Free Theorems - The Basics

Janis Voigtländer
Technische Universität Dresden

January 6, 2006

Outline

Example in Haskell

Parametric polymorphism

Polymorphic lambda calculus

Parametricity theorem

Back to Haskell

Haskell Example:

filter $:: \forall \alpha .(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$
filter p [] $=[]$
filter $p(x: x s)=$ if $p x$ then x : filter $p \times s$ else filter p xs

Haskell Example:

$$
\begin{aligned}
\text { filter }:: \forall \alpha .(\alpha & \rightarrow \text { Bool }) \rightarrow[\alpha] \rightarrow[\alpha] \\
\text { filter } p[] & =[] \\
\text { filter } p(x: x s) & =\text { if } p \times \text { then } x: \text { filter } p \times s \\
& \text { else filter } p \times s
\end{aligned}
$$

Claim:

$$
\begin{equation*}
\text { filter } p(\operatorname{map} h l)=\operatorname{map} h(\text { filter }(p \circ h) l) \tag{1}
\end{equation*}
$$

Can be proved by induction on I, using the definition of filter.

Haskell Example: Theorems for free! [Wadler 1989]

filter $:: \forall \alpha .(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$

Claim:
filter $p(\operatorname{maph} l)=\operatorname{map} h($ filter $(p \circ h) l)$
Can be derived from the parametric polymorphic type of filter!

Haskell Example: Theorems for free! [Wadler 1989]

$$
\text { filter }:: \forall \alpha .(\alpha \rightarrow \text { Bool }) \rightarrow[\alpha] \rightarrow[\alpha]
$$

Claim:
filter $p(\operatorname{maph} /)=\operatorname{map} h($ filter $(p \circ h) I)$
Can be derived from the parametric polymorphic type of filter!

Where is the magic? Where is the induction?

Parametric Polymorphism, Intuitively

- filter :: $\forall \alpha$. $(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.

Parametric Polymorphism, Intuitively

- filter :: $\forall \alpha .(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list $/$.

Parametric Polymorphism, Intuitively

- filter :: $\forall \alpha$. $(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list $/$.
- Which, and in which order/multiplicity, can only be decided based on I and the input predicate p.

Parametric Polymorphism, Intuitively

- filter $:: \forall \alpha .(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list l.
- Which, and in which order/multiplicity, can only be decided based on I and the input predicate p.
- The only means for this decision are to inspect the length of I and to check the outcome of p on its elements.

Parametric Polymorphism, Intuitively

- filter $:: \forall \alpha$. $(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list l.
- Which, and in which order/multiplicity, can only be decided based on I and the input predicate p.
- The only means for this decision are to inspect the length of I and to check the outcome of p on its elements.
- The lists (maphl) and I always have equal length.

Parametric Polymorphism, Intuitively

- filter $:: \forall \alpha$. $(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list l.
- Which, and in which order/multiplicity, can only be decided based on I and the input predicate p.
- The only means for this decision are to inspect the length of I and to check the outcome of p on its elements.
- The lists (maphl) and I always have equal length.
- Applying p to an element of (maphl) always has the same outcome as applying $(p \circ h)$ to the corresponding element of l.

Parametric Polymorphism, Intuitively

- filter $:: \forall \alpha$. $(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list l.
- Which, and in which order/multiplicity, can only be decided based on I and the input predicate p.
- The only means for this decision are to inspect the length of I and to check the outcome of p on its elements.
- The lists (maphl) and I always have equal length.
- Applying p to an element of (maphl) always has the same outcome as applying ($p \circ h$) to the corresponding element of I.
- filter with p always chooses "the same" elements from (maphl) for output as does filter with $(p \circ h)$ from $/$,

Parametric Polymorphism, Intuitively

- filter $:: \forall \alpha .(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list l.
- Which, and in which order/multiplicity, can only be decided based on I and the input predicate p.
- The only means for this decision are to inspect the length of I and to check the outcome of p on its elements.
- The lists (maphl) and I always have equal length.
- Applying p to an element of (maphl) always has the same outcome as applying ($p \circ h$) to the corresponding element of I.
- filter with p always chooses "the same" elements from (maphl) for output as does filter with $(p \circ h)$ from l, except that it outputs their images under h.

Parametric Polymorphism, Intuitively

- filter $:: \forall \alpha$. $(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list l.
- Which, and in which order/multiplicity, can only be decided based on I and the input predicate p.
- The only means for this decision are to inspect the length of I and to check the outcome of p on its elements.
- The lists (maphl) and I always have equal length.
- Applying p to an element of (maphl) always has the same outcome as applying ($p \circ h$) to the corresponding element of I.
- filter with p always chooses "the same" elements from (maphl) for output as does filter with $(p \circ h)$ from l, except that it outputs their images under h.
- (filter $p(\operatorname{map} h I))$ is equivalent to $(\operatorname{map} h(\operatorname{filter}(p \circ h) I))$.

Parametric Polymorphism, Intuitively

- filter :: $\forall \alpha$. $(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list l.
- Which, and in which order/multiplicity, can only be decided based on I and the input predicate p.
- The only means for this decision are to inspect the length of I and to check the outcome of p on its elements.
- The lists (maphl) and I always have equal length.
- Applying p to an element of (maphl) always has the same outcome as applying ($p \circ h$) to the corresponding element of I.
- filter with p always chooses "the same" elements from (maphl) for output as does filter with $(p \circ h)$ from l, except that it outputs their images under h.
- (filter $p(\operatorname{map} h l))$ is equivalent to $(\operatorname{map} h(f i l t e r(p \circ h) I))$.
- That is what we wanted to prove!

Parametric Polymorphism, More Formally

Question: What functions are in $\forall \alpha .(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$?
Approach: Give denotations of types as sets.

Parametric Polymorphism, More Formally

Question: What functions are in $\forall \alpha .(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$?
Approach: Give denotations of types as sets.

$$
\begin{array}{lll}
\llbracket B o o l \rrbracket_{\theta} & =\{\text { True, False }\} & \\
\llbracket \mathrm{Bat} \rrbracket_{\theta} & =\{0,1,2, \ldots\} & \\
\llbracket \mathbb{N}
\end{array}
$$

Parametric Polymorphism, More Formally

Question: What functions are in $\forall \alpha .(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$?
Approach: Give denotations of types as sets.

$$
\begin{array}{lll}
\llbracket B o o l \rrbracket_{\theta} & =\{\text { True, False }\} & =\mathbb{B} \\
\llbracket N a t \rrbracket_{\theta} & =\{0,1,2, \ldots\} & =\mathbb{N} \\
\llbracket\left(\tau_{1}, \tau_{2}\right) \rrbracket_{\theta} & =\llbracket \tau_{1} \rrbracket_{\theta} \times \llbracket \tau_{2} \rrbracket_{\theta} & \\
\llbracket[\tau] \rrbracket_{\theta} & =\left\{\left[x_{1}, \ldots, x_{n}\right] \mid n \geq 0, x_{i} \in \llbracket \tau \rrbracket_{\theta}\right\} &
\end{array}
$$

Parametric Polymorphism, More Formally

Question: What functions are in $\forall \alpha .(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$?
Approach: Give denotations of types as sets.

$$
\begin{array}{lll}
\llbracket B o o l \rrbracket_{\theta} & =\{\text { True, False }\} & =\mathbb{B} \\
\llbracket N a t \rrbracket_{\theta} & =\{0,1,2, \ldots\} & =\mathbb{N} \\
\llbracket\left(\tau_{1}, \tau_{2}\right) \rrbracket_{\theta} & =\llbracket \tau_{1} \rrbracket_{\theta} \times \llbracket \tau_{2} \rrbracket_{\theta} & \\
\llbracket[\tau] \rrbracket_{\theta} & =\left\{\left[x_{1}, \ldots, x_{n}\right] \mid n \geq 0, x_{i} \in \llbracket \tau \rrbracket_{\theta}\right\} & \\
\llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket_{\theta} & =\left\{f: \llbracket \tau_{1} \rrbracket_{\theta} \rightarrow \llbracket \tau_{2} \rrbracket_{\theta}\right\} &
\end{array}
$$

Parametric Polymorphism, More Formally

Question: What functions are in $\forall \alpha .(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$?
Approach: Give denotations of types as sets.

$$
\begin{array}{lll}
\llbracket B o o l \rrbracket_{\theta} & =\{\text { True, False }\} & =\mathbb{B} \\
\llbracket N a t \rrbracket_{\theta} & =\{0,1,2, \ldots\} & =\mathbb{N} \\
\llbracket\left(\tau_{1}, \tau_{2}\right) \rrbracket_{\theta} & =\llbracket \tau_{1} \rrbracket_{\theta} \times \llbracket \tau_{2} \rrbracket_{\theta} & \\
\llbracket[\tau] \rrbracket_{\theta} & \left.=\left\{x_{1}, \ldots, x_{n}\right] \mid n \geq 0, x_{i} \in \llbracket \tau \rrbracket_{\theta}\right\} & \\
\llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket_{\theta} & =\left\{f: \llbracket \tau_{1} \rrbracket_{\theta} \rightarrow \llbracket \tau_{2} \rrbracket_{\theta}\right\} & \\
\llbracket \forall \alpha \cdot \tau \rrbracket_{\theta} & =?
\end{array}
$$

Parametric Polymorphism, More Formally

Question: What functions are in $\forall \alpha .(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$?
Approach: Give denotations of types as sets.

$$
\begin{array}{lll}
\llbracket B o o l \rrbracket_{\theta} & =\{\text { True, False }\} & =\mathbb{B} \\
\llbracket N a t \rrbracket_{\theta} & =\{0,1,2, \ldots\} & =\mathbb{N} \\
\llbracket\left(\tau_{1}, \tau_{2}\right) \rrbracket_{\theta} & =\llbracket \tau_{1} \rrbracket_{\theta} \times \llbracket \tau_{2} \rrbracket_{\theta} & \\
\llbracket[\tau] \rrbracket_{\theta} & \left.=\left\{x_{1}, \ldots, x_{n}\right] \mid n \geq 0, x_{i} \in \llbracket \tau \rrbracket_{\theta}\right\} & \\
\llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket_{\theta} & =\left\{f: \llbracket \tau_{1} \rrbracket_{\theta} \rightarrow \llbracket \tau_{2} \rrbracket_{\theta}\right\} & \\
\llbracket \forall \alpha \cdot \tau \rrbracket_{\theta} & =?
\end{array}
$$

- $g \in \llbracket \forall \alpha . \tau \rrbracket_{\theta}$ should be a "collection" of values: for every type τ^{\prime}, there is an instance of type $\tau\left[\tau^{\prime} / \alpha\right]$.

Parametric Polymorphism, More Formally

Question: What functions are in $\forall \alpha .(\alpha \rightarrow B o o l) \rightarrow[\alpha] \rightarrow[\alpha]$?
Approach: Give denotations of types as sets.

$$
\begin{array}{lll}
\llbracket B o o l \rrbracket_{\theta} & =\{\text { True, False }\} & =\mathbb{B} \\
\llbracket N a t \rrbracket_{\theta} & =\{0,1,2, \ldots\} & =\mathbb{N} \\
\llbracket\left(\tau_{1}, \tau_{2}\right) \rrbracket_{\theta} & =\llbracket \tau_{1} \rrbracket_{\theta} \times \llbracket \tau_{2} \rrbracket_{\theta} & \\
\llbracket[\tau] \rrbracket_{\theta} & =\left\{\left[x_{1}, \ldots, x_{n}\right] \mid n \geq 0, x_{i} \in \llbracket \tau \rrbracket_{\theta}\right\} & \\
\llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket_{\theta} & =\left\{f: \llbracket \tau_{1} \rrbracket_{\theta} \rightarrow \llbracket \tau_{2} \rrbracket_{\theta}\right\} & \\
\llbracket \forall \alpha \cdot \tau \rrbracket_{\theta} & =?
\end{array}
$$

- $g \in \llbracket \forall \alpha . \tau \rrbracket_{\theta}$ should be a "collection" of values: for every type τ^{\prime}, there is an instance of type $\tau\left[\tau^{\prime} / \alpha\right]$.
$-\llbracket \forall \alpha . \tau \rrbracket_{\theta}=\left\{g:\right.$ Set \rightarrow Value $\mid \forall S \in$ Set. $\left.(g S) \in \llbracket \tau \rrbracket_{\theta[\alpha \mapsto S]}\right\}$ is maybe a good start, together with $\llbracket \alpha \rrbracket_{\theta}=\theta(\alpha)$.

Parametric Polymorphism, More Formally

Question: What functions are in $\forall \alpha .(\alpha \rightarrow B o o l) \rightarrow[\alpha] \rightarrow[\alpha]$?
Approach: Give denotations of types as sets.

$$
\begin{array}{lll}
\llbracket B o o l \rrbracket_{\theta} & =\{\text { True, False }\} & =\mathbb{B} \\
\llbracket N a t \rrbracket_{\theta} & =\{0,1,2, \ldots\} & =\mathbb{N} \\
\llbracket\left(\tau_{1}, \tau_{2}\right) \rrbracket_{\theta} & =\llbracket \tau_{1} \rrbracket_{\theta} \times \llbracket \tau_{2} \rrbracket_{\theta} & \\
\llbracket[\tau] \rrbracket_{\theta} & =\left\{\left[x_{1}, \ldots, x_{n}\right] \mid n \geq 0, x_{i} \in \llbracket \tau \rrbracket_{\theta}\right\} & \\
\llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket_{\theta} & =\left\{f: \llbracket \tau_{1} \rrbracket_{\theta} \rightarrow \llbracket \tau_{2} \rrbracket_{\theta}\right\} & \\
\llbracket \forall \alpha . \tau \rrbracket_{\theta} & =?
\end{array}
$$

- $g \in \llbracket \forall \alpha . \tau \rrbracket_{\theta}$ should be a "collection" of values: for every type τ^{\prime}, there is an instance of type $\tau\left[\tau^{\prime} / \alpha\right]$.
$-\llbracket \forall \alpha . \tau \rrbracket_{\theta}=\left\{g:\right.$ Set \rightarrow Value $\mid \forall S \in$ Set. $\left.(g S) \in \llbracket \tau \rrbracket_{\theta[\alpha \mapsto S]}\right\}$ is maybe a good start, together with $\llbracket \alpha \rrbracket_{\theta}=\theta(\alpha)$.
- But this may contain "ad-hoc" polymorphic functions!

Unwanted Ad-Hoc Polymorphism: Example

- With the proposed definition,
$\llbracket \forall \alpha .(\alpha, \alpha) \rightarrow \alpha \rrbracket_{\emptyset}=\{g \mid \forall S \in \operatorname{Set} .(g S): S \times S \rightarrow S\}$.

Unwanted Ad-Hoc Polymorphism: Example

- With the proposed definition, $\llbracket \forall \alpha .(\alpha, \alpha) \rightarrow \alpha \rrbracket_{\emptyset}=\{g \mid \forall S \in \operatorname{Set} .(g S): S \times S \rightarrow S\}$.
- But this also allows

$$
\begin{aligned}
& g \mathbb{B}(x, y)=\text { not } x \\
& g \mathbb{N}(x, y)=y+1
\end{aligned}
$$

which is not possible in Haskell at type $\forall \alpha .(\alpha, \alpha) \rightarrow \alpha$.

Unwanted Ad-Hoc Polymorphism: Example

- With the proposed definition, $\llbracket \forall \alpha .(\alpha, \alpha) \rightarrow \alpha \rrbracket_{\emptyset}=\{g \mid \forall S \in \operatorname{Set} .(g S): S \times S \rightarrow S\}$.
- But this also allows

$$
\begin{aligned}
& g \mathbb{B}(x, y)=\text { not } x \\
& g \mathbb{N}(x, y)=y+1
\end{aligned}
$$

which is not possible in Haskell at type $\forall \alpha .(\alpha, \alpha) \rightarrow \alpha$.

- To prevent this, compare/relate

$$
\begin{aligned}
& (g \mathbb{B}): \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B} \text { and } \\
& (g \mathbb{N}): \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N},
\end{aligned}
$$

ensuring that they "behave identically".
But how?

Key Idea [Reynolds 1983]

Use relations to tie instances together.

Key Idea [Reynolds 1983]

Use relations to tie instances together.
In the example:

- Choose an $\mathcal{R} \subseteq \mathbb{B} \times \mathbb{N}$.

Key Idea [Reynolds 1983]

Use relations to tie instances together.
In the example:

- Choose an $\mathcal{R} \subseteq \mathbb{B} \times \mathbb{N}$.
- Say that $\left(x_{1}, y_{1}\right) \in \mathbb{B} \times \mathbb{B}$ and $\left(x_{2}, y_{2}\right) \in \mathbb{N} \times \mathbb{N}$ are related if $\left(x_{1}, x_{2}\right) \in \mathcal{R}$ and $\left(y_{1}, y_{2}\right) \in \mathcal{R}$.

Key Idea [Reynolds 1983]

Use relations to tie instances together.
In the example:

- Choose an $\mathcal{R} \subseteq \mathbb{B} \times \mathbb{N}$.
- Say that $\left(x_{1}, y_{1}\right) \in \mathbb{B} \times \mathbb{B}$ and $\left(x_{2}, y_{2}\right) \in \mathbb{N} \times \mathbb{N}$ are related if $\left(x_{1}, x_{2}\right) \in \mathcal{R}$ and $\left(y_{1}, y_{2}\right) \in \mathcal{R}$.
- Say that $f_{1}: \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B}$ and $f_{2}: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ are related if they map related arguments to related results.

Key Idea [Reynolds 1983]

Use relations to tie instances together.
In the example:

- Choose an $\mathcal{R} \subseteq \mathbb{B} \times \mathbb{N}$.
- Say that $\left(x_{1}, y_{1}\right) \in \mathbb{B} \times \mathbb{B}$ and $\left(x_{2}, y_{2}\right) \in \mathbb{N} \times \mathbb{N}$ are related if $\left(x_{1}, x_{2}\right) \in \mathcal{R}$ and $\left(y_{1}, y_{2}\right) \in \mathcal{R}$.
- Say that $f_{1}: \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B}$ and $f_{2}: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ are related if they map related arguments to related results.
- Then $(g \mathbb{B})$ and $(g \mathbb{N})$ with

$$
\begin{aligned}
& g \mathbb{B}(x, y)=\operatorname{not} x \\
& g \mathbb{N}(x, y)=y+1
\end{aligned}
$$

are not related if we choose, e.g., $\mathcal{R}=\{($ True, 1$)\}$.

Key Idea [Reynolds 1983]

Use relations to tie instances together.
In the example:

- Choose an $\mathcal{R} \subseteq \mathbb{B} \times \mathbb{N}$.
- Say that $\left(x_{1}, y_{1}\right) \in \mathbb{B} \times \mathbb{B}$ and $\left(x_{2}, y_{2}\right) \in \mathbb{N} \times \mathbb{N}$ are related if $\left(x_{1}, x_{2}\right) \in \mathcal{R}$ and $\left(y_{1}, y_{2}\right) \in \mathcal{R}$.
- Say that $f_{1}: \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B}$ and $f_{2}: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ are related if they map related arguments to related results.
- Then $(g \mathbb{B})$ and $(g \mathbb{N})$ with

$$
\begin{aligned}
& g \mathbb{B}(x, y)=\operatorname{not} x \\
& g \mathbb{N}(x, y)=y+1
\end{aligned}
$$

are not related if we choose, e.g., $\mathcal{R}=\{($ True, 1$)\}$.
Reynolds: $g \in \llbracket \forall \alpha . \tau \rrbracket_{\theta}$ only if for every $S_{1}, S_{2}, \mathcal{R} \subseteq S_{1} \times S_{2}$, ($g S_{1}$) is related to $\left(g S_{2}\right)$ by the "propagation" of \mathcal{R} according to τ.

Polymorphic Lambda Calculus

[Girard 1972, Reynolds 1974]
Types: $\tau:=\alpha|\tau \rightarrow \tau| \forall \alpha . \tau$
Terms: $t:=x|\lambda x: \tau . t| t t|\Lambda \alpha, t| t \tau$

Polymorphic Lambda Calculus

[Girard 1972, Reynolds 1974]
Types: $\tau:=\alpha|\tau \rightarrow \tau| \forall \alpha . \tau$
Terms: $t:=x|\lambda x: \tau . t| t t|\Lambda \alpha, t| t \tau$

$$
\ulcorner, x: \tau \vdash x: \tau
$$

Polymorphic Lambda Calculus

[Girard 1972, Reynolds 1974]
Types: $\tau:=\alpha|\tau \rightarrow \tau| \forall \alpha . \tau$
Terms: $t:=x|\lambda x: \tau . t| t t|\Lambda \alpha, t| t \tau$

$$
\begin{gathered}
\Gamma, x: \tau \vdash x: \tau \\
\Gamma \vdash, x: \tau_{1} \vdash t: \tau_{2} \\
\Gamma \vdash\left(\lambda x: \tau_{1} \cdot t\right): \tau_{1} \rightarrow \tau_{2}
\end{gathered}
$$

Polymorphic Lambda Calculus

[Girard 1972, Reynolds 1974]

$$
\begin{aligned}
& \text { Types: } \tau:=\alpha|\tau \rightarrow \tau| \forall \alpha . \tau \\
& \text { Terms: } t:=x|\lambda x: \tau . t| t t|\Lambda \alpha . t| t \tau \\
& \Gamma, x: \tau \vdash x: \tau \\
& \frac{\Gamma, x: \tau_{1} \vdash t: \tau_{2}}{\Gamma \vdash\left(\lambda x: \tau_{1} \cdot t\right): \tau_{1} \rightarrow \tau_{2}} \\
& \frac{\Gamma \vdash t: \tau_{1} \rightarrow \tau_{2} \quad \Gamma \vdash u: \tau_{1}}{\Gamma \vdash(t u): \tau_{2}}
\end{aligned}
$$

Polymorphic Lambda Calculus

[Girard 1972, Reynolds 1974]

$$
\begin{aligned}
& \text { Types: } \tau:=\alpha|\tau \rightarrow \tau| \forall \alpha . \tau \\
& \text { Terms: } t:=x|\lambda x: \tau . t| t t|\wedge \alpha . t| t \tau \\
& \quad \Gamma, x: \tau \vdash x: \tau \\
& \frac{\Gamma, x: \tau_{1} \vdash t: \tau_{2}}{\Gamma \vdash\left(\lambda x: \tau_{1} \cdot t\right): \tau_{1} \rightarrow \tau_{2}} \\
& \frac{\Gamma \vdash t: \tau_{1} \rightarrow \tau_{2} \quad \Gamma \vdash u: \tau_{1}}{\Gamma \vdash(t u): \tau_{2}} \\
& \frac{\alpha, \Gamma \vdash t: \tau}{\Gamma \vdash(\Lambda \alpha . t): \forall \alpha . \tau}
\end{aligned}
$$

Polymorphic Lambda Calculus

[Girard 1972, Reynolds 1974]

$$
\begin{aligned}
& \text { Types: } \tau:=\alpha|\tau \rightarrow \tau| \forall \alpha . \tau \\
& \text { Terms: } t:=x|\lambda x: \tau . t| t t|\Lambda \alpha . t| t \tau \\
& \quad \Gamma, x: \tau \vdash x: \tau \\
& \frac{\Gamma, x: \tau_{1} \vdash t: \tau_{2}}{\Gamma \vdash\left(\lambda x: \tau_{1} \cdot t\right): \tau_{1} \rightarrow \tau_{2}} \\
& \frac{\Gamma \vdash t: \tau_{1} \rightarrow \tau_{2} \quad\left\ulcorner\vdash u: \tau_{1}\right.}{\Gamma \vdash(t u): \tau_{2}} \\
& \frac{\alpha, \Gamma \vdash t: \tau}{\Gamma \vdash(\Lambda \alpha . t): \forall \alpha . \tau} \\
& \frac{\Gamma \vdash t: \forall \alpha . \tau}{\Gamma \vdash\left(t \tau^{\prime}\right): \tau\left[\tau^{\prime} / \alpha\right]}
\end{aligned}
$$

Polymorphic Lambda Calculus

[Girard 1972, Reynolds 1974]
Types: $\tau:=\alpha|\tau \rightarrow \tau| \forall \alpha . \tau$
Terms: $t:=x|\lambda x: \tau . t| t t|\Lambda \alpha, t| t \tau$

$$
\begin{array}{rll}
\Gamma, x: \tau \vdash x: \tau & \llbracket x \rrbracket_{\theta, \sigma} & =\sigma(x) \\
\frac{\Gamma, x: \tau_{1} \vdash t: \tau_{2}}{\Gamma \vdash\left(\lambda x: \tau_{1} \cdot t\right): \tau_{1} \rightarrow \tau_{2}} & \llbracket \lambda x: \tau_{1} \cdot t \rrbracket_{\theta, \sigma} a & =\llbracket t \rrbracket_{\theta, \sigma[x \mapsto a]} \\
\frac{\Gamma \vdash t: \tau_{1} \rightarrow \tau_{2} \quad \Gamma \vdash u: \tau_{1}}{\Gamma \vdash(t u): \tau_{2}} & \llbracket t u \rrbracket_{\theta, \sigma} & =\llbracket t \rrbracket_{\theta, \sigma} \llbracket u \rrbracket_{\theta, \sigma} \\
\frac{\alpha, \Gamma \vdash t: \tau}{\Gamma \vdash(\Lambda \alpha \cdot t): \forall \alpha \cdot \tau} & \llbracket \Lambda \alpha \cdot t \rrbracket_{\theta, \sigma} S & =\llbracket t \rrbracket_{\theta[\alpha \mapsto S], \sigma} \\
\frac{\Gamma \vdash t: \forall \alpha . \tau}{\Gamma \vdash\left(t \tau^{\prime}\right): \tau\left[\tau^{\prime} / \alpha\right]} & \llbracket t \tau^{\prime} \rrbracket_{\theta, \sigma} & =\llbracket t \rrbracket_{\theta, \sigma} \llbracket \tau^{\prime} \rrbracket_{\theta}
\end{array}
$$

Parametricity Theorem [Reynolds 1983, Wadler 1989]

Given τ and environments $\theta_{1}, \theta_{2}, \rho$ with $\rho(\alpha) \subseteq \theta_{1}(\alpha) \times \theta_{2}(\alpha)$, define $\Delta_{\tau, \rho} \subseteq \llbracket \tau \rrbracket_{\theta_{1}} \times \llbracket \tau \rrbracket_{\theta_{2}}$ as follows:

Parametricity Theorem [Reynolds 1983, Wadler 1989]

Given τ and environments $\theta_{1}, \theta_{2}, \rho$ with $\rho(\alpha) \subseteq \theta_{1}(\alpha) \times \theta_{2}(\alpha)$, define $\Delta_{\tau, \rho} \subseteq \llbracket \tau \rrbracket_{\theta_{1}} \times \llbracket \tau \rrbracket_{\theta_{2}}$ as follows:
$\Delta_{\alpha, \rho}=\rho(\alpha)$

Parametricity Theorem [Reynolds 1983, Wadler 1989]

Given τ and environments $\theta_{1}, \theta_{2}, \rho$ with $\rho(\alpha) \subseteq \theta_{1}(\alpha) \times \theta_{2}(\alpha)$, define $\Delta_{\tau, \rho} \subseteq \llbracket \tau \rrbracket_{\theta_{1}} \times \llbracket \tau \rrbracket_{\theta_{2}}$ as follows:

$$
\begin{aligned}
& \Delta_{\alpha, \rho}=\rho(\alpha) \\
& \Delta_{\tau_{1} \rightarrow \tau_{2}, \rho}=\left\{\left(f_{1}, f_{2}\right) \mid \forall\left(a_{1}, a_{2}\right) \in \Delta_{\tau_{1}, \rho} .\left(f_{1} a_{1}, f_{2} a_{2}\right) \in \Delta_{\tau_{2}, \rho}\right\}
\end{aligned}
$$

Parametricity Theorem [Reynolds 1983, Wadler 1989]

Given τ and environments $\theta_{1}, \theta_{2}, \rho$ with $\rho(\alpha) \subseteq \theta_{1}(\alpha) \times \theta_{2}(\alpha)$, define $\Delta_{\tau, \rho} \subseteq \llbracket \tau \rrbracket_{\theta_{1}} \times \llbracket \tau \rrbracket_{\theta_{2}}$ as follows:

$$
\begin{aligned}
& \Delta_{\alpha, \rho}=\rho(\alpha) \\
& \Delta_{\tau_{1} \rightarrow \tau_{2}, \rho}=\left\{\left(f_{1}, f_{2}\right) \mid \forall\left(a_{1}, a_{2}\right) \in \Delta_{\tau_{1}, \rho .} .\left(f_{1} a_{1}, f_{2} a_{2}\right) \in \Delta_{\tau_{2}, \rho}\right\} \\
& \Delta_{\forall \alpha \cdot \tau, \rho}=\left\{\left(g_{1}, g_{2}\right) \mid \forall \mathcal{R} \subseteq S_{1} \times S_{2} .\left(g_{1} S_{1}, g_{2} S_{2}\right) \in \Delta_{\tau, \rho[\alpha \mapsto \mathcal{R}]}\right\}
\end{aligned}
$$

Parametricity Theorem [Reynolds 1983, Wadler 1989]

Given τ and environments $\theta_{1}, \theta_{2}, \rho$ with $\rho(\alpha) \subseteq \theta_{1}(\alpha) \times \theta_{2}(\alpha)$, define $\Delta_{\tau, \rho} \subseteq \llbracket \tau \rrbracket_{\theta_{1}} \times \llbracket \tau \rrbracket_{\theta_{2}}$ as follows:

$$
\begin{aligned}
& \Delta_{\alpha, \rho}=\rho(\alpha) \\
& \Delta_{\tau_{1} \rightarrow \tau_{2}, \rho}=\left\{\left(f_{1}, f_{2}\right) \mid \forall\left(a_{1}, a_{2}\right) \in \Delta_{\tau_{1}, \rho} .\left(f_{1} a_{1}, f_{2} a_{2}\right) \in \Delta_{\tau_{2}, \rho}\right\} \\
& \Delta_{\forall \alpha \cdot \tau, \rho}=\left\{\left(g_{1}, g_{2}\right) \mid \forall \mathcal{R} \subseteq S_{1} \times S_{2} .\left(g_{1} S_{1}, g_{2} S_{2}\right) \in \Delta_{\tau, \rho[\alpha \mapsto \mathcal{R}]}\right\}
\end{aligned}
$$

Then, for every closed term t of closed type τ :

$$
\left(\llbracket t \rrbracket_{\emptyset, \emptyset,}, \llbracket t \rrbracket_{\emptyset, \emptyset}\right) \in \Delta_{\tau, \emptyset} .
$$

Proof Sketch

Prove the following more general statement:

$$
\Gamma \vdash t: \tau \text { implies }\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau, \rho},
$$ provided $\left(\sigma_{1}(x), \sigma_{2}(x)\right) \in \Delta_{\tau^{\prime}, \rho}$ for every $x: \tau^{\prime}$ in Γ by induction on the structure of typing derivations.

Proof Sketch

Prove the following more general statement:

$$
\begin{aligned}
& \Gamma \vdash t: \tau \text { implies }\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau, \rho}, \\
& \text { provided }\left(\sigma_{1}(x), \sigma_{2}(x)\right) \in \Delta_{\tau^{\prime}, \rho} \text { for every } x: \tau^{\prime} \text { in } \Gamma
\end{aligned}
$$

by induction on the structure of typing derivations.
The base case is immediate.

Proof Sketch

Prove the following more general statement:

$$
\begin{aligned}
& \Gamma \vdash t: \tau \text { implies }\left(\llbracket t \rrbracket_{\left.\theta_{1}, \sigma_{1}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau, \rho},}^{\text {provided }\left(\sigma_{1}(x), \sigma_{2}(x)\right) \in \Delta_{\tau^{\prime}, \rho} \text { for every } x: \tau^{\prime} \text { in } \Gamma}\right.
\end{aligned}
$$

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

$$
\frac{\Gamma, x: \tau_{1} \vdash t: \tau_{2}}{\Gamma \vdash\left(\lambda x: \tau_{1} \cdot t\right): \tau_{1} \rightarrow \tau_{2}}
$$

Proof Sketch

Prove the following more general statement:

$$
\begin{aligned}
& \Gamma \vdash t: \tau \text { implies }\left(\llbracket t \rrbracket_{\left.\theta_{1}, \sigma_{1}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau, \rho},}^{\text {provided }\left(\sigma_{1}(x), \sigma_{2}(x)\right) \in \Delta_{\tau^{\prime}, \rho} \text { for every } x: \tau^{\prime} \text { in } \Gamma}\right.
\end{aligned}
$$

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

$$
\frac{\Gamma, x: \tau_{1} \vdash t: \tau_{2}}{\left(\llbracket \lambda x: \tau_{1} \cdot t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket \lambda x: \tau_{1} \cdot t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1} \rightarrow \tau_{2}, \rho}}
$$

Proof Sketch

Prove the following more general statement:

$$
\begin{aligned}
& \Gamma \vdash t: \tau \text { implies }\left(\llbracket t \rrbracket_{\left.\theta_{1}, \sigma_{1}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau, \rho},}^{\text {provided }\left(\sigma_{1}(x), \sigma_{2}(x)\right) \in \Delta_{\tau^{\prime}, \rho} \text { for every } x: \tau^{\prime} \text { in } \Gamma}\right.
\end{aligned}
$$

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

$$
\frac{\forall\left(a_{1}, a_{2}\right) \in \Delta_{\tau_{1}, \rho \cdot} \cdot\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}\left[x \mapsto a_{1}\right]}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}\left[x \mapsto a_{2}\right]}\right) \in \Delta_{\tau_{2}, \rho}}{\left(\llbracket \lambda x: \tau_{1} \cdot t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket \lambda x: \tau_{1} \cdot t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1} \rightarrow \tau_{2}, \rho}}
$$

Proof Sketch

Prove the following more general statement:

$$
\begin{aligned}
& \Gamma \vdash t: \tau \text { implies }\left(\llbracket t \rrbracket_{\left.\theta_{1}, \sigma_{1}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau, \rho},}^{\text {provided }\left(\sigma_{1}(x), \sigma_{2}(x)\right) \in \Delta_{\tau^{\prime}, \rho} \text { for every } x: \tau^{\prime} \text { in } \Gamma}\right.
\end{aligned}
$$

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

$$
\begin{gathered}
\forall\left(a_{1}, a_{2}\right) \in \Delta_{\tau_{1}, \rho \cdot}\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}\left[x \mapsto a_{1}\right]}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}\left[x \mapsto a_{2}\right]}\right) \in \Delta_{\tau_{2}, \rho} \\
\left(\llbracket \lambda x: \tau_{1} \cdot t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket \lambda x: \tau_{1} \cdot t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1} \rightarrow \tau_{2}, \rho} \\
\frac{\Gamma \vdash t: \tau_{1} \rightarrow \tau_{2} \quad \Gamma \vdash u: \tau_{1}}{\Gamma \vdash(t u): \tau_{2}}
\end{gathered}
$$

Proof Sketch

Prove the following more general statement:

$$
\begin{aligned}
& \Gamma \vdash t: \tau \text { implies }\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau, \rho}, \\
& \text { provided }\left(\sigma_{1}(x), \sigma_{2}(x)\right) \in \Delta_{\tau^{\prime}, \rho} \text { for every } x: \tau^{\prime} \text { in } \Gamma
\end{aligned}
$$

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

$$
\begin{gathered}
\frac{\forall\left(a_{1}, a_{2}\right) \in \Delta_{\tau_{1}, \rho} \cdot\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}\left[x \mapsto a_{1}\right]}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}\left[x \mapsto a_{2}\right]}\right) \in \Delta_{\tau_{2}, \rho}}{\left(\llbracket \lambda x: \tau_{1} \cdot t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket \lambda x: \tau_{1} \cdot t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1} \rightarrow \tau_{2}, \rho}} \\
\frac{\Gamma \vdash t: \tau_{1} \rightarrow \tau_{2} \quad \Gamma \vdash u: \tau_{1}}{\left(\llbracket t u \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t u \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{2}, \rho}}
\end{gathered}
$$

Proof Sketch

Prove the following more general statement:

$$
\begin{aligned}
& \Gamma \vdash t: \tau \text { implies }\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau, \rho}, \\
& \text { provided }\left(\sigma_{1}(x), \sigma_{2}(x)\right) \in \Delta_{\tau^{\prime}, \rho} \text { for every } x: \tau^{\prime} \text { in } \Gamma
\end{aligned}
$$

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

$$
\begin{gathered}
\frac{\forall\left(a_{1}, a_{2}\right) \in \Delta_{\tau_{1}, \rho} \cdot\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}\left[x \mapsto a_{1}\right]}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}\left[x \mapsto a_{2}\right]}\right) \in \Delta_{\tau_{2}, \rho}}{\left(\llbracket \lambda x: \tau_{1} \cdot t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket \lambda x: \tau_{1} \cdot t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1} \rightarrow \tau_{2}, \rho}} \\
\frac{\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1} \rightarrow \tau_{2}, \rho} \quad\left(\llbracket u \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket u \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1}, \rho}}{\left(\llbracket t u \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t u \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{2}, \rho}}
\end{gathered}
$$

Proof Sketch

Prove the following more general statement:

$$
\begin{aligned}
& \Gamma \vdash t: \tau \text { implies }\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau, \rho}, \\
& \text { provided }\left(\sigma_{1}(x), \sigma_{2}(x)\right) \in \Delta_{\tau^{\prime}, \rho} \text { for every } x: \tau^{\prime} \text { in } \Gamma
\end{aligned}
$$

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

$$
\begin{aligned}
& \forall\left(a_{1}, a_{2}\right) \in \Delta_{\tau_{1}, \rho} .\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}\left[x \mapsto a_{1}\right]}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}\left[x \mapsto a_{2}\right]}\right) \in \Delta_{\tau_{2}, \rho} \\
& \left(\llbracket \lambda x: \tau_{1} \cdot t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket \lambda x: \tau_{1} \cdot t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1} \rightarrow \tau_{2}, \rho} \\
& \frac{\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1} \rightarrow \tau_{2}, \rho} \quad\left(\llbracket u \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket u \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1}, \rho}}{\left(\llbracket t u \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t u \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{2}, \rho}} \\
& \frac{\alpha, \Gamma \vdash t: \tau}{\Gamma \vdash(\Lambda \alpha . t): \forall \alpha . \tau}
\end{aligned}
$$

Proof Sketch
Prove the following more general statement:
$\Gamma \vdash t: \tau$ implies $\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau, \rho}$, provided $\left(\sigma_{1}(x), \sigma_{2}(x)\right) \in \Delta_{\tau^{\prime}, \rho}$ for every $x: \tau^{\prime}$ in Γ by induction on the structure of typing derivations. The base case is immediate. In the step cases:

$$
\begin{gathered}
\frac{\forall\left(a_{1}, a_{2}\right) \in \Delta_{\tau_{1}, \rho \cdot} \cdot\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}\left[x \mapsto a_{1}\right]}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}\left[x \mapsto a_{2}\right]}\right) \in \Delta_{\tau_{2}, \rho}}{\left(\llbracket \lambda x: \tau_{1} \cdot t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket \lambda x: \tau_{1} \cdot t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1} \rightarrow \tau_{2}, \rho}} \\
\frac{\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1} \rightarrow \tau_{2}, \rho} \quad\left(\llbracket u \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket u \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1}, \rho}}{\left(\llbracket t u \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t u \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{2}, \rho}} \\
\frac{\alpha, \Gamma \vdash t: \tau}{\left(\llbracket \Lambda \alpha \cdot t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket \Lambda \alpha \cdot t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\forall \alpha \cdot \tau, \rho}}
\end{gathered}
$$

Proof Sketch
Prove the following more general statement:
$\Gamma \vdash t: \tau$ implies $\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau, \rho}$, provided $\left(\sigma_{1}(x), \sigma_{2}(x)\right) \in \Delta_{\tau^{\prime}, \rho}$ for every $x: \tau^{\prime}$ in Γ by induction on the structure of typing derivations. The base case is immediate. In the step cases:

$$
\begin{aligned}
& \frac{\forall\left(a_{1}, a_{2}\right) \in \Delta_{\tau_{1}, \rho} .\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}\left[x \mapsto a_{1}\right]}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}\left[x \mapsto a_{2}\right]}\right) \in \Delta_{\tau_{2}, \rho}}{\left(\llbracket \lambda x: \tau_{1}, t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket \lambda x: \tau_{1}, t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1} \rightarrow \tau_{2}, \rho}} \\
& \frac{\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1} \rightarrow \tau_{2}, \rho} \quad\left(\llbracket u \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket u \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1}, \rho}}{\left(\llbracket t u \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t u \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{2}, \rho}} \\
& \forall \mathcal{R} \subseteq S_{1} \times S_{2} .\left(\llbracket t \rrbracket_{\theta_{1}\left[\alpha \mapsto S_{1}\right], \sigma_{1}}, \llbracket t \rrbracket_{\theta_{2}\left[\alpha \mapsto S_{2}\right], \sigma_{2}}\right) \in \Delta_{\tau, \rho[\alpha \mapsto \mathcal{R}]} \\
& \left(\llbracket \Lambda \alpha, t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket \Lambda \alpha \cdot t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\forall \alpha . \tau, \rho}
\end{aligned}
$$

Proof Sketch
Prove the following more general statement:
$\Gamma \vdash t: \tau$ implies $\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau, \rho}$, provided $\left(\sigma_{1}(x), \sigma_{2}(x)\right) \in \Delta_{\tau^{\prime}, \rho}$ for every $x: \tau^{\prime}$ in Γ by induction on the structure of typing derivations. The base case is immediate. In the step cases:

$$
\begin{gathered}
\frac{\forall\left(a_{1}, a_{2}\right) \in \Delta_{\tau_{1}, \rho} \cdot\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}\left[x \mapsto a_{1}\right]}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}\left[x \mapsto a_{2}\right]}\right) \in \Delta_{\tau_{2}, \rho}}{\left(\llbracket \lambda x: \tau_{1} \cdot t \rrbracket_{\theta_{1}, \sigma_{1}, \llbracket}, \llbracket x: \tau_{1} \cdot t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1} \rightarrow \tau_{2}, \rho}} \\
\frac{\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1},}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1} \rightarrow \tau_{2}, \rho} \quad\left(\llbracket u \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket u \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1}, \rho}}{\left(\llbracket t u \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t u \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{2}, \rho}} \\
\forall \mathcal{R} \subseteq S_{1} \times S_{2} \cdot\left(\llbracket t \rrbracket_{\left.\theta_{1}\left[\alpha \leftrightarrow s_{1}\right], \sigma_{1}, \llbracket t \rrbracket_{\theta_{2}\left[\alpha \mapsto S_{2}\right], \sigma_{2}}\right) \in \Delta_{\tau, \rho[\alpha \mapsto \mathcal{R}]}}^{\left(\llbracket \Lambda \alpha \cdot t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket \Lambda \alpha \cdot t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\forall \alpha \cdot \tau, \rho}}\right. \\
\frac{\Gamma \vdash t: \forall \alpha \cdot \tau}{\Gamma \vdash\left(t \tau^{\prime}\right): \tau\left[\tau^{\prime} / \alpha\right]}
\end{gathered}
$$

Proof Sketch
Prove the following more general statement:
$\Gamma \vdash t: \tau$ implies $\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau, \rho}$, provided $\left(\sigma_{1}(x), \sigma_{2}(x)\right) \in \Delta_{\tau^{\prime}, \rho}$ for every $x: \tau^{\prime}$ in Γ by induction on the structure of typing derivations. The base case is immediate. In the step cases:

$$
\begin{gathered}
\frac{\forall\left(a_{1}, a_{2}\right) \in \Delta_{\tau_{1}, \rho \cdot} \cdot\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}\left[x \mapsto a_{1}\right]}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}\left[x \mapsto a_{2}\right]}\right) \in \Delta_{\tau_{2}, \rho}}{\left(\llbracket \lambda x: \tau_{1} \cdot t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket \lambda x: \tau_{1} \cdot t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1} \rightarrow \tau_{2}, \rho}} \\
\frac{\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1} \rightarrow \tau_{2}, \rho} \quad\left(\llbracket u \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket u \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1}, \rho}}{\left(\llbracket t u \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t u \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{2}, \rho}} \\
\forall \mathcal{R} \subseteq S_{1} \times S_{2 \cdot} \cdot\left(\llbracket t \rrbracket_{\left.\theta_{1}\left[\alpha \mapsto S_{1}\right], \sigma_{1}, \llbracket t \rrbracket_{\theta_{2}\left[\alpha \mapsto S_{2}\right], \sigma_{2}}\right) \in \Delta_{\tau, \rho[\alpha \mapsto \mathcal{R}]}}^{\left(\llbracket \Lambda \alpha \cdot t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket \Lambda \alpha \cdot t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\forall \alpha \cdot \tau, \rho}}\right. \\
\frac{\Gamma \vdash t: \forall \alpha \cdot \tau}{\left(\llbracket t \tau^{\prime} \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t \tau^{\prime} \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau\left[\tau^{\prime} / \alpha\right], \rho}}
\end{gathered}
$$

Proof Sketch
Prove the following more general statement:
$\Gamma \vdash t: \tau$ implies $\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau, \rho}$, provided $\left(\sigma_{1}(x), \sigma_{2}(x)\right) \in \Delta_{\tau^{\prime}, \rho}$ for every $x: \tau^{\prime}$ in Γ by induction on the structure of typing derivations. The base case is immediate. In the step cases:

$$
\begin{gathered}
\frac{\forall\left(a_{1}, a_{2}\right) \in \Delta_{\tau_{1}, \rho} \cdot\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}\left[x \mapsto a_{1}\right]}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}\left[x \mapsto a_{2}\right]}\right) \in \Delta_{\tau_{2}, \rho}}{\left(\llbracket \lambda x: \tau_{1} \cdot t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket \lambda x: \tau_{1} \cdot t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1} \rightarrow \tau_{2}, \rho}} \\
\frac{\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1},}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1} \rightarrow \tau_{2}, \rho} \quad\left(\llbracket u \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket u \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1}, \rho}}{\left(\llbracket t u \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t u \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{2}, \rho}} \\
\forall \mathcal{R} \subseteq S_{1} \times S_{2 \cdot} \cdot\left(\llbracket t \rrbracket_{\left.\theta_{1}\left[\alpha \mapsto S_{1}\right], \sigma_{1}, \llbracket t \rrbracket_{\theta_{2}\left[\alpha \mapsto S_{2}\right], \sigma_{2}}\right) \in \Delta_{\tau, \rho[\alpha \mapsto \mathcal{R}]}}^{\left(\llbracket \Lambda \alpha \cdot t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket \Lambda \alpha \cdot t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\forall \alpha \cdot \tau, \rho}}\right. \\
\frac{\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\forall \alpha . \tau, \rho}}{\left(\llbracket t \tau^{\prime} \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t \tau^{\prime} \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau\left[\tau^{\prime} / \alpha\right], \rho}}
\end{gathered}
$$

Adding Datatypes

Types: $\tau:=\cdots \mid$ Bool $\mid[\tau]$
Terms: $t:=\cdots \mid$ True \mid False $\left|[]_{\tau}\right| t: t \mid$ case t of $\{\cdots\}$

Adding Datatypes

Types: $\tau:=\cdots \mid$ Boo $\mid[\tau]$
Terms: $t:=\cdots \mid$ True \mid False $\left|[]_{\tau}\right| t: t \mid$ case t of $\{\cdots\}$
$\Gamma \vdash$ True: Sol , $\Gamma \vdash$ False: Sol , $\Gamma \vdash[]_{\tau}:[\tau]$

$$
\begin{gathered}
\frac{\Gamma \vdash t: \tau \quad \Gamma \vdash u:[\tau]}{\Gamma \vdash(t: u):[\tau]} \\
\frac{\Gamma \vdash t: \text { Bool } \quad \Gamma \vdash u: \tau \quad \Gamma \vdash v: \tau}{\Gamma \vdash(\text { case } t \text { of }\{\text { True } \rightarrow u ; \text { False } \rightarrow v\}): \tau} \\
\frac{\Gamma \vdash t:\left[\tau^{\prime}\right] \quad \Gamma \vdash u: \tau \quad \Gamma, x_{1}: \tau^{\prime}, x_{2}:\left[\tau^{\prime}\right] \vdash v: \tau}{\Gamma \vdash\left(\text { case } t \text { of }\left\{[] \rightarrow u ;\left(x_{1}: x_{2}\right) \rightarrow v\right\}\right): \tau}
\end{gathered}
$$

Adding Datatypes

$$
\begin{gathered}
\text { Types: } \tau:=\cdots \mid \text { Bool } \mid[\tau] \\
\text { Terms: } t:=\cdots \mid \text { True } \mid \text { False }\left|[]_{\tau}\right| t: t \mid \text { case } t \text { of }\{\cdots\} \\
\Gamma \vdash \text { True }: \text { Bool }, \Gamma \vdash \text { False }: \text { Bool }, \Gamma \vdash[]_{\tau}:[\tau] \\
\frac{\Gamma \vdash t: \tau \quad \Gamma \vdash u:[\tau]}{\Gamma \vdash(t: u):[\tau]} \\
\frac{\Gamma \vdash t: \text { Bool } \quad \Gamma \vdash u: \tau \quad \Gamma \vdash v: \tau}{\Gamma \vdash(\text { case } t \text { of }\{\text { True } \rightarrow u ; \text { False } \rightarrow v\}): \tau} \\
\frac{\Gamma \vdash t:\left[\tau^{\prime}\right] \quad \Gamma \vdash u: \tau \quad \Gamma, x_{1}: \tau^{\prime}, x_{2}:\left[\tau^{\prime}\right] \vdash v: \tau}{\Gamma \vdash\left(\text { case } t \text { of }\left\{[] \rightarrow u ;\left(x_{1}: x_{2}\right) \rightarrow v\right\}\right): \tau}
\end{gathered}
$$

With the straightforward extension of term-semantics and with

$$
\begin{aligned}
\Delta_{\text {Bool }, \rho} & =\{(\text { True, True }),(\text { False, False })\} \\
\Delta_{[\tau], \rho} & =\left\{\left(\left[x_{1}, \ldots, x_{n}\right],\left[y_{1}, \ldots, y_{n}\right]\right) \mid n \geq 0,\left(x_{i}, y_{i}\right) \in \Delta_{\tau, \rho}\right\},
\end{aligned}
$$

the parametricity theorem still holds.

Adding General Recursion

Terms: $t:=\cdots \mid$ fix t

Adding General Recursion

Terms: $t:=\cdots \mid$ fix t

$$
\frac{\Gamma \vdash t: \tau \rightarrow \tau}{\Gamma \vdash(\text { fix } t): \tau}
$$

Adding General Recursion

Terms: $t:=\cdots \mid$ fix t

$$
\frac{\Gamma \vdash t: \tau \rightarrow \tau}{\Gamma \vdash(\text { fix } t): \tau}
$$

To provide semantics, types are interpreted as pointed complete partial orders now.

$$
\llbracket f i x t \rrbracket_{\theta, \sigma}=\bigsqcup_{i \geq 0}\left(\llbracket t \rrbracket_{\theta, \sigma}^{i} \perp\right) \text {. }
$$

Adding General Recursion

$$
\begin{aligned}
& \text { Terms: } t:=\cdots \mid \text { fix } t \\
& \frac{\Gamma \vdash t: \tau \rightarrow \tau}{\Gamma \vdash(\text { fix } t): \tau}
\end{aligned}
$$

To provide semantics, types are interpreted as pointed complete partial orders now.

$$
\llbracket f i x t \rrbracket_{\theta, \sigma}=\bigsqcup_{i \geq 0}\left(\llbracket t \rrbracket_{\theta, \sigma}^{i} \perp\right) \text {. }
$$

The parametricity theorem still holds, provided all relations are strict and continuous.

Back to Haskell

The original example

$$
\begin{aligned}
& \text { filter }:: \forall \alpha .(\alpha \rightarrow \text { Sol }) \rightarrow[\alpha] \rightarrow[\alpha] \\
& \text { filter } p[] \\
& \text { filter } p(x: x s)= \\
&
\end{aligned}
$$

has a "desugaring" in the extended calculus as follows:

$$
\begin{aligned}
& \text { fix }(\lambda f:(\forall \alpha .(\alpha \rightarrow B o o l) \rightarrow[\alpha] \rightarrow[\alpha]) \text {. } \\
& \Lambda \alpha . \lambda p:(\alpha \rightarrow \text { Biol }) . \lambda I:[\alpha] . \\
& \text { case I of }\left\{[] \quad \rightarrow[]_{\alpha}\right. \text {; } \\
& (x: x s) \rightarrow \text { case } p x \text { of } \\
& \{\text { True } \rightarrow x:(f \alpha p x s) ; \\
& \text { False } \rightarrow f \alpha p \times s\}\})
\end{aligned}
$$

The Magic Dissolves

Given g of type $\forall \alpha$. $(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$, by the parametricity theorem:

$$
(g, g) \in \Delta_{\forall \alpha .(\alpha \rightarrow B o o l) \rightarrow[\alpha] \rightarrow[\alpha], \emptyset}
$$

The Magic Dissolves

Given g of type $\forall \alpha$. $(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$, by the parametricity theorem:

$$
(g, g) \in \Delta_{\forall \alpha .(\alpha \rightarrow B \circ o l) \rightarrow[\alpha] \rightarrow[\alpha], \emptyset}
$$

$\Rightarrow \forall \mathcal{R} \in \operatorname{Rel} .(g, g) \in \Delta_{(\alpha \rightarrow B o o l) \rightarrow[\alpha] \rightarrow[\alpha],[\alpha \mapsto \mathcal{R}]}$ by definition of Δ

The Magic Dissolves

Given g of type $\forall \alpha$. $(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$, by the parametricity theorem:
$(g, g) \in \Delta_{\forall \alpha .}(\alpha \rightarrow B \circ o l) \rightarrow[\alpha] \rightarrow[\alpha], \emptyset$
$\Rightarrow \forall \mathcal{R} \in \operatorname{Rel} .(g, g) \in \Delta_{(\alpha \rightarrow \text { Bool }) \rightarrow[\alpha] \rightarrow[\alpha],[\alpha \mapsto \mathcal{R}]}$
$\Rightarrow \forall \mathcal{R} \in \operatorname{Rel},\left(a_{1}, a_{2}\right) \in \Delta_{\alpha \rightarrow B o o l,[\alpha \mapsto \mathcal{R}]} \cdot\left(\begin{array}{lll}g & a_{1}, g & a_{2}\end{array}\right) \in \Delta_{[\alpha] \rightarrow[\alpha],[\alpha \mapsto \mathcal{R}]}$ by definition of Δ

The Magic Dissolves

Given g of type $\forall \alpha .(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$, by the parametricity theorem:

$$
\begin{aligned}
& (g, g) \in \Delta_{\forall \alpha .(\alpha \rightarrow \text { Bool }) \rightarrow[\alpha] \rightarrow[\alpha], \emptyset} \\
\Rightarrow & \forall \mathcal{R} \in \operatorname{Rel} .(g, g) \in \Delta_{(\alpha \rightarrow B o o l) \rightarrow[\alpha] \rightarrow[\alpha],[\alpha \mapsto \mathcal{R}]} \\
\Rightarrow & \forall \mathcal{R} \in \operatorname{Rel},\left(a_{1}, a_{2}\right) \in \Delta_{\alpha \rightarrow B o o l,[\alpha \mapsto \mathcal{R}]} \cdot\left(g a_{1}, g a_{2}\right) \in \Delta_{[\alpha] \rightarrow[\alpha],[\alpha \mapsto \mathcal{R}]} \\
\Rightarrow & \forall \mathcal{R} \in \operatorname{Rel},\left(a_{1}, a_{2}\right) \in \Delta_{\alpha \rightarrow B o o l,[\alpha \mapsto \mathcal{R}]},\left(l_{1}, l_{2}\right) \in \Delta_{[\alpha],[\alpha \mapsto \mathcal{R}] .} \\
& \left(g a_{1} I_{1}, g a_{2} I_{2}\right) \in \Delta_{[\alpha],[\alpha \mapsto \mathcal{R}]} \\
& \text { by definition of } \Delta
\end{aligned}
$$

The Magic Dissolves

Given g of type $\forall \alpha$. $(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$, by the parametricity theorem:

$$
\begin{aligned}
& (g, g) \in \Delta_{\forall \alpha .}(\alpha \rightarrow \text { Bool }) \rightarrow[\alpha] \rightarrow[\alpha], \emptyset \\
\Rightarrow & \forall \mathcal{R} \in \operatorname{Rel} .(g, g) \in \Delta_{(\alpha \rightarrow \text { Bool }) \rightarrow[\alpha] \rightarrow[\alpha],[\alpha \mapsto \mathcal{R}]} \\
\Rightarrow & \forall \mathcal{R} \in \operatorname{Rel},\left(a_{1}, a_{2}\right) \in \Delta_{\alpha \rightarrow B o o l,[\alpha \mapsto \mathcal{R}]}\left(g a_{1}, g a_{2}\right) \in \Delta_{[\alpha] \rightarrow[\alpha],[\alpha \mapsto \mathcal{R}]} \\
\Rightarrow & \forall \mathcal{R} \in \operatorname{Re},\left(a_{1}, a_{2}\right) \in \Delta_{\alpha \rightarrow B o o l,[\alpha \mapsto \mathcal{R}]},\left(l_{1}, I_{2}\right) \in \Delta_{[\alpha],[\alpha \mapsto \mathcal{R}] .} \\
& \left(g a_{1} I_{1}, g a_{2} I_{2}\right) \in \Delta_{[\alpha],[\alpha \mapsto \mathcal{R}]} \\
\Rightarrow & \forall\left(a_{1}, a_{2}\right) \in \Delta_{\alpha \rightarrow B o o l,[\alpha \mapsto h]},\left(l_{1}, l_{2}\right) \in(\operatorname{map} h) . \\
& \left(g a_{1} l_{1}, g a_{2} I_{2}\right) \in(\operatorname{map} h) \\
& \text { by instantiating } \mathcal{R}=h \text { and realizing that } \Delta_{[\alpha],[\alpha \mapsto h]}=\operatorname{map} h
\end{aligned}
$$

for every function h

The Magic Dissolves

Given g of type $\forall \alpha$. $(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$, by the parametricity theorem:

$$
\begin{aligned}
& (g, g) \in \Delta_{\forall \alpha .}(\alpha \rightarrow B \circ o l) \rightarrow[\alpha] \rightarrow[\alpha], \emptyset \\
& \Rightarrow \forall \mathcal{R} \in \operatorname{Rel} .(g, g) \in \Delta_{(\alpha \rightarrow B o o l) \rightarrow[\alpha] \rightarrow[\alpha],[\alpha \mapsto \mathcal{R}]} \\
& \Rightarrow \forall \mathcal{R} \in \operatorname{Rel},\left(a_{1}, a_{2}\right) \in \Delta_{\alpha \rightarrow B o o l,[\alpha \mapsto \mathcal{R}]} .\left(\begin{array}{ll}
g & a_{1}, g \\
a_{2}
\end{array}\right) \in \Delta_{[\alpha] \rightarrow[\alpha],[\alpha \mapsto \mathcal{R}]} \\
& \Rightarrow \forall \mathcal{R} \in \operatorname{Rel},\left(a_{1}, a_{2}\right) \in \Delta_{\alpha \rightarrow \text { Bool, }[\alpha \mapsto \mathcal{R}]},\left(l_{1}, l_{2}\right) \in \Delta_{[\alpha],[\alpha \mapsto \mathcal{R}]} . \\
& \left(g a_{1} l_{1}, g a_{2} l_{2}\right) \in \Delta_{[\alpha],[\alpha \mapsto \mathcal{R}]} \\
& \Rightarrow \forall\left(a_{1}, a_{2}\right) \in \Delta_{\alpha \rightarrow \text { Bool },[\alpha \mapsto h]},\left(l_{1}, l_{2}\right) \in(\operatorname{map} h) \text {. } \\
& \left(g a_{1} l_{1}, g a_{2} l_{2}\right) \in(\operatorname{map} h) \\
& \Rightarrow \forall\left(I_{1}, l_{2}\right) \in(\operatorname{map} h) .\left(g(p \circ h) I_{1}, g p I_{2}\right) \in(\operatorname{map} h) \\
& \text { by instantiating }\left(a_{1}, a_{2}\right)=(p \circ h, p) \in \Delta_{\alpha \rightarrow B \circ \circ,,[\alpha \mapsto h]}
\end{aligned}
$$

for every function h and every p.

The Magic Dissolves

Given g of type $\forall \alpha$. $(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$, by the parametricity theorem:

$$
\begin{aligned}
& (g, g) \in \Delta_{\forall \alpha .}(\alpha \rightarrow \text { Bool }) \rightarrow[\alpha] \rightarrow[\alpha], \emptyset \\
\Rightarrow & \forall \mathcal{R} \in \operatorname{Rel} .(g, g) \in \Delta_{(\alpha \rightarrow B o o l) \rightarrow[\alpha] \rightarrow[\alpha],[\alpha \mapsto \mathcal{R}]} \\
\Rightarrow & \forall \mathcal{R} \in \operatorname{Rel},\left(a_{1}, a_{2}\right) \in \Delta_{\alpha \rightarrow B o o l,[\alpha \mapsto \mathcal{R}]}\left(g a_{1}, g a_{2}\right) \in \Delta_{[\alpha] \rightarrow[\alpha],[\alpha \mapsto \mathcal{R}]} \\
\Rightarrow & \forall \mathcal{R} \in \operatorname{Rel},\left(a_{1}, a_{2}\right) \in \Delta_{\alpha \rightarrow B o o l,[\alpha \mapsto \mathcal{R}],},\left(l_{1}, I_{2}\right) \in \Delta_{[\alpha],[\alpha \mapsto \mathcal{R}] .} \\
& \left(g a_{1} I_{1}, g a_{2} I_{2}\right) \in \Delta_{[\alpha],[\alpha \mapsto \mathcal{R}]} \\
\Rightarrow & \forall\left(a_{1}, a_{2}\right) \in \Delta_{\alpha \rightarrow B o o l,[\alpha \mapsto h]},\left(l_{1}, I_{2}\right) \in(\operatorname{map} h) . \\
& \left(g a_{1} l_{1}, g a_{2} I_{2}\right) \in(\operatorname{map} h) \\
\Rightarrow & \forall\left(l_{1}, l_{2}\right) \in(\operatorname{map} h) .\left(g(p \circ h) I_{1}, g p I_{2}\right) \in(\operatorname{map} h)
\end{aligned}
$$

for every function h and every p.
This is exactly the claim (1) for $g=$ filter!

References

圊 J.-Y. Girard.
Interprétation functionelle et élimination des coupures dans
l'arithmétique d'ordre supérieure.
PhD thesis, Université Paris VII, 1972.
R.C. Reynolds.

Towards a theory of type structure.
In Colloque sur la Programmation, Proceedings, pages
408-423. Springer-Verlag, 1974.
圊 J.C. Reynolds.
Types, abstraction and parametric polymorphism.
In Information Processing, Proceedings, pages 513-523.
Elsevier Science Publishers B.V., 1983.
E. Wadler.

Theorems for free!
In Functional Programming Languages and Computer
Architecture, Proceedings, pages 347-359. ACM Press, 1989.

