Type-Based Reasoning and Imprecise Errors

Janis Voigtländer

Technische Universität Dresden
March 6th, 2009

Polymorphic Types: An Example in Haskell

A standard function:

$$
\begin{array}{ll}
\operatorname{map} f[] & =[] \\
\operatorname{map} f(a: a s) & =(f a):(\operatorname{map} f a s)
\end{array}
$$

Polymorphic Types: An Example in Haskell

A standard function:

$$
\begin{array}{ll}
\operatorname{map} f[] & =[] \\
\operatorname{map} f(a: a s) & =\left(\begin{array}{l}
f a):(\operatorname{map} f a s)
\end{array}\right.
\end{array}
$$

Some invocations:
map succ $[1,2,3]=[2,3,4]$

Polymorphic Types: An Example in Haskell

A standard function:

$$
\begin{array}{ll}
\operatorname{map} f[] & =[] \\
\operatorname{map} f(a: a s) & =(f a):(\operatorname{map} f a s)
\end{array}
$$

Some invocations:
map succ $[1,2,3]=[2,3,4]$
map not $[$ True, False] $=[$ False, True $]$

Polymorphic Types: An Example in Haskell

A standard function:

$$
\begin{aligned}
& \operatorname{map} f[] \\
& \operatorname{map} f(a: a s)=[] \\
& =(f a):(\operatorname{map} f a s)
\end{aligned}
$$

Some invocations:
map succ $[1,2,3]=[2,3,4]$
map not $[$ True, False] $=[$ False, True $]$
map even $[1,2,3]=[$ False, True, False $]$

Polymorphic Types: An Example in Haskell

A standard function:

$$
\begin{aligned}
& \operatorname{map} f[]=[] \\
& \operatorname{map} f(a: a s)=(f a):(\operatorname{map} f a s)
\end{aligned}
$$

Some invocations:
map succ $[1,2,3]=[2,3,4]$
map not $[$ True, False] $=[$ False, True $]$
map even $[1,2,3]=[$ False, True, False $]$
map not $[1,2,3]$

Polymorphic Types: An Example in Haskell

A standard function:

$$
\begin{aligned}
& \operatorname{map}::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta] \\
& \operatorname{map} f[]=[] \\
& \operatorname{map} f(a: a s)=(f a):(\operatorname{map} f a s)
\end{aligned}
$$

Some invocations:
$\operatorname{map} \operatorname{succ}[1,2,3]=[2,3,4]$
map not $[$ True, False $]=[$ False, True $]$
map even $[1,2,3]=[$ False, True, False $]$
map not $[1,2,3]$

Polymorphic Types: An Example in Haskell

A standard function:

$$
\begin{aligned}
& \operatorname{map}::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta] \\
& \operatorname{map} f[]=[] \\
& \operatorname{map} f(a: a s)=(f a):(\operatorname{map} f a s)
\end{aligned}
$$

Some invocations:

$$
\begin{array}{lll}
\operatorname{map} \text { succ }[1,2,3] & =[2,3,4] & -\alpha, \beta \mapsto \operatorname{Int}, \text { Int } \\
\text { map not }[\text { True, False }]=[\text { False, True }] & \\
\text { map even }[1,2,3] & =[\text { False, True, False }] & \\
\text { map not }[1,2,3] &
\end{array}
$$

Polymorphic Types: An Example in Haskell

A standard function:

$$
\begin{aligned}
& \operatorname{map}::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta] \\
& \operatorname{map} f[]=[] \\
& \operatorname{map} f(a: a s)=(f a):(\operatorname{map} f a s)
\end{aligned}
$$

Some invocations:

$$
\begin{array}{lll}
\operatorname{map} \text { succ }[1,2,3] & =[2,3,4] & -\alpha, \beta \mapsto \operatorname{Int}, \text { Int } \\
\text { map not }[\text { True, False }]=[\text { False, True }] & -\alpha, \beta \mapsto \text { Bool, B } \\
\text { map even }[1,2,3] & =[\text { False, True, False }] & \\
\text { map not }[1,2,3] & &
\end{array}
$$

Polymorphic Types: An Example in Haskell

A standard function:

$$
\begin{aligned}
& \operatorname{map}::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta] \\
& \operatorname{map} f[]=[] \\
& \operatorname{map} f(a: a s)=(f a):(\operatorname{map} f a s)
\end{aligned}
$$

Some invocations:

$$
\begin{array}{lll}
\operatorname{map} \operatorname{succ}[1,2,3] & =[2,3,4] & -\alpha, \beta \mapsto \operatorname{Int}, \text { Int } \\
\text { map not }[\text { True, False }]=[\text { False, True }] & -\alpha, \beta \mapsto \text { Bool, Bool } \\
\text { map even }[1,2,3] & =[\text { False, True, False }] & -\alpha, \beta \mapsto \text { Int, Bool } \\
\text { map not }[1,2,3] & &
\end{array}
$$

Polymorphic Types: An Example in Haskell

A standard function:

$$
\begin{aligned}
& \operatorname{map}::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta] \\
& \operatorname{map} f[]=[] \\
& \operatorname{map} f(a: a s)=(f a):(\operatorname{map} f a s)
\end{aligned}
$$

Some invocations:

$$
\begin{array}{lll}
\operatorname{map} \operatorname{succ}[1,2,3] & =[2,3,4] & -\alpha, \beta \mapsto \operatorname{Int}, \text { Int } \\
\text { map not }[\text { True, False }] & =[\text { False, True }] & -\alpha, \beta \mapsto \text { Bool, Bool } \\
\text { map even }[1,2,3] & =[\text { False, True, False }] & -\alpha, \beta \mapsto \text { Int, Bool } \\
\text { map not }[1,2,3] & \& \text { rejected at compile-time }
\end{array}
$$

Another Example

```
takeWhile :: (\alpha B Bool) }->[\alpha]->[\alpha
takeWhile p[] = []
takeWhile p (a:as) | pa= =a:(takeWhile pas)
otherwise = []
```


Another Example

$$
\begin{aligned}
& \text { takeWhile }:(\alpha \rightarrow \text { Bool }) \rightarrow[\alpha] \rightarrow[\alpha] \\
& \text { takeWhile } p[]=[] \\
& \text { takeWhile } p(a: a s) \left\lvert\, \begin{array}{ll}
& p a \quad=a:(\text { takeWhile } p \text { as }) \\
& \text { otherwise }=[]
\end{array}\right.
\end{aligned}
$$

For every choice of p, f, and I :

$$
\text { takeWhile } p(\operatorname{map} f I)=\operatorname{map} f(\text { takeWhile }(p \circ f) I)
$$

Provable by induction.

Another Example

$$
\begin{aligned}
& \text { takeWhile }:(\alpha \rightarrow \text { Bool }) \rightarrow[\alpha] \rightarrow[\alpha] \\
& \text { takeWhile } p[]=[] \\
& \text { takeWhile } p(a: a s) \left\lvert\, \begin{array}{ll}
& p a \quad=a:(\text { takeWhile } p \text { as }) \\
& \text { otherwise }=[]
\end{array}\right.
\end{aligned}
$$

For every choice of p, f, and I :

$$
\text { takeWhile } p(\operatorname{map} f I)=\operatorname{map} f(\text { takeWhile }(p \circ f) I)
$$

Provable by induction.
Or as a "free theorem" [Wadler, FPCA'89].

Another Example

$$
\text { takeWhile }::(\alpha \rightarrow \text { Bool }) \rightarrow[\alpha] \rightarrow[\alpha]
$$

For every choice of p, f, and I :

$$
\text { takeWhile } p(\operatorname{map} f I)=\operatorname{map} f(\text { takeWhile }(p \circ f) I)
$$

Provable by induction.
Or as a "free theorem" [Wadler, FPCA'89].

Another Example

$$
\begin{aligned}
& \text { takeWhile }:: ~(\alpha \rightarrow \text { Bool }) \rightarrow[\alpha] \rightarrow[\alpha] \\
& \quad \text { filter }::(\alpha \rightarrow \text { Bool }) \rightarrow[\alpha] \rightarrow[\alpha]
\end{aligned}
$$

For every choice of p, f, and I :

$$
\begin{aligned}
\text { takeWhile } p(\operatorname{map} f l) & =\operatorname{map} f(\text { takeWhile }(p \circ f) I) \\
\text { filter } p(\operatorname{map} f l) & =\operatorname{map} f(\text { filter }(p \circ f) I)
\end{aligned}
$$

Another Example

$$
\begin{aligned}
& \text { takeWhile }::(\alpha\rightarrow \text { Bool }) \\
& \text { filter }::(\alpha]\rightarrow \text { Bool }) \\
& \text { g }::[\alpha] \\
&(\alpha\rightarrow \text { Bool })
\end{aligned} \rightarrow[\alpha] \rightarrow[\alpha] .[\alpha]
$$

For every choice of p, f, and I :

$$
\begin{aligned}
\text { takeWhile } p(\operatorname{map} f l) & =\operatorname{map} f(\operatorname{takeWhile}(p \circ f) I) \\
\text { filter } p(\operatorname{map} f I) & =\operatorname{map} f(\text { filter }(p \circ f) I) \\
g p(\operatorname{map} f l) & =\operatorname{map} f(\mathrm{~g}(p \circ f) I)
\end{aligned}
$$

Why, Intuitively

- $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.

Why, Intuitively

- $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list $/$.

Why, Intuitively

- $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list l.
- Which, and in which order/multiplicity, can only be decided based on I and the input predicate p.

Why, Intuitively

- $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list l.
- Which, and in which order/multiplicity, can only be decided based on I and the input predicate p.
- The only means for this decision are to inspect the length of I and to check the outcome of p on its elements.

Why, Intuitively

- $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list l.
- Which, and in which order/multiplicity, can only be decided based on $/$ and the input predicate p.
- The only means for this decision are to inspect the length of I and to check the outcome of p on its elements.
- The lists (map $f /$) and I always have equal length.

Why, Intuitively

- $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list l.
- Which, and in which order/multiplicity, can only be decided based on I and the input predicate p.
- The only means for this decision are to inspect the length of I and to check the outcome of p on its elements.
- The lists (map $f I$) and I always have equal length.
- Applying p to an element of (map $f l$) always has the same outcome as applying $(p \circ f)$ to the corresponding element of I.

Why, Intuitively

- $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list l.
- Which, and in which order/multiplicity, can only be decided based on $/$ and the input predicate p.
- The only means for this decision are to inspect the length of I and to check the outcome of p on its elements.
- The lists (map $f I$) and I always have equal length.
- Applying p to an element of (map $f l$) always has the same outcome as applying $(p \circ f)$ to the corresponding element of I.
- g with p always chooses "the same" elements from (map $f l$) for output as does g with $(p \circ f)$ from I,

Why, Intuitively

- $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list l.
- Which, and in which order/multiplicity, can only be decided based on $/$ and the input predicate p.
- The only means for this decision are to inspect the length of I and to check the outcome of p on its elements.
- The lists (map $f I$) and I always have equal length.
- Applying p to an element of (map $f l$) always has the same outcome as applying $(p \circ f)$ to the corresponding element of I.
- g with p always chooses "the same" elements from (map $f l$) for output as does g with $(p \circ f)$ from l, except that it outputs their images under f.

Why, Intuitively

- $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list I.
- Which, and in which order/multiplicity, can only be decided based on $/$ and the input predicate p.
- The only means for this decision are to inspect the length of I and to check the outcome of p on its elements.
- The lists (map $f I$) and I always have equal length.
- Applying p to an element of (map $f l$) always has the same outcome as applying $(p \circ f)$ to the corresponding element of I.
- g with p always chooses "the same" elements from (map $f l$) for output as does g with $(p \circ f)$ from l, except that it outputs their images under f.
- $(\mathrm{g} p(\operatorname{map} f l))$ is equivalent to $(\operatorname{map} f(\mathrm{~g}(p \circ f) I))$.

Why, Intuitively

- $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list I.
- Which, and in which order/multiplicity, can only be decided based on $/$ and the input predicate p.
- The only means for this decision are to inspect the length of I and to check the outcome of p on its elements.
- The lists (map $f I$) and I always have equal length.
- Applying p to an element of (map $f l$) always has the same outcome as applying $(p \circ f)$ to the corresponding element of I.
- g with p always chooses "the same" elements from (map $f l$) for output as does g with $(p \circ f)$ from l, except that it outputs their images under f.
- $(\mathrm{g} p(\operatorname{map} f /))$ is equivalent to $(\operatorname{map} f(\mathrm{~g}(p \circ f) I))$.
- That is what was claimed!

Automatic Generation of Free Theorems

At http://linux.tcs.inf.tu-dresden.de/~voigt/ft:

This tool allows to generate free theorems for sublanguages of Haskell as described here.
The source code of the underlying library and a shell-based application using it is available here and here.

Please enter a (polymorphic) type, e.g. "(a -> Bool) -> [a] -> [a]" or simply "filter":
|g :: (a -> Bool) -> [a] -> [a]
Please choose a sublanguage of Haskell:

- no bottoms (hence no general recursion and no selective strictness)
© general recursion but no selective strictness
\bullet general recursion and selective strictness
Please choose a theorem style (without effect in the sublanguage with no bottoms):
- equational
\odot inequational
Generate

Automatic Generation of Free Theorems

The theorem generated for functions of the type

```
g :: forall a . (a -> Bool) -> [a] -> [a]
```

in the sublanguage of Haskell with no bottoms is:

```
forall t1,t2 in TYPES, R in REL(t1,t2).
    forall p :: t1 -> Bool.
    forall q :: t2 -> Bool.
        (forall (x, y) in R. p x = q y)
        ==> (forall (z, v) in lift{[]}(R).
            (g p z,g q v) in lift{[]}(R))
```

The structural lifting occurring therein is defined as follows:

```
lift{[]}(R)
    ={([], [])}
    u {(x: xs, y : ys) |
        ((x, y) in R) && ((xs, ys) in lift{[]}(R))}
```

Reducing all permissible relation variables to functions yields:

```
forall t1,t2 in TYPES, f :: t1 -> t2.
    forall p :: t1 -> Bool.
        forall q :: t2 -> Bool.
        (forall x :: tl. p x = q (f x))
        ==> (forall y :: [tl]. map f (g p y) =g q (map f y))
```


DFG-Project VO 1512/1-1

DFG-Project VO 1512/1-1

Where is the Problem?

- $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.

Where is the Problem?

- $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list I.

Where is the Problem?

- $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list I.
\& Not true! Also possible: \perp

Where is the Problem?

- $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list I.
\& Not true! Also possible: \perp
- Which, and in which order/multiplicity, can only be decided based on I and the input predicate p.

Where is the Problem?

- $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list l.
\& Not true! Also possible: \perp
- Which, and in which order/multiplicity, can only be decided based on I and the input predicate p.
- The only means for this decision are to inspect the length of I and to check the outcome of p on its elements.

Where is the Problem?

- $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list l.
\& Not true! Also possible: \perp
- Which, and in which order/multiplicity, can only be decided based on I and the input predicate p.
- The only means for this decision are to inspect the length of I and to check the outcome of p on its elements.
\& Not true! Also possible:
- checking elements from / for being \perp
- checking p for being \perp
- checking outcome of p on \perp

Where is the Problem?

- $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list l.
\& Not true! Also possible: \perp
- Which, and in which order/multiplicity, can only be decided based on I and the input predicate p.
- The only means for this decision are to inspect the length of I and to check the outcome of p on its elements.
\& Not true! Also possible:
- checking elements from / for being \perp
- checking p for being \perp
- checking outcome of p on \perp

Revising Free Theorems

[Wadler, FPCA'89] : for every $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$,

$$
\operatorname{g} p(\operatorname{map} f I)=\operatorname{map} f(g(p \circ f) I)
$$

Revising Free Theorems

$[$ Wadler, FPCA'89] : for every $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$,

$$
g p(\operatorname{map} f l)=\operatorname{map} f(g(p \circ f) I)
$$

[Johann \& V., POPL'04] : in Haskell only provable if:

- $p \neq \perp$,
- f strict $(f \perp=\perp)$, and
- f total $(\forall x \neq \perp . f x \neq \perp)$.

Revising Free Theorems

[Wadler, FPCA'89] : for every $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$,

$$
g p(\operatorname{map} f l)=\operatorname{map} f(g(p \circ f) I)
$$

[Johann \& V., POPL'04] : in Haskell only provable if:

- $p \neq \perp$,
- f strict $(f \perp=\perp)$, and
- f total $(\forall x \neq \perp . f x \neq \perp)$.
[Johann \& V., I\&C'09] : taking finite failures into account

Revising Free Theorems

[Wadler, FPCA'89] : for every $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$,

$$
g p(\operatorname{map} f l)=\operatorname{map} f(g(p \circ f) I)
$$

[Johann \& V., POPL'04] : in Haskell only provable if:

- $p \neq \perp$,
- f strict $(f \perp=\perp)$, and
- f total $(\forall x \neq \perp . f x \neq \perp)$.
[Johann \& V., I\&C'09] : taking finite failures into account
[Stenger \& V., TR] : taking imprecise error semantics into account

Errors in Haskell

- let average $I=\operatorname{div}(\operatorname{sum} /)$ (length $/$) in average []

Errors in Haskell

- let average $I=\operatorname{div}($ sum $/$) (length $/$) in average []
- let tail (a: as) $=a s$ in tail[]

Errors in Haskell

- let average $I=\operatorname{div}($ sum $I)$ (length I) in average []
- let tail (a: as) $=a s$ in tail []
- if ... then error "some string" else ...

Errors in Haskell

- let average $I=\operatorname{div}($ sum $/$) (length $/$) in average []
- let tail $(a: a s)=a s$ in tail []
- if ... then error "some string" else ...
- let loop = loop in loop

Errors in Haskell

- let average $I=\operatorname{div}($ sum $/$) (length $/$) in average []
- let tail (a:as) =as in tail []
- if ... then error "some string" else ...
- let loop = loop in loop

Traditionally, all error causes subsumed under \perp.

Errors in Haskell

- let average $I=\operatorname{div}($ sum $/$) (length $/$) in average []
- let tail $(a: a s)=a s$ in tail []
- if ... then error "some string" else ...
- let loop = loop in loop

Traditionally, all error causes subsumed under \perp.
Better, explicit distinction. Like:
Ok v : nonerroneous
Bad "..." : finitely failing
\perp : nonterminating

Propagation of Errors

- tail $[1 / 0,2.5] \rightsquigarrow$ Ok [Ok 2.5]

Propagation of Errors

- tail $[1 / 0,2.5] \rightsquigarrow$ Ok [Ok 2.5]
- $(\lambda x \rightarrow 3)$ (error "...") \rightsquigarrow Ok 3

Propagation of Errors

- tail [1/0, 2.5] \rightsquigarrow Ok [Ok 2.5]
- $(\lambda x \rightarrow 3)$ (error "...") \rightsquigarrow Ok 3
- (error s) (...) $\rightsquigarrow B$ Bad s

Propagation of Errors

- tail [1/0, 2.5] \rightsquigarrow Ok [Ok 2.5]
- $(\lambda x \rightarrow 3)$ (error "...") \rightsquigarrow Ok 3
- (error s) (...) $\rightsquigarrow B a d s$
- case (error s) of $\{\cdots\} \rightsquigarrow$ Bad s

Propagation of Errors

- tail [1/0, 2.5] \rightsquigarrow Ok [Ok 2.5]
- $(\lambda x \rightarrow 3)$ (error "...") \rightsquigarrow Ok 3
- (error s) (...) $\rightsquigarrow B$ Bad s
- case (error s) of $\{\cdots\} \rightsquigarrow$ Bad s
- (error $\left.s_{1}\right)+\left(\right.$ error $\left.s_{2}\right) \rightsquigarrow$???

Propagation of Errors

- tail [1/0, 2.5] \rightsquigarrow Ok [Ok 2.5]
- $(\lambda x \rightarrow 3)$ (error "...") \rightsquigarrow Ok 3
- (error s) (...) $\rightsquigarrow B a d s$
- case (error s) of $\{\cdots\} \rightsquigarrow$ Bad s
- (error $\left.s_{1}\right)+\left(\right.$ error $\left.s_{2}\right) \rightsquigarrow$???

Dependence on evaluation order leads to considerably less freedom for implementors to rearrange computations, to optimise!

Imprecise Error Semantics [Peyton Jones et al., PLDI'99]

Basic idea:
Ok v : nonerroneous
Bad $\{\cdots\}$: finitely failing, nondeterministic
\perp : nonterminating

Imprecise Error Semantics [Peyton Jones et al., PLDI'99]

Basic idea:

Ok v : nonerroneous
Bad $\{\cdots\}$: finitely failing, nondeterministic
\perp : nonterminating

Definedness order:

Imprecise Error Semantics [Peyton Jones et al., PLDI'99]

Basic idea:

Ok v : nonerroneous
Bad $\{\cdots\}$: finitely failing, nondeterministic
\perp : nonterminating

Definedness order:

Imprecise Error Semantics [Peyton Jones et al., PLDI'99]

Propagation of Errors:

- (error $\left.s_{1}\right)+\left(\right.$ error $\left.s_{2}\right) \rightsquigarrow B a d\left\{s_{1}, s_{2}\right\}$

Imprecise Error Semantics [Peyton Jones et al., PLDI'99]

Propagation of Errors:

- $\left(\right.$ error $\left.s_{1}\right)+\left(\right.$ error $\left.s_{2}\right) \rightsquigarrow B a d\left\{s_{1}, s_{2}\right\}$
$-3+(\operatorname{error} s) \rightsquigarrow B a d\{s\}$

Imprecise Error Semantics [Peyton Jones et al., PLDI'99]

Propagation of Errors:

- $\left(\right.$ error $\left.s_{1}\right)+\left(\right.$ error $\left.s_{2}\right) \rightsquigarrow B a d\left\{s_{1}, s_{2}\right\}$
- $3+(\operatorname{error} s) \rightsquigarrow B a d\{s\}$
- loop $+($ error $s) \rightsquigarrow \perp$

Imprecise Error Semantics [Peyton Jones et al., PLDI'99]

Propagation of Errors:

- $\left(\right.$ error $\left.s_{1}\right)+\left(\right.$ error $\left.s_{2}\right) \rightsquigarrow B a d\left\{s_{1}, s_{2}\right\}$
- $3+(\operatorname{error} s) \rightsquigarrow B a d\{s\}$
- loop $+($ error $s) \rightsquigarrow \perp$
- (error $\left.s_{1}\right)\left(\right.$ error $\left.s_{2}\right) \rightsquigarrow B \operatorname{Bad}\left\{s_{1}, s_{2}\right\}$

Imprecise Error Semantics [Peyton Jones et al., PLDI'99]

Propagation of Errors:

- $\left(\right.$ error $\left.s_{1}\right)+\left(\right.$ error $\left.s_{2}\right) \rightsquigarrow B a d\left\{s_{1}, s_{2}\right\}$
$-3+(\operatorname{error} s) \rightsquigarrow B a d\{s\}$
- loop $+($ error $s) \rightsquigarrow \perp$
- (error $\left.s_{1}\right)\left(\right.$ error $\left.s_{2}\right) \rightsquigarrow B$ ad $\left\{s_{1}, s_{2}\right\}$
- $(\lambda x \rightarrow 3)$ (error $s) \rightsquigarrow$ Ok 3

Imprecise Error Semantics [Peyton Jones et al., PLDI'99]

Propagation of Errors:

- $\left(\right.$ error $\left.s_{1}\right)+\left(\right.$ error $\left.s_{2}\right) \rightsquigarrow B a d\left\{s_{1}, s_{2}\right\}$
$-3+(\operatorname{error} s) \rightsquigarrow B a d\{s\}$
- loop $+($ error $s) \rightsquigarrow \perp$
- (error $\left.s_{1}\right)\left(\right.$ error $\left.s_{2}\right) \rightsquigarrow B a d\left\{s_{1}, s_{2}\right\}$
- $(\lambda x \rightarrow 3)$ (error $s) \rightsquigarrow$ Ok 3
- case (error s_{1}) of $\left\{(x, y) \rightarrow\right.$ error $\left.s_{2}\right\} \rightsquigarrow \operatorname{Bad}\left\{s_{1}, s_{2}\right\}$

Impact on Program Equivalence

"Normally":
takeWhile $p(\operatorname{map} f I)=\operatorname{map} f($ takeWhile $(p \circ f) I)$
where:

$$
\begin{aligned}
& \text { takeWhile }::(\alpha \rightarrow \text { Bool }) \rightarrow[\alpha] \rightarrow[\alpha] \\
& \text { takeWhile } p[]=[] \\
& \text { takeWhile } p(a: a s) \left\lvert\, \begin{array}{ll}
p a r & =a:(\text { takeWhile } p \text { as }) \\
& \text { otherwise }
\end{array}=[]\right.
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{map}::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta] \\
& \operatorname{map} f[]=[] \\
& \operatorname{map} f(a: a s)=\left(\begin{array}{ll}
f a
\end{array}\right):\left(\begin{array}{l}
\text { map } f a s)
\end{array}\right.
\end{aligned}
$$

Impact on Program Equivalence

"Normally":
takeWhile $p(\operatorname{map} f I)=\operatorname{map} f($ takeWhile $(p \circ f) I)$ where:

$$
\operatorname{map}::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta]
$$

$$
\operatorname{map} f[]=[]
$$

$$
\operatorname{map} f(a: a s)=(f a):(\operatorname{map} f a s)
$$

But now:
takeWhile null (map tail (error s))
$\stackrel{\neq}{\neq} \quad$ map tail (takeWhile (null otail) (error s))

$$
\begin{aligned}
& \text { takeWhile }::(\alpha \rightarrow \text { Bool }) \rightarrow[\alpha] \rightarrow[\alpha] \\
& \text { takeWhile } p \text { [] }=[] \\
& \text { takeWhile } p(a: a s) \mid p a \quad=a:(\text { takeWhile } p \text { as) } \\
& \text { otherwise }=[]
\end{aligned}
$$

Impact on Program Equivalence

"Normally":
takeWhile $p(\operatorname{map} f I)=\operatorname{map} f($ takeWhile $(p \circ f) I)$ where:

$$
\begin{aligned}
& \text { takeWhile }::(\alpha \rightarrow \text { Bool }) \rightarrow[\alpha] \rightarrow[\alpha] \\
& \text { takeWhile } p[]=[] \\
& \text { takeWhile } p(a: a s) \left\lvert\, \begin{array}{ll}
\mid & p a \quad=a:(\text { takeWhile } p a s) \\
\mid & \text { otherwise }=[]
\end{array}\right.
\end{aligned}
$$

$$
\operatorname{map}::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta]
$$

$$
\operatorname{map} f[] \quad=[]
$$

$$
\operatorname{map} f(a: a s)=(f a):(\operatorname{map} f a s)
$$

But now:
takeWhile null (map tail (error s)) \&s
$\stackrel{\neq}{ } \quad$ map tail (takeWhile (null otail) (error $s)$) \&s or 4 "empty list"

Impact on Program Equivalence

Because:

```
takeWhile (nullotail) (error s) \rightsquigarrow Bad {s, "empty list"}
```

where:

$$
\begin{aligned}
& \text { takeWhile } p \text { [] }=[] \\
& \text { takeWhile } p(a: a s) \mid p a \quad=a:(\text { takeWhile } p a s) \\
& \text { otherwise }=[] \\
& \text { tail [] = error "empty list" } \\
& \operatorname{tail}(a: a s)=a s \\
& \text { null [] = True } \\
& \text { null (} a: a s)=\text { False }
\end{aligned}
$$

Impact on Program Equivalence

Because:
takeWhile (nullotail) (error s) $\rightsquigarrow B$ ad $\{s$, "empty list" $\}$
where:

$$
\begin{aligned}
& \text { takeWhile } p \text { [] }=[] \\
& \text { takeWhile } p(a: a s) \mid p a \quad=a:(\text { takeWhile } p a s) \\
& \text { otherwise }=[] \\
& \text { tail [] = error "empty list" } \\
& \operatorname{tail}(a: a s)=a s \\
& \text { null [] } \quad=\text { True } \\
& \text { null (} a: a s)=\text { False }
\end{aligned}
$$

Impact on Program Equivalence

Because:
takeWhile (nullotail) (error s) $\rightsquigarrow B$ ad $\{s$, "empty list" $\}$
where:

$$
\begin{aligned}
& \text { takeWhile } p \text { [] }=[] \\
& \text { takeWhile } p(a: a s) \mid p a \quad=a:(\text { takeWhile } p a s) \\
& \text { otherwise }=[] \\
& \text { tail [] = error "empty list" } \\
& \operatorname{tail}(a: a s)=a s \\
& \text { null [] = True } \\
& \text { null (} a: a s)=\text { False }
\end{aligned}
$$

Impact on Program Equivalence

Because:

```
takeWhile (nullotail) (error s) \rightsquigarrow Bad {s, "empty list"}
```

where:

$$
\begin{aligned}
& \text { takeWhile } p \text { [] }=[] \\
& \text { takeWhile } p(a: a s) \mid p a \quad=a:(\text { takeWhile } p a s) \\
& \text { otherwise }=[] \\
& \text { tail [] = error "empty list" } \\
& \operatorname{tail}(a: a s)=a s \\
& \text { null [] } \quad=\text { True } \\
& \text { null (} a: a s)=\text { False }
\end{aligned}
$$

Impact on Program Equivalence

Because:
takeWhile (nullotail) (error s) $\rightsquigarrow B$ ad $\{s$, "empty list" $\}$
where:

$$
\begin{aligned}
& \text { takeWhile } p \text { [] }=[] \\
& \text { takeWhile } p(a: a s) \mid p a \quad=a:(\text { takeWhile } p a s) \\
& \text { otherwise }=[] \\
& \text { tail [] = error "empty list" } \\
& \operatorname{tail}(a: a s)=a s \\
& \text { null [] = True } \\
& \text { null (} a: a s)=\text { False }
\end{aligned}
$$

Impact on Program Equivalence

Because:
takeWhile (nullotail) (error s) $\rightsquigarrow B$ ad $\{s$, "empty list" $\}$
where:

$$
\begin{aligned}
& \text { takeWhile } p \text { [] }=[] \\
& \text { takeWhile } p(a: a s) \mid p a \quad=a:(\text { takeWhile } p a s) \\
& \text { otherwise }=[] \\
& \text { tail [] = error "empty list" } \\
& \operatorname{tail}(a: a s)=a s \\
& \text { null [] = True } \\
& \text { null (} a: a s)=\text { False }
\end{aligned}
$$

Impact on Program Equivalence

Because:
takeWhile (nullotail) (error s) $\rightsquigarrow B$ ad $\{s$, "empty list" $\}$
where:

$$
\begin{aligned}
& \text { takeWhile } p \text { [] } \quad=[] \\
& \text { takeWhile } p(a: a s) \mid p a \quad=a:(\text { takeWhile } p a s) \\
& \text { otherwise }=[] \\
& \text { tail [] = error "empty list" } \\
& \operatorname{tail}(a: a s)=a s \\
& \text { null [] } \quad=\text { True } \\
& \text { null (} a: a s)=\text { False }
\end{aligned}
$$

Impact on Program Equivalence

Because:
takeWhile (nullotail) (error s) $\rightsquigarrow B$ ad $\{s$, "empty list" $\}$ while:

$$
\text { takeWhile null (map tail (error s)) } \rightsquigarrow B a d\{s\}
$$

where:

$$
\begin{aligned}
& \text { takeWhile } p \text { [] } \quad=[] \\
& \text { takeWhile } p(a: a s) \mid p a \quad=a:(\text { takeWhile } p a s) \\
& \text { otherwise }=[] \\
& \operatorname{map} f[] \quad=[] \\
& \operatorname{map} f(a: a s)=(f a):(\operatorname{map} f a s) \\
& \text { null [] } \quad=\text { True } \\
& \text { null }(a: a s)=\text { False }
\end{aligned}
$$

Impact on Program Equivalence

Because:
takeWhile (nullotail) (error s) $\rightsquigarrow B$ ad $\{s$, "empty list" $\}$ while:

$$
\text { takeWhile null (map tail (error s)) } \rightsquigarrow B a d\{s\}
$$

where:

$$
\begin{aligned}
& \text { takeWhile } p \text { [] } \quad=[] \\
& \text { takeWhile } p(a: a s) \mid p a \quad=a:(\text { takeWhile } p a s) \\
& \text { otherwise }=[] \\
& \operatorname{map} f[] \quad=[] \\
& \operatorname{map} f(a: a s)=(f a):(\operatorname{map} f a s) \\
& \text { null [] } \quad=\text { True } \\
& \text { null }(a: a s)=\text { False }
\end{aligned}
$$

Impact on Program Equivalence

Because:
takeWhile (nullotail) (error s) $\rightsquigarrow B$ ad $\{s$, "empty list" $\}$ while:

$$
\text { takeWhile null (map tail (error s)) } \rightsquigarrow B a d\{s\}
$$

where:

$$
\begin{aligned}
& \text { takeWhile } p \text { [] } \quad=[] \\
& \text { takeWhile } p(a: a s) \mid p a \quad=a:(\text { takeWhile } p a s) \\
& \text { otherwise }=[] \\
& \operatorname{map} f[] \quad=[] \\
& \operatorname{map} f(a: a s)=(f a):(\operatorname{map} f a s) \\
& \text { null [] = True } \\
& \text { null }(a: a s)=\text { False }
\end{aligned}
$$

Impact on Program Equivalence

Because:
takeWhile (nullotail) (error s) $\rightsquigarrow B$ ad $\{s$, "empty list" $\}$ while:

$$
\text { takeWhile null (map tail (error } s \text {)) } \rightsquigarrow B \text { ad }\{s\}
$$

where:

$$
\begin{aligned}
& \text { takeWhile } p \text { [] }=[] \\
& \text { takeWhile } p(a: a s) \mid p a \quad=a:(\text { takeWhile } p a s) \\
& \text { otherwise }=[] \\
& \operatorname{map} f[] \quad=[] \\
& \operatorname{map} f(a: a s)=(f a):(\operatorname{map} f a s) \\
& \text { null [] } \quad=\text { True } \\
& \text { null }(a: a s)=\text { False }
\end{aligned}
$$

Impact on Program Equivalence

Because:
takeWhile (nullotail) (error s) $\rightsquigarrow B$ ad $\{s$, "empty list" $\}$ while:

$$
\text { takeWhile null (map tail (error s)) } \rightsquigarrow B a d\{s\}
$$

where:

$$
\begin{aligned}
& \text { takeWhile } p \text { [] }=[] \\
& \text { takeWhile } p(a: a s) \mid p a \quad=a:(\text { takeWhile } p a s) \\
& \text { otherwise }=[] \\
& \operatorname{map} f[] \quad=[] \\
& \operatorname{map} f(a: a s)=(f a):(\operatorname{map} f a s) \\
& \text { null [] } \quad=\text { True } \\
& \text { null }(a: a s)=\text { False }
\end{aligned}
$$

Impact on Program Equivalence

Because:
takeWhile (nullotail) (error s) $\rightsquigarrow B$ ad $\{s$, "empty list" $\}$ while:

$$
\text { takeWhile null (map tail (error s)) } \rightsquigarrow B a d\{s\}
$$

where:

$$
\begin{aligned}
& \text { takeWhile } p \text { [] }=[] \\
& \text { takeWhile } p(a: a s) \mid p a \quad=a:(\text { takeWhile } p a s) \\
& \text { otherwise }=[] \\
& \operatorname{map} f[] \quad=[] \\
& \operatorname{map} f(a: a s)=(f a):(\operatorname{map} f a s) \\
& \text { null [] } \quad=\text { True } \\
& \text { null }(a: a s)=\text { False }
\end{aligned}
$$

Impact on Program Equivalence

Because:
takeWhile (nullotail) (error s) $\rightsquigarrow B a d\{s$, "empty list" $\}$ while:

$$
\text { takeWhile null (map tail (error s)) } \rightsquigarrow B a d\{s\}
$$

Thus:

$$
\begin{gathered}
\text { takeWhile null (map tail (error s)) } \\
\neq= \\
\text { map tail (takeWhile (null otail) (error s)) }
\end{gathered}
$$

Impact on Program Equivalence

Because:
takeWhile (nullotail) (error s) $\rightsquigarrow B$ ad $\{s$, "empty list" $\}$ while:

$$
\text { takeWhile null (map tail (error s)) } \rightsquigarrow B a d\{s\}
$$

Thus:

$$
\begin{gathered}
\text { takeWhile null (map tail (error s)) } \\
\neq \\
\text { map tail (takeWhile (null otail) (error s)) }
\end{gathered}
$$

Now, imagine this in the following program context:

$$
\begin{aligned}
& \text { catchJust errorCalls (evaluate } \cdots \text {) } \\
& \qquad \begin{array}{r}
(\lambda s \rightarrow \text { if } s==\text { "empty list" } \\
\text { then return [[42]] } \\
\text { else return []) }
\end{array}
\end{aligned}
$$

How to Revise Free Theorems?

[Wadler, FPCA'89] : for every $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$,

$$
\operatorname{g} p(\operatorname{map} f l)=\operatorname{map} f(g(p \circ f) I)
$$

How to Revise Free Theorems?

[Wadler, FPCA'89] : for every g :: $(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$,

$$
g p(\operatorname{map} f l)=\operatorname{map} f(g(p \circ f) I)
$$

[Johann \& V., POPL'04]: in Haskell only provable if:

- $p \neq \perp$,
- f strict $(f \perp=\perp)$, and
- f total $(\forall x \neq \perp . f x \neq \perp)$.

How to Revise Free Theorems?

[Wadler, FPCA'89] : for every $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$,

$$
g p(\operatorname{map} f l)=\operatorname{map} f(g(p \circ f) l)
$$

[Johann \& V., POPL'04]: in Haskell only provable if:

- $p \neq \perp$,
- f strict $(f \perp=\perp)$, and
- f total $(\forall x \neq \perp . f x \neq \perp)$.

What are corresponding conditions "in real"?

Sweat and Tears ...

... provide full formalisation

Sweat and Tears ...

... provide full formalisation
...enter general proof of parametricity theorem

Sweat and Tears ...

... provide full formalisation
... enter general proof of parametricity theorem
... identify appropriate restrictions on the level of relations

Sweat and Tears ...

... provide full formalisation
... enter general proof of parametricity theorem
...identify appropriate restrictions on the level of relations
....adapt relational actions

Sweat and Tears ...

... provide full formalisation
...enter general proof of parametricity theorem
...identify appropriate restrictions on the level of relations
....adapt relational actions
...complete general proof

Sweat and Tears ...

... provide full formalisation
...enter general proof of parametricity theorem
... identify appropriate restrictions on the level of relations
....adapt relational actions
. . . complete general proof
...transfer restrictions to the level of functions

Sweat and Tears ...

... provide full formalisation
... enter general proof of parametricity theorem
... identify appropriate restrictions on the level of relations
....adapt relational actions
. . . complete general proof
...transfer restrictions to the level of functions
... apply to concrete functions

Sweat and Tears ...

... provide full formalisation
...enter general proof of parametricity theorem
... identify appropriate restrictions on the level of relations
....adapt relational actions
. . . complete general proof
...transfer restrictions to the level of functions
... apply to concrete functions
(...similarly for "asymmetric" scenarios as well)
... Application to takeWhile
For every $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$,

$$
\operatorname{g} p(\operatorname{map} f I)=\operatorname{map} f(g(p \circ f) I)
$$

... Application to takeWhile
For every g :: $(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$,

$$
\operatorname{g} p(\operatorname{map} f I)=\operatorname{map} f(g(p \circ f) I)
$$

provided

- p and f are nonerroneous,

... Application to takeWhile
For every g :: $(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$,

$$
\operatorname{g} p(\operatorname{map} f I)=\operatorname{map} f(g(p \circ f) I)
$$

provided

- p and f are nonerroneous,
- $f \perp=\perp$,

...Application to takeWhile

For every g :: $(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$,

$$
\operatorname{g} p(\operatorname{map} f I)=\operatorname{map} f(g(p \circ f) I)
$$

provided

- p and f are nonerroneous,
- $f \perp=\perp$,
- f acts as identity on erroneous values, and

...Application to takeWhile

For every g :: $(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$,

$$
\operatorname{g} p(\operatorname{map} f I)=\operatorname{map} f(g(p \circ f) I)
$$

provided

- p and f are nonerroneous,
- $f \perp=\perp$,
- f acts as identity on erroneous values, and
- f maps nonerroneous values to nonerroneous values.

Summary and Outlook

Types:

- constrain the behaviour of programs

Summary and Outlook

Types:

- constrain the behaviour of programs
- thus lead to interesting theorems about programs

Summary and Outlook

Types:

- constrain the behaviour of programs
- thus lead to interesting theorems about programs
- combine well with algebraic techniques, equational reasoning

Summary and Outlook

Types:

- constrain the behaviour of programs
- thus lead to interesting theorems about programs
- combine well with algebraic techniques, equational reasoning

On the programming language side:

- push towards full programming languages

Summary and Outlook

Types:

- constrain the behaviour of programs
- thus lead to interesting theorems about programs
- combine well with algebraic techniques, equational reasoning

On the programming language side:

- push towards full programming languages
- strive for more expressive type systems

Summary and Outlook

Types:

- constrain the behaviour of programs
- thus lead to interesting theorems about programs
- combine well with algebraic techniques, equational reasoning

On the programming language side:

- push towards full programming languages
- strive for more expressive type systems

On the practical side:

- efficiency-improving program transformations

Summary and Outlook

Types:

- constrain the behaviour of programs
- thus lead to interesting theorems about programs
- combine well with algebraic techniques, equational reasoning

On the programming language side:

- push towards full programming languages
- strive for more expressive type systems

On the practical side:

- efficiency-improving program transformations
- applications in specific domains

References I

© P. Hudak, R.J.M. Hughes, S.L. Peyton Jones, and P. Wadler.
A history of Haskell: Being lazy with class.
In History of Programming Languages, Proceedings, pages 12-1-12-55. ACM Press, 2007.

睩 P. Johann and J. Voigtländer.
Free theorems in the presence of seq.
In Principles of Programming Languages, Proceedings, pages 99-110. ACM Press, 2004.
P. Johann and J. Voigtländer.

A family of syntactic logical relations for the semantics of Haskell-like languages.
Information and Computation, 2009.

References II

© S.L. Peyton Jones, A. Reid, C.A.R. Hoare, S. Marlow, and F. Henderson.
A semantics for imprecise exceptions.
In Programming Language Design and Implementation,
Proceedings, pages 25-36. ACM Press, 1999.
E F. Stenger and J. Voigtländer.
Parametricity for Haskell with imprecise error semantics.
Technical Report TUD-FI08-08, Technische Universität
Dresden, 2008.
© P. Wadler.
Theorems for free!
In Functional Programming Languages and Computer
Architecture, Proceedings, pages 347-359. ACM Press, 1989.

