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Haskell Example: Theorems for free! [Wadler 1989]

filter :: Va. (oo — Bool) — [a] — [a]

Claim:

filter p (map h 1) = map h (filter (poh) 1) (1)

Can be derived from the parametric polymorphic type of filter!

Where is the magic? Where is the induction?
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Parametric Polymorphism, Intuitively

>

filter :: Va. (o — Bool) — [a] — [a] must work uniformly
for every instantiation of a.

» The output list can only contain elements from the input list /.

» Which, and in which order/multiplicity, can only be decided

based on / and the input predicate p.

The only means for this decision are to inspect the length of /
and to check the outcome of p on its elements.

» The lists (map h /) and | always have equal length.

» Applying p to an element of (map h /) always has the same

>

outcome as applying (po h) to the corresponding element of /.

filter with p always chooses “the same” elements from
(map h 1) for output as does filter with (po h) from /,
except that it outputs their images under h.

(filter p (map h 1)) is equivalent to (map h (filter (po h) 1)).

» That is what we wanted to prove!
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Question: What functions are in Vo (o« — Bool) — [a] — [a] ?

Approach: Give denotations of types as sets.

[Bool]g = {True, False} =B
[Nat]e = {0,1,2,...} =N
[(r1,72)le = [m1]o x [72]o

[i711e = {[x1,-..,xa] | n>0,x € [7]o}

[11 — mlo = {f : [nlo — [mlo}

[[Va. 7']]9 =7

» g € [Va. 7]g should be a “collection” of values:
for every type 7/, there is an instance of type 7[7'/q].

> [Va. 7)o = {g : Set — Value | VS € Set. (g S) € [T]gjas)}
is maybe a good start, together with [a]s = 0(«).

» But this may contain “ad-hoc” polymorphic functions!
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Unwanted Ad-Hoc Polymorphism: Example

» With the proposed definition,
[Va. (a,a) = a]g={g | VS € Set. (g S): S xS — S}.
» But this also allows
g B (x,y) = not x
gN(xy) = y+1,
which is not possible in Haskell at type Va. (o, o) — a.

» To prevent this, compare/relate

(gB) : BxB—DB and
(gN) : NxN =N,

ensuring that they “behave identically”.
But how?
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Key ldea [Reynolds 1983]

Use relations to tie instances together.
In the example:

» Choose an R C B x N.

» Say that (x1,y1) € B x B and (x2,y2) € N x N are related
if (Xl,Xz) € R and (yl,yg) eR.

» Saythat 4 :BxB — B and f» : N x N — N are related
if they map related arguments to related results.

» Then (g B) and (g N) with

g B (x,y) = not x
gN(xy) = y+1

are not related if we choose, e.g., R = {(True,1)}.

Reynolds: g € [Va. T]g only if for every 51,5, R C S1 x Sy,
(g S1) is related to (g S2) by the “propagation” of R
according to 7.
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Polymorphic Lambda Calculus
[Girard 1972, Reynolds 1974|

Types: T:=a |7 — 7 |Va. T

Terms: t:=x | Ax:7. t|tt|Aa. t]|tT
Mx:7hkx:7 [x]6.0 = o(x)

Mx:mbEt:m

Ax 71 t]oo = 1tlp,o[x—a
FrE(Mx:m.t):m— 7 o 71 tloo 2 |[]]0,[ ]

lEt:m — Nu:m
Me(tu):m

[t “]]H,O = I[t]]G,cr |[U]]6,a

a,lFt:T
M= (Aa. t):Va. 7

I[/\Oé. t]]970 S = I[t]]G[CYHS],O'

[Ft:Vo. 1 / o /
Fr(tr): 77 ja] It 7o = [thoo 710




Parametricity Theorem [Reynolds 1983, Wadler 1989]

Given 7 and environments 61, 02, p with p(a) C 61(a) x 02(«),
define A, , C [7]s, x []o, as follows:



Parametricity Theorem [Reynolds 1983, Wadler 1989]

Given 7 and environments 61, 02, p with p(a) C 61(a) x 02(«),
define A, , C [7]s, x []o, as follows:

Bap = pla)



Parametricity Theorem [Reynolds 1983, Wadler 1989]

Given 7 and environments 61, 02, p with p(a) C 61(a) x 02(«),
define A, , C [7]s, x []o, as follows:

Aoy = pla)
ATl—VTz,p = {(flv f2) | v(31; 32) € Aﬁ,p- (fl ai, fH 32) S ATz,p}



Parametricity Theorem [Reynolds 1983, Wadler 1989]

Given 7 and environments 61, 02, p with p(a) C 61(a) x 02(«),
define A, , C [7]s, x []o, as follows:

Aoy = pla)
ATl—VTQ,p = {(ﬁv f2) ’ v(31; 32) € Aﬁ,p- (fl a1, b 32) € ATz,p}
Ava.rp = {(81,82) | VR C S1 X S2. (81 51,82 $2) € Ar plamr]}



Parametricity Theorem [Reynolds 1983, Wadler 1989]

Given 7 and environments 61, 02, p with p(a) C 61(a) x 02(«),
define A, , C [7]s, x []o, as follows:

Bap = pla)

ATl—VTz,p = {(ﬁv f2) ’ v(31; 32) € Aﬁ,p- (fl a1, b 32) € ATz,p}
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Then, for every closed term t of closed type 7:

([tlo.0, [tlo0) € Arp-
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[+ t:7 implies ([t]o,,01, [t]62,00) € Drpp
provided (01(x),02(x)) € A, for every x : 7/ in T

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

v(alv 32) S ATl,p' (l[t]]91,01[x»—>al]a |[f]]92,a2[XH32]) S A7—27p
(IMx 7. tloyor, [AX 2 71- tloy0n) € Driamp
(I[t]]el,ou |[t]]92,02) €A mp (l[U]lel,gl, |[U]]92,02) (SIVAVES
([t uloy.or, [t ulo,.0r) € Aryp
VR C 51 % 5. (llt]lel[@'—>51],t717 |It]]92[aH52],02) € A-r,p[ou—ﬂz]
([Aa. t]oy,005 [Ax. tlos.0,) € Ava.rp
(l[t]]91701’ |It]]92,02) € Ava. P
(IIt T/]]91,0’17 ﬂt T/]]92,02) € AT[T’/OZ],p
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Adding Datatypes

Types: 7:= --- | Bool | [7]
Terms: t:= --- | True | False | [|; | t:t | case t of {---}
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Terms: t:= --- | True | False | [|; | t:t | case t of {---}
[+ True: Bool , T F False: Bool , T FI[|;:[7]

Mr=t:r MNew:|r]
FE(t:u):[7]

[t : Bool Fwu:T Fv:T
It (case t of {True — u; False — v}): 1

Met: 7] Flr-u:t Coxy 7 x: [flFv:eT
ME(case t of {[] mu;(x1:x)—v}): T
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Adding Datatypes

Types: 7:= --- | Bool | [7]
Terms: t:= --- | True | False | [|; | t:t | case t of {---}
[+ True: Bool , T F False: Bool , T FI[|;:[7]

Mr=t:r MNew:|r]
FE(t:u):[7]

[t : Bool Fwu:T Fv:T
It (case t of {True — u; False — v}): 1

Met: 7] Flr-u:t Coxy 7 x: [flFv:eT
ME(case t of {[] mu;(x1:x)—v}): T

With the straightforward extension of term-semantics and with

Apgooty = {(True, True), (False, False)}
A, = (s oxal, i yal) | 0 >20,(x,y0) € Arpt s

the parametricity theorem still holds.
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Adding General Recursion

Terms: t:= --- | fix t
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Adding General Recursion

Terms: t:= --- | fix t

Mr-t:7r—r

MNe(fix t):r
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Adding General Recursion

Terms: t:= --- | fix t

l-t:7—71
MNe(fix t):r

To provide semantics, types are interpreted as pointed complete
partial orders now.

I[fIX t]]@,a = U([[t]]é,a J‘)

i>0
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Adding General Recursion

Terms: t:= --- | fix t

l-t:7—71
MNe(fix t):r

To provide semantics, types are interpreted as pointed complete
partial orders now.

I[fIX t]]@,a = Ll([[t]]é,a J‘)

i>0

The parametricity theorem still holds, provided all relations are
strict and continuous.
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Back to Haskell

The original example

filter :: Va. (o — Bool) — [a] — [a]

filter p ] =1

filter p (x : xs) = if p x then x : filter p xs
else filter p xs

has a “desugaring” in the extended calculus as follows:

fix (Af : (Va. (o — Bool) — [a] — [a]).
Ae. Ap : (o — Bool). Al : [a].
case | of {[| — [la;
(x : xs) — case p x of
{True — x: (f a p xs);
False — f a p xs}})

13



The Magic Dissolves

Given g of type Va. (o — Bool) — [a] — [q],
by the parametricity theorem:

(gv g) € Ay, (a— Bool)—[a]—[a],0
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by definition of A
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by the parametricity theorem:
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= VR € Rel. (gv g) S A(a—»Bool)—»[oz]—>[a],[ab—>R]
= VR € Rel, (31; 32) € Aa—>Bool,[av—>R]- (g a, g 32) € A[a]—>[o¢],[ou—>R]
= VR € Rel, (31; 32) € AaHBool,[w—»R]v (/17 /2) € A[oz],[on—»R]-

(g a1 h,g a2 k) € Ay jar]
by definition of A
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The Magic Dissolves

Given g of type Va. (o — Bool) — [a] — [q],
by the parametricity theorem:

(g, g) € Ay, (a— Bool)—[a]—[a],0
= VR € Rel. (g,8) € A(a—Bool)—[a]—[a],ja—R]
= VR € Rel, (31; 32) € Aa—>Bool,[av—>R]- (g a, g 32) € A[a]—>[o¢]7[o¢»—>R]
= VR € Rel, (31; 32) € AaHBool,[ou—»R]v (/17 /2) € A[a],[ou—»R]-
(g a1 h,g a2 hb) € D] jasr]
= V(al, ‘92) S AaHBool,[oa—»h]? (/17 /2) S (map h)
(g a1 h,g a2 h) € (map h)
by instantiating R = h and realizing that A [an = map h

for every function h
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Given g of type Va. (o — Bool) — [a] — [q],
by the parametricity theorem:

(g, g) € Ay, (a— Bool)—[a]—[a],0
= VR € Rel. (g,8) € A(a—Bool)—[a]—[al,[a—R]
= VR € Rel, (a1, a2) € Ay—Bool,ja—R]- (& 21,8 a2) € Af]—[a],[a—R]
= VR € Rel, (31, 32) S AaHBool,[ou—»R]v (/17 /2) € A[a],[ou—»R]-
(g a1 h,g a /2) € A[a],[ou—»R]
= V(al, ‘92) € AaHBool,[oa—»h]? (/17 /2) € (map h)
(g a1 h,g a> b) € (map h)
= Y(h, k) € (map h). (g (poh) h,g p ) € (map h)
by instantiating (a1, a2) = (po h, p) € Ay Bool [arsh]

for every function h and every p.
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The Magic Dissolves

Given g of type Va. (o — Bool) — [a] — [q],
by the parametricity theorem:

(g, g) € Ay, (a— Bool)—[a]—[a],0
= VR € Rel. (g,8) € A(a—Bool)—[a]—[a],ja—R]
= VR € Rel, (31; 32) € Aa—>Bool,[av—>R]- (g a, g 32) € A[a]—>[o¢]7[o¢»—>R]
= VR € Rel, (31; 32) € AaHBool,[ou—»R]v (/17 /2) € A[a],[ou—»R]-
(g a1 h,g a2 hb) € D] jasr]
= V(al, ‘92) S AaHBool,[oa—»h]? (/17 /2) S (map h)
(g a1 h,g a2 h) € (map h)
= V(h, k) € (map h). (g (poh) h.g p k) € (map h)

for every function h and every p.

This is exactly the claim (1) for g = filter!
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