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As we have seen, types:
» constrain the behaviour of programs
» thus lead to interesting insights about programs

» combine well with algebraic techniques, equational reasoning

Application areas include:
» efficiency-improving program transformations

» more specific domains

But:
» We could ask for more (expressive) type features.

» We have not been considering a full programming language.
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Example Feature: Type Classes [Wadler & Blott 1989]

We used that for every
get i1 [a] — [q]

we have
map f (get /) = get (map f /)

for arbitrary f and /.

What about
get tEqa=[a] — [o] ?

The above free theorem fails!

Consider, e.g., get = nub, f = const 1, and [ = [1,2].



Why map f (get /) = get (map f /), Intuitively

>

get 11 [&] — [a] must work uniformly for every instantiation
of a.

» The output list can only contain elements from the input list /.

» Which, and in which order/multiplicity, can only be decided

based on /.

» The only means for this decision is to inspect the length of /.

» The lists (map f /) and / always have equal length.

get always chooses “the same” elements from (map f /) for
output as it does from /, except that in the former case it
outputs their images under f.

> (get (map f /1)) is equivalent to (map f (get /)).

» That is what was claimed!
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Why map f (get /) = get (map f /), Intuitively

> get it Eq o = [a] — [&] must work uniformly for every
instantiation of «.

» The output list can only contain elements from the input list /.

» Which, and in which order/multiplicity, can only be decided
based on /.

» The only means for this decision is to inspect the length of /.

4 Not true! Also possible: check elements of / for equality.

> The lists (map f /) and / always have equal length.
But equality checks on corresponding elements are not always
guaranteed to have the same outcome! They are, if f is “injective”.

» Then, get always chooses “the same” elements from
(map f /) for output as it does from /, except that in the
former case it outputs their images under f.

> (get (map f /1)) is equivalent to (map f (get /)).

» This gives a revised free theorem.
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for arbitrary p, f, and /.

What about
g (o — Bool) — [a] — [q]

g pl=[head (g p /)] ?

The above free theorem fails!

Consider, e.g., p=1id, f = const True, and / = [].
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Recall: The Polymorphic Lambda Calculus
Types: T:=a |7 — 7 | Va.r
Terms: t:=x | M 7t|tt|Nat]|tT
Mx:7kx:71 |[X]]9,a = o(x)

x:mmbEt:m
M= (Ax:mt) i1 — m

|[)\X : Tl.t]]ep a = |[t]]9,a[xn—>a]

Nt — 1 lFu:m
FE(tu):m

[t U]]G,cr = |[t]]0,a [[U]]0,U

a,l+t:7
[ (Ao.t) : Yot

|[/\Oé.t]]g70 ) = |[t]]0[ou—>5],a

[-t:VYarT / . /
T (t7) i el Lt 7o = [thoe 7o
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Adding General Recursion
Terms: t:= --- | fix t

(Ft:T—>T
M= (fix t): 7

To provide semantics, types are interpreted as pointed complete
partial orders now, and:

[fix to.o = | | (15, L)-

i>0
And what about the parametricity theorem?
The relevant inductive case is:

v(‘917 32) € AT,/J' ([[t]]91,01 ai, l[t]]92,02 32) € AT,P
([fix t]oy,00. [fix tlo,.00) € Arp

The parametricity theorem still holds, provided all relations are
strict and continuous.
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Automatic Generation of Free Theorems

At http://linux.tcs.inf.tu-dresden.de/~voigt/ft:

here and here.

This tool allows to generate free theorems for sublanguages of Haskell as described here.

The source code of the underlying library and a shell-based application using it is available

Please enter a (polymorphic) type, e.g. "(a -> Bool) -> [a] -> [a]" or simply "filter":

Jo :: (a ->Bool) -> [a] -> [a]

Please choose a sublanguage of Haskell:

® no bottoms (hence no general recursion and no selective strictness)
#®igeneral recursion but no selective stricthess

® general recursion and selective strictness

® equational
®inequational

Generate

Please choose a theorem style (without effect in the sublanguage with no bottoms):

11
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Adding Selective Strictness

Terms: t:= --- |seqtt

M-t :m Mt
Fl—(seq t1 t2):7'2

Semantics:

L if [6]p0 = L
[seq t1 t2]p.o = { lulo,

The parametricity theorem is jeopardised again!

|It2]]9,cr if |[t1]]9,a 7& 1.

12



Without seq, g p (map f /) =map f (g (pof) /)

>
>

v

gt (& — Bool) — [a] — [a] must work uniformly.

The output list can only contain elements from the input list /
and L.

Which, and in which order/multiplicity, can only be decided
based on / and the input predicate p.

The only means for this decision are to inspect the length of /
and to check the outcome of p on its elements and on L.
The lists (map f /) and [ always have equal length.

Applying p to an element of (map f /) always has the same
outcome as applying (po f) to the corresponding element of /.
Applying p to L has the same outcome as applying (p o f),
provided f is strict.

g with p always chooses “the same” elements from (map f /)
for output as does g with (p o f) from /, except that in the
former case it outputs their images under f, and they may
also choose, at the same positions, to output L.

(g p (map 1)) = (map f (g (pof) 1)), if fis strict.
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Revising Free Theorems
[Wadler 1989] : for every g :: (o« — Bool) — [a] — [q],
gp(map fl) = mapf (g(pof)l)

> if f strict.
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Revising Free Theorems

[Wadler 1989] : for every g :: (a« — Bool) — [a] — [a],

gp(map fl) = mapf (g(pof)l)
» if f strict.

[Johann & V. 2004] : in presence of seq, if additionally:

>»p# L,
» f total (Vx # L. f x# 1).

[Johann & V. 2009] : take finite failures into account

[Stenger & V. 2009] : take imprecise error semantics into account
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Automatic Generation of Counterexamples

The ideal scenario:

» | give the system a type, say g :: (&« — Bool) — [a] — [a].

16



Automatic Generation of Counterexamples

The ideal scenario:

» | give the system a type, say g :: (&« — Bool) — [a] — [a].
» The system gives me the free theorem. Here:

for strict f, gp(mapf /) = mapf (g(pof)l)

16



Automatic Generation of Counterexamples
The ideal scenario:
» | give the system a type, say g :: (&« — Bool) — [a] — [a].
» The system gives me the free theorem. Here:

for strict f, gp(mapf /) = mapf (g(pof)l)

» | ask: why must f be strict? What if it were not?

16



Automatic Generation of Counterexamples
The ideal scenario:
» | give the system a type, say g :: (&« — Bool) — [a] — [a].
» The system gives me the free theorem. Here:
for strict f, gp(mapf /) = mapf (g(pof)l)
» | ask: why must f be strict? What if it were not?

» The system gives me concrete g, p, /, and (nonstrict) f
that refute the thus naivified free theorem.

16



Idea 1: First Capture Non-Counterexamples

Replace
rlEtir—r
M-(fix t): 7
by
=7 € Pointed lFtiT—>r1
M-(fix t): 7

17



Idea 1: First Capture Non-Counterexamples

Replace
(Ft:T—T
M-(fix t): 7

by

[ - 7 € Pointed [Ft:T—T

M-(fix t): 7 '

where
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Idea 1: First Capture Non-Counterexamples

Replace
rlEtir—r
M-(fix t): 7
by
=7 € Pointed lFtiT—>r1
M-(fix t): 7 '
where
o el I+ m € Pointed
' - a0 € Pointed I+ 7m — 7 € Pointed
I Bool € Pointed I+ [r] € Pointed

Gain: Relations interpreting non-Pointed types need not be
strict anymore, but parametricity theorem still holds!
[Launchbury & Paterson 1996]

17



Idea 2: Search for Terms in the Difference Set

For the example, search for a g such that
a* Fg:(a— Bool) = [a] — [a]

but not
atg:(a— Bool) — [a] — [a]
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Mk (fix (Ax:7.x)) =7

Problem: For term search, not all rules are “syntax-directed”.

Particularly:
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|dea 2: Search for Terms in the Difference Set
For the example, search for a g such that
a* Fg:(a— Bool) = [a] — [a]
but not

atg:(a— Bool) — [a] — [a]

Natural first rule:

I+ 7 ¢ Pointed
Mk (fix (Ax:7.x)) =7

Problem: For term search, not all rules are “syntax-directed”.

Particularly:
N = —-m I+ i

([ T2
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|dea 3: Use the Curry/Howard-Isomorphism

» [Dyckhoff 1992] gives a proof search procedure for
intuitionistic propositional logic.
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|dea 3: Use the Curry/Howard-Isomorphism

» [Dyckhoff 1992] gives a proof search procedure for
intuitionistic propositional logic.

» It has been turned into a fix-free term generator for
polymorphic types (Djinn, by L. Augustsson).

» We mix it with our rule

I+ 7 ¢ Pointed
Mk (fix (Ax:7.x)) 7

and perform further adaptations ...

19



An Example

The Free Theorem

The theorem generated for functions of the type

f :: (a -> Int) -> Int

forall t1,t2 in TYPES, g :: tl -> t2, g strict.
forall p :: tl -> Int.

forall q 12 -> Int.

(forall x :: tl. p x = q (g x)) ==> (fp = f q)

The Counterexample

By disregarding the strictness condition on g the theorem becomes wrong. The term

‘ f= (\xl-> (x1_|_))

is a counterexample.

By setting tL = t2 = ... = () and

‘g = const ()

the following would be a consequence of the thus "naivified" free theorem:

(fp)y = (fq)

where

P = (\x1 -> 0)

q = (\x1 -> (case x1 of {() -> ©}))

But this is wrong since with the above f it reduces to:

0=_1I_

20



Another Example

The Free Theorem

The theorem generated for functions of the type

‘f i [a] -> Int

is:

forall t1,t2 in TYPES, g :: t1 -> t2, g strict.
forall x :: [t1]. f x = f (map g x)

The Counterexample

Disregarding the strictness condition on g the algorithm found no counterexample.
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Another Example

The Free Theorem

The theorem generated for functions of the type

‘f::[a] -> Int ‘

is:

forall t1,t2 in TYPES, g :: t1 -> t2, g strict.
forall x :: [t1]. f x = f (map g x)

The Counterexample

Disregarding the strictness condition on g the algorithm found no counterexample.

Future work:

> investigate soundness and completeness more formally

» study counterexample generation in the presence of
selective strictness, finite failures, ...



Some Interesting Further Reading

» Program transformations based on free theorems:
[Gill et al. 1993], ..., [Svenningsson 2002], ...,
[Pardo et al. 2009]
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» Parametricity and computational effects:
[Mggelberg & Simpson 2007]
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