
Yesterday:

put :: [α]→ [α]→ [α]
put s v = let n = (length s)− 1

s ′ = [0..n]
g = zip s ′ s

h = zip (get s ′) v

h′ = h ++ g

in map (λi → fromJust (lookup i h′)) s ′

For the full story, see:

◮ J. Voigtländer.
Bidirectionalization for Free!
In Principles of Programming Languages, Proceedings.
ACM Press, 2009.

A Constant-Complement Perspective
on Bidirectionalization for Free

Janis Voigtländer

Technische Universität Dresden

GRACE-BX’08

The Constant-Complement Approach

In general, given
get :: S → V

2

The Constant-Complement Approach

In general, given
get :: S → V

define a V ′ and
compl :: S → V ′

2

The Constant-Complement Approach

In general, given
get :: S → V

define a V ′ and
compl :: S → V ′

such that
λs → (get s, compl s)

is injective

2

The Constant-Complement Approach

In general, given
get :: S → V

define a V ′ and
compl :: S → V ′

such that
λs → (get s, compl s)

is injective and has an inverse

inv :: (V ,V ′)→ S

2

The Constant-Complement Approach

In general, given
get :: S → V

define a V ′ and
compl :: S → V ′

such that
λs → (get s, compl s)

is injective and has an inverse

inv :: (V ,V ′)→ S

Then:
put :: S → V → S

put s v = inv (v , compl s)

2

The Constant-Complement Approach

In general, given
get :: S → V

define a V ′ and
compl :: S → V ′

such that
λs → (get s, compl s)

is injective and has an inverse

inv :: (V ,V ′)→ S

Then:
put :: S → V → S

put s v = inv (v , compl s)

Important: compl should “collapse” as much as possible.

2

The Constant-Complement Approach

For our setting,
get :: [α]→ [α]

what should be V ′ and

compl :: [α]→ V ′ ???

3

The Constant-Complement Approach

For our setting,
get :: [α]→ [α]

what should be V ′ and

compl :: [α]→ V ′ ???

To make
λs → (get s, compl s)

injective, need to record information discarded by get.

3

The Constant-Complement Approach

For our setting,
get :: [α]→ [α]

what should be V ′ and

compl :: [α]→ V ′ ???

To make
λs → (get s, compl s)

injective, need to record information discarded by get.

Candidates:

1. length of the source list

3

The Constant-Complement Approach

For our setting,
get :: [α]→ [α]

what should be V ′ and

compl :: [α]→ V ′ ???

To make
λs → (get s, compl s)

injective, need to record information discarded by get.

Candidates:

1. length of the source list

2. discarded list elements

3

The Constant-Complement Approach

For our setting,
get :: [α]→ [α]

what should be V ′ and

compl :: [α]→ V ′ ???

To make
λs → (get s, compl s)

injective, need to record information discarded by get.

Candidates:

1. length of the source list

2. discarded list elements

For the moment, be maximally conservative with those.
3

The Complement Function

type IntMap α = [(Int, α)]

compl :: [α]→ (Int, IntMap α)
compl s = let n = (length s)− 1

s ′ = [0..n]
g = zip s ′ s

g ′ = filter (λ(i ,)→ notElem i (get s ′)) g

in (n + 1, g ′)

4

The Complement Function

type IntMap α = [(Int, α)]

compl :: [α]→ (Int, IntMap α)
compl s = let n = (length s)− 1

s ′ = [0..n]
g = zip s ′ s

g ′ = filter (λ(i ,)→ notElem i (get s ′)) g

in (n + 1, g ′)

For example:

get = tail compl “abcde” = (5, [(0, ’a’)])

4

The Complement Function

type IntMap α = [(Int, α)]

compl :: [α]→ (Int, IntMap α)
compl s = let n = (length s)− 1

s ′ = [0..n]
g = zip s ′ s

g ′ = filter (λ(i ,)→ notElem i (get s ′)) g

in (n + 1, g ′)

For example:

get = tail compl “abcde” = (5, [(0, ’a’)])

get = take 3 compl “abcde” = (5, [(3, ’d’), (4, ’e’)])

4

The Complement Function

type IntMap α = [(Int, α)]

compl :: [α]→ (Int, IntMap α)
compl s = let n = (length s)− 1

s ′ = [0..n]
g = zip s ′ s

g ′ = filter (λ(i ,)→ notElem i (get s ′)) g

in (n + 1, g ′)

For example:

get = tail compl “abcde” = (5, [(0, ’a’)])

get = take 3 compl “abcde” = (5, [(3, ’d’), (4, ’e’)])

get = reverse compl “abcde” = (5, [])

4

An Inverse of λs → (get s, compl s)

inv :: [α]→ (Int, IntMap α)→ [α]
inv v (n + 1, g ′) = let s ′ = [0..n]

h = zip (get s ′) v

h′ = h ++ g ′

in map (λi → fromJust (lookup i h′)) s ′

5

An Inverse of λs → (get s, compl s)

inv :: [α]→ (Int, IntMap α)→ [α]
inv v (n + 1, g ′) = let s ′ = [0..n]

h = zip (get s ′) v

h′ = h ++ g ′

in map (λi → fromJust (lookup i h′)) s ′

For example:

get = tail inv “bcde” (5, [(0, ’a’)]) = “abcde”

5

An Inverse of λs → (get s, compl s)

inv :: [α]→ (Int, IntMap α)→ [α]
inv v (n + 1, g ′) = let s ′ = [0..n]

h = zip (get s ′) v

h′ = h ++ g ′

in map (λi → fromJust (lookup i h′)) s ′

For example:

get = tail inv “bcde” (5, [(0, ’a’)]) = “abcde”

get = take 3 inv “xyz” (5, [(3, ’d’), (4, ’e’)]) = “xyzde”

5

An Inverse of λs → (get s, compl s)

inv :: [α]→ (Int, IntMap α)→ [α]
inv v (n + 1, g ′) = let s ′ = [0..n]

h = zip (get s ′) v

h′ = h ++ g ′

in map (λi → fromJust (lookup i h′)) s ′

For example:

get = tail inv “bcde” (5, [(0, ’a’)]) = “abcde”

get = take 3 inv “xyz” (5, [(3, ’d’), (4, ’e’)]) = “xyzde”

To prove formally:

◮ inv (get s) (compl s) = s

◮ if inv v c defined, then get (inv v c) = v

◮ if inv v c defined, then compl (inv v c) = c

5

Altogether:

type IntMap α = [(Int, α)]

compl :: [α]→ (Int, IntMap α)
compl s = let n = (length s)− 1

s ′ = [0..n]
g = zip s ′ s

g ′ = filter (λ(i ,)→ notElem i (get s ′)) g

in (n + 1, g ′)

inv :: [α]→ (Int, IntMap α)→ [α]
inv v (n + 1, g ′) = let s ′ = [0..n]

h = zip (get s ′) v

h′ = h ++ g ′

in map (λi → fromJust (lookup i h′)) s ′

put :: [α]→ [α]→ [α]
put s v = inv v (compl s)

6

“Fusion”

Inlining compl and inv into put:

put :: [α]→ [α]→ [α]
put s v = let n = (length s)− 1

s ′ = [0..n]
g = zip s ′ s

g ′ = filter (λ(i ,)→ notElem i (get s ′)) g

h = zip (get s ′) v

h′ = h ++ g ′

in map (λi → fromJust (lookup i h′)) s ′

7

“Fusion”

Inlining compl and inv into put:

put :: [α]→ [α]→ [α]
put s v = let n = (length s)− 1

s ′ = [0..n]
g = zip s ′ s

h = zip (get s ′) v

h′ = h ++ g

in map (λi → fromJust (lookup i h′)) s ′

7

“Fusion”

Inlining compl and inv into put:

put :: [α]→ [α]→ [α]
put s v = let n = (length s)− 1

s ′ = [0..n]
g = zip s ′ s

g ′ = filter (λ(i ,)→ notElem i (get s ′)) g

h = zip (get s ′) v

h′ = h ++ g ′

in map (λi → fromJust (lookup i h′)) s ′

7

“Fusion”

Inlining compl and inv into put:

put :: [α]→ [α]→ [α]
put s v = let n = (length s)− 1

s ′ = [0..n]
g = zip s ′ s

g ′ = filter (λ(i ,)→ notElem i (get s ′)) g

h = zip (get s ′) v

h′ = h ++ g ′

in map (λi → fromJust (lookup i h′)) s ′

But the “decomposed” perspective via compl and inv better
enables us to develop extensions of the technique!

7

Assuming Shape-Injectivity

Our approach to making

λs → (get s, compl s)

injective was to record, via compl, the following information:

1. length of the source list

2. discarded list elements

8

Assuming Shape-Injectivity

Our approach to making

λs → (get s, compl s)

injective was to record, via compl, the following information:

1. length of the source list

2. discarded list elements

But for many get-functions it is impossible to have two sources of
different lengths whose views have the same length.

8

Assuming Shape-Injectivity

Our approach to making

λs → (get s, compl s)

injective was to record, via compl, the following information:

1. length of the source list

2. discarded list elements

But for many get-functions it is impossible to have two sources of
different lengths whose views have the same length.

In these cases, recording the length of the original source leads to
unnecessary restrictions.

For example:

get = tail put “abcde” “xyz” fails

8

Assuming Shape-Injectivity

Our approach to making

λs → (get s, compl s)

injective was to record, via compl, the following information:

1. length of the source list

2. discarded list elements

But for many get-functions it is impossible to have two sources of
different lengths whose views have the same length.

In these cases, recording the length of the original source leads to
unnecessary restrictions.

For example:

get = tail put “abcde” “xyz” fails, precisely because
compl “abcde” = (5, [(0, ’a’)])

8

Assuming Shape-Injectivity

So assume there is a function

shapeInv :: Int→ Int

with, for every source list s,

length s = shapeInv (length (get s))

9

Assuming Shape-Injectivity

So assume there is a function

shapeInv :: Int→ Int

with, for every source list s,

length s = shapeInv (length (get s))

Then:

compl :: [α]→ (Int, IntMap α)
compl s = let n = (length s)− 1

s ′ = [0..n]
g = zip s ′ s

g ′ = filter (λ(i ,)→ notElem i (get s ′)) g

in (n + 1, g ′)

9

Assuming Shape-Injectivity

So assume there is a function

shapeInv :: Int→ Int

with, for every source list s,

length s = shapeInv (length (get s))

Then:

compl :: [α]→ IntMap α

compl s = let n = (length s)− 1
s ′ = [0..n]
g = zip s ′ s

g ′ = filter (λ(i ,)→ notElem i (get s ′)) g

in g ′

9

Assuming Shape-Injectivity

inv :: [α]→ (Int, IntMap α)→ [α]
inv v (n + 1, g ′) = let s ′ = [0..n]

h = zip (get s ′) v

h′ = h ++ g ′

in map (λi → fromJust (lookup i h′)) s ′

10

Assuming Shape-Injectivity

inv :: [α]→ IntMap α → [α]
inv v g ′ = let n = shapeInv (length v)− 1

s ′ = [0..n]
h = zip (get s ′) v

h′ = h ++ g ′

in map (λi → fromJust (lookup i h′)) s ′

10

Assuming Shape-Injectivity

inv :: [α]→ IntMap α → [α]
inv v g ′ = let n = shapeInv (length v)− 1

s ′ = [0..n]
h = zip (get s ′) v

h′ = h ++ g ′

in map (λi → fromJust (lookup i h′)) s ′

But how to obtain shapeInv ???

10

Assuming Shape-Injectivity

inv :: [α]→ IntMap α → [α]
inv v g ′ = let n = shapeInv (length v)− 1

s ′ = [0..n]
h = zip (get s ′) v

h′ = h ++ g ′

in map (λi → fromJust (lookup i h′)) s ′

But how to obtain shapeInv ???

One possibility: provided by user.

10

Assuming Shape-Injectivity

inv :: [α]→ IntMap α → [α]
inv v g ′ = let n = shapeInv (length v)− 1

s ′ = [0..n]
h = zip (get s ′) v

h′ = h ++ g ′

in map (λi → fromJust (lookup i h′)) s ′

But how to obtain shapeInv ???

One possibility: provided by user.

Another possibility:

shapeInv :: Int→ Int
shapeInv l = head [n + 1 | n← [0..], length (get [0..n]) == l]

10

Not Quite There, Yet

Works quite nicely in some cases:

get = tail put “abcde” “xyz” = “axyz”

11

Not Quite There, Yet

Works quite nicely in some cases:

get = tail put “abcde” “xyz” = “axyz”, using
compl “abcde” = [(0, ’a’)]

11

Not Quite There, Yet

Works quite nicely in some cases:

get = tail put “abcde” “xyz” = “axyz”, using
compl “abcde” = [(0, ’a’)]

But not so in others:

get = init put “abcde” “xyz” fails

11

Not Quite There, Yet

Works quite nicely in some cases:

get = tail put “abcde” “xyz” = “axyz”, using
compl “abcde” = [(0, ’a’)]

But not so in others:

get = init put “abcde” “xyz” fails, because
compl “abcde” = [(4, ’e’)]

11

Not Quite There, Yet

Works quite nicely in some cases:

get = tail put “abcde” “xyz” = “axyz”, using
compl “abcde” = [(0, ’a’)]

But not so in others:

get = init put “abcde” “xyz” fails, because
compl “abcde” = [(4, ’e’)]

The problem: by keeping indices around, compl does not
“collapse enough”.

11

Not Quite There, Yet

Works quite nicely in some cases:

get = tail put “abcde” “xyz” = “axyz”, using
compl “abcde” = [(0, ’a’)]

But not so in others:

get = init put “abcde” “xyz” fails, because
compl “abcde” = [(4, ’e’)]

The problem: by keeping indices around, compl does not
“collapse enough”.

Note: even without these indices, λs → (get s, compl s)
would be injective.

11

Eliminating Indices
compl :: [α]→ [(Int, α)]
compl s = let n = (length s)− 1

s ′ = [0..n]
g = zip s ′ s

g ′ = filter (λ(i ,)→ notElem i (get s ′)) g

in g ′

12

Eliminating Indices
compl :: [α]→ [α]
compl s = let n = (length s)− 1

s ′ = [0..n]
g = zip s ′ s

g ′ = filter (λ(i ,)→ notElem i (get s ′)) g

in map snd g ′

12

Eliminating Indices
compl :: [α]→ [α]
compl s = let n = (length s)− 1

s ′ = [0..n]
g = zip s ′ s

g ′ = filter (λ(i ,)→ notElem i (get s ′)) g

in map snd g ′

inv :: [α]→ [(Int, α)]→ [α]
inv v g ′ = let n = shapeInv (length v)− 1

s ′ = [0..n]
h = zip (get s ′) v

h′ = h ++ g ′

in map (λi → fromJust (lookup i h′)) s ′

12

Eliminating Indices
compl :: [α]→ [α]
compl s = let n = (length s)− 1

s ′ = [0..n]
g = zip s ′ s

g ′ = filter (λ(i ,)→ notElem i (get s ′)) g

in map snd g ′

inv :: [α]→ [α]→ [α]
inv v c = let n = shapeInv (length v)− 1

s ′ = [0..n]
h = zip (get s ′) v

g ′ = zip (filter (λi → notElem i (get s ′)) s ′) c

h′ = h ++ g ′

in map (λi → fromJust (lookup i h′)) s ′

12

Eliminating Indices
compl :: [α]→ [α]
compl s = let n = (length s)− 1

s ′ = [0..n]
g = zip s ′ s

g ′ = filter (λ(i ,)→ notElem i (get s ′)) g

in map snd g ′

inv :: [α]→ [α]→ [α]
inv v c = let n = shapeInv (length v)− 1

s ′ = [0..n]
h = zip (get s ′) v

g ′ = zip (filter (λi → notElem i (get s ′)) s ′) c

h′ = h ++ g ′

in map (λi → fromJust (lookup i h′)) s ′

Now:

get = init put “abcde” “xyz” = “xyze”

12

More Examples

Let get = sieve with:

sieve :: [α]→ [α]
sieve (a : b : cs) = b : sieve cs

sieve = []

13

More Examples

Let get = sieve with:

sieve :: [α]→ [α]
sieve (a : b : cs) = b : sieve cs

sieve = []

Then:

put [1..8] [2,−4, 6, 8] = [1, 2, 3,−4, 5, 6, 7, 8]

13

More Examples

Let get = sieve with:

sieve :: [α]→ [α]
sieve (a : b : cs) = b : sieve cs

sieve = []

Then:

put [1..8] [2,−4, 6, 8] = [1, 2, 3,−4, 5, 6, 7, 8]

put [1..8] [2,−4, 6] = [1, 2, 3,−4, 5, 6]

13

More Examples

Let get = sieve with:

sieve :: [α]→ [α]
sieve (a : b : cs) = b : sieve cs

sieve = []

Then:

put [1..8] [2,−4, 6, 8] = [1, 2, 3,−4, 5, 6, 7, 8]

put [1..8] [2,−4, 6] = [1, 2, 3,−4, 5, 6]

put [1..8] [2,−4, 6, 8, 10, 12] = [1, 2, 3,−4, 5, 6, 7, 8,⊥, 10,⊥, 12]

13

More Examples

Let get = sieve with:

sieve :: [α]→ [α]
sieve (a : b : cs) = b : sieve cs

sieve = []

Then:

put [1..8] [2,−4, 6, 8] = [1, 2, 3,−4, 5, 6, 7, 8]

put [1..8] [2,−4, 6] = [1, 2, 3,−4, 5, 6]

put [1..8] [2,−4, 6, 8, 10, 12] = [1, 2, 3,−4, 5, 6, 7, 8,⊥, 10,⊥, 12]

However:

put [1..8] [0, 2,−4, 6, 8] = [1, 0, 3, 2, 5,−4, 7, 6,⊥, 8]

13

More Examples

Let get = sieve with:

sieve :: [α]→ [α]
sieve (a : b : cs) = b : sieve cs

sieve = []

Then:

put [1..8] [2,−4, 6, 8] = [1, 2, 3,−4, 5, 6, 7, 8]

put [1..8] [2,−4, 6] = [1, 2, 3,−4, 5, 6]

put [1..8] [2,−4, 6, 8, 10, 12] = [1, 2, 3,−4, 5, 6, 7, 8,⊥, 10,⊥, 12]

However:

put [1..8] [0, 2,−4, 6, 8] = [1, 0, 3, 2, 5,−4, 7, 6,⊥, 8]

Whereas we might have preferred:

put [1..8] [0, 2,−4, 6, 8] = [⊥, 0, 1, 2, 3,−4, 5, 6, 7, 8]

13

	Free Theorems for Bidirectional Transformation
	The Constant-Complement Approach
	Expanding the Scope of Semantic Bidirectionalization

