

get = init  put “abcde” “xyz” fails, because
compl “abcde” = [(4, ’e’)]

The problem: by keeping indices around, compl does not
“collapse enough”.

Note: even without these indices, λs → (get s, compl s)
would be injective.
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Eliminating Indices
compl :: [α]→ [(Int, α)]
compl s = let n = (length s)− 1

s ′ = [0..n]
g = zip s ′ s

g ′ = filter (λ(i , )→ notElem i (get s ′)) g

in g ′
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in map snd g ′

inv :: [α]→ [ α ]→ [α]
inv v c = let n = shapeInv (length v)− 1

s ′ = [0..n]
h = zip (get s ′) v

g ′ = zip (filter (λi → notElem i (get s ′)) s ′) c

h′ = h ++ g ′

in map (λi → fromJust (lookup i h′)) s ′
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Eliminating Indices
compl :: [α]→ [ α ]
compl s = let n = (length s)− 1

s ′ = [0..n]
g = zip s ′ s

g ′ = filter (λ(i , )→ notElem i (get s ′)) g

in map snd g ′

inv :: [α]→ [ α ]→ [α]
inv v c = let n = shapeInv (length v)− 1

s ′ = [0..n]
h = zip (get s ′) v

g ′ = zip (filter (λi → notElem i (get s ′)) s ′) c

h′ = h ++ g ′

in map (λi → fromJust (lookup i h′)) s ′

Now:

get = init  put “abcde” “xyz” = “xyze”
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More Examples

Let get = sieve with:

sieve :: [α]→ [α]
sieve (a : b : cs) = b : sieve cs

sieve = [ ]
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Then:
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put [1..8] [2,−4, 6] = [1, 2, 3,−4, 5, 6]
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Let get = sieve with:

sieve :: [α]→ [α]
sieve (a : b : cs) = b : sieve cs

sieve = [ ]

Then:

put [1..8] [2,−4, 6, 8] = [1, 2, 3,−4, 5, 6, 7, 8]

put [1..8] [2,−4, 6] = [1, 2, 3,−4, 5, 6]

put [1..8] [2,−4, 6, 8, 10, 12] = [1, 2, 3,−4, 5, 6, 7, 8,⊥, 10,⊥, 12]
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More Examples

Let get = sieve with:

sieve :: [α]→ [α]
sieve (a : b : cs) = b : sieve cs

sieve = [ ]

Then:

put [1..8] [2,−4, 6, 8] = [1, 2, 3,−4, 5, 6, 7, 8]

put [1..8] [2,−4, 6] = [1, 2, 3,−4, 5, 6]

put [1..8] [2,−4, 6, 8, 10, 12] = [1, 2, 3,−4, 5, 6, 7, 8,⊥, 10,⊥, 12]

However:

put [1..8] [0, 2,−4, 6, 8] = [1, 0, 3, 2, 5,−4, 7, 6,⊥, 8]
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More Examples

Let get = sieve with:

sieve :: [α]→ [α]
sieve (a : b : cs) = b : sieve cs

sieve = [ ]

Then:

put [1..8] [2,−4, 6, 8] = [1, 2, 3,−4, 5, 6, 7, 8]

put [1..8] [2,−4, 6] = [1, 2, 3,−4, 5, 6]

put [1..8] [2,−4, 6, 8, 10, 12] = [1, 2, 3,−4, 5, 6, 7, 8,⊥, 10,⊥, 12]

However:

put [1..8] [0, 2,−4, 6, 8] = [1, 0, 3, 2, 5,−4, 7, 6,⊥, 8]

Whereas we might have preferred:

put [1..8] [0, 2,−4, 6, 8] = [⊥, 0, 1, 2, 3,−4, 5, 6, 7, 8]
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