Free Theorems and "Real" Languages

Janis Voigtländer
Technische Universität Dresden

April 24th, 2009

Free Theorems and Applications

As we have seen, types:

- constrain the behaviour of programs

Free Theorems and Applications

As we have seen, types:

- constrain the behaviour of programs
- thus lead to interesting insights about programs

Free Theorems and Applications

As we have seen, types:

- constrain the behaviour of programs
- thus lead to interesting insights about programs
- combine well with algebraic techniques, equational reasoning

Free Theorems and Applications

As we have seen, types:

- constrain the behaviour of programs
- thus lead to interesting insights about programs
- combine well with algebraic techniques, equational reasoning

Application areas include:

- efficiency-improving program transformations
- more specific domains

Free Theorems and Applications

As we have seen, types:

- constrain the behaviour of programs
- thus lead to interesting insights about programs
- combine well with algebraic techniques, equational reasoning

Application areas include:

- efficiency-improving program transformations
- more specific domains

But:

- We could ask for more (expressive) type features.

Free Theorems and Applications

As we have seen, types:

- constrain the behaviour of programs
- thus lead to interesting insights about programs
- combine well with algebraic techniques, equational reasoning

Application areas include:

- efficiency-improving program transformations
- more specific domains

But:

- We could ask for more (expressive) type features.
- We have not been considering a full programming language.

Example Feature: Type Classes [Wadler \& Blott 1989]

We used that for every

$$
\text { get }::[\alpha] \rightarrow[\alpha]
$$

we have

$$
\operatorname{map} f(\text { get } I)=\operatorname{get}(\operatorname{map} f I)
$$

for arbitrary f and I.

Example Feature: Type Classes [Wadler \& Blott 1989]

We used that for every

$$
\text { get }::[\alpha] \rightarrow[\alpha]
$$

we have

$$
\operatorname{map} f(\text { get } I)=\operatorname{get}(\operatorname{map} f l)
$$

for arbitrary f and I.

What about

$$
\text { get }:: \text { Eq } \alpha \Rightarrow[\alpha] \rightarrow[\alpha] \text { ? }
$$

Example Feature: Type Classes [Wadler \& Blott 1989]

We used that for every

$$
\text { get }::[\alpha] \rightarrow[\alpha]
$$

we have

$$
\operatorname{map} f(\text { get } I)=\operatorname{get}(\operatorname{map} f I)
$$

for arbitrary f and I.

What about

$$
\text { get }:: \text { Eq } \alpha \Rightarrow[\alpha] \rightarrow[\alpha] \text { ? }
$$

The above free theorem fails!
Consider, e.g., get $=$ nub, $f=$ const 1 , and $I=[1,2]$.

Why map $f(\operatorname{get} I)=\operatorname{get}(\operatorname{map} f I)$, Intuitively

- get $::[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list l.
- Which, and in which order/multiplicity, can only be decided based on I.
- The only means for this decision is to inspect the length of I.
- The lists (map $f I$) and $/$ always have equal length.
- get always chooses "the same" elements from (map $f l$) for output as it does from l, except that in the former case it outputs their images under f.
- (get $(\operatorname{map} f l))$ is equivalent to $(\operatorname{map} f(\operatorname{get} I))$.
- That is what was claimed!

Why map $f(\operatorname{get} I)=\operatorname{get}(\operatorname{map} f I)$, Intuitively

- get :: Eq $\alpha \Rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.

Why map $f($ get $I)=\operatorname{get}(\operatorname{map} f l)$, Intuitively

- get :: Eq $\alpha \Rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list $/$.

Why map $f($ get $I)=\operatorname{get}(\operatorname{map} f l)$, Intuitively

- get :: Eq $\alpha \Rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list $/$.
- Which, and in which order/multiplicity, can only be decided based on $/$.

Why map $f(\operatorname{get} I)=\operatorname{get}(\operatorname{map} f I)$, Intuitively

- get :: Eq $\alpha \Rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list l.
- Which, and in which order/multiplicity, can only be decided based on $/$.
- The only means for this decision is to inspect the length of I.

Why map $f(\operatorname{get} I)=\operatorname{get}(\operatorname{map} f I)$, Intuitively

- get :: Eq $\alpha \Rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list l.
- Which, and in which order/multiplicity, can only be decided based on $/$.
- The only means for this decision is to inspect the length of I.
\& Not true! Also possible: check elements of / for equality.

Why map $f(\operatorname{get} I)=\operatorname{get}(\operatorname{map} f I)$, Intuitively

- get :: Eq $\alpha \Rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list l.
- Which, and in which order/multiplicity, can only be decided based on l.
- The only means for this decision is to inspect the length of I.
\& Not true! Also possible: check elements of I for equality.
- The lists (map $f /$) and I always have equal length.

Why map $f(\operatorname{get} I)=\operatorname{get}(\operatorname{map} f I)$, Intuitively

- get :: Eq $\alpha \Rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list l.
- Which, and in which order/multiplicity, can only be decided based on l.
- The only means for this decision is to inspect the length of I.
\& Not true! Also possible: check elements of I for equality.
- The lists (map $f /$) and $/$ always have equal length.

But equality checks on corresponding elements are not always guaranteed to have the same outcome!

Why map $f($ get $I)=\operatorname{get}(\operatorname{map} f l)$, Intuitively

- get :: Eq $\alpha \Rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list l.
- Which, and in which order/multiplicity, can only be decided based on l.
- The only means for this decision is to inspect the length of I.
\& Not true! Also possible: check elements of I for equality.
- The lists (map $f /$) and $/$ always have equal length.

But equality checks on corresponding elements are not always guaranteed to have the same outcome! They are, if f is "injective".

Why map $f($ get $I)=\operatorname{get}(\operatorname{map} f l)$, Intuitively

- get :: Eq $\alpha \Rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list l.
- Which, and in which order/multiplicity, can only be decided based on l.
- The only means for this decision is to inspect the length of I.
\& Not true! Also possible: check elements of I for equality.
- The lists (map $f /$) and $/$ always have equal length.

But equality checks on corresponding elements are not always guaranteed to have the same outcome! They are, if f is "injective".

- Then, get always chooses "the same" elements from (map $f l$) for output as it does from I,

Why map $f($ get $I)=\operatorname{get}(\operatorname{map} f I)$, Intuitively

- get :: Eq $\alpha \Rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list l.
- Which, and in which order/multiplicity, can only be decided based on I.
- The only means for this decision is to inspect the length of I.
\& Not true! Also possible: check elements of / for equality.
- The lists (map $f I$) and I always have equal length.

But equality checks on corresponding elements are not always guaranteed to have the same outcome! They are, if f is "injective".

- Then, get always chooses "the same" elements from (map $f I$) for output as it does from I, except that in the former case it outputs their images under f.

Why map $f($ get $I)=\operatorname{get}(\operatorname{map} f l)$, Intuitively

- get :: Eq $\alpha \Rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list $/$.
- Which, and in which order/multiplicity, can only be decided based on I.
- The only means for this decision is to inspect the length of I.
\& Not true! Also possible: check elements of / for equality.
- The lists (map $f I$) and I always have equal length.

But equality checks on corresponding elements are not always guaranteed to have the same outcome! They are, if f is "injective".

- Then, get always chooses "the same" elements from (map $f I$) for output as it does from I, except that in the former case it outputs their images under f.
- (get $(\operatorname{map} f l))$ is equivalent to $(\operatorname{map} f($ get $l))$.

Why map $f($ get $I)=\operatorname{get}(\operatorname{map} f l)$, Intuitively

- get :: $\mathrm{Eq} \alpha \Rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list $/$.
- Which, and in which order/multiplicity, can only be decided based on I.
- The only means for this decision is to inspect the length of I.
\& Not true! Also possible: check elements of / for equality.
- The lists (map $f I$) and I always have equal length.

But equality checks on corresponding elements are not always guaranteed to have the same outcome! They are, if f is "injective".

- Then, get always chooses "the same" elements from (map $f I$) for output as it does from I, except that in the former case it outputs their images under f.
- (get $(\operatorname{map} f l))$ is equivalent to $(\operatorname{map} f($ get $l))$.
- This gives a revised free theorem.

More Formally: Dictionary Translation

Every

$$
\text { get }:: \text { Eq } \alpha \Rightarrow[\alpha] \rightarrow[\alpha]
$$

can be seen as a

$$
\text { get }^{\prime}::(\alpha \rightarrow \alpha \rightarrow \text { Bool }) \rightarrow[\alpha] \rightarrow[\alpha]
$$

More Formally: Dictionary Translation

Every

$$
\text { get }:: \text { Eq } \alpha \Rightarrow[\alpha] \rightarrow[\alpha]
$$

can be seen as a

$$
\text { get }^{\prime}::(\alpha \rightarrow \alpha \rightarrow \text { Bool }) \rightarrow[\alpha] \rightarrow[\alpha]
$$

where for every type τ that is an instance of Eq,

$$
\operatorname{get}_{\tau}=\operatorname{get}_{\tau}^{\prime}(==)_{\tau}
$$

More Formally: Dictionary Translation

Every

$$
\text { get }:: \text { Eq } \alpha \Rightarrow[\alpha] \rightarrow[\alpha]
$$

can be seen as a

$$
\text { get }^{\prime}::(\alpha \rightarrow \alpha \rightarrow \text { Bool }) \rightarrow[\alpha] \rightarrow[\alpha]
$$

where for every type τ that is an instance of Eq,

$$
\operatorname{get}_{\tau}=\operatorname{get}_{\tau}^{\prime}(==)_{\tau}
$$

The free theorem for get ${ }^{\prime}$ is that

$$
\operatorname{map} f\left(\text { get' }^{\prime} p l\right)=\operatorname{get}^{\prime} q(\operatorname{map} f l)
$$

provided that for every x and $y, p x y=q(f x)(f y)$.

More Formally: Dictionary Translation

Every

$$
\text { get }:: \text { Eq } \alpha \Rightarrow[\alpha] \rightarrow[\alpha]
$$

can be seen as a

$$
\text { get }^{\prime}::(\alpha \rightarrow \alpha \rightarrow \text { Bool }) \rightarrow[\alpha] \rightarrow[\alpha]
$$

where for every type τ that is an instance of Eq,

$$
\operatorname{get}_{\tau}=\operatorname{get}_{\tau}^{\prime}(==)_{\tau}
$$

The free theorem for get ${ }^{\prime}$ is that

$$
\operatorname{map} f\left(\text { get' }^{\prime} p l\right)=\operatorname{get}^{\prime} q(\operatorname{map} f l)
$$

provided that for every x and $y, p x y=q(f x)(f y)$.

This means that

$$
\operatorname{map} f\left(\operatorname{get}^{\prime}(==) I\right)=\operatorname{get}^{\prime}(==)(\operatorname{map} f I)
$$

provided that for every x and $y, x==y$ iff $(f x)==(f y)$.

More Formally: Dictionary Translation

Every

$$
\text { get }:: \text { Eq } \alpha \Rightarrow[\alpha] \rightarrow[\alpha]
$$

can be seen as a

$$
\text { get }^{\prime}::(\alpha \rightarrow \alpha \rightarrow \text { Bool }) \rightarrow[\alpha] \rightarrow[\alpha]
$$

where for every type τ that is an instance of Eq,

$$
\operatorname{get}_{\tau}=\operatorname{get}_{\tau}^{\prime}(==)_{\tau}
$$

The free theorem for get ${ }^{\prime}$ is that

$$
\operatorname{map} f\left(\text { get' }^{\prime} p l\right)=\operatorname{get}^{\prime} q(\operatorname{map} f l)
$$

provided that for every x and $y, p x y=q(f x)(f y)$.

This means that

$$
\operatorname{map} f(\text { get } I)=\operatorname{get}(\operatorname{map} f l)
$$

provided that for every x and $y, x==y$ iff $(f x)==(f y)$.

Another Feature: General Recursion

We claimed that for every

$$
\mathrm{g}::(\alpha \rightarrow \text { Bool }) \rightarrow[\alpha] \rightarrow[\alpha]
$$

we have

$$
\operatorname{g} p(\operatorname{map} f l)=\operatorname{map} f(g(p \circ f) I)
$$

for arbitrary p, f, and I.

Another Feature: General Recursion

We claimed that for every

$$
\mathrm{g}::(\alpha \rightarrow \text { Bool }) \rightarrow[\alpha] \rightarrow[\alpha]
$$

we have

$$
g p(\operatorname{map} f l)=\operatorname{map} f(g(p \circ f) I)
$$

for arbitrary p, f, and I.

What about

$$
\begin{aligned}
& \mathrm{g}::(\alpha \rightarrow \text { Bool }) \rightarrow[\alpha] \rightarrow[\alpha] \\
& \text { g } p I=[\text { head }(\mathrm{g} p /)]
\end{aligned} ?
$$

Another Feature: General Recursion

We claimed that for every

$$
\mathrm{g}::(\alpha \rightarrow \text { Bool }) \rightarrow[\alpha] \rightarrow[\alpha]
$$

we have

$$
\operatorname{g} p(\operatorname{map} f l)=\operatorname{map} f(g(p \circ f) I)
$$

for arbitrary p, f, and I.

What about

$$
\begin{aligned}
& \mathrm{g}::(\alpha \rightarrow \text { Bool }) \rightarrow[\alpha] \rightarrow[\alpha] \\
& \text { g } p I=[\text { head }(\operatorname{g~p} I)]
\end{aligned} ?
$$

The above free theorem fails!
Consider, e.g., $p=$ id, $f=$ const True, and $I=[]$.

Why $g p(\operatorname{map} f I)=\operatorname{map} f(g(p \circ f) I)$, Intuitively

- $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list l.
- Which, and in which order/multiplicity, can only be decided based on I and the input predicate p.
- The only means for this decision are to inspect the length of I and to check the outcome of p on its elements.
- The lists (map $f I$) and I always have equal length.
- Applying p to an element of (map $f l$) always has the same outcome as applying $(p \circ f)$ to the corresponding element of I.
- g with p always chooses "the same" elements from (map $f l$) for output as does g with $(p \circ f)$ from I, except that in the former case it outputs their images under f.
- $(\mathrm{g} p(\operatorname{map} f /))$ is equivalent to $(\operatorname{map} f(\mathrm{~g}(p \circ f) I))$.
- That is what was claimed!

Why $g p(\operatorname{map} f I)=\operatorname{map} f(g(p \circ f) I)$, Intuitively

- $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.

Why $g p(\operatorname{map} f I)=\operatorname{map} f(g(p \circ f) I)$, Intuitively

- $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list $/$.

Why $g p(\operatorname{map} f I)=\operatorname{map} f(g(p \circ f) I)$, Intuitively

- $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list $/$.
\& Not true! Also possible: \perp.

Why $g p(\operatorname{map} f I)=\operatorname{map} f(g(p \circ f) I)$, Intuitively

- $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list I.
\& Not true! Also possible: \perp.
- Which, and in which order/multiplicity, can only be decided based on I and the input predicate p.

Why $g p(\operatorname{map} f I)=\operatorname{map} f(g(p \circ f) I)$, Intuitively

- $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list l.
\& Not true! Also possible: \perp.
- Which, and in which order/multiplicity, can only be decided based on I and the input predicate p.
- The only means for this decision are to inspect the length of I and to check the outcome of p on its elements.

Why $g p(\operatorname{map} f I)=\operatorname{map} f(g(p \circ f) I)$, Intuitively

- $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list l.
\& Not true! Also possible: \perp.
- Which, and in which order/multiplicity, can only be decided based on I and the input predicate p.
- The only means for this decision are to inspect the length of I and to check the outcome of p on its elements.
\& Not true! Also possible: checking outcome of p on \perp.

Why $g p(\operatorname{map} f I)=\operatorname{map} f(g(p \circ f) I)$, Intuitively

- $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list l.
\& Not true! Also possible: \perp.
- Which, and in which order/multiplicity, can only be decided based on I and the input predicate p.
- The only means for this decision are to inspect the length of I and to check the outcome of p on its elements.
\& Not true! Also possible: checking outcome of p on \perp.
- The lists (map $f /$) and I always have equal length.

Why $g p(\operatorname{map} f I)=\operatorname{map} f(g(p \circ f) I)$, Intuitively

- $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list l.
\& Not true! Also possible: \perp.
- Which, and in which order/multiplicity, can only be decided based on I and the input predicate p.
- The only means for this decision are to inspect the length of I and to check the outcome of p on its elements.
\& Not true! Also possible: checking outcome of p on \perp.
- The lists (map $f I$) and $/$ always have equal length.
- Applying p to an element of (map $f l$) always has the same outcome as applying $(p \circ f)$ to the corresponding element of l.

Why $g p(\operatorname{map} f I)=\operatorname{map} f(g(p \circ f) I)$, Intuitively

- $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list l.
\& Not true! Also possible: \perp.
- Which, and in which order/multiplicity, can only be decided based on / and the input predicate p.
- The only means for this decision are to inspect the length of I and to check the outcome of p on its elements.
\& Not true! Also possible: checking outcome of p on \perp.
- The lists (map $f /$) and I always have equal length.
- Applying p to an element of (map $f l$) always has the same outcome as applying $(p \circ f)$ to the corresponding element of I. Applying p to \perp has the same outcome as applying $(p \circ f)$ to \perp, provided f is strict $(f \perp=\perp)$.

Why $g p(\operatorname{map} f I)=\operatorname{map} f(g(p \circ f) I)$, Intuitively

- $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list l.
\& Not true! Also possible: \perp.
- Which, and in which order/multiplicity, can only be decided based on I and the input predicate p.
- The only means for this decision are to inspect the length of I and to check the outcome of p on its elements.
\& Not true! Also possible: checking outcome of p on \perp.
- The lists (map $f I$) and I always have equal length.
- Applying p to an element of (map $f l$) always has the same outcome as applying $(p \circ f)$ to the corresponding element of l.
Applying p to \perp has the same outcome as applying $(p \circ f)$ to \perp, provided f is strict ($f \perp=\perp$).
- g with p always chooses "the same" elements from (map $f l$) for output as does g with $(p \circ f)$ from I,

Why $g p(\operatorname{map} f I)=\operatorname{map} f(g(p \circ f) I)$, Intuitively

- The output list can only contain elements from the input list l.
\& Not true! Also possible: \perp.
- Which, and in which order/multiplicity, can only be decided based on I and the input predicate p.
- The only means for this decision are to inspect the length of I and to check the outcome of p on its elements.
\& Not true! Also possible: checking outcome of p on \perp.
- The lists (map $f I$) and I always have equal length.
- Applying p to an element of (map $f l$) always has the same outcome as applying $(p \circ f)$ to the corresponding element of I.
Applying p to \perp has the same outcome as applying ($p \circ f$) to \perp, provided f is strict ($f \perp=\perp$).
- g with p always chooses "the same" elements from (map $f l$) for output as does g with $(p \circ f)$ from I, except that in the former case it outputs their images under f.

Why $g p(\operatorname{map} f I)=\operatorname{map} f(g(p \circ f) I)$, Intuitively

- The output list can only contain elements from the input list l.
\& Not true! Also possible: \perp.
- Which, and in which order/multiplicity, can only be decided based on I and the input predicate p.
- The only means for this decision are to inspect the length of I and to check the outcome of p on its elements.
\& Not true! Also possible: checking outcome of p on \perp.
- The lists (map $f I$) and I always have equal length.
- Applying p to an element of (map $f l$) always has the same outcome as applying $(p \circ f)$ to the corresponding element of I.
Applying p to \perp has the same outcome as applying ($p \circ f$) to \perp, provided f is strict ($f \perp=\perp$).
- g with p always chooses "the same" elements from (map $f l$) for output as does g with $(p \circ f)$ from I, except that in the former case it outputs their images under f.
But they may also choose, at the same positions, to output \perp.

Why $g p(\operatorname{map} f I)=\operatorname{map} f(g(p \circ f) I)$, Intuitively

\& Not true! Also possible: \perp.

- Which, and in which order/multiplicity, can only be decided based on I and the input predicate p.
- The only means for this decision are to inspect the length of I and to check the outcome of p on its elements.
\& Not true! Also possible: checking outcome of p on \perp.
- The lists (map $f I$) and I always have equal length.
- Applying p to an element of (map $f l$) always has the same outcome as applying $(p \circ f)$ to the corresponding element of I.
Applying p to \perp has the same outcome as applying $(p \circ f)$ to \perp, provided f is strict ($f \perp=\perp$).
- g with p always chooses "the same" elements from (map $f l$) for output as does g with $(p \circ f)$ from l, except that in the former case it outputs their images under f.
But they may also choose, at the same positions, to output \perp.
- $(g p(\operatorname{map} f l))$ is equivalent to $(\operatorname{map} f(g(p \circ f) I))$,

Why $g p(\operatorname{map} f I)=\operatorname{map} f(g(p \circ f) I)$, Intuitively

- Which, and in which order/multiplicity, can only be decided based on I and the input predicate p.
- The only means for this decision are to inspect the length of I and to check the outcome of p on its elements.
\& Not true! Also possible: checking outcome of p on \perp.
- The lists (map $f I$) and I always have equal length.
- Applying p to an element of (map $f l$) always has the same outcome as applying $(p \circ f)$ to the corresponding element of l.
Applying p to \perp has the same outcome as applying ($p \circ f$) to \perp, provided f is strict ($f \perp=\perp$).
- g with p always chooses "the same" elements from (map $f l$) for output as does g with $(p \circ f)$ from l, except that in the former case it outputs their images under f.
But they may also choose, at the same positions, to output \perp.
- $(g p(\operatorname{map} f l))$ is equivalent to $(\operatorname{map} f(g(p \circ f) I))$, if f is strict.

Why $g p(\operatorname{map} f I)=\operatorname{map} f(g(p \circ f) I)$, Intuitively

- Which, and in which order/multiplicity, can only be decided based on I and the input predicate p.
- The only means for this decision are to inspect the length of I and to check the outcome of p on its elements.
\& Not true! Also possible: checking outcome of p on \perp.
- The lists (map $f I$) and I always have equal length.
- Applying p to an element of (map $f l$) always has the same outcome as applying $(p \circ f)$ to the corresponding element of l.
Applying p to \perp has the same outcome as applying ($p \circ f$) to \perp, provided f is strict ($f \perp=\perp$).
- g with p always chooses "the same" elements from (map $f l$) for output as does g with $(p \circ f)$ from l, except that in the former case it outputs their images under f.
But they may also choose, at the same positions, to output \perp.
- $(g p(\operatorname{map} f l))$ is equivalent to $(\operatorname{map} f(g(p \circ f) I))$, if f is strict.

Recall: The Polymorphic Lambda Calculus

Types: $\tau:=\alpha|\tau \rightarrow \tau| \forall \alpha . \tau$
Terms: $t:=x|\lambda x: \tau . t| t t|\Lambda \alpha . t| t \tau$

$$
\begin{array}{cll}
\Gamma, x: \tau \vdash x: \tau & \llbracket x \rrbracket_{\theta, \sigma} & =\sigma(x) \\
\frac{\Gamma, x: \tau_{1} \vdash t: \tau_{2}}{\Gamma \vdash\left(\lambda x: \tau_{1} \cdot t\right): \tau_{1} \rightarrow \tau_{2}} & \llbracket \lambda x: \tau_{1} \cdot t \rrbracket_{\theta, \sigma} a & =\llbracket t \rrbracket_{\theta, \sigma[x \mapsto a]} \\
\frac{\Gamma \vdash t: \tau_{1} \rightarrow \tau_{2} \quad \Gamma \vdash u: \tau_{1}}{\Gamma \vdash(t u): \tau_{2}} & \llbracket t u \rrbracket_{\theta, \sigma} & =\llbracket t \rrbracket_{\theta, \sigma} \llbracket u \rrbracket_{\theta, \sigma} \\
\frac{\alpha, \Gamma \vdash t: \tau}{\Gamma \vdash(\Lambda \alpha \cdot t): \forall \alpha \cdot \tau} & \llbracket \Lambda \alpha \cdot t \rrbracket_{\theta, \sigma} S & =\llbracket t \rrbracket_{\theta[\alpha \mapsto S], \sigma} \\
\frac{\Gamma \vdash t: \forall \alpha \cdot \tau}{\Gamma \vdash\left(t \tau^{\prime}\right): \tau\left[\tau^{\prime} / \alpha\right]} & \llbracket t \tau^{\prime} \rrbracket_{\theta, \sigma} & =\llbracket t \rrbracket_{\theta, \sigma} \llbracket \tau^{\prime} \rrbracket_{\theta}
\end{array}
$$

Adding General Recursion

Terms: $t:=\cdots \mid \boldsymbol{f i x} t$

Adding General Recursion

Terms: $t:=\cdots \mid \boldsymbol{f i x} t$

$$
\frac{\Gamma \vdash t: \tau \rightarrow \tau}{\Gamma \vdash(\boldsymbol{f i x} t): \tau}
$$

Adding General Recursion

Terms: $t:=\cdots \mid$ fix t

$$
\frac{\Gamma \vdash t: \tau \rightarrow \tau}{\Gamma \vdash(\mathbf{f i x} t): \tau}
$$

To provide semantics, types are interpreted as pointed complete partial orders now, and:

$$
\llbracket \text { fix } t \rrbracket_{\theta, \sigma}=\bigsqcup_{i \geq 0}\left(\llbracket t \rrbracket_{\theta, \sigma}^{i} \perp\right) .
$$

Adding General Recursion

Terms: $t:=\cdots \mid \boldsymbol{f i x} t$

$$
\frac{\Gamma \vdash t: \tau \rightarrow \tau}{\Gamma \vdash(\operatorname{fix} t): \tau}
$$

To provide semantics, types are interpreted as pointed complete partial orders now, and:

$$
\llbracket \text { fix } t \rrbracket_{\theta, \sigma}=\bigsqcup_{i \geq 0}\left(\llbracket t \rrbracket_{\theta, \sigma}^{i} \perp\right) .
$$

And what about the parametricity theorem?

Adding General Recursion

Terms: $t:=\cdots \mid \boldsymbol{f i x} t$

$$
\frac{\Gamma \vdash t: \tau \rightarrow \tau}{\Gamma \vdash(\operatorname{fix} t): \tau}
$$

To provide semantics, types are interpreted as pointed complete partial orders now, and:

$$
\llbracket \text { fix } t \rrbracket_{\theta, \sigma}=\bigsqcup_{i \geq 0}\left(\llbracket t \rrbracket_{\theta, \sigma}^{i} \perp\right) .
$$

And what about the parametricity theorem?
The relevant inductive case is:

$$
\frac{\Gamma \vdash t: \tau \rightarrow \tau}{\Gamma \vdash(\operatorname{fix} t): \tau}
$$

Adding General Recursion

Terms: $t:=\cdots \mid \boldsymbol{f i x} t$

$$
\frac{\Gamma \vdash t: \tau \rightarrow \tau}{\Gamma \vdash(\operatorname{fix} t): \tau}
$$

To provide semantics, types are interpreted as pointed complete partial orders now, and:

$$
\llbracket \text { fix } t \rrbracket_{\theta, \sigma}=\bigsqcup_{i \geq 0}\left(\llbracket t \rrbracket_{\theta, \sigma}^{i} \perp\right) .
$$

And what about the parametricity theorem?
The relevant inductive case is:

$$
\begin{aligned}
& \Gamma \vdash t: \tau \rightarrow \tau \\
& \left(\llbracket \text { fix } t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket \text { fix } t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau, \rho}
\end{aligned}
$$

Adding General Recursion

Terms: $t:=\cdots \mid \boldsymbol{f i x} t$

$$
\frac{\Gamma \vdash t: \tau \rightarrow \tau}{\Gamma \vdash(\mathbf{f i x} t): \tau}
$$

To provide semantics, types are interpreted as pointed complete partial orders now, and:

$$
\llbracket \text { fix } t \rrbracket_{\theta, \sigma}=\bigsqcup_{i \geq 0}\left(\llbracket t \rrbracket_{\theta, \sigma}^{i} \perp\right) .
$$

And what about the parametricity theorem?
The relevant inductive case is:

$$
\frac{\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau \rightarrow \tau, \rho}}{\left(\llbracket \text { fix } t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket \text { fix } t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau, \rho}}
$$

Adding General Recursion

Terms: $t:=\cdots \mid \boldsymbol{f i x} t$

$$
\frac{\Gamma \vdash t: \tau \rightarrow \tau}{\Gamma \vdash(\mathbf{f i x} t): \tau}
$$

To provide semantics, types are interpreted as pointed complete partial orders now, and:

$$
\llbracket \text { fix } t \rrbracket_{\theta, \sigma}=\bigsqcup_{i \geq 0}\left(\llbracket t \rrbracket_{\theta, \sigma}^{i} \perp\right) .
$$

And what about the parametricity theorem?
The relevant inductive case is:

$$
\frac{\forall\left(a_{1}, a_{2}\right) \in \Delta_{\tau, \rho} \cdot\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}} a_{1}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}} a_{2}\right) \in \Delta_{\tau, \rho}}{\left(\llbracket \text { fix } t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket \text { fix } t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau, \rho}}
$$

Adding General Recursion

Terms: $t:=\cdots \mid \boldsymbol{f i x} t$

$$
\frac{\Gamma \vdash t: \tau \rightarrow \tau}{\Gamma \vdash(\mathbf{f i x} t): \tau}
$$

To provide semantics, types are interpreted as pointed complete partial orders now, and:

$$
\llbracket \mathrm{fix} t \rrbracket_{\theta, \sigma}=\bigsqcup_{i \geq 0}\left(\llbracket t \rrbracket_{\theta, \sigma}^{i} \perp\right) .
$$

And what about the parametricity theorem?
The relevant inductive case is:

$$
\frac{\forall\left(a_{1}, a_{2}\right) \in \Delta_{\tau, \rho} \cdot\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}} a_{1}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}} a_{2}\right) \in \Delta_{\tau, \rho}}{\left(\llbracket \text { fix } t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket \text { fix } t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau, \rho}}
$$

The parametricity theorem still holds, provided all relations are strict and continuous.

Automatic Generation of Free Theorems

At http://linux.tcs.inf.tu-dresden.de/~voigt/ft:

This tool allows to generate free theorems for sublanguages of Haskell as described here.
The source code of the underlying library and a shell-based application using it is available here and here.

Please enter a (polymorphic) type, e.g. "(a -> Bool) -> [a] -> [a]" or simply "filter":
9 :: (a -> Bool) -> [a] -> [a]
Please choose a sublanguage of Haskell:
© no bottoms (hence no general recursion and no selective strictness)

- general recursion but no selective strictness
${ }^{\bullet}$ general recursion and selective strictness
Please choose a theorem style (without effect in the sublanguage with no bottoms):
- equational
- inequational

Generate

Adding Selective Strictness
Terms: $t:=\cdots \mid \boldsymbol{s e q} t t$

Adding Selective Strictness

Terms: $t:=\cdots \mid \mathbf{s e q} t t$

$$
\frac{\Gamma \vdash t_{1}: \tau_{1} \quad \Gamma \vdash t_{2}: \tau_{2}}{\Gamma \vdash\left(\operatorname{seq} t_{1} t_{2}\right): \tau_{2}}
$$

Adding Selective Strictness

Terms: $t:=\cdots \mid$ seq $t t$

$$
\frac{\Gamma \vdash t_{1}: \tau_{1} \quad \Gamma \vdash t_{2}: \tau_{2}}{\Gamma \vdash\left(\operatorname{seq} t_{1} t_{2}\right): \tau_{2}}
$$

Semantics:

$$
\llbracket \mathbf{s e q} t_{1} t_{2} \rrbracket_{\theta, \sigma}= \begin{cases}\perp & \text { if } \llbracket t_{1} \rrbracket_{\theta, \sigma}=\perp \\ \llbracket t_{2} \rrbracket_{\theta, \sigma} & \text { if } \llbracket t_{1} \rrbracket_{\theta, \sigma} \neq \perp .\end{cases}
$$

Adding Selective Strictness

Terms: $t:=\cdots \mid$ seq $t t$

$$
\frac{\Gamma \vdash t_{1}: \tau_{1} \quad \Gamma \vdash t_{2}: \tau_{2}}{\Gamma \vdash\left(\operatorname{seq} t_{1} t_{2}\right): \tau_{2}}
$$

Semantics:

$$
\llbracket \mathbf{s e q} t_{1} t_{2} \rrbracket_{\theta, \sigma}= \begin{cases}\perp & \text { if } \llbracket t_{1} \rrbracket_{\theta, \sigma}=\perp \\ \llbracket t_{2} \rrbracket_{\theta, \sigma} & \text { if } \llbracket t_{1} \rrbracket_{\theta, \sigma} \neq \perp .\end{cases}
$$

The parametricity theorem is jeopardised again!

Without seq, $\operatorname{g} p(\operatorname{map} f l)=\operatorname{map} f(g(p \circ f) I)$

- $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly.
- The output list can only contain elements from the input list / and \perp.
- Which, and in which order/multiplicity, can only be decided based on I and the input predicate p.
- The only means for this decision are to inspect the length of I and to check the outcome of p on its elements and on \perp.
- The lists (map $f I$) and I always have equal length.
- Applying p to an element of (map $f l$) always has the same outcome as applying $(p \circ f)$ to the corresponding element of l.
- Applying p to \perp has the same outcome as applying ($p \circ f$), provided f is strict.
- g with p always chooses "the same" elements from (map $f l$) for output as does g with $(p \circ f)$ from I, except that in the former case it outputs their images under f, and they may also choose, at the same positions, to output \perp.
- $(\mathrm{g} p(\operatorname{map} f l))=(\operatorname{map} f(\mathrm{~g}(p \circ f) I))$, if f is strict.

With seq, $g p(\operatorname{map} f I)=\operatorname{map} f(g(p \circ f) I) ?$

- $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly.

With seq, $g p(\operatorname{map} f I)=\operatorname{map} f(g(p \circ f) I) ?$

- $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly.
- The output list can only contain elements from the input list / and \perp.

With seq, $g p(\operatorname{map} f I)=\operatorname{map} f(g(p \circ f) I) ?$

- $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly.
- The output list can only contain elements from the input list / and \perp.
- Which, and in which order/multiplicity, can only be decided based on I and the input predicate p.

With seq, $g p(\operatorname{map} f I)=\operatorname{map} f(g(p \circ f) I) ?$

- $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly.
- The output list can only contain elements from the input list I and \perp.
- Which, and in which order/multiplicity, can only be decided based on I and the input predicate p.
- The only means for this decision are to inspect the length of I and to check the outcome of p on its elements and on \perp.

With seq, $g p(\operatorname{map} f I)=\operatorname{map} f(g(p \circ f) I) ?$

- $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly.
- The output list can only contain elements from the input list / and \perp.
- Which, and in which order/multiplicity, can only be decided based on I and the input predicate p.
- The only means for this decision are to inspect the length of I and to check the outcome of p on its elements and on \perp.
\& Not true! Also possible:
- checking elements from / for being \perp
- checking p for being \perp

With seq, $g p(\operatorname{map} f I)=\operatorname{map} f(g(p \circ f) I) ?$

- $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly.
- The output list can only contain elements from the input list / and \perp.
- Which, and in which order/multiplicity, can only be decided based on I and the input predicate p.
- The only means for this decision are to inspect the length of I and to check the outcome of p on its elements and on \perp.
\& Not true! Also possible:
- checking elements from / for being \perp
- checking p for being \perp

Revising Free Theorems

[Wadler 1989] : for every g :: $(\alpha \rightarrow \mathrm{Bool}) \rightarrow[\alpha] \rightarrow[\alpha]$,

$$
\operatorname{g} p(\operatorname{map} f I)=\operatorname{map} f(g(p \circ f) I)
$$

- if f strict.

Revising Free Theorems

[Wadler 1989] : for every g :: $(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$,

$$
\operatorname{g} p(\operatorname{map} f I)=\operatorname{map} f(g(p \circ f) I)
$$

- if f strict.
[Johann \& V. 2004] : in presence of seq, if additionally:
- $p \neq \perp$,
- f total $(\forall x \neq \perp . f x \neq \perp)$.

Revising Free Theorems

[Wadler 1989] : for every $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$,

$$
g p(\operatorname{map} f l)=\operatorname{map} f(g(p \circ f) I)
$$

- if f strict.
[Johann \& V. 2004] : in presence of seq, if additionally:
- $p \neq \perp$,
- f total $(\forall x \neq \perp . f x \neq \perp)$.
[Johann \& V. 2009] : take finite failures into account
[Stenger \& V. 2009] : take imprecise error semantics into account

Automatic Generation of Counterexamples

The ideal scenario:

- I give the system a type, say $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$.

Automatic Generation of Counterexamples

The ideal scenario:

- I give the system a type, say $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$.
- The system gives me the free theorem. Here: for strict $f, \quad g p(\operatorname{map} f l)=\operatorname{map} f(g(p \circ f) l)$

Automatic Generation of Counterexamples

The ideal scenario:

- I give the system a type, say $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$.
- The system gives me the free theorem. Here:
for strict $f, \quad g p(\operatorname{map} f l)=\operatorname{map} f(g(p \circ f) I)$
- I ask: why must f be strict? What if it were not?

Automatic Generation of Counterexamples

The ideal scenario:

- I give the system a type, say $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$.
- The system gives me the free theorem. Here: for strict $f, \quad g p(\operatorname{map} f l)=\operatorname{map} f(g(p \circ f) I)$
- I ask: why must f be strict? What if it were not?
- The system gives me concrete g, p, l, and (nonstrict) f that refute the thus naivified free theorem.

Idea 1: First Capture Non-Counterexamples

Replace

$$
\frac{\Gamma \vdash t: \tau \rightarrow \tau}{\Gamma \vdash(\mathbf{f i x} t): \tau}
$$

by

$$
\frac{\Gamma \vdash \tau \in \text { Pointed } \quad \Gamma \vdash t: \tau \rightarrow \tau}{\Gamma \vdash(\text { fix } t): \tau}
$$

Idea 1: First Capture Non-Counterexamples

Replace

$$
\frac{\Gamma \vdash t: \tau \rightarrow \tau}{\Gamma \vdash(\operatorname{fix} t): \tau}
$$

by

$$
\frac{\Gamma \vdash \tau \in \text { Pointed } \quad \Gamma \vdash t: \tau \rightarrow \tau}{\Gamma \vdash(\text { fix } t): \tau}
$$

where

$$
\begin{array}{cc}
\frac{\alpha^{*} \in \Gamma}{\Gamma \vdash \alpha \in \text { Pointed }} & \frac{\Gamma \vdash \tau_{2} \in \text { Pointed }}{\Gamma \vdash \tau_{1} \rightarrow \tau_{2} \in \text { Pointed }} \\
\Gamma \vdash \text { Bool } \in \text { Pointed } & \Gamma \vdash[\tau] \in \text { Pointed }
\end{array}
$$

Idea 1: First Capture Non-Counterexamples

Replace

$$
\frac{\Gamma \vdash t: \tau \rightarrow \tau}{\Gamma \vdash(\operatorname{fix} t): \tau}
$$

by

$$
\frac{\Gamma \vdash \tau \in \text { Pointed } \quad \Gamma \vdash t: \tau \rightarrow \tau}{\Gamma \vdash(\text { fix } t): \tau}
$$

where

$$
\begin{array}{cc}
\frac{\alpha^{*} \in \Gamma}{\Gamma \vdash \alpha \in \text { Pointed }} & \frac{\Gamma \vdash \tau_{2} \in \text { Pointed }}{\Gamma \vdash \tau_{1} \rightarrow \tau_{2} \in \text { Pointed }} \\
\Gamma \vdash \text { Bool } \in \text { Pointed } & \Gamma \vdash[\tau] \in \text { Pointed }
\end{array}
$$

Gain: Relations interpreting non-Pointed types need not be strict anymore, but parametricity theorem still holds! [Launchbury \& Paterson 1996]

Idea 2: Search for Terms in the Difference Set

For the example, search for a g such that

$$
\alpha^{*} \vdash \mathrm{~g}:(\alpha \rightarrow \mathrm{Bool}) \rightarrow[\alpha] \rightarrow[\alpha]
$$

but not

$$
\alpha \vdash \mathrm{g}:(\alpha \rightarrow \text { Bool }) \rightarrow[\alpha] \rightarrow[\alpha]
$$

Idea 2: Search for Terms in the Difference Set

For the example, search for a g such that

$$
\alpha^{*} \vdash \mathrm{~g}:(\alpha \rightarrow \mathrm{Bool}) \rightarrow[\alpha] \rightarrow[\alpha]
$$

but not

$$
\alpha \vdash \mathrm{g}:(\alpha \rightarrow \text { Bool }) \rightarrow[\alpha] \rightarrow[\alpha]
$$

Natural first rule:

$$
\frac{\Gamma \vdash \tau \notin \text { Pointed }}{\Gamma \Vdash(\text { fix }(\lambda x: \tau . x)): \tau}
$$

Idea 2: Search for Terms in the Difference Set

For the example, search for a g such that

$$
\alpha^{*} \vdash \mathrm{~g}:(\alpha \rightarrow \mathrm{Bool}) \rightarrow[\alpha] \rightarrow[\alpha]
$$

but not

$$
\alpha \vdash \mathrm{g}:(\alpha \rightarrow \text { Bool }) \rightarrow[\alpha] \rightarrow[\alpha]
$$

Natural first rule:

$$
\frac{\Gamma \vdash \tau \notin \text { Pointed }}{\Gamma \Vdash(\text { fix }(\lambda x: \tau . x)): \tau}
$$

Problem: For term search, not all rules are "syntax-directed".

Idea 2: Search for Terms in the Difference Set

For the example, search for a g such that

$$
\alpha^{*} \vdash \mathrm{~g}:(\alpha \rightarrow \mathrm{Bool}) \rightarrow[\alpha] \rightarrow[\alpha]
$$

but not

$$
\alpha \vdash \mathrm{g}:(\alpha \rightarrow \text { Bool }) \rightarrow[\alpha] \rightarrow[\alpha]
$$

Natural first rule:

$$
\frac{\Gamma \vdash \tau \notin \text { Pointed }}{\Gamma \Vdash(\text { fix }(\lambda x: \tau . x)): \tau}
$$

Problem: For term search, not all rules are "syntax-directed".
Particularly:

$$
\frac{\Gamma \vdash t: \tau_{1} \rightarrow \tau_{2} \quad \Gamma \vdash u: \tau_{1}}{\Gamma \vdash(t u): \tau_{2}}
$$

Idea 2: Search for Terms in the Difference Set

For the example, search for ag such that

$$
\alpha^{*} \vdash \mathrm{~g}:(\alpha \rightarrow \mathrm{Bool}) \rightarrow[\alpha] \rightarrow[\alpha]
$$

but not

$$
\alpha \vdash \mathrm{g}:(\alpha \rightarrow \text { Bool }) \rightarrow[\alpha] \rightarrow[\alpha]
$$

Natural first rule:

$$
\frac{\Gamma \vdash \tau \notin \text { Pointed }}{\Gamma \Vdash(\text { fix }(\lambda x: \tau . x)): \tau}
$$

Problem: For term search, not all rules are "syntax-directed".
Particularly:

$$
\frac{\Gamma \vdash t: \tau_{1} \rightarrow \tau_{2} \quad \Gamma \vdash u: \tau_{1}}{\Gamma \vdash(t u): \tau_{2}}
$$

Idea 2: Search for Terms in the Difference Set

For the example, search for a g such that

$$
\alpha^{*} \vdash \mathrm{~g}:(\alpha \rightarrow \mathrm{Bool}) \rightarrow[\alpha] \rightarrow[\alpha]
$$

but not

$$
\alpha \vdash \mathrm{g}:(\alpha \rightarrow \text { Bool }) \rightarrow[\alpha] \rightarrow[\alpha]
$$

Natural first rule:

$$
\frac{\Gamma \vdash \tau \notin \text { Pointed }}{\Gamma \Vdash(\text { fix }(\lambda x: \tau . x)): \tau}
$$

Problem: For term search, not all rules are "syntax-directed".
Particularly:

$$
\begin{array}{cccc}
\Gamma \vdash & \tau_{1} \rightarrow \tau_{2} & \Gamma \vdash & \tau_{1} \\
\hline & \Gamma \vdash & \tau_{2} &
\end{array}
$$

Idea 3: Use the Curry/Howard-Isomorphism

- [Dyckhoff 1992] gives a proof search procedure for intuitionistic propositional logic.

Idea 3: Use the Curry/Howard-Isomorphism

- [Dyckhoff 1992] gives a proof search procedure for intuitionistic propositional logic.
- It has been turned into a fix-free term generator for polymorphic types (Djinn, by L. Augustsson).

Idea 3: Use the Curry/Howard-Isomorphism

- [Dyckhoff 1992] gives a proof search procedure for intuitionistic propositional logic.
- It has been turned into a fix-free term generator for polymorphic types (Djinn, by L. Augustsson).
- We mix it with our rule

$$
\frac{\Gamma \vdash \tau \notin \text { Pointed }}{\Gamma \Vdash(\text { fix }(\lambda x: \tau . x)): \tau}
$$

and perform further adaptations...

An Example

The Free Theorem

The theorem generated for functions of the type

```
f :: (a -> Int) -> Int
```

is:

```
forall tl,t2 in TYPES, g :: t1 -> t2, g strict.
    forall p :: tl -> Int.
    forall q :: t2 -> Int.
        (forall x :: t1. p x = q (g x)) ==> (f p = f q)
```


The Counterexample

By disregarding the strictness condition on g the theorem becomes wrong. The term

```
f=(\x1 -> (x1__ _)))
```

is a counterexample.

```
By setting t1 = t2 = .. = () and
```

```
g = const ()
```

the following would be a consequence of the thus "naivified" free theorem:

```
(f p) = (fqq)
where
p = (\x1 -> 0)
q = (\x1 -> (case x1 of {() -> 0}))
```

But this is wrong since with the above f it reduces to:

```
0 = _I_
```


Another Example

The Free Theorem

The theorem generated for functions of the type

```
f :: [a] -> Int
```

is:

```
forall t1,t2 in TYPES, g :: t1 -> t2,g strict.
forall x :: [t1]. f x = f (map g x)
```


The Counterexample

Disregarding the strictness condition on g the algorithm found no counterexample.

Another Example

```
The Free Theorem
```

The theorem generated for functions of the type

```
    f :: [a] -> Int
```

is:

```
forall t1,t2 in TYPES, g :: t1 -> t2, g strict.
forall }x\mathrm{ :: [t1]. fx=f(map g x)
```

```
The Counterexample
```

Disregarding the strictness condition on g the algorithm found no counterexample.

Future work:

- investigate soundness and completeness more formally

Another Example

```
The Free Theorem
The theorem generated for functions of the type
    f :: [a] -> Int
is:
forall t1,t2 in TYPES, g :: t1 -> t2, g strict.
forall x :: [t1].f f = f (mapg x)
```

```
The Counterexample
```

Disregarding the strictness condition on g the algorithm found no counterexample.

Future work:

- investigate soundness and completeness more formally
- study counterexample generation in the presence of selective strictness, finite failures, ...

Some Interesting Further Reading

- Program transformations based on free theorems:
[Gill et al. 1993], ..., [Svenningsson 2002],, [Pardo et al. 2009]

Some Interesting Further Reading

- Program transformations based on free theorems:
[Gill et al. 1993], ..., [Svenningsson 2002],, [Pardo et al. 2009]
- Parametricity in operational semantics: [Pitts 2000], [Johann 2002], ...

Some Interesting Further Reading

- Program transformations based on free theorems:
[Gill et al. 1993], ..., [Svenningsson 2002],,
[Pardo et al. 2009]
- Parametricity in operational semantics:
[Pitts 2000], [Johann 2002], ...
- Parametricity for strict languages ("ML, not Haskell"): [Pitts 2005], [Ahmed 2006], ..., [Ahmed et al. 2009]

Some Interesting Further Reading

- Program transformations based on free theorems:
[Gill et al. 1993], ... , [Svenningsson 2002],,
[Pardo et al. 2009]
- Parametricity in operational semantics:
[Pitts 2000], [Johann 2002], ...
- Parametricity for strict languages ("ML, not Haskell"): [Pitts 2005], [Ahmed 2006], . . . , [Ahmed et al. 2009]
- Parametricity and dynamic typing:
[Washburn \& Weirich 2005], [Matthews \& Ahmed 2008], ...

Some Interesting Further Reading

- Program transformations based on free theorems:
[Gill et al. 1993], ... , [Svenningsson 2002],,
[Pardo et al. 2009]
- Parametricity in operational semantics:
[Pitts 2000], [Johann 2002], ...
- Parametricity for strict languages ("ML, not Haskell"): [Pitts 2005], [Ahmed 2006], ... , [Ahmed et al. 2009]
- Parametricity and dynamic typing:
[Washburn \& Weirich 2005], [Matthews \& Ahmed 2008], ...
- Parametricity and computational effects:
[Møgelberg \& Simpson 2007]

References I

E A.J. Ahmed, D. Dreyer, and A. Rossberg.
State-dependent representation independence.
In Principles of Programming Languages, Proceedings, pages 340-353. ACM Press, 2009.

圊 A.J. Ahmed.
Step-indexed syntactic logical relations for recursive and quantified types.
In European Symposium on Programming, Proceedings, volume 3924 of LNCS, pages 69-83. Springer-Verlag, 2006.

圊 R. Dyckhoff.
Contraction-free sequent calculi for intuitionistic logic.
Journal of Symbolic Logic, 57(3):795-807, 1992.

References II

(i) A. Gill, J. Launchbury, and S.L. Peyton Jones.

A short cut to deforestation.
In Functional Programming Languages and Computer
Architecture, Proceedings, pages 223-232. ACM Press, 1993.
回 P. Johann.
A generalization of short-cut fusion and its correctness proof. Higher-Order and Symbolic Computation, 15(4):273-300, 2002.

图 P. Johann and J. Voigtländer.
Free theorems in the presence of seq.
In Principles of Programming Languages, Proceedings, pages
99-110. ACM Press, 2004.

References III

围 P. Johann and J. Voigtländer.
A family of syntactic logical relations for the semantics of Haskell-like languages.
Information and Computation, 207(2):341-368, 2009.
R J. Launchbury and R. Paterson.
Parametricity and unboxing with unpointed types.
In European Symposium on Programming, Proceedings,
volume 1058 of LNCS, pages 204-218. Springer-Verlag, 1996.
图 J. Matthews and A.J. Ahmed.
Parametric polymorphism through run-time sealing or, theorems for low, low prices!
In European Symposium on Programming, Proceedings,
volume 4960 of LNCS, pages 16-31. Springer-Verlag, 2008.

References IV

R.E. Møgelberg and A.K. Simpson.

Relational parametricity for computational effects.
In Logic in Computer Science, Proceedings, pages 346-355.
IEEE Computer Society, 2007.
(A. Pardo, J.P. Fernandes, and J. Saraiva.
Shortcut fusion rules for the derivation of circular and higher-order monadic programs.
In Partial Evaluation and Program Manipulation, Proceedings, pages 81-90. ACM Press, 2009.

E A.M. Pitts.
Parametric polymorphism and operational equivalence. Mathematical Structures in Computer Science, 10(3):321-359, 2000.

References V

圊 A.M. Pitts.
Typed operational reasoning.
In B.C. Pierce, editor, Advanced Topics in Types and
Programming Languages, pages 245-289. MIT Press, 2005.
國 F. Stenger and J. Voigtländer.
Parametricity for Haskell with imprecise error semantics.
In Typed Lambda Calculi and Applications, Proceedings, LNCS. Springer-Verlag, 2009.
(J. Svenningsson.
Shortcut fusion for accumulating parameters \& zip-like functions.
In International Conference on Functional Programming,
Proceedings, pages 124-132. ACM Press, 2002.

References VI

P. Wadler.

Theorems for free!
In Functional Programming Languages and Computer
Architecture, Proceedings, pages 347-359. ACM Press, 1989.
P. P. Wadler and S. Blott.

How to make ad-hoc polymorphism less ad hoc.
In Principles of Programming Languages, Proceedings, pages 60-76. ACM Press, 1989.
击 G. Washburn and S. Weirich.
Generalizing parametricity using information-flow.
In Logic in Computer Science, Proceedings, pages 62-71. IEEE
Computer Society, 2005.

