Type-Based Reasoning and Imprecise Errors

Janis Voigtländer

Technische Universität Dresden

March 6th, 2009

A standard function:

$$\begin{array}{l} \max f \ [] \\ \max f \ (a:as) = (f \ a) : (\max f \ as) \end{array}$$

A standard function:

$$\begin{array}{l} \max f \left[\right] &= \left[\right] \\ \max f \left(a : as \right) = \left(f \ a \right) : \left(\max f \ as \right) \end{array}$$

Some invocations:

map succ
$$[1,2,3] = [2,3,4]$$

A standard function:

$$\begin{array}{l} \max f \ [] &= [] \\ \max f \ (a:as) = (f \ a) : (\max f \ as) \end{array}$$

Some invocations:

 $\begin{array}{l} \texttt{map succ} \ [1,2,3] &= [2,3,4] \\ \texttt{map not} \quad [\mathsf{True},\mathsf{False}] = [\mathsf{False},\mathsf{True}] \end{array}$

A standard function:

$$\begin{array}{l} \max f \left[\right] &= \left[\right] \\ \max f \left(a : as \right) = \left(f \ a \right) : \left(\max f \ as \right) \end{array}$$

Some invocations:

 $\begin{array}{ll} \texttt{map succ} \ [1,2,3] & = [2,3,4] \\ \texttt{map not} & [\mathsf{True},\mathsf{False}] = [\mathsf{False},\mathsf{True}] \\ \texttt{map even} \ [1,2,3] & = [\mathsf{False},\mathsf{True},\mathsf{False}] \end{array}$

A standard function:

$$\begin{array}{l} \max f \left[\right] &= \left[\right] \\ \max f \left(a : as \right) = \left(f \ a \right) : \left(\max f \ as \right) \end{array}$$

Some invocations:

 $\begin{array}{ll} \texttt{map succ} \ [1,2,3] & = [2,3,4] \\ \texttt{map not} & [\mathsf{True},\mathsf{False}] = [\mathsf{False},\mathsf{True}] \\ \texttt{map even} \ [1,2,3] & = [\mathsf{False},\mathsf{True},\mathsf{False}] \\ \texttt{map not} & [1,2,3] \end{array}$

A standard function:

$$\begin{array}{l} \max p :: (\alpha \to \beta) \to [\alpha] \to [\beta] \\ \max p f [] &= [] \\ \max p f (a : as) = (f a) : (\max f as) \end{array}$$

Some invocations:

 $\begin{array}{ll} \texttt{map succ} \ [1,2,3] & = [2,3,4] \\ \texttt{map not} & [\mathsf{True},\mathsf{False}] = [\mathsf{False},\mathsf{True}] \\ \texttt{map even} \ [1,2,3] & = [\mathsf{False},\mathsf{True},\mathsf{False}] \\ \texttt{map not} & [1,2,3] \end{array}$

A standard function:

$$\begin{array}{l} \max p :: (\alpha \to \beta) \to [\alpha] \to [\beta] \\ \max p f [] &= [] \\ \max p f (a : as) = (f a) : (\max f as) \end{array}$$

Some invocations:

 $\begin{array}{ll} \max p \ \operatorname{succ} \ [1,2,3] & = \ [2,3,4] & \longrightarrow \ \alpha,\beta \mapsto \ \operatorname{Int}, \operatorname{Int} \\ \max p \ \operatorname{not} & [\operatorname{True},\operatorname{False}] = \ [\operatorname{False},\operatorname{True}] \\ \max p \ \operatorname{even} \ [1,2,3] & = \ [\operatorname{False},\operatorname{True},\operatorname{False}] \\ \max p \ \operatorname{not} & [1,2,3] \end{array}$

A standard function:

$$\begin{array}{l} \max p :: (\alpha \to \beta) \to [\alpha] \to [\beta] \\ \max p f [] &= [] \\ \max p f (a : as) = (f a) : (\max f as) \end{array}$$

Some invocations:

$$\begin{array}{ll} \text{map succ } [1,2,3] &= [2,3,4] & -\alpha,\beta \mapsto \text{Int, Int} \\ \text{map not } [\text{True, False}] &= [\text{False, True}] & -\alpha,\beta \mapsto \text{Bool, Bool} \\ \text{map even } [1,2,3] &= [\text{False, True, False}] \\ \text{map not } [1,2,3] \end{array}$$

A standard function:

$$\begin{array}{l} \max p :: (\alpha \to \beta) \to [\alpha] \to [\beta] \\ \max p f [] &= [] \\ \max p f (a : as) = (f a) : (\max f as) \end{array}$$

Some invocations:

map succ
$$[1,2,3]$$
 $= [2,3,4]$ $-\alpha,\beta \mapsto Int, Int$ map not $[True, False] = [False, True]$ $-\alpha,\beta \mapsto Bool, Bool$ map even $[1,2,3]$ $= [False, True, False]$ $-\alpha,\beta \mapsto Int, Bool$ map not $[1,2,3]$ $= [False, True, False]$ $-\alpha,\beta \mapsto Int, Bool$

A standard function:

$$\begin{array}{l} \max p :: (\alpha \to \beta) \to [\alpha] \to [\beta] \\ \max p f [] &= [] \\ \max p f (a : as) = (f a) : (\max f as) \end{array}$$

Some invocations:

 $\begin{array}{ll} \max p \ \operatorname{succ} \ [1,2,3] &= [2,3,4] & - \alpha,\beta \mapsto \operatorname{Int},\operatorname{Int} \\ \max p \ \operatorname{not} \ \ [\operatorname{True},\operatorname{False}] = [\operatorname{False},\operatorname{True}] & - \alpha,\beta \mapsto \operatorname{Bool},\operatorname{Bool} \\ \max p \ \operatorname{even} \ [1,2,3] &= [\operatorname{False},\operatorname{True},\operatorname{False}] & - \alpha,\beta \mapsto \operatorname{Int},\operatorname{Bool} \\ \max p \ \operatorname{not} \ \ [1,2,3] & \mbox{$$\sharp$ rejected at compile-time} \end{array}$

$$\begin{array}{l} \texttt{takeWhile}:: (\alpha \to \texttt{Bool}) \to [\alpha] \to [\alpha] \\ \texttt{takeWhile} p [] &= [] \\ \texttt{takeWhile} p (a:as) \mid p a &= a: (\texttt{takeWhile} p as) \\ &\mid \texttt{otherwise} = [] \end{array}$$

$$\begin{array}{ll} \texttt{takeWhile} :: (\alpha \to \texttt{Bool}) \to [\alpha] \to [\alpha] \\ \texttt{takeWhile} p \begin{bmatrix} 1 \\ \end{array} = \begin{bmatrix} 1 \\ \end{array} \\ \texttt{takeWhile} p (a:as) \mid p a \\ \mid \texttt{otherwise} = \begin{bmatrix} 1 \end{bmatrix} \end{array}$$

For every choice of *p*, *f*, and *l*: takeWhile $p \pmod{f l} = \operatorname{map} f (\operatorname{takeWhile} (p \circ f) l)$

Provable by induction.

$$\begin{array}{ll} \texttt{takeWhile} :: (\alpha \to \texttt{Bool}) \to [\alpha] \to [\alpha] \\ \texttt{takeWhile} p \begin{bmatrix} 1 \\ \end{array} = \begin{bmatrix} 1 \\ \end{array} \\ \texttt{takeWhile} p (a:as) \mid p a \\ \mid \texttt{otherwise} = \begin{bmatrix} 1 \end{bmatrix} \end{array}$$

For every choice of p, f, and l: takeWhile $p \pmod{f} = \max f (\text{takeWhile} (p \circ f) l)$

Provable by induction.

Or as a "free theorem" [Wadler, FPCA'89].

 $\texttt{takeWhile}:: (\alpha \to \mathsf{Bool}) \to [\alpha] \to [\alpha]$

```
For every choice of p, f, and l:

takeWhile p \pmod{p} (\operatorname{map} f l) = \operatorname{map} f (\operatorname{takeWhile} (p \circ f) l)

Provable by induction.
```

Or as a "free theorem" [Wadler, FPCA'89].

takeWhile::
$$(\alpha \to \mathsf{Bool}) \to [\alpha] \to [\alpha]$$

filter:: $(\alpha \to \mathsf{Bool}) \to [\alpha] \to [\alpha]$

For every choice of p, f, and l: takeWhile $p \pmod{f l} = \operatorname{map} f (\operatorname{takeWhile} (p \circ f) l)$ filter $p \pmod{f l} = \operatorname{map} f (\operatorname{filter} (p \circ f) l)$

$$\begin{aligned} \texttt{takeWhile} &:: (\alpha \to \mathsf{Bool}) \to [\alpha] \to [\alpha] \\ \texttt{filter} &:: (\alpha \to \mathsf{Bool}) \to [\alpha] \to [\alpha] \\ \\ \texttt{g} &:: (\alpha \to \mathsf{Bool}) \to [\alpha] \to [\alpha] \end{aligned}$$

For every choice of p, f, and l: takeWhile $p \pmod{f} = \max f (\text{takeWhile} (p \circ f) l)$ filter $p \pmod{f} = \max f (\text{filter} (p \circ f) l)$ $g p \pmod{f} = \max f (g (p \circ f) l)$

• $g :: (\alpha \to Bool) \to [\alpha] \to [\alpha]$ must work uniformly for every instantiation of α .

• $g :: (\alpha \to Bool) \to [\alpha] \to [\alpha]$ must work uniformly for every instantiation of α .

► The output list can only contain elements from the input list *I*.

- $g :: (\alpha \to Bool) \to [\alpha] \to [\alpha]$ must work uniformly for every instantiation of α .
- ► The output list can only contain elements from the input list *I*.
- Which, and in which order/multiplicity, can only be decided based on *I* and the input predicate *p*.

- ▶ g :: $(\alpha \rightarrow \text{Bool}) \rightarrow [\alpha] \rightarrow [\alpha]$ must work uniformly for every instantiation of α .
- ► The output list can only contain elements from the input list *I*.
- Which, and in which order/multiplicity, can only be decided based on *I* and the input predicate *p*.
- The only means for this decision are to inspect the length of *l* and to check the outcome of *p* on its elements.

- ▶ g :: $(\alpha \rightarrow \text{Bool}) \rightarrow [\alpha] \rightarrow [\alpha]$ must work uniformly for every instantiation of α .
- ► The output list can only contain elements from the input list *I*.
- Which, and in which order/multiplicity, can only be decided based on *I* and the input predicate *p*.
- The only means for this decision are to inspect the length of *I* and to check the outcome of *p* on its elements.
- The lists (map f I) and I always have equal length.

- ▶ g :: $(\alpha \rightarrow \text{Bool}) \rightarrow [\alpha] \rightarrow [\alpha]$ must work uniformly for every instantiation of α .
- ► The output list can only contain elements from the input list *I*.
- Which, and in which order/multiplicity, can only be decided based on *I* and the input predicate *p*.
- The only means for this decision are to inspect the length of *l* and to check the outcome of *p* on its elements.
- The lists (map f I) and I always have equal length.
- Applying p to an element of (map f l) always has the same outcome as applying (p ∘ f) to the corresponding element of l.

- ▶ g :: $(\alpha \rightarrow \text{Bool}) \rightarrow [\alpha] \rightarrow [\alpha]$ must work uniformly for every instantiation of α .
- ► The output list can only contain elements from the input list *I*.
- Which, and in which order/multiplicity, can only be decided based on *I* and the input predicate *p*.
- The only means for this decision are to inspect the length of *l* and to check the outcome of *p* on its elements.
- The lists (map f I) and I always have equal length.
- Applying p to an element of (map f l) always has the same outcome as applying (p ∘ f) to the corresponding element of l.
- g with p always chooses "the same" elements from (map f l) for output as does g with (p ∘ f) from l,

- ▶ g :: $(\alpha \rightarrow \text{Bool}) \rightarrow [\alpha] \rightarrow [\alpha]$ must work uniformly for every instantiation of α .
- ► The output list can only contain elements from the input list *I*.
- Which, and in which order/multiplicity, can only be decided based on *I* and the input predicate *p*.
- The only means for this decision are to inspect the length of *l* and to check the outcome of *p* on its elements.
- The lists (map f I) and I always have equal length.
- Applying p to an element of (map f l) always has the same outcome as applying (p ∘ f) to the corresponding element of l.
- ▶ g with p always chooses "the same" elements from (map f l) for output as does g with (p ∘ f) from l, except that it outputs their images under f.

- ▶ g :: $(\alpha \rightarrow \text{Bool}) \rightarrow [\alpha] \rightarrow [\alpha]$ must work uniformly for every instantiation of α .
- ► The output list can only contain elements from the input list *I*.
- Which, and in which order/multiplicity, can only be decided based on *I* and the input predicate *p*.
- The only means for this decision are to inspect the length of *l* and to check the outcome of *p* on its elements.
- The lists (map f I) and I always have equal length.
- ► Applying p to an element of (map f l) always has the same outcome as applying (p ∘ f) to the corresponding element of l.
- g with p always chooses "the same" elements from (map f l) for output as does g with (p ∘ f) from l, except that it outputs their images under f.
- $(g \ p \ (map \ f \ l))$ is equivalent to $(map \ f \ (g \ (p \circ f) \ l))$.

- ▶ g :: $(\alpha \rightarrow \text{Bool}) \rightarrow [\alpha] \rightarrow [\alpha]$ must work uniformly for every instantiation of α .
- ► The output list can only contain elements from the input list *I*.
- Which, and in which order/multiplicity, can only be decided based on *I* and the input predicate *p*.
- The only means for this decision are to inspect the length of *l* and to check the outcome of *p* on its elements.
- The lists (map f I) and I always have equal length.
- ► Applying p to an element of (map f l) always has the same outcome as applying (p ∘ f) to the corresponding element of l.
- ▶ g with p always chooses "the same" elements from (map f l) for output as does g with (p ∘ f) from l, except that it outputs their images under f.
- $(g \ p \ (map \ f \ l))$ is equivalent to $(map \ f \ (g \ (p \circ f) \ l))$.
- That is what was claimed!

Automatic Generation of Free Theorems

At http://linux.tcs.inf.tu-dresden.de/~voigt/ft:

This tool allows to generate free theorems for sublanguages of Haskell as described here.

The source code of the underlying library and a shell-based application using it is available <u>here</u> and <u>here</u>.

Please enter a (polymorphic) type, e.g. "(a -> Bool) -> [a] -> [a]" or simply "filter":

g :: (a -> Bool) -> [a] -> [a]

Please choose a sublanguage of Haskell:

• no bottoms (hence no general recursion and no selective strictness)

general recursion but no selective strictness

general recursion and selective strictness

Please choose a theorem style (without effect in the sublanguage with no bottoms):

equational

inequational

Generate

Automatic Generation of Free Theorems

The theorem generated for functions of the type

g :: forall a . (a -> Bool) -> [a] -> [a]

in the sublanguage of Haskell with no bottoms is:

The structural lifting occurring therein is defined as follows:

Reducing all permissible relation variables to functions yields:

```
forall t1,t2 in TYPES, f :: t1 -> t2.
forall p :: t1 -> Bool.
forall q :: t2 -> Bool.
(forall x :: t1. p x = q (f x))
==> (forall y :: [t1]. map f (g p y) = g q (map f y))
```

Export as PDF

Show type instantiations

Help page

DFG-Project VO 1512/1-1

DFG-Project VO 1512/1-1

• g :: $(\alpha \to \text{Bool}) \to [\alpha] \to [\alpha]$ must work uniformly for every instantiation of α .

• $g :: (\alpha \to Bool) \to [\alpha] \to [\alpha]$ must work uniformly for every instantiation of α .

► The output list can only contain elements from the input list *I*.

▶ g :: $(\alpha \rightarrow \text{Bool}) \rightarrow [\alpha] \rightarrow [\alpha]$ must work uniformly for every instantiation of α .

► The output list can only contain elements from the input list *I*.

 ${\rm {\not i}}$ Not true! Also possible: ${\rm {\perp}}$

▶ g :: $(\alpha \rightarrow \text{Bool}) \rightarrow [\alpha] \rightarrow [\alpha]$ must work uniformly for every instantiation of α .

► The output list can only contain elements from the input list *I*.

- ${\rm \texttt{I}}$ Not true! Also possible: ${\rm \bot}$
 - Which, and in which order/multiplicity, can only be decided based on *I* and the input predicate *p*.

- ▶ g :: $(\alpha \rightarrow \text{Bool}) \rightarrow [\alpha] \rightarrow [\alpha]$ must work uniformly for every instantiation of α .
- ► The output list can only contain elements from the input list *I*.
- ${\not {}_{2}}$ Not true! Also possible: ${\perp}$
 - Which, and in which order/multiplicity, can only be decided based on *I* and the input predicate *p*.
 - The only means for this decision are to inspect the length of *l* and to check the outcome of *p* on its elements.
Where is the Problem?

- ▶ g :: $(\alpha \rightarrow \text{Bool}) \rightarrow [\alpha] \rightarrow [\alpha]$ must work uniformly for every instantiation of α .
- ► The output list can only contain elements from the input list *I*.
- ${\not {}_{2}}$ Not true! Also possible: ${\perp}$
 - Which, and in which order/multiplicity, can only be decided based on *I* and the input predicate *p*.
 - The only means for this decision are to inspect the length of *l* and to check the outcome of *p* on its elements.
- - checking elements from / for being \perp
 - checking p for being \perp
 - checking outcome of p on \perp

Where is the Problem?

- ▶ g :: $(\alpha \rightarrow \text{Bool}) \rightarrow [\alpha] \rightarrow [\alpha]$ must work uniformly for every instantiation of α .
- ► The output list can only contain elements from the input list *I*.
- ${\not {}_{2}}$ Not true! Also possible: \bot
 - Which, and in which order/multiplicity, can only be decided based on *I* and the input predicate *p*.
 - The only means for this decision are to inspect the length of *l* and to check the outcome of *p* on its elements.
- \oint Not true! Also possible:
 - checking elements from I for being \perp
 - checking p for being \perp
 - checking outcome of p on \perp

[Wadler, FPCA'89] : for every g :: $(\alpha \rightarrow \mathsf{Bool}) \rightarrow [\alpha] \rightarrow [\alpha]$,

 $g p (map f l) = map f (g (p \circ f) l)$

[Wadler, FPCA'89] : for every $g :: (\alpha \to \mathsf{Bool}) \to [\alpha] \to [\alpha]$,

$$g p (map f l) = map f (g (p \circ f) l)$$

[Johann & V., POPL'04] : in Haskell only provable if:

▶
$$p \neq \bot$$
,

- f strict $(f \perp = \perp)$, and
- f total ($\forall x \neq \bot$. $f x \neq \bot$).

[Wadler, FPCA'89] : for every $g :: (\alpha \to \mathsf{Bool}) \to [\alpha] \to [\alpha]$,

$$g p (map f l) = map f (g (p \circ f) l)$$

[Johann & V., POPL'04] : in Haskell only provable if:

p ≠ ⊥,
f strict (*f* ⊥ = ⊥), and
f total (
$$\forall x \neq \bot$$
. *f* x ≠ ⊥).

[Johann & V., I&C'09] : taking finite failures into account

[Wadler, FPCA'89] : for every $g :: (\alpha \to Bool) \to [\alpha] \to [\alpha]$,

$$g p (map f l) = map f (g (p \circ f) l)$$

[Johann & V., POPL'04] : in Haskell only provable if:

p ≠ ⊥,
f strict (*f* ⊥ = ⊥), and
f total (
$$\forall x \neq \bot$$
. *f* x ≠ ⊥).

[Johann & V., I&C'09] : taking finite failures into account

[Stenger & V., TR] : taking imprecise error semantics into account

> let average / = div (sum /) (length /) in average []

> let average / = div (sum /) (length /)
in average []

> let average / = div (sum /) (length /)
in average []

▶ if · · · then error "some string" else · · ·

- > let average / = div (sum /) (length /)
 in average []
- let tail (a : as) = as
 in tail []
- ▶ if · · · then error "some string" else · · ·
- let loop = loop
 in loop

- > let average / = div (sum /) (length /)
 in average []
- let tail (a : as) = as
 in tail []
- ▶ if · · · then error "some string" else · · ·
- let loop = loop
 in loop

Traditionally, all error causes subsumed under \perp .

> let average / = div (sum /) (length /)
in average []

▶ if · · · then error "some string" else · · ·

Traditionally, all error causes subsumed under \perp .

Better, explicit distinction. Like:

Ok v : nonerroneous

Bad "····" : finitely failing

 \perp : nonterminating

►
$$(\lambda x \rightarrow 3)$$
 (error "···") \rightsquigarrow Ok 3

►
$$(\lambda x \rightarrow 3)$$
 (error "···") \rightsquigarrow Ok 3

▶ (error s) (···)
$$\rightsquigarrow$$
 Bad s

►
$$(\lambda x \rightarrow 3)$$
 (error "···") \rightsquigarrow Ok 3

• (error s) (···)
$$\rightsquigarrow$$
 Bad s

▶ case (error s) of
$$\{\cdots\} \rightsquigarrow Bad s$$

►
$$(\lambda x \rightarrow 3)$$
 (error "···") $\rightsquigarrow Ok 3$

• (error s) (···)
$$\rightsquigarrow$$
 Bad s

- ▶ case (error s) of $\{\cdots\} \rightsquigarrow Bad s$
- (error s_1) + (error s_2) \rightsquigarrow ???

▶ tail
$$[1/0, 2.5] \rightsquigarrow Ok [Ok 2.5]$$

►
$$(\lambda x \rightarrow 3)$$
 (error "···") $\rightsquigarrow Ok 3$

• (error s)
$$(\cdots) \rightsquigarrow Bad s$$

• case (error s) of
$$\{\cdots\} \rightsquigarrow Bad s$$

•
$$(\operatorname{error} s_1) + (\operatorname{error} s_2) \rightsquigarrow ???$$

Dependence on evaluation order leads to considerably less freedom for implementors to rearrange computations, to optimise!

Basic idea:

- Ok v : nonerroneous
- $\textit{Bad}\ \{\cdots\}$: finitely failing, nondeterministic
 - \perp : nonterminating

Basic idea:

- Ok v : nonerroneous
- $\textit{Bad}\ \{\cdots\}$: finitely failing, nondeterministic
 - \perp : nonterminating

Definedness order:

Basic idea:

- Ok v : nonerroneous
- $\textit{Bad}\ \{\cdots\}$: finitely failing, nondeterministic
 - \perp : nonterminating

Definedness order:

Propagation of Errors:

• (error s_1) + (error s_2) \rightsquigarrow Bad $\{s_1, s_2\}$

Propagation of Errors:

• $(\operatorname{error} s_1) + (\operatorname{error} s_2) \rightsquigarrow Bad \{s_1, s_2\}$

▶ $3 + (\text{error } s) \rightsquigarrow Bad \{s\}$

Propagation of Errors:

• $(\operatorname{error} s_1) + (\operatorname{error} s_2) \rightsquigarrow Bad \{s_1, s_2\}$

▶ $3 + (\text{error } s) \rightsquigarrow Bad \{s\}$

▶ loop + (error s) $\rightsquigarrow \bot$

Propagation of Errors:

• $(\operatorname{error} s_1) + (\operatorname{error} s_2) \rightsquigarrow Bad \{s_1, s_2\}$

▶ $3 + (\text{error } s) \rightsquigarrow Bad \{s\}$

- ▶ loop + (error s) $\rightsquigarrow \bot$
- ▶ (error s_1) (error s_2) \rightsquigarrow Bad $\{s_1, s_2\}$

Propagation of Errors:

- $(\operatorname{error} s_1) + (\operatorname{error} s_2) \rightsquigarrow Bad \{s_1, s_2\}$
- ▶ $3 + (\text{error } s) \rightsquigarrow Bad \{s\}$
- ▶ loop + (error s) $\rightsquigarrow \bot$
- ▶ (error s_1) (error s_2) \rightsquigarrow Bad $\{s_1, s_2\}$

•
$$(\lambda x \rightarrow 3)$$
 (error s) $\rightsquigarrow Ok 3$

Propagation of Errors:

• $(\operatorname{error} s_1) + (\operatorname{error} s_2) \rightsquigarrow Bad \{s_1, s_2\}$

- ▶ $3 + (\text{error } s) \rightsquigarrow Bad \{s\}$
- ▶ loop + (error s) $\rightsquigarrow \bot$
- (error s_1) (error s_2) \rightsquigarrow Bad $\{s_1, s_2\}$

•
$$(\lambda x \rightarrow 3)$$
 (error s) $\rightsquigarrow Ok 3$

▶ case (error s_1) of $\{(x, y) \rightarrow \text{error } s_2\} \rightsquigarrow Bad \{s_1, s_2\}$

"Normally":

takeWhile $p \pmod{f l} = \operatorname{map} f (\operatorname{takeWhile} (p \circ f) l)$

where:

$$\begin{array}{l} \max p :: (\alpha \to \beta) \to [\alpha] \to [\beta] \\ \max p f [] &= [] \\ \max p f (a : as) = (f a) : (\max p f as) \end{array}$$

"Normally" :

takeWhile $p \pmod{f l} = \max f (\text{takeWhile} (p \circ f) l)$

where:

$$\begin{array}{l} \max p :: (\alpha \to \beta) \to [\alpha] \to [\beta] \\ \max p f [] &= [] \\ \max p f (a : as) = (f a) : (\max f as) \end{array}$$

But now:

"Normally" :

takeWhile $p \pmod{f l} = \operatorname{map} f (\operatorname{takeWhile} (p \circ f) l)$

where:

$$\begin{array}{ll} \texttt{takeWhile} :: (\alpha \to \texttt{Bool}) \to [\alpha] \to [\alpha] \\ \texttt{takeWhile} p [] &= [] \\ \texttt{takeWhile} p (a:as) \mid p a &= a: (\texttt{takeWhile} p as) \\ &\mid \texttt{otherwise} = [] \end{array}$$

$$\begin{array}{l} \max p :: (\alpha \to \beta) \to [\alpha] \to [\beta] \\ \max p f [] &= [] \\ \max p f (a : as) = (f a) : (\max f as) \end{array}$$

But now:

takeWhile null (map tail (error s)) $\frac{4}{5}$ \neq map tail (takeWhile (nullotail) (error s)) $\frac{4}{5}$ or $\frac{4}{5}$ or $\frac{4}{5}$ "empty list"

Because:

takeWhile (null \circ tail) (error s) \rightsquigarrow Bad {s, "empty list"}

where:

Because:

takeWhile (null \circ tail) (error s) \rightsquigarrow Bad {s, "empty list"}

where:

null [] = fruenull (a : as) = False

Because:

takeWhile (null \circ tail) (error s) \rightsquigarrow Bad {s, "empty list"}

where:

tail [] = error "empty list"
tail (a : as) = as

null [] = True null (a : as) = False

Because:

takeWhile (null \circ tail) (error s) \rightsquigarrow Bad {s, "empty list"}

where:

null [] = True null (a : as) = False

Because:

takeWhile (null \circ tail) (error s) \rightsquigarrow Bad {s, "empty list"}

where:

Because:

takeWhile (null \circ tail) (error s) \rightsquigarrow Bad {s, "empty list"}

where:

tail [] = error "empty list"
tail (a : as) = as

null [] = True null (a : as) = False
Because:

takeWhile (nullotail) (error s) \rightsquigarrow Bad {s, "empty list"}

where:

tail[] = error "empty list"
tail (a: as) = as

Because:

takeWhile (null \circ tail) (error s) \rightsquigarrow Bad {s, "empty list"} while:

takeWhile null (map tail (error s)) \rightsquigarrow Bad $\{s\}$ where:

 $\begin{array}{l} \max f \left[\right] &= \left[\right] \\ \max f \left(a : as \right) = \left(f \ a \right) : \left(\max f \ as \right) \end{array}$

Because:

takeWhile (null \circ tail) (error s) \rightsquigarrow Bad {s, "empty list"} while:

takeWhile null (map tail (error s)) \rightsquigarrow Bad $\{s\}$ where:

 $\begin{array}{l} \max f \left[\right] &= \left[\right] \\ \max f \left(a : as \right) = \left(f \ a \right) : \left(\max f \ as \right) \end{array}$

Because:

takeWhile (null \circ tail) (error s) \rightsquigarrow Bad {s, "empty list"} while:

takeWhile null (map tail (error s)) \rightsquigarrow Bad $\{s\}$ where:

 $\begin{array}{l} \max f \left[\right] &= \left[\right] \\ \max f \left(a : as \right) &= \left(f \ a \right) : \left(\max f \ as \right) \end{array}$

Because:

takeWhile (null \circ tail) (error s) \rightsquigarrow Bad {s, "empty list"} while:

takeWhile null (map tail (error s)) \rightsquigarrow Bad $\{s\}$ where:

 $\begin{array}{l} \max f \left[\right] &= \left[\right] \\ \max f \left(a : as \right) = \left(f \ a \right) : \left(\max f \ as \right) \end{array}$

Because:

takeWhile (null \circ tail) (error s) \rightsquigarrow Bad {s, "empty list"} while:

takeWhile null (map tail (error s)) \rightsquigarrow Bad $\{s\}$ where:

 $\begin{array}{l} \max f \left[\right] &= \left[\right] \\ \max f \left(a : as \right) = \left(f \ a \right) : \left(\max f \ as \right) \end{array}$

Because:

takeWhile (null \circ tail) (error s) \rightsquigarrow Bad {s, "empty list"} while:

takeWhile null (map tail (error s)) \rightsquigarrow Bad $\{s\}$ where:

takeWhile p [] = []

takeWhile p (a:as) | p a = a:(takeWhile p as) | otherwise = []

 $\begin{array}{l} \max f \left[\right] &= \left[\right] \\ \max f \left(a : as \right) = \left(f \ a \right) : \left(\max f \ as \right) \end{array}$

Because:

takeWhile (null \circ tail) (error s) \rightsquigarrow Bad {s, "empty list"} while:

takeWhile null (map tail (error s)) \rightsquigarrow Bad $\{s\}$

Thus:

Because:

takeWhile (null \circ tail) (error s) \rightsquigarrow Bad {s, "empty list"} while:

takeWhile null (map tail (error s)) \rightsquigarrow Bad $\{s\}$

Thus:

takeWhile null (map tail (error s))

$$\neq$$

map tail (takeWhile (null \circ tail) (error s))

Now, imagine this in the following program context:

catchJust errorCalls (evaluate
$$\cdots$$
)
($\lambda s \rightarrow if s ==$ "empty list"
then return [[42]]
else return [])

How to Revise Free Theorems?

[Wadler, FPCA'89] : for every g :: $(\alpha \rightarrow \text{Bool}) \rightarrow [\alpha] \rightarrow [\alpha]$, g p (map f l) = map f (g (p \circ f) l) How to Revise Free Theorems?

[Wadler, FPCA'89] : for every g :: $(\alpha \rightarrow \text{Bool}) \rightarrow [\alpha] \rightarrow [\alpha]$, g p (map f l) = map f (g (p \circ f) l)

[Johann & V., POPL'04] : in Haskell only provable if:

▶ $p \neq \bot$,

- f strict $(f \perp = \perp)$, and
- f total $(\forall x \neq \bot, f x \neq \bot)$.

How to Revise Free Theorems?

[Wadler, FPCA'89] : for every g ::
$$(\alpha \rightarrow \text{Bool}) \rightarrow [\alpha] \rightarrow [\alpha]$$
,
g p (map f l) = map f (g (p \circ f) l)

[Johann & V., POPL'04] : in Haskell only provable if:

- *p* ≠ ⊥, *f* strict (*f* ⊥ = ⊥), and *f* total ($\forall x \neq \bot$. *f* x ≠ ⊥).
- What are corresponding conditions "in real"?

... provide full formalisation

... provide full formalisation

... enter general proof of parametricity theorem

... provide full formalisation

- ... enter general proof of parametricity theorem
- ... identify appropriate restrictions on the level of relations

- ... provide full formalisation
- ... enter general proof of parametricity theorem
- ... identify appropriate restrictions on the level of relations

... adapt relational actions

- ... provide full formalisation
- ... enter general proof of parametricity theorem
- ... identify appropriate restrictions on the level of relations
- ... adapt relational actions
- ... complete general proof

- ... provide full formalisation
- ... enter general proof of parametricity theorem
- ... identify appropriate restrictions on the level of relations
- ... adapt relational actions
- ... complete general proof
- ... transfer restrictions to the level of functions

- ... provide full formalisation
- ... enter general proof of parametricity theorem
- ... identify appropriate restrictions on the level of relations
- ... adapt relational actions
- ... complete general proof
- ... transfer restrictions to the level of functions
- ... apply to concrete functions

- ... provide full formalisation
- ... enter general proof of parametricity theorem
- ... identify appropriate restrictions on the level of relations
- ... adapt relational actions
- ... complete general proof
- ... transfer restrictions to the level of functions
- ... apply to concrete functions
- (... similarly for "asymmetric" scenarios as well)

For every $g :: (\alpha \to Bool) \to [\alpha] \to [\alpha]$, $g \ p \ (map \ f \ l) = map \ f \ (g \ (p \circ f) \ l)$

For every
$$g :: (\alpha \to Bool) \to [\alpha] \to [\alpha]$$
,
 $g \ p \ (map \ f \ l) = map \ f \ (g \ (p \circ f) \ l)$

provided

▶ *p* and *f* are nonerroneous,

For every
$$g :: (\alpha \to Bool) \to [\alpha] \to [\alpha]$$
,
 $g \ p \ (map \ f \ l) = map \ f \ (g \ (p \circ f) \ l)$

provided

▶ *p* and *f* are nonerroneous,

▶ $f \perp = \perp$,

For every
$$g :: (\alpha \to Bool) \to [\alpha] \to [\alpha]$$
,
 $g \ p \ (map \ f \ l) = map \ f \ (g \ (p \circ f) \ l)$

provided

- ▶ *p* and *f* are nonerroneous,
- ► $f \perp = \perp$,
- f acts as identity on erroneous values, and

For every
$$g :: (\alpha \to Bool) \to [\alpha] \to [\alpha]$$
,
 $g \ p \ (map \ f \ l) = map \ f \ (g \ (p \circ f) \ l)$

provided

- p and f are nonerroneous,
- ► $f \perp = \perp$,
- f acts as identity on erroneous values, and
- ▶ *f* maps nonerroneous values to nonerroneous values.

Types:

constrain the behaviour of programs

Types:

- constrain the behaviour of programs
- thus lead to interesting theorems about programs

Types:

- constrain the behaviour of programs
- thus lead to interesting theorems about programs
- combine well with algebraic techniques, equational reasoning

Types:

- constrain the behaviour of programs
- thus lead to interesting theorems about programs
- combine well with algebraic techniques, equational reasoning

On the programming language side:

push towards full programming languages

Types:

- constrain the behaviour of programs
- thus lead to interesting theorems about programs
- combine well with algebraic techniques, equational reasoning

On the programming language side:

- push towards full programming languages
- strive for more expressive type systems

Types:

- constrain the behaviour of programs
- thus lead to interesting theorems about programs
- combine well with algebraic techniques, equational reasoning

On the programming language side:

- push towards full programming languages
- strive for more expressive type systems

On the practical side:

efficiency-improving program transformations

Types:

- constrain the behaviour of programs
- thus lead to interesting theorems about programs
- combine well with algebraic techniques, equational reasoning

On the programming language side:

- push towards full programming languages
- strive for more expressive type systems

On the practical side:

- efficiency-improving program transformations
- applications in specific domains

References I

- P. Hudak, R.J.M. Hughes, S.L. Peyton Jones, and P. Wadler. A history of Haskell: Being lazy with class. In *History of Programming Languages, Proceedings*, pages 12-1–12-55. ACM Press, 2007.
- P. Johann and J. Voigtländer.
 Free theorems in the presence of seq.
 In *Principles of Programming Languages, Proceedings*, pages 99–110. ACM Press, 2004.
- P. Johann and J. Voigtländer.
 A family of syntactic logical relations for the semantics of Haskell-like languages.

Information and Computation, 2009.

References II

S.L. Peyton Jones, A. Reid, C.A.R. Hoare, S. Marlow, and F. Henderson.

A semantics for imprecise exceptions.

In Programming Language Design and Implementation, Proceedings, pages 25–36. ACM Press, 1999.

- F. Stenger and J. Voigtländer. Parametricity for Haskell with imprecise error semantics. Technical Report TUD-FI08-08, Technische Universität Dresden, 2008.

P. Wadler.

Theorems for free!

In Functional Programming Languages and Computer Architecture, Proceedings, pages 347–359. ACM Press, 1989.