Free Theorems — The Basics

Janis Voigtlander

Technische Universitdt Dresden

January 6, 2006

Outline

Example in Haskell

Parametric polymorphism

Polymorphic lambda calculus

Parametricity theorem

Back to Haskell

Haskell Example:

filter :: Va. (o« — Bool) — [a] — [a]

filter p |] =]

filter p (x : xs) = if p x then x : filter p xs
else filter p xs

Haskell Example:

filter :: Va. (o« — Bool) — [a] — [a]

filter p |] =]

filter p (x : xs) = if p x then x : filter p xs
else filter p xs

Claim:

filter p (map h 1) = map h (filter (poh) 1) (1)

Can be proved by induction on /, using the definition of filter.

Haskell Example: Theorems for free! [Wadler 1989]

filter :: Va. (oo — Bool) — [a] — [a]

Claim:

filter p (map h 1) = map h (filter (poh) 1) (1)

Can be derived from the parametric polymorphic type of filter!

Haskell Example: Theorems for free! [Wadler 1989]

filter :: Va. (oo — Bool) — [a] — [a]

Claim:

filter p (map h 1) = map h (filter (poh) 1) (1)

Can be derived from the parametric polymorphic type of filter!

Where is the magic? Where is the induction?

Parametric Polymorphism, Intuitively

» filter :: Vo (o« — Bool) — [a] — [a] must work uniformly
for every instantiation of a.

Parametric Polymorphism, Intuitively

» filter :: Vo (a — Bool) — [a] — [a] must work uniformly
for every instantiation of a.

» The output list can only contain elements from the input list /.

Parametric Polymorphism, Intuitively

» filter :: Vo (a — Bool) — [a] — [a] must work uniformly
for every instantiation of a.
» The output list can only contain elements from the input list /.
» Which, and in which order/multiplicity, can only be decided
based on / and the input predicate p.

Parametric Polymorphism, Intuitively

» filter :: Vo (a — Bool) — [a] — [a] must work uniformly
for every instantiation of a.
» The output list can only contain elements from the input list /.
» Which, and in which order/multiplicity, can only be decided
based on / and the input predicate p.

» The only means for this decision are to inspect the length of /
and to check the outcome of p on its elements.

Parametric Polymorphism, Intuitively

> filter :: Va. (« — Bool) — [a] — [a] must work uniformly
for every instantiation of a.
» The output list can only contain elements from the input list /.

» Which, and in which order/multiplicity, can only be decided
based on / and the input predicate p.

» The only means for this decision are to inspect the length of /
and to check the outcome of p on its elements.

» The lists (map h /) and | always have equal length.

Parametric Polymorphism, Intuitively

>

filter :: Va. (o — Bool) — [a] — [a] must work uniformly
for every instantiation of a.

» The output list can only contain elements from the input list /.
» Which, and in which order/multiplicity, can only be decided

based on / and the input predicate p.

The only means for this decision are to inspect the length of /
and to check the outcome of p on its elements.

» The lists (map h /) and | always have equal length.

» Applying p to an element of (map h /) always has the same

outcome as applying (po h) to the corresponding element of /.

Parametric Polymorphism, Intuitively

>

filter :: Va. (o — Bool) — [a] — [a] must work uniformly
for every instantiation of a.

» The output list can only contain elements from the input list /.
» Which, and in which order/multiplicity, can only be decided

based on / and the input predicate p.

The only means for this decision are to inspect the length of /
and to check the outcome of p on its elements.

» The lists (map h /) and | always have equal length.
» Applying p to an element of (map h /) always has the same

outcome as applying (po h) to the corresponding element of /.

filter with p always chooses “the same” elements from
(map h 1) for output as does filter with (po h) from /,

Parametric Polymorphism, Intuitively

>

filter :: Va. (o — Bool) — [a] — [a] must work uniformly
for every instantiation of a.

» The output list can only contain elements from the input list /.

» Which, and in which order/multiplicity, can only be decided

based on / and the input predicate p.

The only means for this decision are to inspect the length of /
and to check the outcome of p on its elements.

» The lists (map h /) and | always have equal length.

» Applying p to an element of (map h /) always has the same

outcome as applying (po h) to the corresponding element of /.
filter with p always chooses “the same” elements from

(map h 1) for output as does filter with (po h) from /,

except that it outputs their images under h.

Parametric Polymorphism, Intuitively

>

filter :: Va. (o — Bool) — [a] — [a] must work uniformly
for every instantiation of a.

» The output list can only contain elements from the input list /.

» Which, and in which order/multiplicity, can only be decided

based on / and the input predicate p.

The only means for this decision are to inspect the length of /
and to check the outcome of p on its elements.

» The lists (map h /) and | always have equal length.

» Applying p to an element of (map h /) always has the same

>

outcome as applying (po h) to the corresponding element of /.

filter with p always chooses “the same” elements from
(map h 1) for output as does filter with (po h) from /,
except that it outputs their images under h.

(filter p (map h 1)) is equivalent to (map h (filter (po h) 1)).

Parametric Polymorphism, Intuitively

>

filter :: Va. (o — Bool) — [a] — [a] must work uniformly
for every instantiation of a.

» The output list can only contain elements from the input list /.

» Which, and in which order/multiplicity, can only be decided

based on / and the input predicate p.

The only means for this decision are to inspect the length of /
and to check the outcome of p on its elements.

» The lists (map h /) and | always have equal length.

» Applying p to an element of (map h /) always has the same

>

outcome as applying (po h) to the corresponding element of /.

filter with p always chooses “the same” elements from
(map h 1) for output as does filter with (po h) from /,
except that it outputs their images under h.

(filter p (map h 1)) is equivalent to (map h (filter (po h) 1)).

» That is what we wanted to prove!

Parametric Polymorphism, More Formally

Question: What functions are in Vo (o« — Bool) — [a] — [a] ?

Approach: Give denotations of types as sets.

Parametric Polymorphism, More Formally

Question: What functions are in Vo (o« — Bool) — [a] — [a] ?

Approach: Give denotations of types as sets.

[Boollg = {True, False} =B
[Nat]e = {0,1,2,...} =N

Parametric Polymorphism, More Formally

Question: What functions are in Vo (o« — Bool) — [a] — [a] ?

Approach: Give denotations of types as sets.

[Boolls = {True, False} =B
[Natle = {0,1,2,...} — N
[(r1,72)le = [m1]o x [72]o

[i711e = {[x1,-..,xa] | n>0,x € [7]o}

Parametric Polymorphism, More Formally

Question: What functions are in Vo (o« — Bool) — [a] — [a] ?

Approach: Give denotations of types as sets.

[Boolls = {True, False} =B
[Natle = {0,1,2,...} — N
[(r1,72)le = [m1]o x [72]o

[i711e = {[x1,-..,xa] | n>0,x € [7]o}

[71 — 72lo = {f : [m1]o — [2]6}

Parametric Polymorphism, More Formally

Question: What functions are in Vo (o« — Bool) — [a] — [a] ?

Approach: Give denotations of types as sets.

[Boolls = {True, False} =B
[Natle = {0,1,2,...} — N
[(r1,72)le = [m1]o x [72]o

[i711e = {[x1,-..,xa] | n>0,x € [7]o}

[71 — 72lo = {f : [m1]o — [2]6}
|[VCM. 7']]9 =7

Parametric Polymorphism, More Formally

Question: What functions are in Vo (o« — Bool) — [a] — [a] ?

Approach: Give denotations of types as sets.

[Boolls = {True, False} =B
[Nat]e = {0,1,2,...} =N
[(r1,72)le = [m1]o x [72]o

[i711e = {[x1,-..,xa] | n>0,x € [7]o}

[11 — mlo = {f : [nlo — [mlo}

|[VCM. 7']]9 =7

» g € [Va. 7]g should be a “collection” of values:
for every type 7/, there is an instance of type 7[7'/q].

Parametric Polymorphism, More Formally

Question: What functions are in Vo (o« — Bool) — [a] — [a] ?

Approach: Give denotations of types as sets.

[Boolls = {True, False} =B
[Nat]e = {0,1,2,...} =N
[(r1,72)le = [m1]o x [72]o

[i711e = {[x1,-..,xa] | n>0,x € [7]o}

[11 — mlo = {f : [nlo — [mlo}

|[VCM. 7']]9 =7

» g € [Va. 7]g should be a “collection” of values:
for every type 7/, there is an instance of type 7[7'/q].

> [Va. 7)o = {g : Set — Value | VS € Set. (g S) € [T]gjas)}
is maybe a good start, together with [a]s = 6(«).

Parametric Polymorphism, More Formally

Question: What functions are in Vo (o« — Bool) — [a] — [a] ?

Approach: Give denotations of types as sets.

[Bool]g = {True, False} =B
[Nat]e = {0,1,2,...} =N
[(r1,72)le = [m1]o x [72]o

[i711e = {[x1,-..,xa] | n>0,x € [7]o}

[11 — mlo = {f : [nlo — [mlo}

[[Va. 7']]9 =7

» g € [Va. 7]g should be a “collection” of values:
for every type 7/, there is an instance of type 7[7'/q].

> [Va. 7)o = {g : Set — Value | VS € Set. (g S) € [T]gjas)}
is maybe a good start, together with [a]s = 0(«).

» But this may contain “ad-hoc” polymorphic functions!

Unwanted Ad-Hoc Polymorphism: Example

» With the proposed definition,
[Va. (a,a) = a]pg={g | VS € Set. (g S): S xS — S}.

Unwanted Ad-Hoc Polymorphism: Example

» With the proposed definition,
[Va. (a,a) = a]pg={g | VS € Set. (g S): S xS — S}.
» But this also allows

g B (x,y) = not x
gN(xy) = y+1,

which is not possible in Haskell at type Va. (o, o) — a.

Unwanted Ad-Hoc Polymorphism: Example

» With the proposed definition,
[Va. (a,a) = a]g={g | VS € Set. (g S): S xS — S}.
» But this also allows
g B (x,y) = not x
gN(xy) = y+1,
which is not possible in Haskell at type Va. (o, o) — a.

» To prevent this, compare/relate

(gB) : BxB—DB and
(gN) : NxN =N,

ensuring that they “behave identically”.
But how?

Key ldea [Reynolds 1983]

Use relations to tie instances together.

Key ldea [Reynolds 1983]

Use relations to tie instances together.
In the example:

» Choose an R C B x N.

Key ldea [Reynolds 1983]

Use relations to tie instances together.
In the example:
» Choose an R C B x N.

» Say that (x1,y1) € B x B and (x2,y2) € N x N are related
if (Xl,Xz) € R and (yl,yg) eR.

Key ldea [Reynolds 1983]

Use relations to tie instances together.
In the example:

» Choose an R C B x N.

» Say that (x1,y1) € B x B and (x2,y2) € N x N are related
if (Xl,Xz) € R and (yl,yg) eR.

» Saythat 4 :BxB — B and f» : N x N — N are related
if they map related arguments to related results.

Key ldea [Reynolds 1983]

Use relations to tie instances together.
In the example:

| 2

>

Choose an R € B x N.

Say that (x1,y1) € B x B and (x2,y2) € N x N are related
if (Xl,Xz) € R and (yl,yg) eR.

Saythat i :BxB —Band : N x N — N are related
if they map related arguments to related results.

Then (g B) and (g N) with

g B (x,y) = not x
gN(xy) = y+1

are not related if we choose, e.g., R = {(True,1)}.

Key ldea [Reynolds 1983]

Use relations to tie instances together.
In the example:

» Choose an R C B x N.

» Say that (x1,y1) € B x B and (x2,y2) € N x N are related
if (Xl,Xz) € R and (yl,yg) eR.

» Saythat 4 :BxB — B and f» : N x N — N are related
if they map related arguments to related results.

» Then (g B) and (g N) with

g B (x,y) = not x
gN(xy) = y+1

are not related if we choose, e.g., R = {(True,1)}.

Reynolds: g € [Va. T]g only if for every 51,5, R C S1 x Sy,
(g S1) is related to (g S2) by the “propagation” of R
according to 7.

Polymorphic Lambda Calculus
[Girard 1972, Reynolds 1974]
Types: 7= |T— 7 |Va. T

Terms: t:=x | A 7. t|tt|Aa. t |t T

Polymorphic Lambda Calculus
[Girard 1972, Reynolds 1974]

Types: T:=a |7 — 7 |Va. T
Terms: t:=x | Ax:7. t|tt|Na. t]|t T

Mx:7kx:7

Polymorphic Lambda Calculus
[Girard 1972, Reynolds 1974|

Types: 7= |T— 7 |Va. T
Terms: t:=x | Ax:7. t|tt|Aa. t]|tT
Mx:TEx:7

Mx:mbEt:m

FrE(Mx:m.t):m— 7

Polymorphic Lambda Calculus
[Girard 1972, Reynolds 1974|

Types: 7= |T— 7 |Va. T
Terms: t:=x | Ax:7. t|tt|Aa. t]|tT
Mx:TEx:7

Mx:mbEt:m

FrE(Mx:m.t):m— 7

FlEt:m —m NlFu:m
Me(tu):m

Polymorphic Lambda Calculus
[Girard 1972, Reynolds 1974|

Types: 7= |T— 7 |Va. T
Terms: t:=x | Ax:7. t|tt|Aa. t]|tT
Mx:TEx:7

Mx:mbEt:m

FrE(Mx:m.t):m— 7

FlEt:m —m NlFu:m
Me(tu):m

a,lFt:T
M= (Aa. t):Va. 7

Polymorphic Lambda Calculus
[Girard 1972, Reynolds 1974|

Types: 7= |T— 7 |Va. T
Terms: t:=x | Ax:7. t|tt|Aa. t]|tT
Mx:TEx:7

Mx:mbEt:m

FrE(Mx:m.t):m— 7

FlEt:m —m NlFu:m
Me(tu):m

a,lFt:T
M= (Aa. t):Va. 7

-t:Va. 7
M= (t7):7[r"/a]

Polymorphic Lambda Calculus
[Girard 1972, Reynolds 1974|

Types: T:=a |7 — 7 |Va. T

Terms: t:=x | Ax:7. t|tt|Aa. t]|tT
Mx:7hkx:7 [x]6.0 = o(x)

Mx:mbEt:m

Ax 71 t]oo = 1tlp,o[x—a
FrE(Mx:m.t):m— 7 o 71 tloo 2 |[]]0,[]

lEt:m — Nu:m
Me(tu):m

[t “]]H,O = I[t]]G,cr |[U]]6,a

a,lFt:T
M= (Aa. t):Va. 7

I[/\Oé. t]]970 S = I[t]]G[CYHS],O'

[Ft:Vo. 1 / o /
Fr(tr): 77 ja] It 7o = [thoo 710

Parametricity Theorem [Reynolds 1983, Wadler 1989]

Given 7 and environments 61, 02, p with p(a) C 61(a) x 02(«),
define A, , C [7]s, x []o, as follows:

Parametricity Theorem [Reynolds 1983, Wadler 1989]

Given 7 and environments 61, 02, p with p(a) C 61(a) x 02(«),
define A, , C [7]s, x []o, as follows:

Bap = pla)

Parametricity Theorem [Reynolds 1983, Wadler 1989]

Given 7 and environments 61, 02, p with p(a) C 61(a) x 02(«),
define A, , C [7]s, x []o, as follows:

Aoy = pla)
ATl—VTz,p = {(flv f2) | v(31; 32) € Aﬁ,p- (fl ai, fH 32) S ATz,p}

Parametricity Theorem [Reynolds 1983, Wadler 1989]

Given 7 and environments 61, 02, p with p(a) C 61(a) x 02(«),
define A, , C [7]s, x []o, as follows:

Aoy = pla)
ATl—VTQ,p = {(ﬁv f2) ’ v(31; 32) € Aﬁ,p- (fl a1, b 32) € ATz,p}
Ava.rp = {(81,82) | VR C S1 X S2. (81 51,82 $2) € Ar plamr]}

Parametricity Theorem [Reynolds 1983, Wadler 1989]

Given 7 and environments 61, 02, p with p(a) C 61(a) x 02(«),
define A, , C [7]s, x []o, as follows:

Bap = pla)

ATl—VTz,p = {(ﬁv f2) ’ v(31; 32) € Aﬁ,p- (fl a1, b 32) € ATz,p}
Ava.rp = {(81,82) | VR C S1 X S2. (81 51,82 $2) € Ar plamr]}

Then, for every closed term t of closed type 7:

([tlo.0, [tlo0) € Arp-

Proof Sketch

Prove the following more general statement:

[+ t:7 implies ([t]o,,01, [t]62,00) € Drpp
provided (01(x),02(x)) € A, for every x : 7/ in T

by induction on the structure of typing derivations.

10

Proof Sketch

Prove the following more general statement:
Mt t:7 implies ([tlo,,00, [t]6s,00) € Drpp
provided (01(x),02(x)) € A, for every x : 7/ in T
by induction on the structure of typing derivations.
The base case is immediate.

10

Proof Sketch

Prove the following more general statement:
[+ t:7 implies ([t]o,,01, [t]62,00) € Drpp
provided (01(x),02(x)) € A, for every x : 7/ in T
by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

Mx:mmbEt:m
NE(MAx:m.t):mm—mn

10

Proof Sketch

Prove the following more general statement:

[+ t:7 implies ([t]o,,01, [t]62,00) € Drpp
provided (01(x),02(x)) € A, for every x : 7/ in T

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

Mx:mmbEt:m

([Ax : 71 t]]91701? [Ax : 71 t]]92702) SIAN Y.

10

Proof Sketch

Prove the following more general statement:

[+ t:7 implies ([t]o,,01, [t]62,00) € Drpp
provided (01(x),02(x)) € A, for every x : 7/ in T

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

v(‘317 32) € Aﬁ,p- (l[t]]91,01[XHal]a |]:t]]92,o'2[xr—>a2]) S A7'2,p
(l]:AX DT t]]9170'17 |[)\X 1T t]]@z,crz) S A71—>T2,p

10

Proof Sketch

Prove the following more general statement:

[+ t:7 implies ([t]o,,01, [t]62,00) € Drpp
provided (01(x),02(x)) € A, for every x : 7/ in T

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

v(alv 32) € Arpp. (l[t]]91,01[x»—>al]a |[t]]92,02[x»—>32]) SRAV
(l]:AX DT t]]9170'17 |[)\X 1T t]]@z,crz) S A71—>T2,p
MlM-t:m—m MNu:m
ME(tu):m

10

Proof Sketch

Prove the following more general statement:

[+ t:7 implies ([t]o,,01, [t]62,00) € Drpp
provided (01(x),02(x)) € A, for every x : 7/ in T

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

v(alv 32) S ATl,p' (l[t]]91,01[x»—>al]a |[t]]92,02[x»—>32]) € ATz,p
(l]:AX T T1- t]]9170'17 |[)\X 1T t]]@z,crz) € A71—>T2,p
lrt:m —m Nu:m
(I[t u]]91701> I[t u]]92702) S AT2,P

10

Proof Sketch

Prove the following more general statement:

[+ t:7 implies ([t]o,,01, [t]62,00) € Drpp
provided (01(x),02(x)) € A, for every x : 7/ in T

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

v(alv 32) € Aﬁ,p- (l[t]]91,01[x»—>al]a I[t]]eg,ag[x»—»aﬂ) € ATz,p
(IMx 7. tloyor, [AX 2 71- tloy0n) € Driamp
([tl61.01: [t102,00) € Dri—ry ([uloy .01, [ulbs,0,) € Ary
([t uloy,o0: [t U]6r00) € Dy p

10

Proof Sketch

Prove the following more general statement:

[+ t:7 implies ([t]o,,01, [t]62,00) € Drpp
provided (01(x),02(x)) € A, for every x : 7/ in T

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

v(alv 32) € Aﬁ,p- (l[t]]91,01[x»—>al]a I[t]]eg,ag[x»—»aﬂ) € ATz,p
(IMx 7. tloyor, [AX 2 71- tloy0n) € Driamp
([tl61.01: [t102,00) € Dri—ry ([uloy .01, [ulbs,0,) € Ary
([t uloy,o0: [t U]6r00) € Dy p
a,l Ht:7
M= (Aa. t) :Va. 1

10

Proof Sketch

Prove the following more general statement:

[+ t:7 implies ([t]o,,01, [t]62,00) € Drpp
provided (01(x),02(x)) € A, for every x : 7/ in T

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

v(alv 32) € Aﬁ,p- (l[t]]91,01[x»—>al]a I[t]]eg,ag[x»—»aﬂ) € ATz,p
(IMx 7. tloyor, [AX 2 71- tloy0n) € Driamp
([tl61.01: [t102,00) € Dri—ry ([uloy .01, [ulbs,0,) € Ary
([t uloy,o0: [t U]6r00) € Dy p
a,l Ht:7
(lI/\O" t]]91,017 |[/\O" t]]92,02) = AVOuTvP

10

Proof Sketch

Prove the following more general statement:

[+ t:7 implies ([t]o,,01, [t]62,00) € Drpp
provided (01(x),02(x)) € A, for every x : 7/ in T

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

v(alv 32) € Aﬁ,p- (l[t]]91,01[x»—>al]a I[t]]eg,ag[x»—»aﬂ) € ATz,p
(IMx 7. tloyor, [AX 2 71- tloy0n) € Driamp
([tl61.01: [t102,00) € Dri—ry ([uloy .01, [ulbs,0,) € Ary
([t uloy,o0: [t U]6r00) € Dy p
VR C S1 % So. ([toy[ars 51,005 [El0s[arSa1,00) € Dr pjarsr]
([[/\a' t]]917017 |[/\a' t]]92,02) € AVOAT,P

10

Proof Sketch

Prove the following more general statement:

[+ t:7 implies ([t]o,,01, [t]62,00) € Drpp
provided (01(x),02(x)) € A, for every x : 7/ in T

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

v(alv 32) € Aﬁ,p- (l[t]]91,01[x»—>al]a I[t]]eg,ag[x»—»aﬂ) € ATz,p
(IMx 7. tloyor, [AX 2 71- tloy0n) € Driamp
([tl61.01: [t102,00) € Dri—ry ([uloy .01, [ulbs,0,) € Ary
([t uloy,o0: [t U]6r00) € Dy p
VR C S1 % So. ([toy[ars 51,005 [El0s[arSa1,00) € Dr pjarsr]
([[/\a' t]]917017 |[/\a' t]]92,02) € AVOAT,P

N-t:Va. 7
M= (t7):7r[r'/a]

10

Proof Sketch

Prove the following more general statement:

[+ t:7 implies ([t]o,,01, [t]62,00) € Drpp
provided (01(x),02(x)) € A, for every x : 7/ in T

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

V(a1,a2) € Ay p- ([tloy,00px—ar]s [t] 62,0010 22]) € Drap
(IMx 7. tloyor, [AX 2 71- tloy0n) € Driamp
([tloy,00, [t]62,05) € Do ([uloy.015 [U]0s.00) € Dy p
(I[t U]]91,017 I[t u]]92,02) € AT2,/J
VR C 51 % S,. (llt]lel[aHsl],UU |It]]92[aH52],02) € AT,p[ou—ﬂQ]
([[/\a. t]]ghgl, |[/\a. t]]92’02) € AVQ.T’p
[Ft:Vo. 1
([t TI]]91,017 [t 7—/]]92,02) S AT[T’/aLp

10

Proof Sketch

Prove the following more general statement:

[+ t:7 implies ([t]o,,01, [t]62,00) € Drpp
provided (01(x),02(x)) € A, for every x : 7/ in T

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

v(alv 32) S ATl,p' (l[t]]91,01[x»—>al]a |[f]]92,a2[XH32]) S A7—27p
(IMx 7. tloyor, [AX 2 71- tloy0n) € Driamp
(I[t]]el,ou |[t]]92,02) €A mp (l[U]lel,gl, |[U]]92,02) (SIVAVES
([t uloy.or, [t ulo,.0r) € Aryp
VR C 51 % 5. (llt]lel[@'—>51],t717 |It]]92[aH52],02) € A-r,p[ou—ﬂz]
([Aa. t]oy,005 [Ax. tlos.0,) € Ava.rp
(l[t]]91701’ |It]]92,02) € Ava. P
(IIt T/]]91,0’17 ﬂt T/]]92,02) € AT[T’/OZ],p

10

Adding Datatypes

Types: 7:= --- | Bool | [7]
Terms: t:= --- | True | False | [|; | t:t | case t of {---}

11

Adding Datatypes

Types: 7:= --- | Bool | [7]
Terms: t:= --- | True | False | [|; | t:t | case t of {---}
[+ True: Bool , T F False: Bool , T FI[|;:[7]

Mr=t:r MNew:|r]
FE(t:u):[7]

[t : Bool Fwu:T Fv:T
It (case t of {True — u; False — v}): 1

Met: 7] Flr-u:t Coxy 7 x: [flFv:eT
ME(case t of {[] mu;(x1:x)—v}): T

11

Adding Datatypes

Types: 7:= --- | Bool | [7]
Terms: t:= --- | True | False | [|; | t:t | case t of {---}
[+ True: Bool , T F False: Bool , T FI[|;:[7]

Mr=t:r MNew:|r]
FE(t:u):[7]

[t : Bool Fwu:T Fv:T
It (case t of {True — u; False — v}): 1

Met: 7] Flr-u:t Coxy 7 x: [flFv:eT
ME(case t of {[] mu;(x1:x)—v}): T

With the straightforward extension of term-semantics and with

Apgooty = {(True, True), (False, False)}
A, = (s oxal, i yal) | 0 >20,(x,y0) € Arpt s

the parametricity theorem still holds.

11

Adding General Recursion

Terms: t:= --- | fix t

12

Adding General Recursion

Terms: t:= --- | fix t

Mr-t:7r—r

MNe(fix t):r

12

Adding General Recursion

Terms: t:= --- | fix t

l-t:7—71
MNe(fix t):r

To provide semantics, types are interpreted as pointed complete
partial orders now.

I[fIX t]]@,a = U([[t]]é,a J‘)

i>0

12

Adding General Recursion

Terms: t:= --- | fix t

l-t:7—71
MNe(fix t):r

To provide semantics, types are interpreted as pointed complete
partial orders now.

I[fIX t]]@,a = Ll([[t]]é,a J‘)

i>0

The parametricity theorem still holds, provided all relations are
strict and continuous.

12

Back to Haskell

The original example

filter :: Va. (o — Bool) — [a] — [a]

filter p] =1

filter p (x : xs) = if p x then x : filter p xs
else filter p xs

has a “desugaring” in the extended calculus as follows:

fix (Af : (Va. (o — Bool) — [a] — [a]).
Ae. Ap : (o — Bool). Al : [a].
case | of {[| — [la;
(x : xs) — case p x of
{True — x: (f a p xs);
False — f a p xs}})

13

The Magic Dissolves

Given g of type Va. (o — Bool) — [a] — [q],
by the parametricity theorem:

(gv g) € Ay, (a— Bool)—[a]—[a],0

14

The Magic Dissolves

Given g of type Va. (o — Bool) — [a] — [q],
by the parametricity theorem:
(g, g) € Ay, (a— Bool)—[a]—[a],0

= VR € Rel. (g,8) € A(a—Bool)—[a]—[a],ja—R]
by definition of A

14

The Magic Dissolves

Given g of type Va. (o — Bool) — [a] — [q],
by the parametricity theorem:

(g, g) € Ay, (a— Bool)—[a]—[a],0
= VR € Rel. (g,8) € A(a—Bool)—[a]—[a],ja—R]

= VR € Rel,(a1,a2) € Aq_Boolja—R]- (& 31,8 @) € A4]—[a],[a—7R]
by definition of A

14

The Magic Dissolves

Given g of type Va. (o — Bool) — [a] — [q],
by the parametricity theorem:

(gv g) € Ay, (a— Bool)—[a]—[a],0
= VR € Rel. (gv g) S A(a—»Bool)—»[oz]—>[a],[ab—>R]
= VR € Rel, (31; 32) € Aa—>Bool,[av—>R]- (g a, g 32) € A[a]—>[o¢],[ou—>R]
= VR € Rel, (31; 32) € AaHBool,[w—»R]v (/17 /2) € A[oz],[on—»R]-

(g a1 h,g a2 k) € Ay jar]
by definition of A

14

The Magic Dissolves

Given g of type Va. (o — Bool) — [a] — [q],
by the parametricity theorem:

(g, g) € Ay, (a— Bool)—[a]—[a],0
= VR € Rel. (g,8) € A(a—Bool)—[a]—[a],ja—R]
= VR € Rel, (31; 32) € Aa—>Bool,[av—>R]- (g a, g 32) € A[a]—>[o¢]7[o¢»—>R]
= VR € Rel, (31; 32) € AaHBool,[ou—»R]v (/17 /2) € A[a],[ou—»R]-
(g a1 h,g a2 hb) € D] jasr]
= V(al, ‘92) S AaHBool,[oa—»h]? (/17 /2) S (map h)
(g a1 h,g a2 h) € (map h)
by instantiating R = h and realizing that A [an = map h

for every function h

14

The Magic Dissolves

Given g of type Va. (o — Bool) — [a] — [q],
by the parametricity theorem:

(g, g) € Ay, (a— Bool)—[a]—[a],0
= VR € Rel. (g,8) € A(a—Bool)—[a]—[al,[a—R]
= VR € Rel, (a1, a2) € Ay—Bool,ja—R]- (& 21,8 a2) € Af]—[a],[a—R]
= VR € Rel, (31, 32) S AaHBool,[ou—»R]v (/17 /2) € A[a],[ou—»R]-
(g a1 h,g a /2) € A[a],[ou—»R]
= V(al, ‘92) € AaHBool,[oa—»h]? (/17 /2) € (map h)
(g a1 h,g a> b) € (map h)
= Y(h, k) € (map h). (g (poh) h,g p) € (map h)
by instantiating (a1, a2) = (po h, p) € Ay Bool [arsh]

for every function h and every p.

14

The Magic Dissolves

Given g of type Va. (o — Bool) — [a] — [q],
by the parametricity theorem:

(g, g) € Ay, (a— Bool)—[a]—[a],0
= VR € Rel. (g,8) € A(a—Bool)—[a]—[a],ja—R]
= VR € Rel, (31; 32) € Aa—>Bool,[av—>R]- (g a, g 32) € A[a]—>[o¢]7[o¢»—>R]
= VR € Rel, (31; 32) € AaHBool,[ou—»R]v (/17 /2) € A[a],[ou—»R]-
(g a1 h,g a2 hb) € D] jasr]
= V(al, ‘92) S AaHBool,[oa—»h]? (/17 /2) S (map h)
(g a1 h,g a2 h) € (map h)
= V(h, k) € (map h). (g (poh) h.g p k) € (map h)

for every function h and every p.

This is exactly the claim (1) for g = filter!

14

References

@ J.-Y. Girard.
Interprétation functionelle et élimination des coupures dans
I'arithmétique d’ordre supérieure.
PhD thesis, Université Paris VII, 1972.

& J.C Reynolds.
Towards a theory of type structure.
In Colloque sur la Programmation, Proceedings, pages
408-423. Springer-Verlag, 1974.

d J.C. Reynolds.
Types, abstraction and parametric polymorphism.
In Information Processing, Proceedings, pages 513-523.
Elsevier Science Publishers B.V., 1983.

@ P. Wadler.
Theorems for free!
In Functional Programming Languages and Computer
Architecture, Proceedings, pages 347-359. ACM Press, 1989.

	Example in Haskell
	Parametric polymorphism
	Polymorphic lambda calculus
	Parametricity theorem
	Back to Haskell

