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Methods for analysing/verifying programs:
> equational reasoning
> algebraic and logical techniques

> type-based reasoning
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Programming with Side Effects (in Haskell)

Example:
echo :: 10 ()
echo = do ¢ + getChar
when (c # ‘x') $
do putChar ¢
echo
Essence:

> program in imperative style where wanted
> ..., and only there!
> type system ensures separation

» abstraction mechanisms fully available

But: formal reasoning techniques?
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For every function
g [a] = o]
it holds
map f (g /) = g (map f )

for arbitrary f and /, where

map :: (@ = B) = [a] = [A]
map f [] =[]
map f (a:as) = (f a): (map f as)

Some applications:
» efficiency improving program transformations [Gill et al. '93]
» meta-theorems about classes of algorithms [V. '08a]
» solutions to the view-update problem [V. '093]

» reducing testing effort [Bernardy et al. '10]
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From Programming to Reasoning

From:
You must judge for yourself, but | believe that the
monadic approach to programming, in which actions are
first class values, is itself interesting, beautiful, and
modular. In short, Haskell is the world’s finest imperative
programming language.

[Peyton Jones '01]

To:

Parametricity [Wadler '89] allows the derivation of

theorems for a whole class of programs, only knowing

their type. Voigtlander [V. '09b] has recently shown how

to extend the parametricity approach to type constructor

classes such as Monad. This way we can derive theorems

about effectful programs without knowing the particular

effects used.

[Oliveira et al. '10]
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That is, m; = (return u) and my = (return v) for some u, v.
Then:

fa:Monadm=ma—ma—ma
f my my =do

return u

Purity is propagated!

What about other “invariants”?
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Consider a More Specific Type

Instead of
f:Monad m=ma—ma—>ma

now
f::Monad m= miInt = mInt — m Int

Then more possible behaviours of £ are possible:

f::Monad m= mInt — mInt — m Int
f m my=do m
a<— mp
my
b+ m
if b > 0 then return (a+ b)
else do c + my
return b
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Reasoning via Monad Embedding

Assume my, mo :: State o T, but execState m; = id.

An m has this property iff it is an h-image for
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A More General Theorem

Let
f::Monad m= mInt — mlInt — m Int
Let
h:k1a— ko a
such that

> K1,ko are monads
» horeturn,, = return,,
» for every mand k, h (m ==, k)= (hm) >=,,(ho k)

Then for every my and mo,

f (h m1) (h m2) = h (f mq m2)

The same for

fr:Monad m=ma—-ma—ma
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+
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I

» Modular analysis/reasoning?

EffectiveAdvice [Oliveira et al. '10]:
» semantic model, a la Open Modules [Aldrich '05]
> allows modular reasoning ...

> in the presence of side effects!
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> equational reasoning
» type shapes (higher-rank) capture interference patterns

» correctness proofs about non-interference
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EffectiveAdvice: Disciplined Advice with Explicit Effects

Theorem 2 (Harmless Observation Advice) [Oliveira et al. '10]:
Consider any base program and any advice with the
types:

bse :: Vt. (MonadTrans t,...) = Open (...)
adv :: Vm. MGet ¢ m = Augment ...

If a function proj :: Vm a. Monad m=7ma—ma
exists that satisfies ..., then advice adv is harmless with
respect to bse:

proj o (weave (adv ® bse)) = runIdT o (weave bse)
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