
Free Theorems — The Basics

Janis Voigtländer

Technische Universität Dresden

January 6, 2006

Outline

Example in Haskell

Parametric polymorphism

Polymorphic lambda calculus

Parametricity theorem

Back to Haskell

2

Haskell Example:

filter :: ∀α. (α→ Bool)→ [α]→ [α]
filter p [] = []
filter p (x : xs) = if p x then x : filter p xs

else filter p xs

Claim:

filter p (map h l) = map h (filter (p ◦ h) l) (1)

Can be derived from the parametric polymorphic type of filter !

3

Haskell Example:

filter :: ∀α. (α→ Bool)→ [α]→ [α]
filter p [] = []
filter p (x : xs) = if p x then x : filter p xs

else filter p xs

Claim:

filter p (map h l) = map h (filter (p ◦ h) l) (1)

Can be proved by induction on l , using the definition of filter .

Can
be derived from the parametric polymorphic type of filter !

3

Haskell Example: Theorems for free! [Wadler 1989]

filter :: ∀α. (α→ Bool)→ [α]→ [α]

filter p [] = []
filter p (x : xs) = if p x then x : filter p xs

else filter p xs

Claim:

filter p (map h l) = map h (filter (p ◦ h) l) (1)

Can be derived from the parametric polymorphic type of filter !

3

Haskell Example: Theorems for free! [Wadler 1989]

filter :: ∀α. (α→ Bool)→ [α]→ [α]

filter p [] = []
filter p (x : xs) = if p x then x : filter p xs

else filter p xs

Claim:

filter p (map h l) = map h (filter (p ◦ h) l) (1)

Can be derived from the parametric polymorphic type of filter !

Where is the magic? Where is the induction?

3

Parametric Polymorphism, Intuitively

I filter :: ∀α. (α→ Bool)→ [α]→ [α] must work uniformly
for every instantiation of α.

I The output list can only contain elements from the input list l .

I Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

I The only means for this decision are to inspect the length of l
and to check the outcome of p on its elements.

I The lists (map h l) and l always have equal length.

I Applying p to an element of (map h l) always has the same
outcome as applying (p ◦ h) to the corresponding element of l .

I filter with p always chooses “the same” elements from
(map h l) for output as does filter with (p ◦ h) from l ,

except that it outputs their images under h.

I (filter p (map h l)) is equivalent to (map h (filter (p ◦ h) l)).

I That is what we wanted to prove!

4

Parametric Polymorphism, Intuitively

I filter :: ∀α. (α→ Bool)→ [α]→ [α] must work uniformly
for every instantiation of α.

I The output list can only contain elements from the input list l .

I Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

I The only means for this decision are to inspect the length of l
and to check the outcome of p on its elements.

I The lists (map h l) and l always have equal length.

I Applying p to an element of (map h l) always has the same
outcome as applying (p ◦ h) to the corresponding element of l .

I filter with p always chooses “the same” elements from
(map h l) for output as does filter with (p ◦ h) from l ,

except that it outputs their images under h.

I (filter p (map h l)) is equivalent to (map h (filter (p ◦ h) l)).

I That is what we wanted to prove!

4

Parametric Polymorphism, Intuitively

I filter :: ∀α. (α→ Bool)→ [α]→ [α] must work uniformly
for every instantiation of α.

I The output list can only contain elements from the input list l .

I Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

I The only means for this decision are to inspect the length of l
and to check the outcome of p on its elements.

I The lists (map h l) and l always have equal length.

I Applying p to an element of (map h l) always has the same
outcome as applying (p ◦ h) to the corresponding element of l .

I filter with p always chooses “the same” elements from
(map h l) for output as does filter with (p ◦ h) from l ,

except that it outputs their images under h.

I (filter p (map h l)) is equivalent to (map h (filter (p ◦ h) l)).

I That is what we wanted to prove!

4

Parametric Polymorphism, Intuitively

I filter :: ∀α. (α→ Bool)→ [α]→ [α] must work uniformly
for every instantiation of α.

I The output list can only contain elements from the input list l .

I Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

I The only means for this decision are to inspect the length of l
and to check the outcome of p on its elements.

I The lists (map h l) and l always have equal length.

I Applying p to an element of (map h l) always has the same
outcome as applying (p ◦ h) to the corresponding element of l .

I filter with p always chooses “the same” elements from
(map h l) for output as does filter with (p ◦ h) from l ,

except that it outputs their images under h.

I (filter p (map h l)) is equivalent to (map h (filter (p ◦ h) l)).

I That is what we wanted to prove!

4

Parametric Polymorphism, Intuitively

I filter :: ∀α. (α→ Bool)→ [α]→ [α] must work uniformly
for every instantiation of α.

I The output list can only contain elements from the input list l .

I Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

I The only means for this decision are to inspect the length of l
and to check the outcome of p on its elements.

I The lists (map h l) and l always have equal length.

I Applying p to an element of (map h l) always has the same
outcome as applying (p ◦ h) to the corresponding element of l .

I filter with p always chooses “the same” elements from
(map h l) for output as does filter with (p ◦ h) from l ,

except that it outputs their images under h.

I (filter p (map h l)) is equivalent to (map h (filter (p ◦ h) l)).

I That is what we wanted to prove!

4

Parametric Polymorphism, Intuitively

I filter :: ∀α. (α→ Bool)→ [α]→ [α] must work uniformly
for every instantiation of α.

I The output list can only contain elements from the input list l .

I Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

I The only means for this decision are to inspect the length of l
and to check the outcome of p on its elements.

I The lists (map h l) and l always have equal length.

I Applying p to an element of (map h l) always has the same
outcome as applying (p ◦ h) to the corresponding element of l .

I filter with p always chooses “the same” elements from
(map h l) for output as does filter with (p ◦ h) from l ,

except that it outputs their images under h.

I (filter p (map h l)) is equivalent to (map h (filter (p ◦ h) l)).

I That is what we wanted to prove!

4

Parametric Polymorphism, Intuitively

I filter :: ∀α. (α→ Bool)→ [α]→ [α] must work uniformly
for every instantiation of α.

I The output list can only contain elements from the input list l .

I Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

I The only means for this decision are to inspect the length of l
and to check the outcome of p on its elements.

I The lists (map h l) and l always have equal length.

I Applying p to an element of (map h l) always has the same
outcome as applying (p ◦ h) to the corresponding element of l .

I filter with p always chooses “the same” elements from
(map h l) for output as does filter with (p ◦ h) from l ,

except that it outputs their images under h.

I (filter p (map h l)) is equivalent to (map h (filter (p ◦ h) l)).

I That is what we wanted to prove!

4

Parametric Polymorphism, Intuitively

I filter :: ∀α. (α→ Bool)→ [α]→ [α] must work uniformly
for every instantiation of α.

I The output list can only contain elements from the input list l .

I Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

I The only means for this decision are to inspect the length of l
and to check the outcome of p on its elements.

I The lists (map h l) and l always have equal length.

I Applying p to an element of (map h l) always has the same
outcome as applying (p ◦ h) to the corresponding element of l .

I filter with p always chooses “the same” elements from
(map h l) for output as does filter with (p ◦ h) from l ,
except that it outputs their images under h.

I (filter p (map h l)) is equivalent to (map h (filter (p ◦ h) l)).

I That is what we wanted to prove!

4

Parametric Polymorphism, Intuitively

I filter :: ∀α. (α→ Bool)→ [α]→ [α] must work uniformly
for every instantiation of α.

I The output list can only contain elements from the input list l .

I Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

I The only means for this decision are to inspect the length of l
and to check the outcome of p on its elements.

I The lists (map h l) and l always have equal length.

I Applying p to an element of (map h l) always has the same
outcome as applying (p ◦ h) to the corresponding element of l .

I filter with p always chooses “the same” elements from
(map h l) for output as does filter with (p ◦ h) from l ,
except that it outputs their images under h.

I (filter p (map h l)) is equivalent to (map h (filter (p ◦ h) l)).

I That is what we wanted to prove!

4

Parametric Polymorphism, Intuitively

I filter :: ∀α. (α→ Bool)→ [α]→ [α] must work uniformly
for every instantiation of α.

I The output list can only contain elements from the input list l .

I Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

I The only means for this decision are to inspect the length of l
and to check the outcome of p on its elements.

I The lists (map h l) and l always have equal length.

I Applying p to an element of (map h l) always has the same
outcome as applying (p ◦ h) to the corresponding element of l .

I filter with p always chooses “the same” elements from
(map h l) for output as does filter with (p ◦ h) from l ,
except that it outputs their images under h.

I (filter p (map h l)) is equivalent to (map h (filter (p ◦ h) l)).

I That is what we wanted to prove!

4

Parametric Polymorphism, More Formally

Question: What functions are in ∀α. (α→ Bool)→ [α]→ [α] ?

Approach: Give denotations of types as sets.

[[Bool]]θ = {True,False} = B

[[Nat]]θ = {0, 1, 2, . . . } = N

[[(τ1, τ2)]]θ = [[τ1]]θ × [[τ2]]θ
[[[τ]]]θ = {[x1, . . . , xn] | n ≥ 0, xi ∈ [[τ]]θ}
[[τ1 → τ2]]θ = {f : [[τ1]]θ → [[τ2]]θ}
[[∀α. τ]]θ = ?

I g ∈ [[∀α. τ]]θ should be a “collection” of values:
for every type τ ′, there is an instance of type τ [τ ′/α].

I [[∀α. τ]]θ = {g : Set → Value | ∀S ∈ Set. (g S) ∈ [[τ]]θ[α 7→S]}
is maybe a good start, together with [[α]]θ = θ(α).

I But this may contain “ad-hoc” polymorphic functions!

5

Parametric Polymorphism, More Formally

Question: What functions are in ∀α. (α→ Bool)→ [α]→ [α] ?

Approach: Give denotations of types as sets.

[[Bool]]θ = {True,False} = B

[[Nat]]θ = {0, 1, 2, . . . } = N

[[(τ1, τ2)]]θ = [[τ1]]θ × [[τ2]]θ
[[[τ]]]θ = {[x1, . . . , xn] | n ≥ 0, xi ∈ [[τ]]θ}
[[τ1 → τ2]]θ = {f : [[τ1]]θ → [[τ2]]θ}
[[∀α. τ]]θ = ?

I g ∈ [[∀α. τ]]θ should be a “collection” of values:
for every type τ ′, there is an instance of type τ [τ ′/α].

I [[∀α. τ]]θ = {g : Set → Value | ∀S ∈ Set. (g S) ∈ [[τ]]θ[α 7→S]}
is maybe a good start, together with [[α]]θ = θ(α).

I But this may contain “ad-hoc” polymorphic functions!

5

Parametric Polymorphism, More Formally

Question: What functions are in ∀α. (α→ Bool)→ [α]→ [α] ?

Approach: Give denotations of types as sets.

[[Bool]]θ = {True,False} = B

[[Nat]]θ = {0, 1, 2, . . . } = N

[[(τ1, τ2)]]θ = [[τ1]]θ × [[τ2]]θ
[[[τ]]]θ = {[x1, . . . , xn] | n ≥ 0, xi ∈ [[τ]]θ}

[[τ1 → τ2]]θ = {f : [[τ1]]θ → [[τ2]]θ}
[[∀α. τ]]θ = ?

I g ∈ [[∀α. τ]]θ should be a “collection” of values:
for every type τ ′, there is an instance of type τ [τ ′/α].

I [[∀α. τ]]θ = {g : Set → Value | ∀S ∈ Set. (g S) ∈ [[τ]]θ[α 7→S]}
is maybe a good start, together with [[α]]θ = θ(α).

I But this may contain “ad-hoc” polymorphic functions!

5

Parametric Polymorphism, More Formally

Question: What functions are in ∀α. (α→ Bool)→ [α]→ [α] ?

Approach: Give denotations of types as sets.

[[Bool]]θ = {True,False} = B

[[Nat]]θ = {0, 1, 2, . . . } = N

[[(τ1, τ2)]]θ = [[τ1]]θ × [[τ2]]θ
[[[τ]]]θ = {[x1, . . . , xn] | n ≥ 0, xi ∈ [[τ]]θ}
[[τ1 → τ2]]θ = {f : [[τ1]]θ → [[τ2]]θ}

[[∀α. τ]]θ = ?

I g ∈ [[∀α. τ]]θ should be a “collection” of values:
for every type τ ′, there is an instance of type τ [τ ′/α].

I [[∀α. τ]]θ = {g : Set → Value | ∀S ∈ Set. (g S) ∈ [[τ]]θ[α 7→S]}
is maybe a good start, together with [[α]]θ = θ(α).

I But this may contain “ad-hoc” polymorphic functions!

5

Parametric Polymorphism, More Formally

Question: What functions are in ∀α. (α→ Bool)→ [α]→ [α] ?

Approach: Give denotations of types as sets.

[[Bool]]θ = {True,False} = B

[[Nat]]θ = {0, 1, 2, . . . } = N

[[(τ1, τ2)]]θ = [[τ1]]θ × [[τ2]]θ
[[[τ]]]θ = {[x1, . . . , xn] | n ≥ 0, xi ∈ [[τ]]θ}
[[τ1 → τ2]]θ = {f : [[τ1]]θ → [[τ2]]θ}
[[∀α. τ]]θ = ?

I g ∈ [[∀α. τ]]θ should be a “collection” of values:
for every type τ ′, there is an instance of type τ [τ ′/α].

I [[∀α. τ]]θ = {g : Set → Value | ∀S ∈ Set. (g S) ∈ [[τ]]θ[α 7→S]}
is maybe a good start, together with [[α]]θ = θ(α).

I But this may contain “ad-hoc” polymorphic functions!

5

Parametric Polymorphism, More Formally

Question: What functions are in ∀α. (α→ Bool)→ [α]→ [α] ?

Approach: Give denotations of types as sets.

[[Bool]]θ = {True,False} = B

[[Nat]]θ = {0, 1, 2, . . . } = N

[[(τ1, τ2)]]θ = [[τ1]]θ × [[τ2]]θ
[[[τ]]]θ = {[x1, . . . , xn] | n ≥ 0, xi ∈ [[τ]]θ}
[[τ1 → τ2]]θ = {f : [[τ1]]θ → [[τ2]]θ}
[[∀α. τ]]θ = ?

I g ∈ [[∀α. τ]]θ should be a “collection” of values:
for every type τ ′, there is an instance of type τ [τ ′/α].

I [[∀α. τ]]θ = {g : Set → Value | ∀S ∈ Set. (g S) ∈ [[τ]]θ[α 7→S]}
is maybe a good start, together with [[α]]θ = θ(α).

I But this may contain “ad-hoc” polymorphic functions!

5

Parametric Polymorphism, More Formally

Question: What functions are in ∀α. (α→ Bool)→ [α]→ [α] ?

Approach: Give denotations of types as sets.

[[Bool]]θ = {True,False} = B

[[Nat]]θ = {0, 1, 2, . . . } = N

[[(τ1, τ2)]]θ = [[τ1]]θ × [[τ2]]θ
[[[τ]]]θ = {[x1, . . . , xn] | n ≥ 0, xi ∈ [[τ]]θ}
[[τ1 → τ2]]θ = {f : [[τ1]]θ → [[τ2]]θ}
[[∀α. τ]]θ = ?

I g ∈ [[∀α. τ]]θ should be a “collection” of values:
for every type τ ′, there is an instance of type τ [τ ′/α].

I [[∀α. τ]]θ = {g : Set → Value | ∀S ∈ Set. (g S) ∈ [[τ]]θ[α 7→S]}
is maybe a good start, together with [[α]]θ = θ(α).

I But this may contain “ad-hoc” polymorphic functions!

5

Parametric Polymorphism, More Formally

Question: What functions are in ∀α. (α→ Bool)→ [α]→ [α] ?

Approach: Give denotations of types as sets.

[[Bool]]θ = {True,False} = B

[[Nat]]θ = {0, 1, 2, . . . } = N

[[(τ1, τ2)]]θ = [[τ1]]θ × [[τ2]]θ
[[[τ]]]θ = {[x1, . . . , xn] | n ≥ 0, xi ∈ [[τ]]θ}
[[τ1 → τ2]]θ = {f : [[τ1]]θ → [[τ2]]θ}
[[∀α. τ]]θ = ?

I g ∈ [[∀α. τ]]θ should be a “collection” of values:
for every type τ ′, there is an instance of type τ [τ ′/α].

I [[∀α. τ]]θ = {g : Set → Value | ∀S ∈ Set. (g S) ∈ [[τ]]θ[α 7→S]}
is maybe a good start, together with [[α]]θ = θ(α).

I But this may contain “ad-hoc” polymorphic functions!

5

Unwanted Ad-Hoc Polymorphism: Example

I With the proposed definition,
[[∀α. (α, α)→ α]]∅ = {g | ∀S ∈ Set. (g S) : S × S → S}.

I But this also allows

g B (x , y) = not x
g N (x , y) = y + 1 ,

which is not possible in Haskell at type ∀α. (α, α)→ α.

I To prevent this, compare/relate

(g B) : B× B→ B and
(g N) : N× N→ N ,

ensuring that they “behave identically”.
But how?

6

Unwanted Ad-Hoc Polymorphism: Example

I With the proposed definition,
[[∀α. (α, α)→ α]]∅ = {g | ∀S ∈ Set. (g S) : S × S → S}.

I But this also allows

g B (x , y) = not x
g N (x , y) = y + 1 ,

which is not possible in Haskell at type ∀α. (α, α)→ α.

I To prevent this, compare/relate

(g B) : B× B→ B and
(g N) : N× N→ N ,

ensuring that they “behave identically”.
But how?

6

Unwanted Ad-Hoc Polymorphism: Example

I With the proposed definition,
[[∀α. (α, α)→ α]]∅ = {g | ∀S ∈ Set. (g S) : S × S → S}.

I But this also allows

g B (x , y) = not x
g N (x , y) = y + 1 ,

which is not possible in Haskell at type ∀α. (α, α)→ α.

I To prevent this, compare/relate

(g B) : B× B→ B and
(g N) : N× N→ N ,

ensuring that they “behave identically”.
But how?

6

Key Idea [Reynolds 1983]

Use relations to tie instances together.

In the example:

I Choose an R ⊆ B× N.

I Say that (x1, y1) ∈ B× B and (x2, y2) ∈ N× N are related
if (x1, x2) ∈ R and (y1, y2) ∈ R.

I Say that f1 : B× B→ B and f2 : N× N→ N are related
if they map related arguments to related results.

I Then (g B) and (g N) with

g B (x , y) = not x
g N (x , y) = y + 1

are not related if we choose, e.g., R = {(True, 1)}.
Reynolds: g ∈ [[∀α. τ]]θ only if for every S1,S2,R ⊆ S1 × S2,

(g S1) is related to (g S2) by the “propagation” of R
according to τ .

7

Key Idea [Reynolds 1983]

Use relations to tie instances together.

In the example:

I Choose an R ⊆ B× N.

I Say that (x1, y1) ∈ B× B and (x2, y2) ∈ N× N are related
if (x1, x2) ∈ R and (y1, y2) ∈ R.

I Say that f1 : B× B→ B and f2 : N× N→ N are related
if they map related arguments to related results.

I Then (g B) and (g N) with

g B (x , y) = not x
g N (x , y) = y + 1

are not related if we choose, e.g., R = {(True, 1)}.
Reynolds: g ∈ [[∀α. τ]]θ only if for every S1,S2,R ⊆ S1 × S2,

(g S1) is related to (g S2) by the “propagation” of R
according to τ .

7

Key Idea [Reynolds 1983]

Use relations to tie instances together.

In the example:

I Choose an R ⊆ B× N.

I Say that (x1, y1) ∈ B× B and (x2, y2) ∈ N× N are related
if (x1, x2) ∈ R and (y1, y2) ∈ R.

I Say that f1 : B× B→ B and f2 : N× N→ N are related
if they map related arguments to related results.

I Then (g B) and (g N) with

g B (x , y) = not x
g N (x , y) = y + 1

are not related if we choose, e.g., R = {(True, 1)}.
Reynolds: g ∈ [[∀α. τ]]θ only if for every S1,S2,R ⊆ S1 × S2,

(g S1) is related to (g S2) by the “propagation” of R
according to τ .

7

Key Idea [Reynolds 1983]

Use relations to tie instances together.

In the example:

I Choose an R ⊆ B× N.

I Say that (x1, y1) ∈ B× B and (x2, y2) ∈ N× N are related
if (x1, x2) ∈ R and (y1, y2) ∈ R.

I Say that f1 : B× B→ B and f2 : N× N→ N are related
if they map related arguments to related results.

I Then (g B) and (g N) with

g B (x , y) = not x
g N (x , y) = y + 1

are not related if we choose, e.g., R = {(True, 1)}.
Reynolds: g ∈ [[∀α. τ]]θ only if for every S1,S2,R ⊆ S1 × S2,

(g S1) is related to (g S2) by the “propagation” of R
according to τ .

7

Key Idea [Reynolds 1983]

Use relations to tie instances together.

In the example:

I Choose an R ⊆ B× N.

I Say that (x1, y1) ∈ B× B and (x2, y2) ∈ N× N are related
if (x1, x2) ∈ R and (y1, y2) ∈ R.

I Say that f1 : B× B→ B and f2 : N× N→ N are related
if they map related arguments to related results.

I Then (g B) and (g N) with

g B (x , y) = not x
g N (x , y) = y + 1

are not related if we choose, e.g., R = {(True, 1)}.

Reynolds: g ∈ [[∀α. τ]]θ only if for every S1,S2,R ⊆ S1 × S2,
(g S1) is related to (g S2) by the “propagation” of R
according to τ .

7

Key Idea [Reynolds 1983]

Use relations to tie instances together.

In the example:

I Choose an R ⊆ B× N.

I Say that (x1, y1) ∈ B× B and (x2, y2) ∈ N× N are related
if (x1, x2) ∈ R and (y1, y2) ∈ R.

I Say that f1 : B× B→ B and f2 : N× N→ N are related
if they map related arguments to related results.

I Then (g B) and (g N) with

g B (x , y) = not x
g N (x , y) = y + 1

are not related if we choose, e.g., R = {(True, 1)}.
Reynolds: g ∈ [[∀α. τ]]θ only if for every S1,S2,R ⊆ S1 × S2,

(g S1) is related to (g S2) by the “propagation” of R
according to τ .

7

Polymorphic Lambda Calculus
[Girard 1972, Reynolds 1974]

Types: τ := α | τ → τ | ∀α. τ
Terms: t := x | λx : τ. t | t t | Λα. t | t τ

Γ, x : τ ` x : τ [[x]]θ,σ = σ(x)

Γ, x : τ1 ` t : τ2

Γ ` (λx : τ1. t) : τ1 → τ2
[[λx : τ1. t]]θ,σ a = [[t]]θ,σ[x 7→a]

Γ ` t : τ1 → τ2 Γ ` u : τ1

Γ ` (t u) : τ2
[[t u]]θ,σ = [[t]]θ,σ [[u]]θ,σ

α, Γ ` t : τ

Γ ` (Λα. t) : ∀α. τ
[[Λα. t]]θ,σ S = [[t]]θ[α 7→S],σ

Γ ` t : ∀α. τ
Γ ` (t τ ′) : τ [τ ′/α]

[[t τ ′]]θ,σ = [[t]]θ,σ [[τ ′]]θ

8

Polymorphic Lambda Calculus
[Girard 1972, Reynolds 1974]

Types: τ := α | τ → τ | ∀α. τ
Terms: t := x | λx : τ. t | t t | Λα. t | t τ

Γ, x : τ ` x : τ

[[x]]θ,σ = σ(x)

Γ, x : τ1 ` t : τ2

Γ ` (λx : τ1. t) : τ1 → τ2
[[λx : τ1. t]]θ,σ a = [[t]]θ,σ[x 7→a]

Γ ` t : τ1 → τ2 Γ ` u : τ1

Γ ` (t u) : τ2
[[t u]]θ,σ = [[t]]θ,σ [[u]]θ,σ

α, Γ ` t : τ

Γ ` (Λα. t) : ∀α. τ
[[Λα. t]]θ,σ S = [[t]]θ[α 7→S],σ

Γ ` t : ∀α. τ
Γ ` (t τ ′) : τ [τ ′/α]

[[t τ ′]]θ,σ = [[t]]θ,σ [[τ ′]]θ

8

Polymorphic Lambda Calculus
[Girard 1972, Reynolds 1974]

Types: τ := α | τ → τ | ∀α. τ
Terms: t := x | λx : τ. t | t t | Λα. t | t τ

Γ, x : τ ` x : τ

[[x]]θ,σ = σ(x)

Γ, x : τ1 ` t : τ2

Γ ` (λx : τ1. t) : τ1 → τ2

[[λx : τ1. t]]θ,σ a = [[t]]θ,σ[x 7→a]

Γ ` t : τ1 → τ2 Γ ` u : τ1

Γ ` (t u) : τ2
[[t u]]θ,σ = [[t]]θ,σ [[u]]θ,σ

α, Γ ` t : τ

Γ ` (Λα. t) : ∀α. τ
[[Λα. t]]θ,σ S = [[t]]θ[α 7→S],σ

Γ ` t : ∀α. τ
Γ ` (t τ ′) : τ [τ ′/α]

[[t τ ′]]θ,σ = [[t]]θ,σ [[τ ′]]θ

8

Polymorphic Lambda Calculus
[Girard 1972, Reynolds 1974]

Types: τ := α | τ → τ | ∀α. τ
Terms: t := x | λx : τ. t | t t | Λα. t | t τ

Γ, x : τ ` x : τ

[[x]]θ,σ = σ(x)

Γ, x : τ1 ` t : τ2

Γ ` (λx : τ1. t) : τ1 → τ2

[[λx : τ1. t]]θ,σ a = [[t]]θ,σ[x 7→a]

Γ ` t : τ1 → τ2 Γ ` u : τ1

Γ ` (t u) : τ2

[[t u]]θ,σ = [[t]]θ,σ [[u]]θ,σ

α, Γ ` t : τ

Γ ` (Λα. t) : ∀α. τ
[[Λα. t]]θ,σ S = [[t]]θ[α 7→S],σ

Γ ` t : ∀α. τ
Γ ` (t τ ′) : τ [τ ′/α]

[[t τ ′]]θ,σ = [[t]]θ,σ [[τ ′]]θ

8

Polymorphic Lambda Calculus
[Girard 1972, Reynolds 1974]

Types: τ := α | τ → τ | ∀α. τ
Terms: t := x | λx : τ. t | t t | Λα. t | t τ

Γ, x : τ ` x : τ

[[x]]θ,σ = σ(x)

Γ, x : τ1 ` t : τ2

Γ ` (λx : τ1. t) : τ1 → τ2

[[λx : τ1. t]]θ,σ a = [[t]]θ,σ[x 7→a]

Γ ` t : τ1 → τ2 Γ ` u : τ1

Γ ` (t u) : τ2

[[t u]]θ,σ = [[t]]θ,σ [[u]]θ,σ

α, Γ ` t : τ

Γ ` (Λα. t) : ∀α. τ

[[Λα. t]]θ,σ S = [[t]]θ[α 7→S],σ

Γ ` t : ∀α. τ
Γ ` (t τ ′) : τ [τ ′/α]

[[t τ ′]]θ,σ = [[t]]θ,σ [[τ ′]]θ

8

Polymorphic Lambda Calculus
[Girard 1972, Reynolds 1974]

Types: τ := α | τ → τ | ∀α. τ
Terms: t := x | λx : τ. t | t t | Λα. t | t τ

Γ, x : τ ` x : τ

[[x]]θ,σ = σ(x)

Γ, x : τ1 ` t : τ2

Γ ` (λx : τ1. t) : τ1 → τ2

[[λx : τ1. t]]θ,σ a = [[t]]θ,σ[x 7→a]

Γ ` t : τ1 → τ2 Γ ` u : τ1

Γ ` (t u) : τ2

[[t u]]θ,σ = [[t]]θ,σ [[u]]θ,σ

α, Γ ` t : τ

Γ ` (Λα. t) : ∀α. τ

[[Λα. t]]θ,σ S = [[t]]θ[α 7→S],σ

Γ ` t : ∀α. τ
Γ ` (t τ ′) : τ [τ ′/α]

[[t τ ′]]θ,σ = [[t]]θ,σ [[τ ′]]θ

8

Polymorphic Lambda Calculus
[Girard 1972, Reynolds 1974]

Types: τ := α | τ → τ | ∀α. τ
Terms: t := x | λx : τ. t | t t | Λα. t | t τ

Γ, x : τ ` x : τ [[x]]θ,σ = σ(x)

Γ, x : τ1 ` t : τ2

Γ ` (λx : τ1. t) : τ1 → τ2
[[λx : τ1. t]]θ,σ a = [[t]]θ,σ[x 7→a]

Γ ` t : τ1 → τ2 Γ ` u : τ1

Γ ` (t u) : τ2
[[t u]]θ,σ = [[t]]θ,σ [[u]]θ,σ

α, Γ ` t : τ

Γ ` (Λα. t) : ∀α. τ
[[Λα. t]]θ,σ S = [[t]]θ[α 7→S],σ

Γ ` t : ∀α. τ
Γ ` (t τ ′) : τ [τ ′/α]

[[t τ ′]]θ,σ = [[t]]θ,σ [[τ ′]]θ

8

Parametricity Theorem [Reynolds 1983, Wadler 1989]

Given τ and environments θ1, θ2, ρ with ρ(α) ⊆ θ1(α)× θ2(α),
define ∆τ,ρ ⊆ [[τ]]θ1 × [[τ]]θ2 as follows:

∆α,ρ = ρ(α)
∆τ1→τ2,ρ = {(f1, f2) | ∀(a1, a2) ∈ ∆τ1,ρ. (f1 a1, f2 a2) ∈ ∆τ2,ρ}
∆∀α. τ,ρ = {(g1, g2) | ∀R ⊆ S1 × S2. (g1 S1, g2 S2) ∈ ∆τ,ρ[α 7→R]}

Then, for every closed term t of closed type τ :

([[t]]∅,∅, [[t]]∅,∅) ∈ ∆τ,∅.

9

Parametricity Theorem [Reynolds 1983, Wadler 1989]

Given τ and environments θ1, θ2, ρ with ρ(α) ⊆ θ1(α)× θ2(α),
define ∆τ,ρ ⊆ [[τ]]θ1 × [[τ]]θ2 as follows:

∆α,ρ = ρ(α)

∆τ1→τ2,ρ = {(f1, f2) | ∀(a1, a2) ∈ ∆τ1,ρ. (f1 a1, f2 a2) ∈ ∆τ2,ρ}
∆∀α. τ,ρ = {(g1, g2) | ∀R ⊆ S1 × S2. (g1 S1, g2 S2) ∈ ∆τ,ρ[α 7→R]}

Then, for every closed term t of closed type τ :

([[t]]∅,∅, [[t]]∅,∅) ∈ ∆τ,∅.

9

Parametricity Theorem [Reynolds 1983, Wadler 1989]

Given τ and environments θ1, θ2, ρ with ρ(α) ⊆ θ1(α)× θ2(α),
define ∆τ,ρ ⊆ [[τ]]θ1 × [[τ]]θ2 as follows:

∆α,ρ = ρ(α)
∆τ1→τ2,ρ = {(f1, f2) | ∀(a1, a2) ∈ ∆τ1,ρ. (f1 a1, f2 a2) ∈ ∆τ2,ρ}

∆∀α. τ,ρ = {(g1, g2) | ∀R ⊆ S1 × S2. (g1 S1, g2 S2) ∈ ∆τ,ρ[α 7→R]}

Then, for every closed term t of closed type τ :

([[t]]∅,∅, [[t]]∅,∅) ∈ ∆τ,∅.

9

Parametricity Theorem [Reynolds 1983, Wadler 1989]

Given τ and environments θ1, θ2, ρ with ρ(α) ⊆ θ1(α)× θ2(α),
define ∆τ,ρ ⊆ [[τ]]θ1 × [[τ]]θ2 as follows:

∆α,ρ = ρ(α)
∆τ1→τ2,ρ = {(f1, f2) | ∀(a1, a2) ∈ ∆τ1,ρ. (f1 a1, f2 a2) ∈ ∆τ2,ρ}
∆∀α. τ,ρ = {(g1, g2) | ∀R ⊆ S1 × S2. (g1 S1, g2 S2) ∈ ∆τ,ρ[α 7→R]}

Then, for every closed term t of closed type τ :

([[t]]∅,∅, [[t]]∅,∅) ∈ ∆τ,∅.

9

Parametricity Theorem [Reynolds 1983, Wadler 1989]

Given τ and environments θ1, θ2, ρ with ρ(α) ⊆ θ1(α)× θ2(α),
define ∆τ,ρ ⊆ [[τ]]θ1 × [[τ]]θ2 as follows:

∆α,ρ = ρ(α)
∆τ1→τ2,ρ = {(f1, f2) | ∀(a1, a2) ∈ ∆τ1,ρ. (f1 a1, f2 a2) ∈ ∆τ2,ρ}
∆∀α. τ,ρ = {(g1, g2) | ∀R ⊆ S1 × S2. (g1 S1, g2 S2) ∈ ∆τ,ρ[α 7→R]}

Then, for every closed term t of closed type τ :

([[t]]∅,∅, [[t]]∅,∅) ∈ ∆τ,∅.

9

Proof Sketch

Prove the following more general statement:

Γ ` t : τ implies ([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆τ,ρ ,
provided (σ1(x), σ2(x)) ∈ ∆τ ′,ρ for every x : τ ′ in Γ

by induction on the structure of typing derivations.

The base case is immediate. In the step cases:

10

Proof Sketch

Prove the following more general statement:

Γ ` t : τ implies ([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆τ,ρ ,
provided (σ1(x), σ2(x)) ∈ ∆τ ′,ρ for every x : τ ′ in Γ

by induction on the structure of typing derivations.
The base case is immediate.

In the step cases:

10

Proof Sketch

Prove the following more general statement:

Γ ` t : τ implies ([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆τ,ρ ,
provided (σ1(x), σ2(x)) ∈ ∆τ ′,ρ for every x : τ ′ in Γ

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

Γ, x : τ1 ` t : τ2

Γ ` (λx : τ1. t) : τ1 → τ2

10

Proof Sketch

Prove the following more general statement:

Γ ` t : τ implies ([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆τ,ρ ,
provided (σ1(x), σ2(x)) ∈ ∆τ ′,ρ for every x : τ ′ in Γ

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

Γ, x : τ1 ` t : τ2

([[λx : τ1. t]]θ1,σ1 , [[λx : τ1. t]]θ2,σ2) ∈ ∆τ1→τ2,ρ

10

Proof Sketch

Prove the following more general statement:

Γ ` t : τ implies ([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆τ,ρ ,
provided (σ1(x), σ2(x)) ∈ ∆τ ′,ρ for every x : τ ′ in Γ

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

∀(a1, a2) ∈ ∆τ1,ρ. ([[t]]θ1,σ1[x 7→a1], [[t]]θ2,σ2[x 7→a2]) ∈ ∆τ2,ρ

([[λx : τ1. t]]θ1,σ1 , [[λx : τ1. t]]θ2,σ2) ∈ ∆τ1→τ2,ρ

10

Proof Sketch

Prove the following more general statement:

Γ ` t : τ implies ([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆τ,ρ ,
provided (σ1(x), σ2(x)) ∈ ∆τ ′,ρ for every x : τ ′ in Γ

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

∀(a1, a2) ∈ ∆τ1,ρ. ([[t]]θ1,σ1[x 7→a1], [[t]]θ2,σ2[x 7→a2]) ∈ ∆τ2,ρ

([[λx : τ1. t]]θ1,σ1 , [[λx : τ1. t]]θ2,σ2) ∈ ∆τ1→τ2,ρ

Γ ` t : τ1 → τ2 Γ ` u : τ1

Γ ` (t u) : τ2

10

Proof Sketch

Prove the following more general statement:

Γ ` t : τ implies ([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆τ,ρ ,
provided (σ1(x), σ2(x)) ∈ ∆τ ′,ρ for every x : τ ′ in Γ

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

∀(a1, a2) ∈ ∆τ1,ρ. ([[t]]θ1,σ1[x 7→a1], [[t]]θ2,σ2[x 7→a2]) ∈ ∆τ2,ρ

([[λx : τ1. t]]θ1,σ1 , [[λx : τ1. t]]θ2,σ2) ∈ ∆τ1→τ2,ρ

Γ ` t : τ1 → τ2 Γ ` u : τ1

([[t u]]θ1,σ1 , [[t u]]θ2,σ2) ∈ ∆τ2,ρ

10

Proof Sketch

Prove the following more general statement:

Γ ` t : τ implies ([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆τ,ρ ,
provided (σ1(x), σ2(x)) ∈ ∆τ ′,ρ for every x : τ ′ in Γ

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

∀(a1, a2) ∈ ∆τ1,ρ. ([[t]]θ1,σ1[x 7→a1], [[t]]θ2,σ2[x 7→a2]) ∈ ∆τ2,ρ

([[λx : τ1. t]]θ1,σ1 , [[λx : τ1. t]]θ2,σ2) ∈ ∆τ1→τ2,ρ

([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆τ1→τ2,ρ ([[u]]θ1,σ1 , [[u]]θ2,σ2) ∈ ∆τ1,ρ

([[t u]]θ1,σ1 , [[t u]]θ2,σ2) ∈ ∆τ2,ρ

10

Proof Sketch

Prove the following more general statement:

Γ ` t : τ implies ([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆τ,ρ ,
provided (σ1(x), σ2(x)) ∈ ∆τ ′,ρ for every x : τ ′ in Γ

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

∀(a1, a2) ∈ ∆τ1,ρ. ([[t]]θ1,σ1[x 7→a1], [[t]]θ2,σ2[x 7→a2]) ∈ ∆τ2,ρ

([[λx : τ1. t]]θ1,σ1 , [[λx : τ1. t]]θ2,σ2) ∈ ∆τ1→τ2,ρ

([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆τ1→τ2,ρ ([[u]]θ1,σ1 , [[u]]θ2,σ2) ∈ ∆τ1,ρ

([[t u]]θ1,σ1 , [[t u]]θ2,σ2) ∈ ∆τ2,ρ

α, Γ ` t : τ

Γ ` (Λα. t) : ∀α. τ

10

Proof Sketch

Prove the following more general statement:

Γ ` t : τ implies ([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆τ,ρ ,
provided (σ1(x), σ2(x)) ∈ ∆τ ′,ρ for every x : τ ′ in Γ

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

∀(a1, a2) ∈ ∆τ1,ρ. ([[t]]θ1,σ1[x 7→a1], [[t]]θ2,σ2[x 7→a2]) ∈ ∆τ2,ρ

([[λx : τ1. t]]θ1,σ1 , [[λx : τ1. t]]θ2,σ2) ∈ ∆τ1→τ2,ρ

([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆τ1→τ2,ρ ([[u]]θ1,σ1 , [[u]]θ2,σ2) ∈ ∆τ1,ρ

([[t u]]θ1,σ1 , [[t u]]θ2,σ2) ∈ ∆τ2,ρ

α, Γ ` t : τ

([[Λα. t]]θ1,σ1 , [[Λα. t]]θ2,σ2) ∈ ∆∀α. τ,ρ

10

Proof Sketch

Prove the following more general statement:

Γ ` t : τ implies ([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆τ,ρ ,
provided (σ1(x), σ2(x)) ∈ ∆τ ′,ρ for every x : τ ′ in Γ

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

∀(a1, a2) ∈ ∆τ1,ρ. ([[t]]θ1,σ1[x 7→a1], [[t]]θ2,σ2[x 7→a2]) ∈ ∆τ2,ρ

([[λx : τ1. t]]θ1,σ1 , [[λx : τ1. t]]θ2,σ2) ∈ ∆τ1→τ2,ρ

([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆τ1→τ2,ρ ([[u]]θ1,σ1 , [[u]]θ2,σ2) ∈ ∆τ1,ρ

([[t u]]θ1,σ1 , [[t u]]θ2,σ2) ∈ ∆τ2,ρ

∀R ⊆ S1 × S2. ([[t]]θ1[α 7→S1],σ1
, [[t]]θ2[α 7→S2],σ2

) ∈ ∆τ,ρ[α 7→R]

([[Λα. t]]θ1,σ1 , [[Λα. t]]θ2,σ2) ∈ ∆∀α. τ,ρ

10

Proof Sketch

Prove the following more general statement:

Γ ` t : τ implies ([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆τ,ρ ,
provided (σ1(x), σ2(x)) ∈ ∆τ ′,ρ for every x : τ ′ in Γ

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

∀(a1, a2) ∈ ∆τ1,ρ. ([[t]]θ1,σ1[x 7→a1], [[t]]θ2,σ2[x 7→a2]) ∈ ∆τ2,ρ

([[λx : τ1. t]]θ1,σ1 , [[λx : τ1. t]]θ2,σ2) ∈ ∆τ1→τ2,ρ

([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆τ1→τ2,ρ ([[u]]θ1,σ1 , [[u]]θ2,σ2) ∈ ∆τ1,ρ

([[t u]]θ1,σ1 , [[t u]]θ2,σ2) ∈ ∆τ2,ρ

∀R ⊆ S1 × S2. ([[t]]θ1[α 7→S1],σ1
, [[t]]θ2[α 7→S2],σ2

) ∈ ∆τ,ρ[α 7→R]

([[Λα. t]]θ1,σ1 , [[Λα. t]]θ2,σ2) ∈ ∆∀α. τ,ρ

Γ ` t : ∀α. τ
Γ ` (t τ ′) : τ [τ ′/α]

10

Proof Sketch

Prove the following more general statement:

Γ ` t : τ implies ([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆τ,ρ ,
provided (σ1(x), σ2(x)) ∈ ∆τ ′,ρ for every x : τ ′ in Γ

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

∀(a1, a2) ∈ ∆τ1,ρ. ([[t]]θ1,σ1[x 7→a1], [[t]]θ2,σ2[x 7→a2]) ∈ ∆τ2,ρ

([[λx : τ1. t]]θ1,σ1 , [[λx : τ1. t]]θ2,σ2) ∈ ∆τ1→τ2,ρ

([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆τ1→τ2,ρ ([[u]]θ1,σ1 , [[u]]θ2,σ2) ∈ ∆τ1,ρ

([[t u]]θ1,σ1 , [[t u]]θ2,σ2) ∈ ∆τ2,ρ

∀R ⊆ S1 × S2. ([[t]]θ1[α 7→S1],σ1
, [[t]]θ2[α 7→S2],σ2

) ∈ ∆τ,ρ[α 7→R]

([[Λα. t]]θ1,σ1 , [[Λα. t]]θ2,σ2) ∈ ∆∀α. τ,ρ

Γ ` t : ∀α. τ
([[t τ ′]]θ1,σ1 , [[t τ

′]]θ2,σ2) ∈ ∆τ [τ ′/α],ρ

10

Proof Sketch

Prove the following more general statement:

Γ ` t : τ implies ([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆τ,ρ ,
provided (σ1(x), σ2(x)) ∈ ∆τ ′,ρ for every x : τ ′ in Γ

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

∀(a1, a2) ∈ ∆τ1,ρ. ([[t]]θ1,σ1[x 7→a1], [[t]]θ2,σ2[x 7→a2]) ∈ ∆τ2,ρ

([[λx : τ1. t]]θ1,σ1 , [[λx : τ1. t]]θ2,σ2) ∈ ∆τ1→τ2,ρ

([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆τ1→τ2,ρ ([[u]]θ1,σ1 , [[u]]θ2,σ2) ∈ ∆τ1,ρ

([[t u]]θ1,σ1 , [[t u]]θ2,σ2) ∈ ∆τ2,ρ

∀R ⊆ S1 × S2. ([[t]]θ1[α 7→S1],σ1
, [[t]]θ2[α 7→S2],σ2

) ∈ ∆τ,ρ[α 7→R]

([[Λα. t]]θ1,σ1 , [[Λα. t]]θ2,σ2) ∈ ∆∀α. τ,ρ

([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆∀α. τ,ρ

([[t τ ′]]θ1,σ1 , [[t τ
′]]θ2,σ2) ∈ ∆τ [τ ′/α],ρ

10

Adding Datatypes

Types: τ := · · · | Bool | [τ]

Terms: t := · · · | True | False | []τ | t : t | case t of {· · · }

Γ ` True : Bool , Γ ` False : Bool , Γ ` []τ : [τ]

Γ ` t : τ Γ ` u : [τ]

Γ ` (t : u) : [τ]

Γ ` t : Bool Γ ` u : τ Γ ` v : τ
Γ ` (case t of {True → u ; False → v}) : τ

Γ ` t : [τ ′] Γ ` u : τ Γ, x1 : τ ′, x2 : [τ ′] ` v : τ

Γ ` (case t of {[]→ u ; (x1 : x2)→ v}) : τ

With the straightforward extension of term-semantics and with

∆Bool ,ρ = {(True,True), (False,False)}
∆[τ],ρ = {([x1, . . . , xn], [y1, . . . , yn]) | n ≥ 0, (xi , yi) ∈ ∆τ,ρ} ,

the parametricity theorem still holds.

11

Adding Datatypes

Types: τ := · · · | Bool | [τ]

Terms: t := · · · | True | False | []τ | t : t | case t of {· · · }
Γ ` True : Bool , Γ ` False : Bool , Γ ` []τ : [τ]

Γ ` t : τ Γ ` u : [τ]

Γ ` (t : u) : [τ]

Γ ` t : Bool Γ ` u : τ Γ ` v : τ
Γ ` (case t of {True → u ; False → v}) : τ

Γ ` t : [τ ′] Γ ` u : τ Γ, x1 : τ ′, x2 : [τ ′] ` v : τ

Γ ` (case t of {[]→ u ; (x1 : x2)→ v}) : τ

With the straightforward extension of term-semantics and with

∆Bool ,ρ = {(True,True), (False,False)}
∆[τ],ρ = {([x1, . . . , xn], [y1, . . . , yn]) | n ≥ 0, (xi , yi) ∈ ∆τ,ρ} ,

the parametricity theorem still holds.

11

Adding Datatypes

Types: τ := · · · | Bool | [τ]

Terms: t := · · · | True | False | []τ | t : t | case t of {· · · }
Γ ` True : Bool , Γ ` False : Bool , Γ ` []τ : [τ]

Γ ` t : τ Γ ` u : [τ]

Γ ` (t : u) : [τ]

Γ ` t : Bool Γ ` u : τ Γ ` v : τ
Γ ` (case t of {True → u ; False → v}) : τ

Γ ` t : [τ ′] Γ ` u : τ Γ, x1 : τ ′, x2 : [τ ′] ` v : τ

Γ ` (case t of {[]→ u ; (x1 : x2)→ v}) : τ

With the straightforward extension of term-semantics and with

∆Bool ,ρ = {(True,True), (False,False)}
∆[τ],ρ = {([x1, . . . , xn], [y1, . . . , yn]) | n ≥ 0, (xi , yi) ∈ ∆τ,ρ} ,

the parametricity theorem still holds.
11

Adding General Recursion

Terms: t := · · · | fix t

Γ ` t : τ → τ
Γ ` (fix t) : τ

To provide semantics, types are interpreted as pointed complete
partial orders now.

[[fix t]]θ,σ =
⊔
i≥0

([[t]]iθ,σ ⊥).

The parametricity theorem still holds, provided all relations are
strict and continuous.

12

Adding General Recursion

Terms: t := · · · | fix t

Γ ` t : τ → τ
Γ ` (fix t) : τ

To provide semantics, types are interpreted as pointed complete
partial orders now.

[[fix t]]θ,σ =
⊔
i≥0

([[t]]iθ,σ ⊥).

The parametricity theorem still holds, provided all relations are
strict and continuous.

12

Adding General Recursion

Terms: t := · · · | fix t

Γ ` t : τ → τ
Γ ` (fix t) : τ

To provide semantics, types are interpreted as pointed complete
partial orders now.

[[fix t]]θ,σ =
⊔
i≥0

([[t]]iθ,σ ⊥).

The parametricity theorem still holds, provided all relations are
strict and continuous.

12

Adding General Recursion

Terms: t := · · · | fix t

Γ ` t : τ → τ
Γ ` (fix t) : τ

To provide semantics, types are interpreted as pointed complete
partial orders now.

[[fix t]]θ,σ =
⊔
i≥0

([[t]]iθ,σ ⊥).

The parametricity theorem still holds, provided all relations are
strict and continuous.

12

Back to Haskell

The original example

filter :: ∀α. (α→ Bool)→ [α]→ [α]
filter p [] = []
filter p (x : xs) = if p x then x : filter p xs

else filter p xs

has a “desugaring” in the extended calculus as follows:

fix (λf : (∀α. (α→ Bool)→ [α]→ [α]).
Λα. λp : (α→ Bool). λl : [α].
case l of {[] → []α ;

(x : xs)→ case p x of
{True → x : (f α p xs) ;

False → f α p xs}})

13

The Magic Dissolves

Given g of type ∀α. (α→ Bool)→ [α]→ [α],
by the parametricity theorem:

(g , g) ∈ ∆∀α. (α→Bool)→[α]→[α],∅

⇒ ∀R ∈ Rel . (g , g) ∈ ∆(α→Bool)→[α]→[α],[α 7→R]

⇒ ∀R ∈ Rel , (a1, a2) ∈ ∆α→Bool ,[α 7→R]. (g a1, g a2) ∈ ∆[α]→[α],[α 7→R]

⇒ ∀R ∈ Rel , (a1, a2) ∈ ∆α→Bool ,[α 7→R], (l1, l2) ∈ ∆[α],[α 7→R].

(g a1 l1, g a2 l2) ∈ ∆[α],[α 7→R]

⇒ ∀(a1, a2) ∈ ∆α→Bool ,[α 7→h], (l1, l2) ∈ (map h).
(g a1 l1, g a2 l2) ∈ (map h)

⇒ ∀(l1, l2) ∈ (map h). (g (p ◦ h) l1, g p l2) ∈ (map h)

for every function h and every p.

This is exactly the claim (1) for g = filter !

14

The Magic Dissolves

Given g of type ∀α. (α→ Bool)→ [α]→ [α],
by the parametricity theorem:

(g , g) ∈ ∆∀α. (α→Bool)→[α]→[α],∅
⇒ ∀R ∈ Rel . (g , g) ∈ ∆(α→Bool)→[α]→[α],[α 7→R]

by definition of ∆

⇒ ∀R ∈ Rel , (a1, a2) ∈ ∆α→Bool ,[α 7→R]. (g a1, g a2) ∈ ∆[α]→[α],[α 7→R]

⇒ ∀R ∈ Rel , (a1, a2) ∈ ∆α→Bool ,[α 7→R], (l1, l2) ∈ ∆[α],[α 7→R].

(g a1 l1, g a2 l2) ∈ ∆[α],[α 7→R]

⇒ ∀(a1, a2) ∈ ∆α→Bool ,[α 7→h], (l1, l2) ∈ (map h).
(g a1 l1, g a2 l2) ∈ (map h)

⇒ ∀(l1, l2) ∈ (map h). (g (p ◦ h) l1, g p l2) ∈ (map h)

for every function h and every p.

This is exactly the claim (1) for g = filter !

14

The Magic Dissolves

Given g of type ∀α. (α→ Bool)→ [α]→ [α],
by the parametricity theorem:

(g , g) ∈ ∆∀α. (α→Bool)→[α]→[α],∅
⇒ ∀R ∈ Rel . (g , g) ∈ ∆(α→Bool)→[α]→[α],[α 7→R]

⇒ ∀R ∈ Rel , (a1, a2) ∈ ∆α→Bool ,[α 7→R]. (g a1, g a2) ∈ ∆[α]→[α],[α 7→R]

by definition of ∆

⇒ ∀R ∈ Rel , (a1, a2) ∈ ∆α→Bool ,[α 7→R], (l1, l2) ∈ ∆[α],[α 7→R].

(g a1 l1, g a2 l2) ∈ ∆[α],[α 7→R]

⇒ ∀(a1, a2) ∈ ∆α→Bool ,[α 7→h], (l1, l2) ∈ (map h).
(g a1 l1, g a2 l2) ∈ (map h)

⇒ ∀(l1, l2) ∈ (map h). (g (p ◦ h) l1, g p l2) ∈ (map h)

for every function h and every p.

This is exactly the claim (1) for g = filter !

14

The Magic Dissolves

Given g of type ∀α. (α→ Bool)→ [α]→ [α],
by the parametricity theorem:

(g , g) ∈ ∆∀α. (α→Bool)→[α]→[α],∅
⇒ ∀R ∈ Rel . (g , g) ∈ ∆(α→Bool)→[α]→[α],[α 7→R]

⇒ ∀R ∈ Rel , (a1, a2) ∈ ∆α→Bool ,[α 7→R]. (g a1, g a2) ∈ ∆[α]→[α],[α 7→R]

⇒ ∀R ∈ Rel , (a1, a2) ∈ ∆α→Bool ,[α 7→R], (l1, l2) ∈ ∆[α],[α 7→R].

(g a1 l1, g a2 l2) ∈ ∆[α],[α 7→R]

by definition of ∆

⇒ ∀(a1, a2) ∈ ∆α→Bool ,[α 7→h], (l1, l2) ∈ (map h).
(g a1 l1, g a2 l2) ∈ (map h)

⇒ ∀(l1, l2) ∈ (map h). (g (p ◦ h) l1, g p l2) ∈ (map h)

for every function h and every p.

This is exactly the claim (1) for g = filter !

14

The Magic Dissolves

Given g of type ∀α. (α→ Bool)→ [α]→ [α],
by the parametricity theorem:

(g , g) ∈ ∆∀α. (α→Bool)→[α]→[α],∅
⇒ ∀R ∈ Rel . (g , g) ∈ ∆(α→Bool)→[α]→[α],[α 7→R]

⇒ ∀R ∈ Rel , (a1, a2) ∈ ∆α→Bool ,[α 7→R]. (g a1, g a2) ∈ ∆[α]→[α],[α 7→R]

⇒ ∀R ∈ Rel , (a1, a2) ∈ ∆α→Bool ,[α 7→R], (l1, l2) ∈ ∆[α],[α 7→R].

(g a1 l1, g a2 l2) ∈ ∆[α],[α 7→R]

⇒ ∀(a1, a2) ∈ ∆α→Bool ,[α 7→h], (l1, l2) ∈ (map h).
(g a1 l1, g a2 l2) ∈ (map h)

by instantiating R = h and realizing that ∆[α],[α 7→h] = map h

⇒ ∀(l1, l2) ∈ (map h). (g (p ◦ h) l1, g p l2) ∈ (map h)

for every function h

and every p.

This is exactly the claim (1) for g = filter !

14

The Magic Dissolves

Given g of type ∀α. (α→ Bool)→ [α]→ [α],
by the parametricity theorem:

(g , g) ∈ ∆∀α. (α→Bool)→[α]→[α],∅
⇒ ∀R ∈ Rel . (g , g) ∈ ∆(α→Bool)→[α]→[α],[α 7→R]

⇒ ∀R ∈ Rel , (a1, a2) ∈ ∆α→Bool ,[α 7→R]. (g a1, g a2) ∈ ∆[α]→[α],[α 7→R]

⇒ ∀R ∈ Rel , (a1, a2) ∈ ∆α→Bool ,[α 7→R], (l1, l2) ∈ ∆[α],[α 7→R].

(g a1 l1, g a2 l2) ∈ ∆[α],[α 7→R]

⇒ ∀(a1, a2) ∈ ∆α→Bool ,[α 7→h], (l1, l2) ∈ (map h).
(g a1 l1, g a2 l2) ∈ (map h)

⇒ ∀(l1, l2) ∈ (map h). (g (p ◦ h) l1, g p l2) ∈ (map h)
by instantiating (a1, a2) = (p ◦ h, p) ∈ ∆α→Bool ,[α 7→h]

for every function h and every p.

This is exactly the claim (1) for g = filter !

14

The Magic Dissolves

Given g of type ∀α. (α→ Bool)→ [α]→ [α],
by the parametricity theorem:

(g , g) ∈ ∆∀α. (α→Bool)→[α]→[α],∅
⇒ ∀R ∈ Rel . (g , g) ∈ ∆(α→Bool)→[α]→[α],[α 7→R]

⇒ ∀R ∈ Rel , (a1, a2) ∈ ∆α→Bool ,[α 7→R]. (g a1, g a2) ∈ ∆[α]→[α],[α 7→R]

⇒ ∀R ∈ Rel , (a1, a2) ∈ ∆α→Bool ,[α 7→R], (l1, l2) ∈ ∆[α],[α 7→R].

(g a1 l1, g a2 l2) ∈ ∆[α],[α 7→R]

⇒ ∀(a1, a2) ∈ ∆α→Bool ,[α 7→h], (l1, l2) ∈ (map h).
(g a1 l1, g a2 l2) ∈ (map h)

⇒ ∀(l1, l2) ∈ (map h). (g (p ◦ h) l1, g p l2) ∈ (map h)

for every function h and every p.

This is exactly the claim (1) for g = filter !

14

References

J.-Y. Girard.
Interprétation functionelle et élimination des coupures dans
l’arithmétique d’ordre supérieure.
PhD thesis, Université Paris VII, 1972.

J.C. Reynolds.
Towards a theory of type structure.
In Colloque sur la Programmation, Proceedings, pages
408–423. Springer-Verlag, 1974.

J.C. Reynolds.
Types, abstraction and parametric polymorphism.
In Information Processing, Proceedings, pages 513–523.
Elsevier Science Publishers B.V., 1983.

P. Wadler.
Theorems for free!
In Functional Programming Languages and Computer
Architecture, Proceedings, pages 347–359. ACM Press, 1989.

15

	Example in Haskell
	Parametric polymorphism
	Polymorphic lambda calculus
	Parametricity theorem
	Back to Haskell

