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Haskell Example:

filter :: ∀α. (α→ Bool)→ [α]→ [α]
filter p [] = []
filter p (x : xs) = if p x then x : filter p xs

else filter p xs

Claim:

filter p (map h l) = map h (filter (p ◦ h) l) (1)

Can be derived from the parametric polymorphic type of filter !
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Haskell Example:

filter :: ∀α. (α→ Bool)→ [α]→ [α]
filter p [] = []
filter p (x : xs) = if p x then x : filter p xs

else filter p xs

Claim:

filter p (map h l) = map h (filter (p ◦ h) l) (1)

Can be proved by induction on l , using the definition of filter .

Can
be derived from the parametric polymorphic type of filter !
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Haskell Example: Theorems for free! [Wadler 1989]

filter :: ∀α. (α→ Bool)→ [α]→ [α]

filter p [] = []
filter p (x : xs) = if p x then x : filter p xs
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Haskell Example: Theorems for free! [Wadler 1989]

filter :: ∀α. (α→ Bool)→ [α]→ [α]

filter p [] = []
filter p (x : xs) = if p x then x : filter p xs

else filter p xs

Claim:

filter p (map h l) = map h (filter (p ◦ h) l) (1)

Can be derived from the parametric polymorphic type of filter !

Where is the magic? Where is the induction?
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Parametric Polymorphism, Intuitively

I filter :: ∀α. (α→ Bool)→ [α]→ [α] must work uniformly
for every instantiation of α.

I The output list can only contain elements from the input list l .

I Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

I The only means for this decision are to inspect the length of l
and to check the outcome of p on its elements.

I The lists (map h l) and l always have equal length.

I Applying p to an element of (map h l) always has the same
outcome as applying (p ◦ h) to the corresponding element of l .

I filter with p always chooses “the same” elements from
(map h l) for output as does filter with (p ◦ h) from l ,

except that it outputs their images under h.

I (filter p (map h l)) is equivalent to (map h (filter (p ◦ h) l)).

I That is what we wanted to prove!
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Parametric Polymorphism, More Formally

Question: What functions are in ∀α. (α→ Bool)→ [α]→ [α] ?

Approach: Give denotations of types as sets.

[[Bool ]]θ = {True,False} = B

[[Nat]]θ = {0, 1, 2, . . . } = N

[[(τ1, τ2)]]θ = [[τ1]]θ × [[τ2]]θ
[[[τ ]]]θ = {[x1, . . . , xn] | n ≥ 0, xi ∈ [[τ ]]θ}
[[τ1 → τ2]]θ = {f : [[τ1]]θ → [[τ2]]θ}
[[∀α. τ ]]θ = ?

I g ∈ [[∀α. τ ]]θ should be a “collection” of values:
for every type τ ′, there is an instance of type τ [τ ′/α].

I [[∀α. τ ]]θ = {g : Set → Value | ∀S ∈ Set. (g S) ∈ [[τ ]]θ[α 7→S]}
is maybe a good start, together with [[α]]θ = θ(α).

I But this may contain “ad-hoc” polymorphic functions!
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Unwanted Ad-Hoc Polymorphism: Example

I With the proposed definition,
[[∀α. (α, α)→ α]]∅ = {g | ∀S ∈ Set. (g S) : S × S → S}.

I But this also allows

g B (x , y) = not x
g N (x , y) = y + 1 ,

which is not possible in Haskell at type ∀α. (α, α)→ α.

I To prevent this, compare/relate

(g B) : B× B→ B and
(g N) : N× N→ N ,

ensuring that they “behave identically”.
But how?
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Key Idea [Reynolds 1983]

Use relations to tie instances together.

In the example:

I Choose an R ⊆ B× N.

I Say that (x1, y1) ∈ B× B and (x2, y2) ∈ N× N are related
if (x1, x2) ∈ R and (y1, y2) ∈ R.

I Say that f1 : B× B→ B and f2 : N× N→ N are related
if they map related arguments to related results.

I Then (g B) and (g N) with

g B (x , y) = not x
g N (x , y) = y + 1

are not related if we choose, e.g., R = {(True, 1)}.
Reynolds: g ∈ [[∀α. τ ]]θ only if for every S1,S2,R ⊆ S1 × S2,

(g S1) is related to (g S2) by the “propagation” of R
according to τ .
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Polymorphic Lambda Calculus
[Girard 1972, Reynolds 1974]

Types: τ := α | τ → τ | ∀α. τ
Terms: t := x | λx : τ. t | t t | Λα. t | t τ

Γ, x : τ ` x : τ [[x ]]θ,σ = σ(x)

Γ, x : τ1 ` t : τ2

Γ ` (λx : τ1. t) : τ1 → τ2
[[λx : τ1. t]]θ,σ a = [[t]]θ,σ[x 7→a]

Γ ` t : τ1 → τ2 Γ ` u : τ1

Γ ` (t u) : τ2
[[t u]]θ,σ = [[t]]θ,σ [[u]]θ,σ

α, Γ ` t : τ

Γ ` (Λα. t) : ∀α. τ
[[Λα. t]]θ,σ S = [[t]]θ[α 7→S],σ

Γ ` t : ∀α. τ
Γ ` (t τ ′) : τ [τ ′/α]

[[t τ ′]]θ,σ = [[t]]θ,σ [[τ ′]]θ
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Parametricity Theorem [Reynolds 1983, Wadler 1989]

Given τ and environments θ1, θ2, ρ with ρ(α) ⊆ θ1(α)× θ2(α),
define ∆τ,ρ ⊆ [[τ ]]θ1 × [[τ ]]θ2 as follows:

∆α,ρ = ρ(α)
∆τ1→τ2,ρ = {(f1, f2) | ∀(a1, a2) ∈ ∆τ1,ρ. (f1 a1, f2 a2) ∈ ∆τ2,ρ}
∆∀α. τ,ρ = {(g1, g2) | ∀R ⊆ S1 × S2. (g1 S1, g2 S2) ∈ ∆τ,ρ[α 7→R]}

Then, for every closed term t of closed type τ :

([[t]]∅,∅, [[t]]∅,∅) ∈ ∆τ,∅.
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Proof Sketch

Prove the following more general statement:

Γ ` t : τ implies ([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆τ,ρ ,
provided (σ1(x), σ2(x)) ∈ ∆τ ′,ρ for every x : τ ′ in Γ

by induction on the structure of typing derivations.

The base case is immediate. In the step cases:

10



Proof Sketch

Prove the following more general statement:

Γ ` t : τ implies ([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆τ,ρ ,
provided (σ1(x), σ2(x)) ∈ ∆τ ′,ρ for every x : τ ′ in Γ

by induction on the structure of typing derivations.
The base case is immediate.

In the step cases:

10



Proof Sketch

Prove the following more general statement:

Γ ` t : τ implies ([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆τ,ρ ,
provided (σ1(x), σ2(x)) ∈ ∆τ ′,ρ for every x : τ ′ in Γ

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

Γ, x : τ1 ` t : τ2

Γ ` (λx : τ1. t) : τ1 → τ2

10



Proof Sketch

Prove the following more general statement:

Γ ` t : τ implies ([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆τ,ρ ,
provided (σ1(x), σ2(x)) ∈ ∆τ ′,ρ for every x : τ ′ in Γ

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

Γ, x : τ1 ` t : τ2

([[λx : τ1. t]]θ1,σ1 , [[λx : τ1. t]]θ2,σ2) ∈ ∆τ1→τ2,ρ

10



Proof Sketch

Prove the following more general statement:

Γ ` t : τ implies ([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆τ,ρ ,
provided (σ1(x), σ2(x)) ∈ ∆τ ′,ρ for every x : τ ′ in Γ

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

∀(a1, a2) ∈ ∆τ1,ρ. ([[t]]θ1,σ1[x 7→a1], [[t]]θ2,σ2[x 7→a2]) ∈ ∆τ2,ρ

([[λx : τ1. t]]θ1,σ1 , [[λx : τ1. t]]θ2,σ2) ∈ ∆τ1→τ2,ρ

10



Proof Sketch

Prove the following more general statement:

Γ ` t : τ implies ([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆τ,ρ ,
provided (σ1(x), σ2(x)) ∈ ∆τ ′,ρ for every x : τ ′ in Γ

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

∀(a1, a2) ∈ ∆τ1,ρ. ([[t]]θ1,σ1[x 7→a1], [[t]]θ2,σ2[x 7→a2]) ∈ ∆τ2,ρ

([[λx : τ1. t]]θ1,σ1 , [[λx : τ1. t]]θ2,σ2) ∈ ∆τ1→τ2,ρ

Γ ` t : τ1 → τ2 Γ ` u : τ1

Γ ` (t u) : τ2

10



Proof Sketch

Prove the following more general statement:

Γ ` t : τ implies ([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆τ,ρ ,
provided (σ1(x), σ2(x)) ∈ ∆τ ′,ρ for every x : τ ′ in Γ

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

∀(a1, a2) ∈ ∆τ1,ρ. ([[t]]θ1,σ1[x 7→a1], [[t]]θ2,σ2[x 7→a2]) ∈ ∆τ2,ρ

([[λx : τ1. t]]θ1,σ1 , [[λx : τ1. t]]θ2,σ2) ∈ ∆τ1→τ2,ρ

Γ ` t : τ1 → τ2 Γ ` u : τ1

([[t u]]θ1,σ1 , [[t u]]θ2,σ2) ∈ ∆τ2,ρ

10



Proof Sketch

Prove the following more general statement:

Γ ` t : τ implies ([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆τ,ρ ,
provided (σ1(x), σ2(x)) ∈ ∆τ ′,ρ for every x : τ ′ in Γ

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

∀(a1, a2) ∈ ∆τ1,ρ. ([[t]]θ1,σ1[x 7→a1], [[t]]θ2,σ2[x 7→a2]) ∈ ∆τ2,ρ

([[λx : τ1. t]]θ1,σ1 , [[λx : τ1. t]]θ2,σ2) ∈ ∆τ1→τ2,ρ

([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆τ1→τ2,ρ ([[u]]θ1,σ1 , [[u]]θ2,σ2) ∈ ∆τ1,ρ

([[t u]]θ1,σ1 , [[t u]]θ2,σ2) ∈ ∆τ2,ρ

10



Proof Sketch

Prove the following more general statement:

Γ ` t : τ implies ([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆τ,ρ ,
provided (σ1(x), σ2(x)) ∈ ∆τ ′,ρ for every x : τ ′ in Γ

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

∀(a1, a2) ∈ ∆τ1,ρ. ([[t]]θ1,σ1[x 7→a1], [[t]]θ2,σ2[x 7→a2]) ∈ ∆τ2,ρ

([[λx : τ1. t]]θ1,σ1 , [[λx : τ1. t]]θ2,σ2) ∈ ∆τ1→τ2,ρ

([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆τ1→τ2,ρ ([[u]]θ1,σ1 , [[u]]θ2,σ2) ∈ ∆τ1,ρ

([[t u]]θ1,σ1 , [[t u]]θ2,σ2) ∈ ∆τ2,ρ

α, Γ ` t : τ

Γ ` (Λα. t) : ∀α. τ

10



Proof Sketch

Prove the following more general statement:

Γ ` t : τ implies ([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆τ,ρ ,
provided (σ1(x), σ2(x)) ∈ ∆τ ′,ρ for every x : τ ′ in Γ

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

∀(a1, a2) ∈ ∆τ1,ρ. ([[t]]θ1,σ1[x 7→a1], [[t]]θ2,σ2[x 7→a2]) ∈ ∆τ2,ρ

([[λx : τ1. t]]θ1,σ1 , [[λx : τ1. t]]θ2,σ2) ∈ ∆τ1→τ2,ρ

([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆τ1→τ2,ρ ([[u]]θ1,σ1 , [[u]]θ2,σ2) ∈ ∆τ1,ρ

([[t u]]θ1,σ1 , [[t u]]θ2,σ2) ∈ ∆τ2,ρ

α, Γ ` t : τ

([[Λα. t]]θ1,σ1 , [[Λα. t]]θ2,σ2) ∈ ∆∀α. τ,ρ

10



Proof Sketch

Prove the following more general statement:

Γ ` t : τ implies ([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆τ,ρ ,
provided (σ1(x), σ2(x)) ∈ ∆τ ′,ρ for every x : τ ′ in Γ

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

∀(a1, a2) ∈ ∆τ1,ρ. ([[t]]θ1,σ1[x 7→a1], [[t]]θ2,σ2[x 7→a2]) ∈ ∆τ2,ρ

([[λx : τ1. t]]θ1,σ1 , [[λx : τ1. t]]θ2,σ2) ∈ ∆τ1→τ2,ρ

([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆τ1→τ2,ρ ([[u]]θ1,σ1 , [[u]]θ2,σ2) ∈ ∆τ1,ρ

([[t u]]θ1,σ1 , [[t u]]θ2,σ2) ∈ ∆τ2,ρ

∀R ⊆ S1 × S2. ([[t]]θ1[α 7→S1],σ1
, [[t]]θ2[α 7→S2],σ2

) ∈ ∆τ,ρ[α 7→R]

([[Λα. t]]θ1,σ1 , [[Λα. t]]θ2,σ2) ∈ ∆∀α. τ,ρ

10



Proof Sketch

Prove the following more general statement:

Γ ` t : τ implies ([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆τ,ρ ,
provided (σ1(x), σ2(x)) ∈ ∆τ ′,ρ for every x : τ ′ in Γ

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

∀(a1, a2) ∈ ∆τ1,ρ. ([[t]]θ1,σ1[x 7→a1], [[t]]θ2,σ2[x 7→a2]) ∈ ∆τ2,ρ

([[λx : τ1. t]]θ1,σ1 , [[λx : τ1. t]]θ2,σ2) ∈ ∆τ1→τ2,ρ

([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆τ1→τ2,ρ ([[u]]θ1,σ1 , [[u]]θ2,σ2) ∈ ∆τ1,ρ

([[t u]]θ1,σ1 , [[t u]]θ2,σ2) ∈ ∆τ2,ρ

∀R ⊆ S1 × S2. ([[t]]θ1[α 7→S1],σ1
, [[t]]θ2[α 7→S2],σ2

) ∈ ∆τ,ρ[α 7→R]

([[Λα. t]]θ1,σ1 , [[Λα. t]]θ2,σ2) ∈ ∆∀α. τ,ρ

Γ ` t : ∀α. τ
Γ ` (t τ ′) : τ [τ ′/α]

10



Proof Sketch

Prove the following more general statement:

Γ ` t : τ implies ([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆τ,ρ ,
provided (σ1(x), σ2(x)) ∈ ∆τ ′,ρ for every x : τ ′ in Γ

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

∀(a1, a2) ∈ ∆τ1,ρ. ([[t]]θ1,σ1[x 7→a1], [[t]]θ2,σ2[x 7→a2]) ∈ ∆τ2,ρ

([[λx : τ1. t]]θ1,σ1 , [[λx : τ1. t]]θ2,σ2) ∈ ∆τ1→τ2,ρ

([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆τ1→τ2,ρ ([[u]]θ1,σ1 , [[u]]θ2,σ2) ∈ ∆τ1,ρ

([[t u]]θ1,σ1 , [[t u]]θ2,σ2) ∈ ∆τ2,ρ

∀R ⊆ S1 × S2. ([[t]]θ1[α 7→S1],σ1
, [[t]]θ2[α 7→S2],σ2

) ∈ ∆τ,ρ[α 7→R]

([[Λα. t]]θ1,σ1 , [[Λα. t]]θ2,σ2) ∈ ∆∀α. τ,ρ

Γ ` t : ∀α. τ
([[t τ ′]]θ1,σ1 , [[t τ

′]]θ2,σ2) ∈ ∆τ [τ ′/α],ρ

10



Proof Sketch

Prove the following more general statement:

Γ ` t : τ implies ([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆τ,ρ ,
provided (σ1(x), σ2(x)) ∈ ∆τ ′,ρ for every x : τ ′ in Γ

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

∀(a1, a2) ∈ ∆τ1,ρ. ([[t]]θ1,σ1[x 7→a1], [[t]]θ2,σ2[x 7→a2]) ∈ ∆τ2,ρ

([[λx : τ1. t]]θ1,σ1 , [[λx : τ1. t]]θ2,σ2) ∈ ∆τ1→τ2,ρ

([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆τ1→τ2,ρ ([[u]]θ1,σ1 , [[u]]θ2,σ2) ∈ ∆τ1,ρ

([[t u]]θ1,σ1 , [[t u]]θ2,σ2) ∈ ∆τ2,ρ

∀R ⊆ S1 × S2. ([[t]]θ1[α 7→S1],σ1
, [[t]]θ2[α 7→S2],σ2

) ∈ ∆τ,ρ[α 7→R]

([[Λα. t]]θ1,σ1 , [[Λα. t]]θ2,σ2) ∈ ∆∀α. τ,ρ

([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆∀α. τ,ρ

([[t τ ′]]θ1,σ1 , [[t τ
′]]θ2,σ2) ∈ ∆τ [τ ′/α],ρ

10



Adding Datatypes

Types: τ := · · · | Bool | [τ ]

Terms: t := · · · | True | False | []τ | t : t | case t of {· · · }

Γ ` True : Bool , Γ ` False : Bool , Γ ` []τ : [τ ]

Γ ` t : τ Γ ` u : [τ ]

Γ ` (t : u) : [τ ]

Γ ` t : Bool Γ ` u : τ Γ ` v : τ
Γ ` (case t of {True → u ; False → v}) : τ

Γ ` t : [τ ′] Γ ` u : τ Γ, x1 : τ ′, x2 : [τ ′] ` v : τ

Γ ` (case t of {[]→ u ; (x1 : x2)→ v}) : τ

With the straightforward extension of term-semantics and with

∆Bool ,ρ = {(True,True), (False,False)}
∆[τ ],ρ = {([x1, . . . , xn], [y1, . . . , yn]) | n ≥ 0, (xi , yi ) ∈ ∆τ,ρ} ,

the parametricity theorem still holds.
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Adding General Recursion

Terms: t := · · · | fix t

Γ ` t : τ → τ
Γ ` (fix t) : τ

To provide semantics, types are interpreted as pointed complete
partial orders now.

[[fix t]]θ,σ =
⊔
i≥0

([[t]]iθ,σ ⊥).

The parametricity theorem still holds, provided all relations are
strict and continuous.
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Back to Haskell

The original example

filter :: ∀α. (α→ Bool)→ [α]→ [α]
filter p [] = []
filter p (x : xs) = if p x then x : filter p xs

else filter p xs

has a “desugaring” in the extended calculus as follows:

fix (λf : (∀α. (α→ Bool)→ [α]→ [α]).
Λα. λp : (α→ Bool). λl : [α].
case l of {[] → []α ;

(x : xs)→ case p x of
{True → x : (f α p xs) ;

False → f α p xs}})

13



The Magic Dissolves

Given g of type ∀α. (α→ Bool)→ [α]→ [α],
by the parametricity theorem:

(g , g) ∈ ∆∀α. (α→Bool)→[α]→[α],∅

⇒ ∀R ∈ Rel . (g , g) ∈ ∆(α→Bool)→[α]→[α],[α 7→R]

⇒ ∀R ∈ Rel , (a1, a2) ∈ ∆α→Bool ,[α 7→R]. (g a1, g a2) ∈ ∆[α]→[α],[α 7→R]

⇒ ∀R ∈ Rel , (a1, a2) ∈ ∆α→Bool ,[α 7→R], (l1, l2) ∈ ∆[α],[α 7→R].

(g a1 l1, g a2 l2) ∈ ∆[α],[α 7→R]

⇒ ∀(a1, a2) ∈ ∆α→Bool ,[α 7→h], (l1, l2) ∈ (map h).
(g a1 l1, g a2 l2) ∈ (map h)

⇒ ∀(l1, l2) ∈ (map h). (g (p ◦ h) l1, g p l2) ∈ (map h)

for every function h and every p.

This is exactly the claim (1) for g = filter !
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