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As we have seen, types:

◮ constrain the behaviour of programs

◮ thus lead to interesting insights about programs

◮ combine well with algebraic techniques, equational reasoning

Application areas include:

◮ efficiency-improving program transformations

◮ more specific domains

But:

◮ We could ask for more (expressive) type features.

◮ We have not been considering a full programming language.
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Example Feature: Type Classes [Wadler & Blott 1989]

We used that for every

get :: [α] → [α]

we have
map f (get l) = get (map f l)

for arbitrary f and l .
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Example Feature: Type Classes [Wadler & Blott 1989]

We used that for every

get :: [α] → [α]

we have
map f (get l) = get (map f l)

for arbitrary f and l .

What about
get :: Eq α ⇒ [α] → [α] ?

The above free theorem fails!

Consider, e.g., get = nub, f = const 1, and l = [1, 2].
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Why map f (get l) = get (map f l), Intuitively

◮ get :: [α] → [α] must work uniformly for every instantiation
of α.

◮ The output list can only contain elements from the input list l .

◮ Which, and in which order/multiplicity, can only be decided
based on l .

◮ The only means for this decision is to inspect the length of l .

◮ The lists (map f l) and l always have equal length.

◮ get always chooses “the same” elements from (map f l) for
output as it does from l , except that in the former case it
outputs their images under f .

◮ (get (map f l)) is equivalent to (map f (get l)).

◮ That is what was claimed!
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◮ The lists (map f l) and l always have equal length.

But equality checks on corresponding elements are not always
guaranteed to have the same outcome! They are, if f is “injective”.

◮ Then, get always chooses “the same” elements from
(map f l) for output as it does from l , except that in the
former case it outputs their images under f .

◮ (get (map f l)) is equivalent to (map f (get l)).
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More Formally: Dictionary Translation

Every
get :: Eq α ⇒ [α] → [α]

can be seen as a

get′ :: (α → α → Bool) → [α] → [α]
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Why g p (map f l) = map f (g (p ◦ f ) l), Intuitively

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .

◮ Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

◮ The only means for this decision are to inspect the length of l

and to check the outcome of p on its elements.

◮ The lists (map f l) and l always have equal length.

◮ Applying p to an element of (map f l) always has the same
outcome as applying (p ◦ f ) to the corresponding element of l .

◮ g with p always chooses “the same” elements from (map f l)
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Recall: The Polymorphic Lambda Calculus

Types: τ := α | τ → τ | ∀α.τ

Terms: t := x | λx : τ.t | t t | Λα.t | t τ

Γ, x : τ ⊢ x : τ [[x ]]θ,σ = σ(x)

Γ, x : τ1 ⊢ t : τ2

Γ ⊢ (λx : τ1.t) : τ1 → τ2
[[λx : τ1.t]]θ,σ a = [[t]]θ,σ[x 7→a]

Γ ⊢ t : τ1 → τ2 Γ ⊢ u : τ1

Γ ⊢ (t u) : τ2
[[t u]]θ,σ = [[t]]θ,σ [[u]]θ,σ

α,Γ ⊢ t : τ

Γ ⊢ (Λα.t) : ∀α.τ
[[Λα.t]]θ,σ S = [[t]]θ[α7→S],σ

Γ ⊢ t : ∀α.τ
Γ ⊢ (t τ ′) : τ [τ ′/α]

[[t τ ′]]θ,σ = [[t]]θ,σ [[τ ′]]θ
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∀(a1, a2) ∈ ∆τ,ρ. ([[t]]θ1,σ1
a1, [[t]]θ2,σ2

a2) ∈ ∆τ,ρ

([[fix t]]θ1,σ1
, [[fix t]]θ2,σ2

) ∈ ∆τ,ρ

The parametricity theorem still holds, provided all relations are
strict and continuous.
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Automatic Generation of Free Theorems

At http://linux.tcs.inf.tu-dresden.de/∼voigt/ft:

11

http://linux.tcs.inf.tu-dresden.de/~voigt/ft


Adding Selective Strictness

Terms: t := · · · | seq t t
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Adding Selective Strictness

Terms: t := · · · | seq t t

Γ ⊢ t1 : τ1 Γ ⊢ t2 : τ2

Γ ⊢ (seq t1 t2) : τ2

Semantics:

[[seq t1 t2]]θ,σ =

{

⊥ if [[t1]]θ,σ = ⊥

[[t2]]θ,σ if [[t1]]θ,σ 6= ⊥.

The parametricity theorem is jeopardised again!
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Without seq, g p (map f l) = map f (g (p ◦ f ) l)

◮ g :: (α → Bool) → [α] → [α] must work uniformly.
◮ The output list can only contain elements from the input list l

and ⊥.
◮ Which, and in which order/multiplicity, can only be decided

based on l and the input predicate p.
◮ The only means for this decision are to inspect the length of l

and to check the outcome of p on its elements and on ⊥.
◮ The lists (map f l) and l always have equal length.
◮ Applying p to an element of (map f l) always has the same

outcome as applying (p ◦ f ) to the corresponding element of l .
◮ Applying p to ⊥ has the same outcome as applying (p ◦ f ),

provided f is strict.
◮ g with p always chooses “the same” elements from (map f l)

for output as does g with (p ◦ f ) from l , except that in the
former case it outputs their images under f , and they may
also choose, at the same positions, to output ⊥.

◮ (g p (map f l)) = (map f (g (p ◦ f ) l)), if f is strict.
13
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◮ The output list can only contain elements from the input list l

and ⊥.

◮ Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

◮ The only means for this decision are to inspect the length of l

and to check the outcome of p on its elements and on ⊥.

 Not true! Also possible:

◮ checking elements from l for being ⊥

◮ checking p for being ⊥

. . . ???
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Revising Free Theorems

[Wadler 1989] : for every g :: (α → Bool) → [α] → [α],

g p (map f l) = map f (g (p ◦ f ) l)

◮ if f strict.
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Revising Free Theorems

[Wadler 1989] : for every g :: (α → Bool) → [α] → [α],

g p (map f l) = map f (g (p ◦ f ) l)

◮ if f strict.

[Johann & V. 2004] : in presence of seq, if additionally:

◮ p 6= ⊥,

◮ f total (∀x 6= ⊥. f x 6= ⊥).

[Johann & V. 2009] : take finite failures into account

[Stenger & V. 2009] : take imprecise error semantics into account
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Automatic Generation of Counterexamples

The ideal scenario:

◮ I give the system a type, say g :: (α → Bool) → [α] → [α].
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Automatic Generation of Counterexamples

The ideal scenario:

◮ I give the system a type, say g :: (α → Bool) → [α] → [α].

◮ The system gives me the free theorem. Here:

for strict f , g p (map f l) = map f (g (p ◦ f ) l)

◮ I ask: why must f be strict? What if it were not?

◮ The system gives me concrete g, p, l , and (nonstrict) f

that refute the thus naivified free theorem.
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Idea 1: First Capture Non-Counterexamples

Replace
Γ ⊢ t : τ → τ
Γ ⊢ (fix t) : τ

by
Γ ⊢ τ ∈ Pointed Γ ⊢ t : τ → τ

Γ ⊢ (fix t) : τ
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Idea 1: First Capture Non-Counterexamples
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by
Γ ⊢ τ ∈ Pointed Γ ⊢ t : τ → τ

Γ ⊢ (fix t) : τ
,

where

α∗ ∈ Γ
Γ ⊢ α ∈ Pointed

Γ ⊢ τ2 ∈ Pointed
Γ ⊢ τ1 → τ2 ∈ Pointed

Γ ⊢ Bool ∈ Pointed Γ ⊢ [τ ] ∈ Pointed

Gain: Relations interpreting non-Pointed types need not be
strict anymore, but parametricity theorem still holds!
[Launchbury & Paterson 1996]
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Idea 2: Search for Terms in the Difference Set

For the example, search for a g such that

α∗ ⊢ g : (α → Bool) → [α] → [α]

but not
α ⊢ g : (α → Bool) → [α] → [α]
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Idea 3: Use the Curry/Howard-Isomorphism

◮ [Dyckhoff 1992] gives a proof search procedure for
intuitionistic propositional logic.
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Idea 3: Use the Curry/Howard-Isomorphism

◮ [Dyckhoff 1992] gives a proof search procedure for
intuitionistic propositional logic.

◮ It has been turned into a fix-free term generator for
polymorphic types (Djinn, by L. Augustsson).

◮ We mix it with our rule

Γ ⊢ τ /∈ Pointed
Γ 
 (fix (λx : τ.x)) : τ

and perform further adaptations . . .
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An Example
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Another Example
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Another Example

Future work:

◮ investigate soundness and completeness more formally
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Another Example

Future work:

◮ investigate soundness and completeness more formally

◮ study counterexample generation in the presence of
selective strictness, finite failures, . . .
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Some Interesting Further Reading

◮ Program transformations based on free theorems:
[Gill et al. 1993], . . . , [Svenningsson 2002], . . . ,
[Pardo et al. 2009]
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