Free Theorems — The Basics

Janis Voigtländer

Technische Universität Dresden

January 6, 2006

Outline

Example in Haskell

Parametric polymorphism

Polymorphic lambda calculus

Parametricity theorem

Back to Haskell

Haskell Example:

filter ::
$$\forall \alpha. \ (\alpha \to Bool) \to [\alpha] \to [\alpha]$$

filter p [] = []
filter p (x : xs) = if p x then x : filter p xs
else filter p xs

Haskell Example:

$$\begin{array}{l} \textit{filter} :: \forall \alpha. \ (\alpha \to \textit{Bool}) \to [\alpha] \to [\alpha] \\ \textit{filter} \ p \ [] &= [] \\ \textit{filter} \ p \ (x : xs) = \textit{if} \ p \ x \ \textit{then} \ x : \textit{filter} \ p \ xs \\ & \textit{else} \ \textit{filter} \ p \ xs \end{array}$$

Claim:

filter
$$p$$
 (map h l) = map h (filter ($p \circ h$) l) (1)

Can be proved by induction on *I*, using the definition of *filter*.

Haskell Example: Theorems for free! [Wadler 1989]

filter ::
$$\forall \alpha. \ (\alpha \rightarrow \textit{Bool}) \rightarrow [\alpha] \rightarrow [\alpha]$$

Claim:

filter
$$p$$
 (map h l) = map h (filter ($p \circ h$) l) (1)

Can be derived from the parametric polymorphic type of *filter*!

Haskell Example: Theorems for free! [Wadler 1989]

filter ::
$$\forall \alpha. \ (\alpha \rightarrow \textit{Bool}) \rightarrow [\alpha] \rightarrow [\alpha]$$

Claim:

filter
$$p$$
 (map h l) = map h (filter ($p \circ h$) l) (1)

Can be derived from the parametric polymorphic type of filter!

Where is the magic? Where is the induction?

filter :: ∀α. (α → Bool) → [α] → [α] must work uniformly for every instantiation of α.

filter :: ∀α. (α → Bool) → [α] → [α] must work uniformly for every instantiation of α.

► The output list can only contain elements from the input list *I*.

- *filter* :: ∀α. (α → Bool) → [α] → [α] must work uniformly for every instantiation of α.
- ► The output list can only contain elements from the input list *I*.
- Which, and in which order/multiplicity, can only be decided based on *I* and the input predicate *p*.

- *filter* :: ∀α. (α → Bool) → [α] → [α] must work uniformly for every instantiation of α.
- ► The output list can only contain elements from the input list *I*.
- Which, and in which order/multiplicity, can only be decided based on *I* and the input predicate *p*.
- The only means for this decision are to inspect the length of *l* and to check the outcome of *p* on its elements.

- *filter* :: ∀α. (α → Bool) → [α] → [α] must work uniformly for every instantiation of α.
- ► The output list can only contain elements from the input list *I*.
- Which, and in which order/multiplicity, can only be decided based on *I* and the input predicate *p*.
- The only means for this decision are to inspect the length of *I* and to check the outcome of *p* on its elements.
- ► The lists (*map h l*) and *l* always have equal length.

- *filter* :: ∀α. (α → Bool) → [α] → [α] must work uniformly for every instantiation of α.
- ► The output list can only contain elements from the input list *I*.
- Which, and in which order/multiplicity, can only be decided based on *I* and the input predicate *p*.
- The only means for this decision are to inspect the length of *l* and to check the outcome of *p* on its elements.
- ▶ The lists (map h l) and l always have equal length.
- Applying p to an element of (map h l) always has the same outcome as applying (p ∘ h) to the corresponding element of l.

- *filter* :: ∀α. (α → Bool) → [α] → [α] must work uniformly for every instantiation of α.
- ► The output list can only contain elements from the input list *I*.
- Which, and in which order/multiplicity, can only be decided based on *I* and the input predicate *p*.
- The only means for this decision are to inspect the length of *l* and to check the outcome of *p* on its elements.
- ► The lists (*map h l*) and *l* always have equal length.
- Applying p to an element of (map h l) always has the same outcome as applying (p ∘ h) to the corresponding element of l.
- ► filter with p always chooses "the same" elements from (map h l) for output as does filter with (p ∘ h) from l,

- *filter* :: ∀α. (α → Bool) → [α] → [α] must work uniformly for every instantiation of α.
- ► The output list can only contain elements from the input list *I*.
- Which, and in which order/multiplicity, can only be decided based on *I* and the input predicate *p*.
- The only means for this decision are to inspect the length of *l* and to check the outcome of *p* on its elements.
- ► The lists (map h l) and l always have equal length.
- Applying p to an element of (map h l) always has the same outcome as applying (p ∘ h) to the corresponding element of l.
- ► filter with p always chooses "the same" elements from (map h l) for output as does filter with (p ∘ h) from l, except that it outputs their images under h.

- *filter* :: ∀α. (α → Bool) → [α] → [α] must work uniformly for every instantiation of α.
- ► The output list can only contain elements from the input list *I*.
- Which, and in which order/multiplicity, can only be decided based on *I* and the input predicate *p*.
- The only means for this decision are to inspect the length of *l* and to check the outcome of *p* on its elements.
- ► The lists (*map h l*) and *l* always have equal length.
- Applying p to an element of (map h l) always has the same outcome as applying (p ∘ h) to the corresponding element of l.
- ► filter with p always chooses "the same" elements from (map h l) for output as does filter with (p ∘ h) from l, except that it outputs their images under h.
- (filter $p \pmod{h}$) is equivalent to (map $h \pmod{p \circ h}$).

- *filter* :: ∀α. (α → Bool) → [α] → [α] must work uniformly for every instantiation of α.
- ► The output list can only contain elements from the input list *I*.
- Which, and in which order/multiplicity, can only be decided based on *I* and the input predicate *p*.
- The only means for this decision are to inspect the length of *l* and to check the outcome of *p* on its elements.
- ► The lists (*map h l*) and *l* always have equal length.
- Applying p to an element of (map h l) always has the same outcome as applying (p ∘ h) to the corresponding element of l.
- Filter with p always chooses "the same" elements from (map h l) for output as does filter with (p ∘ h) from l, except that it outputs their images under h.
- (filter p (map h l)) is equivalent to (map h (filter ($p \circ h$) l)).
- That is what we wanted to prove!

$$\llbracket Bool \rrbracket_{\theta} = \{ True, False \} = \mathbb{B}$$

$$\llbracket Nat \rrbracket_{\theta} = \{ 0, 1, 2, \dots \} = \mathbb{N}$$

$$\begin{split} \llbracket Bool \rrbracket_{\theta} &= \{ \textit{True}, \textit{False} \} &= \\ \llbracket \textit{Nat} \rrbracket_{\theta} &= \{ 0, 1, 2, \dots \} &= \\ \llbracket (\tau_1, \tau_2) \rrbracket_{\theta} &= \\ \llbracket (\tau_1 \rrbracket_{\theta} \times \llbracket \tau_2 \rrbracket_{\theta} \\ \llbracket [\tau] \rrbracket_{\theta} &= \{ [x_1, \dots, x_n] \mid n \ge 0, x_i \in \llbracket \tau \rrbracket_{\theta} \} \end{split}$$

$$\begin{split} \llbracket Bool \rrbracket_{\theta} &= \{ \mathit{True}, \mathit{False} \} &= \rrbracket \\ \llbracket \mathsf{Nat} \rrbracket_{\theta} &= \{ 0, 1, 2, \dots \} &= \rrbracket \\ \llbracket (\tau_1, \tau_2) \rrbracket_{\theta} &= \llbracket \tau_1 \rrbracket_{\theta} \times \llbracket \tau_2 \rrbracket_{\theta} \\ \llbracket [\tau] \rrbracket_{\theta} &= \{ [x_1, \dots, x_n] \mid n \ge 0, x_i \in \llbracket \tau \rrbracket_{\theta} \} \\ \llbracket \tau_1 \to \tau_2 \rrbracket_{\theta} &= \{ f : \llbracket \tau_1 \rrbracket_{\theta} \to \llbracket \tau_2 \rrbracket_{\theta} \} \end{split}$$

$$\begin{split} \llbracket Bool \rrbracket_{\theta} &= \{ True, False \} \\ \llbracket Nat \rrbracket_{\theta} &= \{ 0, 1, 2, \dots \} \\ \llbracket (\tau_1, \tau_2) \rrbracket_{\theta} &= \llbracket \tau_1 \rrbracket_{\theta} \times \llbracket \tau_2 \rrbracket_{\theta} \\ \llbracket [\tau] \rrbracket_{\theta} &= \{ [x_1, \dots, x_n] \mid n \ge 0, x_i \in \llbracket \tau \rrbracket_{\theta} \} \\ \llbracket \tau_1 \to \tau_2 \rrbracket_{\theta} &= \{ f : \llbracket \tau_1 \rrbracket_{\theta} \to \llbracket \tau_2 \rrbracket_{\theta} \} \\ \llbracket \forall \alpha. \ \tau \rrbracket_{\theta} &= ? \end{split}$$

Question: What functions are in $\forall \alpha$. $(\alpha \rightarrow Bool) \rightarrow [\alpha] \rightarrow [\alpha]$? Approach: Give denotations of types as sets.

$$\begin{split} \llbracket Bool \rrbracket_{\theta} &= \{ True, False \} \\ \llbracket \mathsf{Nat} \rrbracket_{\theta} &= \{ 0, 1, 2, \dots \} \\ \llbracket (\tau_1, \tau_2) \rrbracket_{\theta} &= \llbracket \tau_1 \rrbracket_{\theta} \times \llbracket \tau_2 \rrbracket_{\theta} \\ \llbracket [\tau] \rrbracket_{\theta} &= \{ [x_1, \dots, x_n] \mid n \ge 0, x_i \in \llbracket \tau \rrbracket_{\theta} \} \\ \llbracket \tau_1 \to \tau_2 \rrbracket_{\theta} &= \{ f : \llbracket \tau_1 \rrbracket_{\theta} \to \llbracket \tau_2 \rrbracket_{\theta} \} \\ \llbracket \forall \alpha. \ \tau \rrbracket_{\theta} &= ? \end{split}$$

► $g \in \llbracket \forall \alpha. \tau \rrbracket_{\theta}$ should be a "collection" of values: for every type τ' , there is an instance of type $\tau[\tau'/\alpha]$.

$$\begin{bmatrix} Bool \end{bmatrix}_{\theta} = \{ True, False \} = \mathbb{B}$$

$$\begin{bmatrix} Nat \end{bmatrix}_{\theta} = \{ 0, 1, 2, \dots \} = \mathbb{N}$$

$$\begin{bmatrix} (\tau_1, \tau_2) \end{bmatrix}_{\theta} = \llbracket \tau_1 \rrbracket_{\theta} \times \llbracket \tau_2 \rrbracket_{\theta}$$

$$\begin{bmatrix} [\tau] \end{bmatrix}_{\theta} = \{ [x_1, \dots, x_n] \mid n \ge 0, x_i \in \llbracket \tau \rrbracket_{\theta} \}$$

$$\begin{bmatrix} \tau_1 \rightarrow \tau_2 \rrbracket_{\theta} = \{ f : \llbracket \tau_1 \rrbracket_{\theta} \rightarrow \llbracket \tau_2 \rrbracket_{\theta} \}$$

$$\begin{bmatrix} \forall \alpha. \ \tau \rrbracket_{\theta} = ?$$

- ▶ $g \in \llbracket \forall \alpha. \ \tau \rrbracket_{\theta}$ should be a "collection" of values: for every type τ' , there is an instance of type $\tau[\tau'/\alpha]$.
- ▶ $\llbracket \forall \alpha. \tau \rrbracket_{\theta} = \{g : Set \rightarrow Value \mid \forall S \in Set. (g S) \in \llbracket \tau \rrbracket_{\theta[\alpha \mapsto S]}\}$ is maybe a good start, together with $\llbracket \alpha \rrbracket_{\theta} = \theta(\alpha)$.

$$\begin{split} \llbracket Bool \rrbracket_{\theta} &= \{ True, False \} \\ \llbracket \mathsf{Nat} \rrbracket_{\theta} &= \{ 0, 1, 2, \dots \} \\ \llbracket (\tau_1, \tau_2) \rrbracket_{\theta} &= \llbracket \tau_1 \rrbracket_{\theta} \times \llbracket \tau_2 \rrbracket_{\theta} \\ \llbracket [\tau] \rrbracket_{\theta} &= \{ [x_1, \dots, x_n] \mid n \ge 0, x_i \in \llbracket \tau \rrbracket_{\theta} \} \\ \llbracket \tau_1 \to \tau_2 \rrbracket_{\theta} &= \{ f : \llbracket \tau_1 \rrbracket_{\theta} \to \llbracket \tau_2 \rrbracket_{\theta} \} \\ \llbracket \forall \alpha. \ \tau \rrbracket_{\theta} &= ? \end{split}$$

- $g \in \llbracket \forall \alpha. \ \tau \rrbracket_{\theta}$ should be a "collection" of values: for every type τ' , there is an instance of type $\tau[\tau'/\alpha]$.
- ▶ $\llbracket \forall \alpha. \tau \rrbracket_{\theta} = \{g : Set \rightarrow Value \mid \forall S \in Set. (g S) \in \llbracket \tau \rrbracket_{\theta[\alpha \mapsto S]}\}$ is maybe a good start, together with $\llbracket \alpha \rrbracket_{\theta} = \theta(\alpha)$.
- But this may contain "ad-hoc" polymorphic functions!

Unwanted Ad-Hoc Polymorphism: Example

▶ With the proposed definition,

 $\llbracket \forall \alpha. \ (\alpha, \alpha) \to \alpha \rrbracket_{\emptyset} = \{ g \mid \forall S \in Set. \ (g \ S) : S \times S \to S \}.$

Unwanted Ad-Hoc Polymorphism: Example

- ▶ With the proposed definition, $\llbracket \forall \alpha. (\alpha, \alpha) \rightarrow \alpha \rrbracket_{\emptyset} = \{g \mid \forall S \in Set. (g S) : S \times S \rightarrow S\}.$
- But this also allows

$$g \mathbb{B}(x, y) = not x$$

 $g \mathbb{N}(x, y) = y + 1$,

which is not possible in Haskell at type $\forall \alpha. (\alpha, \alpha) \rightarrow \alpha$.

Unwanted Ad-Hoc Polymorphism: Example

- ▶ With the proposed definition, $\llbracket \forall \alpha. (\alpha, \alpha) \rightarrow \alpha \rrbracket_{\emptyset} = \{g \mid \forall S \in Set. (g S) : S \times S \rightarrow S\}.$
- But this also allows

$$g \mathbb{B} (x, y) = not x$$

$$g \mathbb{N} (x, y) = y + 1,$$

which is not possible in Haskell at type $\forall \alpha$. $(\alpha, \alpha) \rightarrow \alpha$.

To prevent this, compare/relate

$$(g \mathbb{B}) : \mathbb{B} \times \mathbb{B} \to \mathbb{B}$$
 and
 $(g \mathbb{N}) : \mathbb{N} \times \mathbb{N} \to \mathbb{N},$

ensuring that they "behave identically". But how?

Use relations to tie instances together.

Use relations to tie instances together. In the example:

• Choose an $\mathcal{R} \subseteq \mathbb{B} \times \mathbb{N}$.

Use relations to tie instances together. In the example:

- Choose an $\mathcal{R} \subseteq \mathbb{B} \times \mathbb{N}$.
- ▶ Say that $(x_1, y_1) \in \mathbb{B} \times \mathbb{B}$ and $(x_2, y_2) \in \mathbb{N} \times \mathbb{N}$ are related if $(x_1, x_2) \in \mathcal{R}$ and $(y_1, y_2) \in \mathcal{R}$.

Use relations to tie instances together. In the example:

- Choose an $\mathcal{R} \subseteq \mathbb{B} \times \mathbb{N}$.
- ▶ Say that $(x_1, y_1) \in \mathbb{B} \times \mathbb{B}$ and $(x_2, y_2) \in \mathbb{N} \times \mathbb{N}$ are related if $(x_1, x_2) \in \mathcal{R}$ and $(y_1, y_2) \in \mathcal{R}$.
- Say that f₁ : B × B → B and f₂ : N × N → N are related if they map related arguments to related results.

Use relations to tie instances together. In the example:

- Choose an $\mathcal{R} \subseteq \mathbb{B} \times \mathbb{N}$.
- ▶ Say that $(x_1, y_1) \in \mathbb{B} \times \mathbb{B}$ and $(x_2, y_2) \in \mathbb{N} \times \mathbb{N}$ are related if $(x_1, x_2) \in \mathcal{R}$ and $(y_1, y_2) \in \mathcal{R}$.
- Say that f₁ : B × B → B and f₂ : N × N → N are related if they map related arguments to related results.
- Then $(g \mathbb{B})$ and $(g \mathbb{N})$ with

$$g \mathbb{B}(x,y) = not x$$

$$g \mathbb{N}(x,y) = y+1$$

are not related if we choose, e.g., $\mathcal{R} = \{(\mathit{True}, 1)\}.$

Use relations to tie instances together. In the example:

- Choose an $\mathcal{R} \subseteq \mathbb{B} \times \mathbb{N}$.
- ▶ Say that $(x_1, y_1) \in \mathbb{B} \times \mathbb{B}$ and $(x_2, y_2) \in \mathbb{N} \times \mathbb{N}$ are related if $(x_1, x_2) \in \mathcal{R}$ and $(y_1, y_2) \in \mathcal{R}$.
- Say that f₁ : B × B → B and f₂ : N × N → N are related if they map related arguments to related results.
- Then $(g \mathbb{B})$ and $(g \mathbb{N})$ with

$$g \mathbb{B}(x, y) = not x$$

$$g \mathbb{N}(x, y) = y + 1$$

are not related if we choose, e.g., $\mathcal{R} = \{(\mathit{True}, 1)\}.$

Reynolds: $g \in \llbracket \forall \alpha. \tau \rrbracket_{\theta}$ only if for every $S_1, S_2, \mathcal{R} \subseteq S_1 \times S_2$, $(g \ S_1)$ is related to $(g \ S_2)$ by the "propagation" of \mathcal{R} according to τ . Polymorphic Lambda Calculus [Girard 1972, Reynolds 1974]

> Types: $\tau := \alpha \mid \tau \to \tau \mid \forall \alpha. \tau$ Terms: $t := x \mid \lambda x : \tau. t \mid t t \mid \Lambda \alpha. t \mid t \tau$

Polymorphic Lambda Calculus [Girard 1972, Reynolds 1974]

Types:
$$\tau := \alpha \mid \tau \to \tau \mid \forall \alpha. \tau$$

Terms: $t := x \mid \lambda x : \tau. t \mid t t \mid \Lambda \alpha. t \mid t \tau$
 $\Gamma, x : \tau \vdash x : \tau$

Polymorphic Lambda Calculus [Girard 1972, Reynolds 1974]

Types:
$$\tau := \alpha \mid \tau \to \tau \mid \forall \alpha. \tau$$

Terms: $t := x \mid \lambda x : \tau. t \mid t t \mid \Lambda \alpha. t \mid t \tau$
 $\Gamma, x : \tau \vdash x : \tau$
 $\overline{\Gamma, x : \tau_1 \vdash t : \tau_2}$
 $\overline{\Gamma \vdash (\lambda x : \tau_1. t) : \tau_1 \to \tau_2}$

Polymorphic Lambda Calculus [Girard 1972, Reynolds 1974] Types: $\tau := \alpha \mid \tau \to \tau \mid \forall \alpha. \tau$ Terms: $t := x \mid \lambda x : \tau$. $t \mid t \mid \Lambda \alpha$. $t \mid t \tau$ $\Gamma, x : \tau \vdash x : \tau$ $\Gamma, x : \tau_1 \vdash t : \tau_2$ $\Gamma \vdash (\lambda x : \tau_1, t) : \tau_1 \rightarrow \tau_2$ $\Gamma \vdash t : \tau_1 \to \tau_2 \qquad \Gamma \vdash u : \tau_1$ $\Gamma \vdash (t \ u) : \tau_2$

Polymorphic Lambda Calculus [Girard 1972, Reynolds 1974] Types: $\tau := \alpha \mid \tau \to \tau \mid \forall \alpha. \tau$ Terms: $t := x \mid \lambda x : \tau$. $t \mid t \mid \Lambda \alpha$. $t \mid t \tau$ $\Gamma, x : \tau \vdash x : \tau$ $\Gamma, x : \tau_1 \vdash t : \tau_2$ $\Gamma \vdash (\lambda x : \tau_1, t) : \tau_1 \rightarrow \tau_2$ $\Gamma \vdash t : \tau_1 \to \tau_2 \qquad \Gamma \vdash u : \tau_1$ $\Gamma \vdash (t \ u) : \tau_2$ $\alpha, \Gamma \vdash t : \tau$ $\Gamma \vdash (\Lambda \alpha. t) : \forall \alpha. \tau$

Polymorphic Lambda Calculus [Girard 1972, Reynolds 1974] Types: $\tau := \alpha \mid \tau \to \tau \mid \forall \alpha. \tau$ Terms: $t := x \mid \lambda x : \tau$. $t \mid t \mid \Lambda \alpha$. $t \mid t \tau$ $\Gamma, x : \tau \vdash x : \tau$ $\Gamma, x : \tau_1 \vdash t : \tau_2$ $\Gamma \vdash (\lambda x : \tau_1, t) : \tau_1 \rightarrow \tau_2$ $\Gamma \vdash t : \tau_1 \to \tau_2 \qquad \Gamma \vdash u : \tau_1$ $\Gamma \vdash (t \ u) : \tau_2$ $\alpha, \Gamma \vdash t : \tau$ $\Gamma \vdash (\Lambda \alpha. t) : \forall \alpha. \tau$ $\Gamma \vdash t : \forall \alpha. \tau$ $\Gamma \vdash (t \ \tau') : \tau[\tau'/\alpha]$

Polymorphic Lambda Calculus [Girard 1972, Reynolds 1974] Types: $\tau := \alpha \mid \tau \to \tau \mid \forall \alpha. \tau$ Terms: $t := x \mid \lambda x : \tau$. $t \mid t \mid \Lambda \alpha$. $t \mid t \tau$ $[x]_{\theta,\sigma}$ $= \sigma(x)$ $\Gamma, x : \tau \vdash x : \tau$ $\Gamma, x : \tau_1 \vdash t : \tau_2$ $\llbracket \lambda x : \tau_1 \cdot t \rrbracket_{\theta,\sigma} a = \llbracket t \rrbracket_{\theta,\sigma} [x \mapsto a]$ $\overline{\Gamma \vdash (\lambda x : \tau_1. t)} : \tau_1 \rightarrow \tau_2$ $\Gamma \vdash t : \tau_1 \rightarrow \tau_2 \qquad \Gamma \vdash u : \tau_1$ $\begin{bmatrix} t & u \end{bmatrix}_{\theta,\sigma}$ $= \llbracket t \rrbracket_{\theta,\sigma} \llbracket u \rrbracket_{\theta,\sigma}$ $\Gamma \vdash (t \ u) : \tau_2$ $\alpha, \Gamma \vdash t : \tau$ $\llbracket \Lambda \alpha. t \rrbracket_{\theta,\sigma} S$ $= \llbracket t \rrbracket_{\theta [\alpha \mapsto S], \sigma}$ $\overline{\Gamma \vdash (\Lambda \alpha. t)} : \forall \alpha. \tau$ $\Gamma \vdash t : \forall \alpha. \tau$ $[t \tau']_{\theta,\sigma}$ $= \llbracket t \rrbracket_{\theta,\sigma} \llbracket \tau' \rrbracket_{\theta}$ $\Gamma \vdash (t \ \tau') : \tau[\tau'/\alpha]$

Given τ and environments θ_1, θ_2, ρ with $\rho(\alpha) \subseteq \theta_1(\alpha) \times \theta_2(\alpha)$, define $\Delta_{\tau,\rho} \subseteq \llbracket \tau \rrbracket_{\theta_1} \times \llbracket \tau \rrbracket_{\theta_2}$ as follows:

Given τ and environments θ_1, θ_2, ρ with $\rho(\alpha) \subseteq \theta_1(\alpha) \times \theta_2(\alpha)$, define $\Delta_{\tau,\rho} \subseteq \llbracket \tau \rrbracket_{\theta_1} \times \llbracket \tau \rrbracket_{\theta_2}$ as follows:

$$\Delta_{\alpha,\rho} = \rho(\alpha)$$

Given τ and environments θ_1, θ_2, ρ with $\rho(\alpha) \subseteq \theta_1(\alpha) \times \theta_2(\alpha)$, define $\Delta_{\tau,\rho} \subseteq \llbracket \tau \rrbracket_{\theta_1} \times \llbracket \tau \rrbracket_{\theta_2}$ as follows:

Given τ and environments θ_1, θ_2, ρ with $\rho(\alpha) \subseteq \theta_1(\alpha) \times \theta_2(\alpha)$, define $\Delta_{\tau,\rho} \subseteq \llbracket \tau \rrbracket_{\theta_1} \times \llbracket \tau \rrbracket_{\theta_2}$ as follows:

$$\begin{array}{lll} \Delta_{\alpha,\rho} & = & \rho(\alpha) \\ \Delta_{\tau_1 \to \tau_2,\rho} & = & \{(f_1, f_2) \mid \forall (a_1, a_2) \in \Delta_{\tau_1,\rho}. \ (f_1 \ a_1, f_2 \ a_2) \in \Delta_{\tau_2,\rho} \} \\ \Delta_{\forall \alpha, \tau,\rho} & = & \{(g_1, g_2) \mid \forall \mathcal{R} \subseteq S_1 \times S_2. \ (g_1 \ S_1, g_2 \ S_2) \in \Delta_{\tau,\rho[\alpha \mapsto \mathcal{R}]} \} \end{array}$$

Given τ and environments θ_1, θ_2, ρ with $\rho(\alpha) \subseteq \theta_1(\alpha) \times \theta_2(\alpha)$, define $\Delta_{\tau,\rho} \subseteq \llbracket \tau \rrbracket_{\theta_1} \times \llbracket \tau \rrbracket_{\theta_2}$ as follows:

$$\begin{array}{lll} \Delta_{\alpha,\rho} & = & \rho(\alpha) \\ \Delta_{\tau_1 \to \tau_2,\rho} & = & \{(f_1, f_2) \mid \forall (a_1, a_2) \in \Delta_{\tau_1,\rho}. \ (f_1 \ a_1, f_2 \ a_2) \in \Delta_{\tau_2,\rho} \} \\ \Delta_{\forall \alpha, \tau,\rho} & = & \{(g_1, g_2) \mid \forall \mathcal{R} \subseteq S_1 \times S_2. \ (g_1 \ S_1, g_2 \ S_2) \in \Delta_{\tau,\rho[\alpha \mapsto \mathcal{R}]} \} \end{array}$$

Then, for every closed term t of closed type τ :

 $(\llbracket t \rrbracket_{\emptyset,\emptyset}, \llbracket t \rrbracket_{\emptyset,\emptyset}) \in \Delta_{\tau,\emptyset}.$

Prove the following more general statement:

$$\begin{split} & \Gamma \vdash t : \tau \text{ implies } (\llbracket t \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau, \rho} \text{ ,} \\ & \text{provided } (\sigma_1(x), \sigma_2(x)) \in \Delta_{\tau', \rho} \text{ for every } x : \tau' \text{ in } \Gamma \end{split}$$

by induction on the structure of typing derivations.

Prove the following more general statement:

$$\begin{split} & \Gamma \vdash t : \tau \text{ implies } (\llbracket t \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau, \rho} \text{ ,} \\ & \text{provided } (\sigma_1(x), \sigma_2(x)) \in \Delta_{\tau', \rho} \text{ for every } x : \tau' \text{ in } \Gamma \end{split}$$

by induction on the structure of typing derivations. The base case is immediate.

Prove the following more general statement:

$$\begin{split} & \Gamma \vdash t : \tau \text{ implies } (\llbracket t \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau, \rho} \text{ ,} \\ & \text{provided } (\sigma_1(x), \sigma_2(x)) \in \Delta_{\tau', \rho} \text{ for every } x : \tau' \text{ in } \Gamma \end{split}$$

$$\frac{\Gamma, x: \tau_1 \vdash t: \tau_2}{\Gamma \vdash (\lambda x: \tau_1. \ t): \tau_1 \rightarrow \tau_2}$$

Prove the following more general statement:

$$\begin{split} & \Gamma \vdash t : \tau \text{ implies } (\llbracket t \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau, \rho} \text{ ,} \\ & \text{provided } (\sigma_1(x), \sigma_2(x)) \in \Delta_{\tau', \rho} \text{ for every } x : \tau' \text{ in } \Gamma \end{split}$$

$$\frac{\Gamma, x: \tau_1 \vdash t: \tau_2}{\left(\llbracket \lambda x: \tau_1. \ t \rrbracket_{\theta_1, \sigma_1}, \llbracket \lambda x: \tau_1. \ t \rrbracket_{\theta_2, \sigma_2}\right) \in \Delta_{\tau_1 \to \tau_2, \rho}}$$

Prove the following more general statement:

$$\begin{split} & \Gamma \vdash t : \tau \text{ implies } (\llbracket t \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau, \rho} \text{ ,} \\ & \text{provided } (\sigma_1(x), \sigma_2(x)) \in \Delta_{\tau', \rho} \text{ for every } x : \tau' \text{ in } \Gamma \end{split}$$

$$rac{orall (a_1,a_2)\in\Delta_{ au_1,
ho}. (\llbracket t
rbracket_{ heta_1,\sigma_1[imes\mapsto a_1]},\llbracket t
rbracket_{ heta_2,\sigma_2[imes\mapsto a_2]})\in\Delta_{ au_2,
ho}}{(\llbracket \lambda x: au_1.\ t
rbracket_{ heta_1,\sigma_1},\llbracket \lambda x: au_1.\ t
rbracket_{ heta_2,\sigma_2})\in\Delta_{ au_1 o au_2,
ho}}$$

Prove the following more general statement:

$$\begin{split} & \Gamma \vdash t : \tau \text{ implies } (\llbracket t \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau, \rho} \text{ ,} \\ & \text{provided } (\sigma_1(x), \sigma_2(x)) \in \Delta_{\tau', \rho} \text{ for every } x : \tau' \text{ in } \Gamma \end{split}$$

$$rac{orall (a_1,a_2)\in\Delta_{ au_1,
ho}. (\llbracket t
rbracket_{ heta_1,\sigma_1[imes\mapsto a_1]},\llbracket t
rbracket_{ heta_2,\sigma_2[imes\mapsto a_2]})\in\Delta_{ au_2,
ho}}{(\llbracket \lambda x: au_1.\ t
rbracket_{ heta_1,\sigma_1},\llbracket \lambda x: au_1.\ t
rbracket_{ heta_2,\sigma_2})\in\Delta_{ au_1 o au_2,
ho}}{rac{\Gammadash t: au_1 o au_2}{\Gammadash t: au_1 o au_2}}$$

Prove the following more general statement:

$$\begin{split} & \Gamma \vdash t : \tau \text{ implies } (\llbracket t \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau, \rho} \text{ ,} \\ & \text{provided } (\sigma_1(x), \sigma_2(x)) \in \Delta_{\tau', \rho} \text{ for every } x : \tau' \text{ in } \Gamma \end{split}$$

$$\begin{array}{l} \forall (a_1, a_2) \in \Delta_{\tau_1, \rho}. \left(\llbracket t \rrbracket_{\theta_1, \sigma_1[\mathsf{x} \mapsto a_1]}, \llbracket t \rrbracket_{\theta_2, \sigma_2[\mathsf{x} \mapsto a_2]}\right) \in \Delta_{\tau_2, \rho} \\ \hline \left(\llbracket \lambda \mathsf{x} : \tau_1. t \rrbracket_{\theta_1, \sigma_1}, \llbracket \lambda \mathsf{x} : \tau_1. t \rrbracket_{\theta_2, \sigma_2}\right) \in \Delta_{\tau_1 \to \tau_2, \rho} \\ \hline \frac{\Gamma \vdash t : \tau_1 \to \tau_2 \quad \Gamma \vdash u : \tau_1}{\left(\llbracket t \ u \rrbracket_{\theta_1, \sigma_1}, \llbracket t \ u \rrbracket_{\theta_2, \sigma_2}\right) \in \Delta_{\tau_2, \rho}} \end{array}$$

Prove the following more general statement:

$$\begin{split} & \Gamma \vdash t : \tau \text{ implies } (\llbracket t \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau, \rho} \text{ ,} \\ & \text{provided } (\sigma_1(x), \sigma_2(x)) \in \Delta_{\tau', \rho} \text{ for every } x : \tau' \text{ in } \Gamma \end{split}$$

$$\frac{\forall (a_1, a_2) \in \Delta_{\tau_1, \rho}. (\llbracket t \rrbracket_{\theta_1, \sigma_1}[x \mapsto a_1], \llbracket t \rrbracket_{\theta_2, \sigma_2}[x \mapsto a_2]) \in \Delta_{\tau_2, \rho}}{(\llbracket \lambda x : \tau_1. t \rrbracket_{\theta_1, \sigma_1}, \llbracket \lambda x : \tau_1. t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau_1 \to \tau_2, \rho}}$$
$$\frac{(\llbracket t \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau_1 \to \tau_2, \rho}}{(\llbracket t \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau_2, \rho}}$$

Prove the following more general statement:

$$\begin{split} & \Gamma \vdash t : \tau \text{ implies } (\llbracket t \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau, \rho} \text{ ,} \\ & \text{provided } (\sigma_1(x), \sigma_2(x)) \in \Delta_{\tau', \rho} \text{ for every } x : \tau' \text{ in } \Gamma \end{split}$$

$$\frac{\forall (a_1, a_2) \in \Delta_{\tau_1, \rho}. (\llbracket t \rrbracket_{\theta_1, \sigma_1[x \mapsto a_1]}, \llbracket t \rrbracket_{\theta_2, \sigma_2[x \mapsto a_2]}) \in \Delta_{\tau_2, \rho}}{(\llbracket \lambda x : \tau_1. t \rrbracket_{\theta_1, \sigma_1}, \llbracket \lambda x : \tau_1. t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau_1 \to \tau_2, \rho}} \\
\frac{(\llbracket t \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau_1 \to \tau_2, \rho}}{(\llbracket t \ u \rrbracket_{\theta_1, \sigma_1}, \llbracket t \ u \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau_2, \rho}} \\
\frac{\alpha, \Gamma \vdash t : \tau}{\Gamma \vdash (\Lambda \alpha. t) : \forall \alpha. \tau}$$

Prove the following more general statement:

$$\begin{split} & \Gamma \vdash t : \tau \text{ implies } (\llbracket t \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau, \rho} \text{ ,} \\ & \text{provided } (\sigma_1(x), \sigma_2(x)) \in \Delta_{\tau', \rho} \text{ for every } x : \tau' \text{ in } \Gamma \end{split}$$

$$\frac{\forall (a_1, a_2) \in \Delta_{\tau_1, \rho}. (\llbracket t \rrbracket_{\theta_1, \sigma_1}[x \mapsto a_1], \llbracket t \rrbracket_{\theta_2, \sigma_2}[x \mapsto a_2]) \in \Delta_{\tau_2, \rho}}{(\llbracket \lambda x : \tau_1. t \rrbracket_{\theta_1, \sigma_1}, \llbracket \lambda x : \tau_1. t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau_1 \to \tau_2, \rho}} \\
\frac{(\llbracket t \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau_1 \to \tau_2, \rho} (\llbracket u \rrbracket_{\theta_1, \sigma_1}, \llbracket u \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau_1, \rho}}{(\llbracket t \ u \rrbracket_{\theta_1, \sigma_1}, \llbracket t \ u \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau_2, \rho}} \\
\frac{\alpha, \Gamma \vdash t : \tau}{(\llbracket \Lambda \alpha. t \rrbracket_{\theta_1, \sigma_1}, \llbracket \Lambda \alpha. t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\forall \alpha. \tau, \rho}}$$

Prove the following more general statement:

$$\begin{split} & \Gamma \vdash t : \tau \text{ implies } (\llbracket t \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau, \rho} \text{ ,} \\ & \text{provided } (\sigma_1(x), \sigma_2(x)) \in \Delta_{\tau', \rho} \text{ for every } x : \tau' \text{ in } \Gamma \end{split}$$

$$\begin{split} \frac{\forall (a_1, a_2) \in \Delta_{\tau_1, \rho}. \left(\llbracket t \rrbracket_{\theta_1, \sigma_1[\mathsf{x} \mapsto a_1]}, \llbracket t \rrbracket_{\theta_2, \sigma_2[\mathsf{x} \mapsto a_2]}\right) \in \Delta_{\tau_2, \rho}}{\left(\llbracket \lambda \mathsf{x} : \tau_1. t \rrbracket_{\theta_1, \sigma_1}, \llbracket \lambda \mathsf{x} : \tau_1. t \rrbracket_{\theta_2, \sigma_2}\right) \in \Delta_{\tau_1 \to \tau_2, \rho}} \\ \frac{\left(\llbracket t \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}\right) \in \Delta_{\tau_1 \to \tau_2, \rho}}{\left(\llbracket t \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}\right) \in \Delta_{\tau_2, \rho}} \\ \frac{\forall \mathcal{R} \subseteq S_1 \times S_2. \left(\llbracket t \rrbracket_{\theta_1[\alpha \mapsto S_1], \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}\right) \in \Delta_{\tau, \rho[\alpha \mapsto \mathcal{R}]}}{\left(\llbracket \Lambda \alpha. t \rrbracket_{\theta_1, \sigma_1}, \llbracket \Lambda \alpha. t \rrbracket_{\theta_2, \sigma_2}\right) \in \Delta_{\forall \alpha. \tau, \rho}} \end{split}$$

Prove the following more general statement:

$$\begin{split} & \Gamma \vdash t : \tau \text{ implies } (\llbracket t \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau, \rho} \text{ ,} \\ & \text{provided } (\sigma_1(x), \sigma_2(x)) \in \Delta_{\tau', \rho} \text{ for every } x : \tau' \text{ in } \Gamma \end{split}$$

$$\begin{array}{c} \frac{\forall (a_1, a_2) \in \Delta_{\tau_1, \rho}. (\llbracket t \rrbracket_{\theta_1, \sigma_1[x \mapsto a_1]}, \llbracket t \rrbracket_{\theta_2, \sigma_2[x \mapsto a_2]}) \in \Delta_{\tau_2, \rho}}{(\llbracket \lambda x : \tau_1. t \rrbracket_{\theta_1, \sigma_1}, \llbracket \lambda x : \tau_1. t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau_1 \to \tau_2, \rho}} \\ (\llbracket t \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau_1 \to \tau_2, \rho} & (\llbracket u \rrbracket_{\theta_1, \sigma_1}, \llbracket u \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau_1, \rho} \\ (\llbracket t \ u \rrbracket_{\theta_1, \sigma_1}, \llbracket t \ u \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau_2, \rho} \\ \frac{\forall \mathcal{R} \subseteq S_1 \times S_2. (\llbracket t \rrbracket_{\theta_1[\alpha \mapsto S_1], \sigma_1}, \llbracket t \rrbracket_{\theta_2[\alpha \mapsto S_2], \sigma_2}) \in \Delta_{\tau, \rho[\alpha \mapsto \mathcal{R}]}}{(\llbracket \Lambda \alpha. t \rrbracket_{\theta_1, \sigma_1}, \llbracket \Lambda \alpha. t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\forall \alpha. \tau, \rho}} \\ \frac{\Gamma \vdash t : \forall \alpha. \tau}{\Gamma \vdash (t \ \tau') : \tau[\tau'/\alpha]} \end{array}$$

Prove the following more general statement:

$$\begin{split} & \Gamma \vdash t : \tau \text{ implies } (\llbracket t \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau, \rho} \text{ ,} \\ & \text{provided } (\sigma_1(x), \sigma_2(x)) \in \Delta_{\tau', \rho} \text{ for every } x : \tau' \text{ in } \Gamma \end{split}$$

$$\begin{array}{c} \frac{\forall (a_1, a_2) \in \Delta_{\tau_1, \rho}. (\llbracket t \rrbracket_{\theta_1, \sigma_1[x \mapsto a_1]}, \llbracket t \rrbracket_{\theta_2, \sigma_2[x \mapsto a_2]}) \in \Delta_{\tau_2, \rho}}{(\llbracket \lambda x : \tau_1. t \rrbracket_{\theta_1, \sigma_1}, \llbracket \lambda x : \tau_1. t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau_1 \to \tau_2, \rho}} \\ (\llbracket t \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau_1 \to \tau_2, \rho} & (\llbracket u \rrbracket_{\theta_1, \sigma_1}, \llbracket u \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau_1, \rho} \\ \hline (\llbracket t u \rrbracket_{\theta_1, \sigma_1}, \llbracket t u \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau_2, \rho} \\ \frac{\forall \mathcal{R} \subseteq S_1 \times S_2. (\llbracket t \rrbracket_{\theta_1[\alpha \mapsto S_1], \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau_2, \rho}}{(\llbracket \Lambda \alpha. t \rrbracket_{\theta_1, \sigma_1}, \llbracket \Lambda \alpha. t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\forall \alpha. \tau, \rho}} \\ \hline \frac{\Gamma \vdash t : \forall \alpha. \tau}{(\llbracket t \tau' \rrbracket_{\theta_1, \sigma_1}, \llbracket t \tau' \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau[\tau'/\alpha], \rho}} \end{array}$$

Prove the following more general statement:

$$\begin{split} & \Gamma \vdash t : \tau \text{ implies } (\llbracket t \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau, \rho} \text{ ,} \\ & \text{provided } (\sigma_1(x), \sigma_2(x)) \in \Delta_{\tau', \rho} \text{ for every } x : \tau' \text{ in } \Gamma \end{split}$$

$$\begin{array}{c} \frac{\forall (a_1, a_2) \in \Delta_{\tau_1, \rho}. (\llbracket t \rrbracket_{\theta_1, \sigma_1[x \mapsto a_1]}, \llbracket t \rrbracket_{\theta_2, \sigma_2[x \mapsto a_2]}) \in \Delta_{\tau_2, \rho}}{(\llbracket \lambda x : \tau_1. t \rrbracket_{\theta_1, \sigma_1}, \llbracket \lambda x : \tau_1. t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau_1 \to \tau_2, \rho}} \\ \frac{(\llbracket t \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau_1 \to \tau_2, \rho} \quad (\llbracket u \rrbracket_{\theta_1, \sigma_1}, \llbracket u \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau_1, \rho}}{(\llbracket t u \rrbracket_{\theta_1, \sigma_1}, \llbracket t u \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau_2, \rho}} \\ \frac{\forall \mathcal{R} \subseteq S_1 \times S_2. (\llbracket t \rrbracket_{\theta_1, \sigma_1}, \llbracket t u \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\forall \alpha. \tau, \rho}}{(\llbracket t \varPi_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\forall \alpha. \tau, \rho}} \\ \frac{(\llbracket t u \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\forall \alpha. \tau, \rho}}{(\llbracket t \tau' \rrbracket_{\theta_1, \sigma_1}, \llbracket t \tau' \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau_1, \rho}} \end{array}$$

Adding Datatypes

Types:
$$\tau := \cdots | Bool | [\tau]$$

Terms: $t := \cdots | True | False | []_{\tau} | t : t | case t of { \cdots }$

Adding Datatypes

$$\begin{array}{rcl} \text{Types:} & \tau := & \cdots \mid \textit{Bool} \mid [\tau] \\ \text{Terms:} & t := & \cdots \mid \textit{True} \mid \textit{False} \mid []_{\tau} \mid t : t \mid \textit{case } t \textit{ of } \{\cdots\} \\ & \Gamma \vdash \textit{True} : \textit{Bool} \quad , \quad \Gamma \vdash \textit{False} : \textit{Bool} \quad , \quad \Gamma \vdash []_{\tau} : [\tau] \\ & \quad \frac{\Gamma \vdash t : \tau \quad \Gamma \vdash u : [\tau]}{\Gamma \vdash (t : u) : [\tau]} \\ & \quad \frac{\Gamma \vdash t : \textit{Bool} \quad \Gamma \vdash u : \tau \quad \Gamma \vdash v : \tau}{\Gamma \vdash (\textit{case } t \textit{ of } \{\textit{True} \rightarrow u ; \textit{False} \rightarrow v\}) : \tau} \\ & \quad \frac{\Gamma \vdash t : [\tau'] \quad \Gamma \vdash u : \tau \quad \Gamma, x_1 : \tau', x_2 : [\tau'] \vdash v : \tau}{\Gamma \vdash (\textit{case } t \textit{ of } \{[] \rightarrow u ; (x_1 : x_2) \rightarrow v\}) : \tau} \end{array}$$

Adding Datatypes

$$\begin{array}{rcl} \text{Types:} & \tau := & \cdots \mid \textit{Bool} \mid [\tau] \\ \text{Terms:} & t := & \cdots \mid \textit{True} \mid \textit{False} \mid []_{\tau} \mid t : t \mid \textit{case } t \textit{ of } \{\cdots\} \\ & \Gamma \vdash \textit{True} : \textit{Bool} \quad , \quad \Gamma \vdash \textit{False} : \textit{Bool} \quad , \quad \Gamma \vdash []_{\tau} : [\tau] \\ & & \frac{\Gamma \vdash t : \tau \quad \Gamma \vdash u : [\tau]}{\Gamma \vdash (t : u) : [\tau]} \\ & \frac{\Gamma \vdash t : \textit{Bool} \quad \Gamma \vdash u : \tau \quad \Gamma \vdash v : \tau}{\Gamma \vdash (\textit{case } t \textit{ of } \{\textit{True} \rightarrow u ; \textit{False} \rightarrow v\}) : \tau} \\ & \frac{\Gamma \vdash t : [\tau'] \quad \Gamma \vdash u : \tau \quad \Gamma, x_1 : \tau', x_2 : [\tau'] \vdash v : \tau}{\Gamma \vdash (\textit{case } t \textit{ of } \{[] \rightarrow u ; (x_1 : x_2) \rightarrow v\}) : \tau} \end{array}$$

With the straightforward extension of term-semantics and with

$$\begin{array}{ll} \Delta_{Bool,\rho} &= \left\{ (\mathit{True}, \mathit{True}), (\mathit{False}, \mathit{False}) \right\} \\ \Delta_{[\tau],\rho} &= \left\{ ([x_1, \ldots, x_n], [y_1, \ldots, y_n]) \mid n \geq 0, (x_i, y_i) \in \Delta_{\tau,\rho} \right\}, \\ \text{the parametricity theorem still holds.} \end{array}$$

Adding General Recursion

Terms: $t := \cdots | fix t$

Adding General Recursion

Terms: $t := \cdots | fix t$

$$\frac{\Gamma \vdash t : \tau \to \tau}{\Gamma \vdash (fix \ t) : \tau}$$

Adding General Recursion Terms: $t := \cdots \mid fix \ t$ $\frac{\Gamma \vdash t : \tau \rightarrow \tau}{\Gamma \vdash (fix \ t) : \tau}$

To provide semantics, types are interpreted as pointed complete partial orders now.

$$\llbracket fix \ t \rrbracket_{\theta,\sigma} = \bigsqcup_{i \ge 0} (\llbracket t \rrbracket_{\theta,\sigma}^i \perp).$$

Adding General Recursion Terms: $t := \cdots \mid fix \ t$ $\frac{\Gamma \vdash t : \tau \rightarrow \tau}{\Gamma \vdash (fix \ t) : \tau}$

To provide semantics, types are interpreted as pointed complete partial orders now.

$$\llbracket fix \ t \rrbracket_{\theta,\sigma} = \bigsqcup_{i \ge 0} (\llbracket t \rrbracket_{\theta,\sigma}^i \perp).$$

The parametricity theorem still holds, provided all relations are strict and continuous.

Back to Haskell

The original example

$$\begin{array}{l} \textit{filter} :: \forall \alpha. \ (\alpha \to \textit{Bool}) \to [\alpha] \to [\alpha] \\ \textit{filter} \ p \ [] &= [] \\ \textit{filter} \ p \ (x : xs) = \textit{if} \ p \ x \ \textit{then} \ x : \textit{filter} \ p \ xs \\ & else \ \textit{filter} \ p \ xs \end{array}$$

has a "desugaring" in the extended calculus as follows:

$$\begin{aligned} & \textit{fix } (\lambda f: (\forall \alpha. \ (\alpha \to \textit{Bool}) \to [\alpha] \to [\alpha]). \\ & \Lambda \alpha. \ \lambda p: (\alpha \to \textit{Bool}). \ \lambda l: [\alpha]. \\ & \textit{case } l \textit{ of } \{ [] \quad \to []_{\alpha}; \\ & (x:xs) \to \textit{case } p \textit{ x of } \\ & \{ \textit{True } \to x: (f \ \alpha \textit{ p xs}); \\ & \textit{False} \to f \ \alpha \textit{ p xs} \} \}) \end{aligned}$$

Given g of type $\forall \alpha$. $(\alpha \rightarrow Bool) \rightarrow [\alpha] \rightarrow [\alpha]$, by the parametricity theorem:

 $(g,g) \in \Delta_{orall lpha. (lpha
ightarrow {\it Bool})
ightarrow [lpha]
ightarrow [lpha], \emptyset}$

Given g of type $\forall \alpha$. $(\alpha \rightarrow Bool) \rightarrow [\alpha] \rightarrow [\alpha]$, by the parametricity theorem:

$$\begin{array}{l} (g,g) \in \Delta_{\forall \alpha. \ (\alpha \to Bool) \to [\alpha] \to [\alpha], \emptyset} \\ \Rightarrow \forall \mathcal{R} \in \textit{Rel.} \ (g,g) \in \Delta_{(\alpha \to Bool) \to [\alpha] \to [\alpha], [\alpha \mapsto \mathcal{R}]} \\ \text{by definition of } \Delta \end{array}$$

Given g of type $\forall \alpha$. $(\alpha \rightarrow Bool) \rightarrow [\alpha] \rightarrow [\alpha]$, by the parametricity theorem:

$$\begin{array}{l} (g,g) \in \Delta_{\forall \alpha. \ (\alpha \to Bool) \to [\alpha] \to [\alpha], \emptyset} \\ \Rightarrow \forall \mathcal{R} \in Rel. \ (g,g) \in \Delta_{(\alpha \to Bool) \to [\alpha] \to [\alpha], [\alpha \mapsto \mathcal{R}]} \\ \Rightarrow \forall \mathcal{R} \in Rel, (a_1, a_2) \in \Delta_{\alpha \to Bool, [\alpha \mapsto \mathcal{R}]}. \ (g \ a_1, g \ a_2) \in \Delta_{[\alpha] \to [\alpha], [\alpha \mapsto \mathcal{R}]} \\ \text{by definition of } \Delta \end{array}$$

Given g of type $\forall \alpha$. $(\alpha \rightarrow Bool) \rightarrow [\alpha] \rightarrow [\alpha]$, by the parametricity theorem:

$$\begin{array}{l} (g,g) \in \Delta_{\forall \alpha. \ (\alpha \to Bool) \to [\alpha] \to [\alpha], \emptyset} \\ \Rightarrow \forall \mathcal{R} \in Rel. \ (g,g) \in \Delta_{(\alpha \to Bool) \to [\alpha] \to [\alpha], [\alpha \mapsto \mathcal{R}]} \\ \Rightarrow \forall \mathcal{R} \in Rel, (a_1, a_2) \in \Delta_{\alpha \to Bool, [\alpha \mapsto \mathcal{R}]}. \ (g \ a_1, g \ a_2) \in \Delta_{[\alpha] \to [\alpha], [\alpha \mapsto \mathcal{R}]} \\ \Rightarrow \forall \mathcal{R} \in Rel, (a_1, a_2) \in \Delta_{\alpha \to Bool, [\alpha \mapsto \mathcal{R}]}. \ (l_1, l_2) \in \Delta_{[\alpha], [\alpha \mapsto \mathcal{R}]}. \\ (g \ a_1 \ l_1, g \ a_2 \ l_2) \in \Delta_{[\alpha], [\alpha \mapsto \mathcal{R}]} \\ \text{by definition of } \Delta \end{array}$$

Given g of type $\forall \alpha$. $(\alpha \rightarrow Bool) \rightarrow [\alpha] \rightarrow [\alpha]$, by the parametricity theorem:

$$\begin{array}{l} (g,g) \in \Delta_{\forall \alpha. \ (\alpha \to Bool) \to [\alpha] \to [\alpha], \emptyset} \\ \Rightarrow \forall \mathcal{R} \in Rel. \ (g,g) \in \Delta_{(\alpha \to Bool) \to [\alpha] \to [\alpha], [\alpha \mapsto \mathcal{R}]} \\ \Rightarrow \forall \mathcal{R} \in Rel, (a_1, a_2) \in \Delta_{\alpha \to Bool, [\alpha \mapsto \mathcal{R}]}. \ (g \ a_1, g \ a_2) \in \Delta_{[\alpha] \to [\alpha], [\alpha \mapsto \mathcal{R}]} \\ \Rightarrow \forall \mathcal{R} \in Rel, (a_1, a_2) \in \Delta_{\alpha \to Bool, [\alpha \mapsto \mathcal{R}]}. \ (f_1, f_2) \in \Delta_{[\alpha], [\alpha \mapsto \mathcal{R}]}. \\ (g \ a_1 \ f_1, g \ a_2 \ f_2) \in \Delta_{[\alpha], [\alpha \mapsto \mathcal{R}]} \\ \Rightarrow \forall (a_1, a_2) \in \Delta_{\alpha \to Bool, [\alpha \mapsto \mathcal{R}]}, \ (f_1, f_2) \in (map \ h). \\ (g \ a_1 \ f_1, g \ a_2 \ f_2) \in (map \ h) \\ \text{by instantiating } \mathcal{R} = h \text{ and realizing that } \Delta_{[\alpha], [\alpha \mapsto h]} = map \ h \end{array}$$

for every function h

Given g of type $\forall \alpha$. $(\alpha \rightarrow Bool) \rightarrow [\alpha] \rightarrow [\alpha]$, by the parametricity theorem:

$$\begin{split} &(g,g) \in \Delta_{\forall \alpha.} (\alpha \rightarrow Bool) \rightarrow [\alpha] \rightarrow [\alpha], \emptyset \\ \Rightarrow &\forall \mathcal{R} \in Rel. \ (g,g) \in \Delta_{(\alpha \rightarrow Bool) \rightarrow [\alpha]} \rightarrow [\alpha], [\alpha \mapsto \mathcal{R}] \\ \Rightarrow &\forall \mathcal{R} \in Rel, (a_1, a_2) \in \Delta_{\alpha \rightarrow Bool, [\alpha \mapsto \mathcal{R}]}. \ (g \ a_1, g \ a_2) \in \Delta_{[\alpha] \rightarrow [\alpha], [\alpha \mapsto \mathcal{R}]} \\ \Rightarrow &\forall \mathcal{R} \in Rel, (a_1, a_2) \in \Delta_{\alpha \rightarrow Bool, [\alpha \mapsto \mathcal{R}]}. \ (l_1, l_2) \in \Delta_{[\alpha], [\alpha \mapsto \mathcal{R}]}. \\ &(g \ a_1 \ l_1, g \ a_2 \ l_2) \in \Delta_{[\alpha], [\alpha \mapsto \mathcal{R}]} \\ \Rightarrow &\forall (a_1, a_2) \in \Delta_{\alpha \rightarrow Bool, [\alpha \mapsto h]}, (l_1, l_2) \in (map \ h). \\ &(g \ a_1 \ l_1, g \ a_2 \ l_2) \in (map \ h) \\ \Rightarrow &\forall (l_1, l_2) \in (map \ h). \ (g \ (p \circ h) \ l_1, g \ p \ l_2) \in (map \ h) \\ &by \ instantiating \ (a_1, a_2) = (p \circ h, p) \in \Delta_{\alpha \rightarrow Bool, [\alpha \mapsto h]} \end{split}$$

for every function h and every p.

Given g of type $\forall \alpha$. $(\alpha \rightarrow Bool) \rightarrow [\alpha] \rightarrow [\alpha]$, by the parametricity theorem:

$$\begin{array}{l} (g,g) \in \Delta_{\forall \alpha. \ (\alpha \rightarrow Bool) \rightarrow [\alpha] \rightarrow [\alpha], \emptyset} \\ \Rightarrow \forall \mathcal{R} \in Rel. \ (g,g) \in \Delta_{(\alpha \rightarrow Bool) \rightarrow [\alpha] \rightarrow [\alpha], [\alpha \mapsto \mathcal{R}]} \\ \Rightarrow \forall \mathcal{R} \in Rel, (a_1, a_2) \in \Delta_{\alpha \rightarrow Bool, [\alpha \mapsto \mathcal{R}]}. \ (g \ a_1, g \ a_2) \in \Delta_{[\alpha] \rightarrow [\alpha], [\alpha \mapsto \mathcal{R}]} \\ \Rightarrow \forall \mathcal{R} \in Rel, (a_1, a_2) \in \Delta_{\alpha \rightarrow Bool, [\alpha \mapsto \mathcal{R}]}. \ (I_1, I_2) \in \Delta_{[\alpha], [\alpha \mapsto \mathcal{R}]}. \\ (g \ a_1 \ I_1, g \ a_2 \ I_2) \in \Delta_{[\alpha], [\alpha \mapsto \mathcal{R}]} \\ \Rightarrow \forall (a_1, a_2) \in \Delta_{\alpha \rightarrow Bool, [\alpha \mapsto \mathcal{R}]}, (I_1, I_2) \in (map \ h). \\ (g \ a_1 \ I_1, g \ a_2 \ I_2) \in (map \ h) \\ \Rightarrow \forall (I_1, I_2) \in (map \ h). \ (g \ (p \circ h) \ I_1, g \ p \ I_2) \in (map \ h) \end{array}$$

for every function h and every p.

This is exactly the claim (1) for g = filter!

References

J.-Y. Girard.

Interprétation functionelle et élimination des coupures dans l'arithmétique d'ordre supérieure. PhD thesis, Université Paris VII, 1972.

J.C. Reynolds.

Towards a theory of type structure.

In Colloque sur la Programmation, Proceedings, pages 408-423. Springer-Verlag, 1974.

J.C. Reynolds.

Types, abstraction and parametric polymorphism. In Information Processing, Proceedings, pages 513–523. Elsevier Science Publishers B.V., 1983.

P. Wadler.

Theorems for free!

In Functional Programming Languages and Computer Architecture, Proceedings, pages 347–359. ACM Press, 1989.