
Free Theorems and “Real” Languages

Janis Voigtländer

Technische Universität Dresden

April 24th, 2009

Free Theorems and Applications

As we have seen, types:

◮ constrain the behaviour of programs

1

Free Theorems and Applications

As we have seen, types:

◮ constrain the behaviour of programs

◮ thus lead to interesting insights about programs

1

Free Theorems and Applications

As we have seen, types:

◮ constrain the behaviour of programs

◮ thus lead to interesting insights about programs

◮ combine well with algebraic techniques, equational reasoning

1

Free Theorems and Applications

As we have seen, types:

◮ constrain the behaviour of programs

◮ thus lead to interesting insights about programs

◮ combine well with algebraic techniques, equational reasoning

Application areas include:

◮ efficiency-improving program transformations

◮ more specific domains

1

Free Theorems and Applications

As we have seen, types:

◮ constrain the behaviour of programs

◮ thus lead to interesting insights about programs

◮ combine well with algebraic techniques, equational reasoning

Application areas include:

◮ efficiency-improving program transformations

◮ more specific domains

But:

◮ We could ask for more (expressive) type features.

1

Free Theorems and Applications

As we have seen, types:

◮ constrain the behaviour of programs

◮ thus lead to interesting insights about programs

◮ combine well with algebraic techniques, equational reasoning

Application areas include:

◮ efficiency-improving program transformations

◮ more specific domains

But:

◮ We could ask for more (expressive) type features.

◮ We have not been considering a full programming language.

1

Example Feature: Type Classes [Wadler & Blott 1989]

We used that for every

get :: [α] → [α]

we have
map f (get l) = get (map f l)

for arbitrary f and l .

2

Example Feature: Type Classes [Wadler & Blott 1989]

We used that for every

get :: [α] → [α]

we have
map f (get l) = get (map f l)

for arbitrary f and l .

What about
get :: Eq α ⇒ [α] → [α] ?

2

Example Feature: Type Classes [Wadler & Blott 1989]

We used that for every

get :: [α] → [α]

we have
map f (get l) = get (map f l)

for arbitrary f and l .

What about
get :: Eq α ⇒ [α] → [α] ?

The above free theorem fails!

Consider, e.g., get = nub, f = const 1, and l = [1, 2].

2

Why map f (get l) = get (map f l), Intuitively

◮ get :: [α] → [α] must work uniformly for every instantiation
of α.

◮ The output list can only contain elements from the input list l .

◮ Which, and in which order/multiplicity, can only be decided
based on l .

◮ The only means for this decision is to inspect the length of l .

◮ The lists (map f l) and l always have equal length.

◮ get always chooses “the same” elements from (map f l) for
output as it does from l , except that in the former case it
outputs their images under f .

◮ (get (map f l)) is equivalent to (map f (get l)).

◮ That is what was claimed!

3

Why map f (get l) = get (map f l), Intuitively

◮ get :: Eq α ⇒ [α] → [α] must work uniformly for every
instantiation of α.

4

Why map f (get l) = get (map f l), Intuitively

◮ get :: Eq α ⇒ [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .

4

Why map f (get l) = get (map f l), Intuitively

◮ get :: Eq α ⇒ [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .
◮ Which, and in which order/multiplicity, can only be decided

based on l .

4

Why map f (get l) = get (map f l), Intuitively

◮ get :: Eq α ⇒ [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .
◮ Which, and in which order/multiplicity, can only be decided

based on l .
◮ The only means for this decision is to inspect the length of l .

4

Why map f (get l) = get (map f l), Intuitively

◮ get :: Eq α ⇒ [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .
◮ Which, and in which order/multiplicity, can only be decided

based on l .
◮ The only means for this decision is to inspect the length of l .

 Not true! Also possible: check elements of l for equality.

4

Why map f (get l) = get (map f l), Intuitively

◮ get :: Eq α ⇒ [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .
◮ Which, and in which order/multiplicity, can only be decided

based on l .
◮ The only means for this decision is to inspect the length of l .

 Not true! Also possible: check elements of l for equality.

◮ The lists (map f l) and l always have equal length.

4

Why map f (get l) = get (map f l), Intuitively

◮ get :: Eq α ⇒ [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .
◮ Which, and in which order/multiplicity, can only be decided

based on l .
◮ The only means for this decision is to inspect the length of l .

 Not true! Also possible: check elements of l for equality.

◮ The lists (map f l) and l always have equal length.

But equality checks on corresponding elements are not always
guaranteed to have the same outcome!

4

Why map f (get l) = get (map f l), Intuitively

◮ get :: Eq α ⇒ [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .
◮ Which, and in which order/multiplicity, can only be decided

based on l .
◮ The only means for this decision is to inspect the length of l .

 Not true! Also possible: check elements of l for equality.

◮ The lists (map f l) and l always have equal length.

But equality checks on corresponding elements are not always
guaranteed to have the same outcome! They are, if f is “injective”.

4

Why map f (get l) = get (map f l), Intuitively

◮ get :: Eq α ⇒ [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .
◮ Which, and in which order/multiplicity, can only be decided

based on l .
◮ The only means for this decision is to inspect the length of l .

 Not true! Also possible: check elements of l for equality.

◮ The lists (map f l) and l always have equal length.

But equality checks on corresponding elements are not always
guaranteed to have the same outcome! They are, if f is “injective”.

◮ Then, get always chooses “the same” elements from
(map f l) for output as it does from l ,

4

Why map f (get l) = get (map f l), Intuitively

◮ get :: Eq α ⇒ [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .
◮ Which, and in which order/multiplicity, can only be decided

based on l .
◮ The only means for this decision is to inspect the length of l .

 Not true! Also possible: check elements of l for equality.

◮ The lists (map f l) and l always have equal length.

But equality checks on corresponding elements are not always
guaranteed to have the same outcome! They are, if f is “injective”.

◮ Then, get always chooses “the same” elements from
(map f l) for output as it does from l , except that in the
former case it outputs their images under f .

4

Why map f (get l) = get (map f l), Intuitively

◮ get :: Eq α ⇒ [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .
◮ Which, and in which order/multiplicity, can only be decided

based on l .
◮ The only means for this decision is to inspect the length of l .

 Not true! Also possible: check elements of l for equality.

◮ The lists (map f l) and l always have equal length.

But equality checks on corresponding elements are not always
guaranteed to have the same outcome! They are, if f is “injective”.

◮ Then, get always chooses “the same” elements from
(map f l) for output as it does from l , except that in the
former case it outputs their images under f .

◮ (get (map f l)) is equivalent to (map f (get l)).

4

Why map f (get l) = get (map f l), Intuitively

◮ get :: Eq α ⇒ [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .
◮ Which, and in which order/multiplicity, can only be decided

based on l .
◮ The only means for this decision is to inspect the length of l .

 Not true! Also possible: check elements of l for equality.

◮ The lists (map f l) and l always have equal length.

But equality checks on corresponding elements are not always
guaranteed to have the same outcome! They are, if f is “injective”.

◮ Then, get always chooses “the same” elements from
(map f l) for output as it does from l , except that in the
former case it outputs their images under f .

◮ (get (map f l)) is equivalent to (map f (get l)).
◮ This gives a revised free theorem.

4

More Formally: Dictionary Translation

Every
get :: Eq α ⇒ [α] → [α]

can be seen as a

get′ :: (α → α → Bool) → [α] → [α]

5

More Formally: Dictionary Translation

Every
get :: Eq α ⇒ [α] → [α]

can be seen as a

get′ :: (α → α → Bool) → [α] → [α] ,

where for every type τ that is an instance of Eq,

getτ = get′τ (==)τ

5

More Formally: Dictionary Translation

Every
get :: Eq α ⇒ [α] → [α]

can be seen as a

get′ :: (α → α → Bool) → [α] → [α] ,

where for every type τ that is an instance of Eq,

getτ = get′τ (==)τ

The free theorem for get′ is that

map f (get′ p l) = get′ q (map f l)

provided that for every x and y , p x y = q (f x) (f y).

5

More Formally: Dictionary Translation

Every
get :: Eq α ⇒ [α] → [α]

can be seen as a

get′ :: (α → α → Bool) → [α] → [α] ,

where for every type τ that is an instance of Eq,

getτ = get′τ (==)τ

The free theorem for get′ is that

map f (get′ p l) = get′ q (map f l)

provided that for every x and y , p x y = q (f x) (f y).

This means that

map f (get′ (==) l) = get′ (==) (map f l)

provided that for every x and y , x == y iff (f x) == (f y).
5

More Formally: Dictionary Translation

Every
get :: Eq α ⇒ [α] → [α]

can be seen as a

get′ :: (α → α → Bool) → [α] → [α] ,

where for every type τ that is an instance of Eq,

getτ = get′τ (==)τ

The free theorem for get′ is that

map f (get′ p l) = get′ q (map f l)

provided that for every x and y , p x y = q (f x) (f y).

This means that

map f (get l) = get (map f l)

provided that for every x and y , x == y iff (f x) == (f y).
5

Another Feature: General Recursion

We claimed that for every

g :: (α → Bool) → [α] → [α]

we have
g p (map f l) = map f (g (p ◦ f) l)

for arbitrary p, f , and l .

6

Another Feature: General Recursion

We claimed that for every

g :: (α → Bool) → [α] → [α]

we have
g p (map f l) = map f (g (p ◦ f) l)

for arbitrary p, f , and l .

What about
g :: (α → Bool) → [α] → [α]
g p l = [head (g p l)] ?

6

Another Feature: General Recursion

We claimed that for every

g :: (α → Bool) → [α] → [α]

we have
g p (map f l) = map f (g (p ◦ f) l)

for arbitrary p, f , and l .

What about
g :: (α → Bool) → [α] → [α]
g p l = [head (g p l)] ?

The above free theorem fails!

Consider, e.g., p = id, f = const True, and l = [].

6

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .

◮ Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

◮ The only means for this decision are to inspect the length of l

and to check the outcome of p on its elements.

◮ The lists (map f l) and l always have equal length.

◮ Applying p to an element of (map f l) always has the same
outcome as applying (p ◦ f) to the corresponding element of l .

◮ g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f) from l , except that in the
former case it outputs their images under f .

◮ (g p (map f l)) is equivalent to (map f (g (p ◦ f) l)).

◮ That is what was claimed!

7

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

8

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .

8

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .

 Not true! Also possible: ⊥.

8

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .

 Not true! Also possible: ⊥.

◮ Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

8

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .

 Not true! Also possible: ⊥.

◮ Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

◮ The only means for this decision are to inspect the length of l

and to check the outcome of p on its elements.

8

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .

 Not true! Also possible: ⊥.

◮ Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

◮ The only means for this decision are to inspect the length of l

and to check the outcome of p on its elements.

 Not true! Also possible: checking outcome of p on ⊥.

8

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .

 Not true! Also possible: ⊥.

◮ Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

◮ The only means for this decision are to inspect the length of l

and to check the outcome of p on its elements.

 Not true! Also possible: checking outcome of p on ⊥.

◮ The lists (map f l) and l always have equal length.

8

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .

 Not true! Also possible: ⊥.

◮ Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

◮ The only means for this decision are to inspect the length of l

and to check the outcome of p on its elements.

 Not true! Also possible: checking outcome of p on ⊥.

◮ The lists (map f l) and l always have equal length.
◮ Applying p to an element of (map f l) always has the same

outcome as applying (p ◦ f) to the corresponding element of l .

8

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .

 Not true! Also possible: ⊥.

◮ Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

◮ The only means for this decision are to inspect the length of l

and to check the outcome of p on its elements.

 Not true! Also possible: checking outcome of p on ⊥.

◮ The lists (map f l) and l always have equal length.
◮ Applying p to an element of (map f l) always has the same

outcome as applying (p ◦ f) to the corresponding element of l .

Applying p to ⊥ has the same outcome as applying (p ◦ f) to ⊥,
provided f is strict (f ⊥ = ⊥).

8

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .

 Not true! Also possible: ⊥.

◮ Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

◮ The only means for this decision are to inspect the length of l

and to check the outcome of p on its elements.

 Not true! Also possible: checking outcome of p on ⊥.

◮ The lists (map f l) and l always have equal length.
◮ Applying p to an element of (map f l) always has the same

outcome as applying (p ◦ f) to the corresponding element of l .

Applying p to ⊥ has the same outcome as applying (p ◦ f) to ⊥,
provided f is strict (f ⊥ = ⊥).

◮ g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f) from l ,

8

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

◮ The output list can only contain elements from the input list l .

 Not true! Also possible: ⊥.

◮ Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

◮ The only means for this decision are to inspect the length of l

and to check the outcome of p on its elements.

 Not true! Also possible: checking outcome of p on ⊥.

◮ The lists (map f l) and l always have equal length.
◮ Applying p to an element of (map f l) always has the same

outcome as applying (p ◦ f) to the corresponding element of l .

Applying p to ⊥ has the same outcome as applying (p ◦ f) to ⊥,
provided f is strict (f ⊥ = ⊥).

◮ g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f) from l , except that in the
former case it outputs their images under f .

8

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

◮ The output list can only contain elements from the input list l .

 Not true! Also possible: ⊥.

◮ Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

◮ The only means for this decision are to inspect the length of l

and to check the outcome of p on its elements.

 Not true! Also possible: checking outcome of p on ⊥.

◮ The lists (map f l) and l always have equal length.
◮ Applying p to an element of (map f l) always has the same

outcome as applying (p ◦ f) to the corresponding element of l .

Applying p to ⊥ has the same outcome as applying (p ◦ f) to ⊥,
provided f is strict (f ⊥ = ⊥).

◮ g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f) from l , except that in the
former case it outputs their images under f .

But they may also choose, at the same positions, to output ⊥.
8

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

 Not true! Also possible: ⊥.

◮ Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

◮ The only means for this decision are to inspect the length of l

and to check the outcome of p on its elements.

 Not true! Also possible: checking outcome of p on ⊥.

◮ The lists (map f l) and l always have equal length.
◮ Applying p to an element of (map f l) always has the same

outcome as applying (p ◦ f) to the corresponding element of l .

Applying p to ⊥ has the same outcome as applying (p ◦ f) to ⊥,
provided f is strict (f ⊥ = ⊥).

◮ g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f) from l , except that in the
former case it outputs their images under f .

But they may also choose, at the same positions, to output ⊥.

◮ (g p (map f l)) is equivalent to (map f (g (p ◦ f) l)),
8

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

◮ Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

◮ The only means for this decision are to inspect the length of l

and to check the outcome of p on its elements.

 Not true! Also possible: checking outcome of p on ⊥.

◮ The lists (map f l) and l always have equal length.
◮ Applying p to an element of (map f l) always has the same

outcome as applying (p ◦ f) to the corresponding element of l .

Applying p to ⊥ has the same outcome as applying (p ◦ f) to ⊥,
provided f is strict (f ⊥ = ⊥).

◮ g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f) from l , except that in the
former case it outputs their images under f .

But they may also choose, at the same positions, to output ⊥.

◮ (g p (map f l)) is equivalent to (map f (g (p ◦ f) l)),
if f is strict.

8

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

◮ Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

◮ The only means for this decision are to inspect the length of l

and to check the outcome of p on its elements.

 Not true! Also possible: checking outcome of p on ⊥.

◮ The lists (map f l) and l always have equal length.
◮ Applying p to an element of (map f l) always has the same

outcome as applying (p ◦ f) to the corresponding element of l .

Applying p to ⊥ has the same outcome as applying (p ◦ f) to ⊥,
provided f is strict (f ⊥ = ⊥).

◮ g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f) from l , except that in the
former case it outputs their images under f .

But they may also choose, at the same positions, to output ⊥.

◮ (g p (map f l)) is equivalent to (map f (g (p ◦ f) l)),
if f is strict.

8

Recall: The Polymorphic Lambda Calculus

Types: τ := α | τ → τ | ∀α.τ

Terms: t := x | λx : τ.t | t t | Λα.t | t τ

Γ, x : τ ⊢ x : τ [[x]]θ,σ = σ(x)

Γ, x : τ1 ⊢ t : τ2

Γ ⊢ (λx : τ1.t) : τ1 → τ2
[[λx : τ1.t]]θ,σ a = [[t]]θ,σ[x 7→a]

Γ ⊢ t : τ1 → τ2 Γ ⊢ u : τ1

Γ ⊢ (t u) : τ2
[[t u]]θ,σ = [[t]]θ,σ [[u]]θ,σ

α,Γ ⊢ t : τ

Γ ⊢ (Λα.t) : ∀α.τ
[[Λα.t]]θ,σ S = [[t]]θ[α7→S],σ

Γ ⊢ t : ∀α.τ
Γ ⊢ (t τ ′) : τ [τ ′/α]

[[t τ ′]]θ,σ = [[t]]θ,σ [[τ ′]]θ

9

Adding General Recursion

Terms: t := · · · | fix t

10

Adding General Recursion

Terms: t := · · · | fix t

Γ ⊢ t : τ → τ
Γ ⊢ (fix t) : τ

10

Adding General Recursion

Terms: t := · · · | fix t

Γ ⊢ t : τ → τ
Γ ⊢ (fix t) : τ

To provide semantics, types are interpreted as pointed complete
partial orders now, and:

[[fix t]]θ,σ =
⊔

i≥0

([[t]]iθ,σ ⊥).

10

Adding General Recursion

Terms: t := · · · | fix t

Γ ⊢ t : τ → τ
Γ ⊢ (fix t) : τ

To provide semantics, types are interpreted as pointed complete
partial orders now, and:

[[fix t]]θ,σ =
⊔

i≥0

([[t]]iθ,σ ⊥).

And what about the parametricity theorem?

10

Adding General Recursion

Terms: t := · · · | fix t

Γ ⊢ t : τ → τ
Γ ⊢ (fix t) : τ

To provide semantics, types are interpreted as pointed complete
partial orders now, and:

[[fix t]]θ,σ =
⊔

i≥0

([[t]]iθ,σ ⊥).

And what about the parametricity theorem?

The relevant inductive case is:

Γ ⊢ t : τ → τ

Γ ⊢ (fix t) : τ

10

Adding General Recursion

Terms: t := · · · | fix t

Γ ⊢ t : τ → τ
Γ ⊢ (fix t) : τ

To provide semantics, types are interpreted as pointed complete
partial orders now, and:

[[fix t]]θ,σ =
⊔

i≥0

([[t]]iθ,σ ⊥).

And what about the parametricity theorem?

The relevant inductive case is:

Γ ⊢ t : τ → τ

([[fix t]]θ1,σ1
, [[fix t]]θ2,σ2

) ∈ ∆τ,ρ

10

Adding General Recursion

Terms: t := · · · | fix t

Γ ⊢ t : τ → τ
Γ ⊢ (fix t) : τ

To provide semantics, types are interpreted as pointed complete
partial orders now, and:

[[fix t]]θ,σ =
⊔

i≥0

([[t]]iθ,σ ⊥).

And what about the parametricity theorem?

The relevant inductive case is:

([[t]]θ1,σ1
, [[t]]θ2,σ2

) ∈ ∆τ→τ,ρ

([[fix t]]θ1,σ1
, [[fix t]]θ2,σ2

) ∈ ∆τ,ρ

10

Adding General Recursion

Terms: t := · · · | fix t

Γ ⊢ t : τ → τ
Γ ⊢ (fix t) : τ

To provide semantics, types are interpreted as pointed complete
partial orders now, and:

[[fix t]]θ,σ =
⊔

i≥0

([[t]]iθ,σ ⊥).

And what about the parametricity theorem?

The relevant inductive case is:

∀(a1, a2) ∈ ∆τ,ρ. ([[t]]θ1,σ1
a1, [[t]]θ2,σ2

a2) ∈ ∆τ,ρ

([[fix t]]θ1,σ1
, [[fix t]]θ2,σ2

) ∈ ∆τ,ρ

10

Adding General Recursion

Terms: t := · · · | fix t

Γ ⊢ t : τ → τ
Γ ⊢ (fix t) : τ

To provide semantics, types are interpreted as pointed complete
partial orders now, and:

[[fix t]]θ,σ =
⊔

i≥0

([[t]]iθ,σ ⊥).

And what about the parametricity theorem?

The relevant inductive case is:

∀(a1, a2) ∈ ∆τ,ρ. ([[t]]θ1,σ1
a1, [[t]]θ2,σ2

a2) ∈ ∆τ,ρ

([[fix t]]θ1,σ1
, [[fix t]]θ2,σ2

) ∈ ∆τ,ρ

The parametricity theorem still holds, provided all relations are
strict and continuous.

10

Automatic Generation of Free Theorems

At http://linux.tcs.inf.tu-dresden.de/∼voigt/ft:

11

http://linux.tcs.inf.tu-dresden.de/~voigt/ft

Adding Selective Strictness

Terms: t := · · · | seq t t

12

Adding Selective Strictness

Terms: t := · · · | seq t t

Γ ⊢ t1 : τ1 Γ ⊢ t2 : τ2

Γ ⊢ (seq t1 t2) : τ2

12

Adding Selective Strictness

Terms: t := · · · | seq t t

Γ ⊢ t1 : τ1 Γ ⊢ t2 : τ2

Γ ⊢ (seq t1 t2) : τ2

Semantics:

[[seq t1 t2]]θ,σ =

{

⊥ if [[t1]]θ,σ = ⊥

[[t2]]θ,σ if [[t1]]θ,σ 6= ⊥.

12

Adding Selective Strictness

Terms: t := · · · | seq t t

Γ ⊢ t1 : τ1 Γ ⊢ t2 : τ2

Γ ⊢ (seq t1 t2) : τ2

Semantics:

[[seq t1 t2]]θ,σ =

{

⊥ if [[t1]]θ,σ = ⊥

[[t2]]θ,σ if [[t1]]θ,σ 6= ⊥.

The parametricity theorem is jeopardised again!

12

Without seq, g p (map f l) = map f (g (p ◦ f) l)

◮ g :: (α → Bool) → [α] → [α] must work uniformly.
◮ The output list can only contain elements from the input list l

and ⊥.
◮ Which, and in which order/multiplicity, can only be decided

based on l and the input predicate p.
◮ The only means for this decision are to inspect the length of l

and to check the outcome of p on its elements and on ⊥.
◮ The lists (map f l) and l always have equal length.
◮ Applying p to an element of (map f l) always has the same

outcome as applying (p ◦ f) to the corresponding element of l .
◮ Applying p to ⊥ has the same outcome as applying (p ◦ f),

provided f is strict.
◮ g with p always chooses “the same” elements from (map f l)

for output as does g with (p ◦ f) from l , except that in the
former case it outputs their images under f , and they may
also choose, at the same positions, to output ⊥.

◮ (g p (map f l)) = (map f (g (p ◦ f) l)), if f is strict.
13

With seq, g p (map f l) = map f (g (p ◦ f) l) ?

◮ g :: (α → Bool) → [α] → [α] must work uniformly.

14

With seq, g p (map f l) = map f (g (p ◦ f) l) ?

◮ g :: (α → Bool) → [α] → [α] must work uniformly.

◮ The output list can only contain elements from the input list l

and ⊥.

14

With seq, g p (map f l) = map f (g (p ◦ f) l) ?

◮ g :: (α → Bool) → [α] → [α] must work uniformly.

◮ The output list can only contain elements from the input list l

and ⊥.

◮ Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

14

With seq, g p (map f l) = map f (g (p ◦ f) l) ?

◮ g :: (α → Bool) → [α] → [α] must work uniformly.

◮ The output list can only contain elements from the input list l

and ⊥.

◮ Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

◮ The only means for this decision are to inspect the length of l

and to check the outcome of p on its elements and on ⊥.

14

With seq, g p (map f l) = map f (g (p ◦ f) l) ?

◮ g :: (α → Bool) → [α] → [α] must work uniformly.

◮ The output list can only contain elements from the input list l

and ⊥.

◮ Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

◮ The only means for this decision are to inspect the length of l

and to check the outcome of p on its elements and on ⊥.

 Not true! Also possible:

◮ checking elements from l for being ⊥

◮ checking p for being ⊥

14

With seq, g p (map f l) = map f (g (p ◦ f) l) ?

◮ g :: (α → Bool) → [α] → [α] must work uniformly.

◮ The output list can only contain elements from the input list l

and ⊥.

◮ Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

◮ The only means for this decision are to inspect the length of l

and to check the outcome of p on its elements and on ⊥.

 Not true! Also possible:

◮ checking elements from l for being ⊥

◮ checking p for being ⊥

. . . ???

14

Revising Free Theorems

[Wadler 1989] : for every g :: (α → Bool) → [α] → [α],

g p (map f l) = map f (g (p ◦ f) l)

◮ if f strict.

15

Revising Free Theorems

[Wadler 1989] : for every g :: (α → Bool) → [α] → [α],

g p (map f l) = map f (g (p ◦ f) l)

◮ if f strict.

[Johann & V. 2004] : in presence of seq, if additionally:

◮ p 6= ⊥,

◮ f total (∀x 6= ⊥. f x 6= ⊥).

15

Revising Free Theorems

[Wadler 1989] : for every g :: (α → Bool) → [α] → [α],

g p (map f l) = map f (g (p ◦ f) l)

◮ if f strict.

[Johann & V. 2004] : in presence of seq, if additionally:

◮ p 6= ⊥,

◮ f total (∀x 6= ⊥. f x 6= ⊥).

[Johann & V. 2009] : take finite failures into account

[Stenger & V. 2009] : take imprecise error semantics into account

15

Automatic Generation of Counterexamples

The ideal scenario:

◮ I give the system a type, say g :: (α → Bool) → [α] → [α].

16

Automatic Generation of Counterexamples

The ideal scenario:

◮ I give the system a type, say g :: (α → Bool) → [α] → [α].

◮ The system gives me the free theorem. Here:

for strict f , g p (map f l) = map f (g (p ◦ f) l)

16

Automatic Generation of Counterexamples

The ideal scenario:

◮ I give the system a type, say g :: (α → Bool) → [α] → [α].

◮ The system gives me the free theorem. Here:

for strict f , g p (map f l) = map f (g (p ◦ f) l)

◮ I ask: why must f be strict? What if it were not?

16

Automatic Generation of Counterexamples

The ideal scenario:

◮ I give the system a type, say g :: (α → Bool) → [α] → [α].

◮ The system gives me the free theorem. Here:

for strict f , g p (map f l) = map f (g (p ◦ f) l)

◮ I ask: why must f be strict? What if it were not?

◮ The system gives me concrete g, p, l , and (nonstrict) f

that refute the thus naivified free theorem.

16

Idea 1: First Capture Non-Counterexamples

Replace
Γ ⊢ t : τ → τ
Γ ⊢ (fix t) : τ

by
Γ ⊢ τ ∈ Pointed Γ ⊢ t : τ → τ

Γ ⊢ (fix t) : τ

17

Idea 1: First Capture Non-Counterexamples

Replace
Γ ⊢ t : τ → τ
Γ ⊢ (fix t) : τ

by
Γ ⊢ τ ∈ Pointed Γ ⊢ t : τ → τ

Γ ⊢ (fix t) : τ
,

where

α∗ ∈ Γ
Γ ⊢ α ∈ Pointed

Γ ⊢ τ2 ∈ Pointed
Γ ⊢ τ1 → τ2 ∈ Pointed

Γ ⊢ Bool ∈ Pointed Γ ⊢ [τ] ∈ Pointed

17

Idea 1: First Capture Non-Counterexamples

Replace
Γ ⊢ t : τ → τ
Γ ⊢ (fix t) : τ

by
Γ ⊢ τ ∈ Pointed Γ ⊢ t : τ → τ

Γ ⊢ (fix t) : τ
,

where

α∗ ∈ Γ
Γ ⊢ α ∈ Pointed

Γ ⊢ τ2 ∈ Pointed
Γ ⊢ τ1 → τ2 ∈ Pointed

Γ ⊢ Bool ∈ Pointed Γ ⊢ [τ] ∈ Pointed

Gain: Relations interpreting non-Pointed types need not be
strict anymore, but parametricity theorem still holds!
[Launchbury & Paterson 1996]

17

Idea 2: Search for Terms in the Difference Set

For the example, search for a g such that

α∗ ⊢ g : (α → Bool) → [α] → [α]

but not
α ⊢ g : (α → Bool) → [α] → [α]

18

Idea 2: Search for Terms in the Difference Set

For the example, search for a g such that

α∗ ⊢ g : (α → Bool) → [α] → [α]

but not
α ⊢ g : (α → Bool) → [α] → [α]

Natural first rule:

Γ ⊢ τ /∈ Pointed
Γ
 (fix (λx : τ.x)) : τ

18

Idea 2: Search for Terms in the Difference Set

For the example, search for a g such that

α∗ ⊢ g : (α → Bool) → [α] → [α]

but not
α ⊢ g : (α → Bool) → [α] → [α]

Natural first rule:

Γ ⊢ τ /∈ Pointed
Γ
 (fix (λx : τ.x)) : τ

Problem: For term search, not all rules are “syntax-directed”.

18

Idea 2: Search for Terms in the Difference Set

For the example, search for a g such that

α∗ ⊢ g : (α → Bool) → [α] → [α]

but not
α ⊢ g : (α → Bool) → [α] → [α]

Natural first rule:

Γ ⊢ τ /∈ Pointed
Γ
 (fix (λx : τ.x)) : τ

Problem: For term search, not all rules are “syntax-directed”.

Particularly:
Γ ⊢ t : τ1 → τ2 Γ ⊢ u : τ1

Γ ⊢ (t u) : τ2

18

Idea 2: Search for Terms in the Difference Set

For the example, search for a g such that

α∗ ⊢ g : (α → Bool) → [α] → [α]

but not
α ⊢ g : (α → Bool) → [α] → [α]

Natural first rule:

Γ ⊢ τ /∈ Pointed
Γ
 (fix (λx : τ.x)) : τ

Problem: For term search, not all rules are “syntax-directed”.

Particularly:
Γ ⊢ t : τ1 → τ2 Γ ⊢ u : τ1

Γ ⊢ (t u) : τ2

18

Idea 2: Search for Terms in the Difference Set

For the example, search for a g such that

α∗ ⊢ g : (α → Bool) → [α] → [α]

but not
α ⊢ g : (α → Bool) → [α] → [α]

Natural first rule:

Γ ⊢ τ /∈ Pointed
Γ
 (fix (λx : τ.x)) : τ

Problem: For term search, not all rules are “syntax-directed”.

Particularly:
Γ ⊢ τ1 → τ2 Γ ⊢ τ1

Γ ⊢ τ2

18

Idea 3: Use the Curry/Howard-Isomorphism

◮ [Dyckhoff 1992] gives a proof search procedure for
intuitionistic propositional logic.

19

Idea 3: Use the Curry/Howard-Isomorphism

◮ [Dyckhoff 1992] gives a proof search procedure for
intuitionistic propositional logic.

◮ It has been turned into a fix-free term generator for
polymorphic types (Djinn, by L. Augustsson).

19

Idea 3: Use the Curry/Howard-Isomorphism

◮ [Dyckhoff 1992] gives a proof search procedure for
intuitionistic propositional logic.

◮ It has been turned into a fix-free term generator for
polymorphic types (Djinn, by L. Augustsson).

◮ We mix it with our rule

Γ ⊢ τ /∈ Pointed
Γ
 (fix (λx : τ.x)) : τ

and perform further adaptations . . .

19

An Example

20

Another Example

21

Another Example

Future work:

◮ investigate soundness and completeness more formally

21

Another Example

Future work:

◮ investigate soundness and completeness more formally

◮ study counterexample generation in the presence of
selective strictness, finite failures, . . .

21

Some Interesting Further Reading

◮ Program transformations based on free theorems:
[Gill et al. 1993], . . . , [Svenningsson 2002], . . . ,
[Pardo et al. 2009]

22

Some Interesting Further Reading

◮ Program transformations based on free theorems:
[Gill et al. 1993], . . . , [Svenningsson 2002], . . . ,
[Pardo et al. 2009]

◮ Parametricity in operational semantics:
[Pitts 2000], [Johann 2002], . . .

22

Some Interesting Further Reading

◮ Program transformations based on free theorems:
[Gill et al. 1993], . . . , [Svenningsson 2002], . . . ,
[Pardo et al. 2009]

◮ Parametricity in operational semantics:
[Pitts 2000], [Johann 2002], . . .

◮ Parametricity for strict languages (“ML, not Haskell”):
[Pitts 2005], [Ahmed 2006], . . . , [Ahmed et al. 2009]

22

Some Interesting Further Reading

◮ Program transformations based on free theorems:
[Gill et al. 1993], . . . , [Svenningsson 2002], . . . ,
[Pardo et al. 2009]

◮ Parametricity in operational semantics:
[Pitts 2000], [Johann 2002], . . .

◮ Parametricity for strict languages (“ML, not Haskell”):
[Pitts 2005], [Ahmed 2006], . . . , [Ahmed et al. 2009]

◮ Parametricity and dynamic typing:
[Washburn & Weirich 2005], [Matthews & Ahmed 2008], . . .

22

Some Interesting Further Reading

◮ Program transformations based on free theorems:
[Gill et al. 1993], . . . , [Svenningsson 2002], . . . ,
[Pardo et al. 2009]

◮ Parametricity in operational semantics:
[Pitts 2000], [Johann 2002], . . .

◮ Parametricity for strict languages (“ML, not Haskell”):
[Pitts 2005], [Ahmed 2006], . . . , [Ahmed et al. 2009]

◮ Parametricity and dynamic typing:
[Washburn & Weirich 2005], [Matthews & Ahmed 2008], . . .

◮ Parametricity and computational effects:
[Møgelberg & Simpson 2007]

22

References I

A.J. Ahmed, D. Dreyer, and A. Rossberg.
State-dependent representation independence.
In Principles of Programming Languages, Proceedings, pages
340–353. ACM Press, 2009.

A.J. Ahmed.
Step-indexed syntactic logical relations for recursive and
quantified types.
In European Symposium on Programming, Proceedings,
volume 3924 of LNCS, pages 69–83. Springer-Verlag, 2006.

R. Dyckhoff.
Contraction-free sequent calculi for intuitionistic logic.
Journal of Symbolic Logic, 57(3):795–807, 1992.

23

References II

A. Gill, J. Launchbury, and S.L. Peyton Jones.
A short cut to deforestation.
In Functional Programming Languages and Computer

Architecture, Proceedings, pages 223–232. ACM Press, 1993.

P. Johann.
A generalization of short-cut fusion and its correctness proof.
Higher-Order and Symbolic Computation, 15(4):273–300,
2002.

P. Johann and J. Voigtländer.
Free theorems in the presence of seq.
In Principles of Programming Languages, Proceedings, pages
99–110. ACM Press, 2004.

24

References III

P. Johann and J. Voigtländer.
A family of syntactic logical relations for the semantics of
Haskell-like languages.
Information and Computation, 207(2):341–368, 2009.

J. Launchbury and R. Paterson.
Parametricity and unboxing with unpointed types.
In European Symposium on Programming, Proceedings,
volume 1058 of LNCS, pages 204–218. Springer-Verlag, 1996.

J. Matthews and A.J. Ahmed.
Parametric polymorphism through run-time sealing or,
theorems for low, low prices!
In European Symposium on Programming, Proceedings,
volume 4960 of LNCS, pages 16–31. Springer-Verlag, 2008.

25

References IV

R.E. Møgelberg and A.K. Simpson.
Relational parametricity for computational effects.
In Logic in Computer Science, Proceedings, pages 346–355.
IEEE Computer Society, 2007.

A. Pardo, J.P. Fernandes, and J. Saraiva.
Shortcut fusion rules for the derivation of circular and
higher-order monadic programs.
In Partial Evaluation and Program Manipulation, Proceedings,
pages 81–90. ACM Press, 2009.

A.M. Pitts.
Parametric polymorphism and operational equivalence.
Mathematical Structures in Computer Science, 10(3):321–359,
2000.

26

References V

A.M. Pitts.
Typed operational reasoning.
In B.C. Pierce, editor, Advanced Topics in Types and

Programming Languages, pages 245–289. MIT Press, 2005.

F. Stenger and J. Voigtländer.
Parametricity for Haskell with imprecise error semantics.
In Typed Lambda Calculi and Applications, Proceedings,
LNCS. Springer-Verlag, 2009.

J. Svenningsson.
Shortcut fusion for accumulating parameters & zip-like
functions.
In International Conference on Functional Programming,

Proceedings, pages 124–132. ACM Press, 2002.

27

References VI

P. Wadler.
Theorems for free!
In Functional Programming Languages and Computer

Architecture, Proceedings, pages 347–359. ACM Press, 1989.

P. Wadler and S. Blott.
How to make ad-hoc polymorphism less ad hoc.
In Principles of Programming Languages, Proceedings, pages
60–76. ACM Press, 1989.

G. Washburn and S. Weirich.
Generalizing parametricity using information-flow.
In Logic in Computer Science, Proceedings, pages 62–71. IEEE
Computer Society, 2005.

28

	Type Classes
	General Recursion
	Selective Strictness
	Counterexample Generation
	References

