Free Theorems and “Real” Languages

Janis Voigtlander

Technische Universitat Dresden

April 24th, 2009

Free Theorems and Applications

As we have seen, types:

» constrain the behaviour of programs

Free Theorems and Applications

As we have seen, types:
» constrain the behaviour of programs

» thus lead to interesting insights about programs

Free Theorems and Applications

As we have seen, types:
» constrain the behaviour of programs
» thus lead to interesting insights about programs

» combine well with algebraic techniques, equational reasoning

Free Theorems and Applications

As we have seen, types:
» constrain the behaviour of programs
» thus lead to interesting insights about programs

» combine well with algebraic techniques, equational reasoning

Application areas include:
» efficiency-improving program transformations

» more specific domains

Free Theorems and Applications

As we have seen, types:
» constrain the behaviour of programs
» thus lead to interesting insights about programs

» combine well with algebraic techniques, equational reasoning

Application areas include:
» efficiency-improving program transformations

» more specific domains

But:

» We could ask for more (expressive) type features.

Free Theorems and Applications

As we have seen, types:
» constrain the behaviour of programs
» thus lead to interesting insights about programs

» combine well with algebraic techniques, equational reasoning

Application areas include:
» efficiency-improving program transformations

» more specific domains

But:
» We could ask for more (expressive) type features.

» We have not been considering a full programming language.

Example Feature: Type Classes [Wadler & Blott 1989]

We used that for every
get it [a] — [o]

we have
map f (get /) = get (map f /)

for arbitrary f and /.

Example Feature: Type Classes [Wadler & Blott 1989]

We used that for every
get it [a] — [o]

we have
map f (get /) = get (map f /)

for arbitrary f and /.

What about
get tEqa=[a] — [o] 7

Example Feature: Type Classes [Wadler & Blott 1989]

We used that for every
get i1 [a] — [q]

we have
map f (get /) = get (map f /)

for arbitrary f and /.

What about
get tEqa=[a] — [o] ?

The above free theorem fails!

Consider, e.g., get = nub, f = const 1, and [= [1,2].

Why map f (get /) = get (map f /), Intuitively

>

get 11 [&] — [a] must work uniformly for every instantiation
of a.

» The output list can only contain elements from the input list /.

» Which, and in which order/multiplicity, can only be decided

based on /.

» The only means for this decision is to inspect the length of /.

» The lists (map f /) and / always have equal length.

get always chooses “the same” elements from (map f /) for
output as it does from /, except that in the former case it
outputs their images under f.

> (get (map f /1)) is equivalent to (map f (get /)).

» That is what was claimed!

Why map f (get /) = get (map f /), Intuitively

» get it Eq o = [a] — [&] must work uniformly for every
instantiation of a.

Why map f (get /) = get (map f /), Intuitively

> get it Eq o = [a] — [&] must work uniformly for every
instantiation of a.
» The output list can only contain elements from the input list /.

Why map f (get /) = get (map f /), Intuitively

> get it Eq o = [a] — [&] must work uniformly for every
instantiation of «.
» The output list can only contain elements from the input list /.

» Which, and in which order/multiplicity, can only be decided
based on /.

Why map f (get /) = get (map f /), Intuitively

> get it Eq o = [a] — [&] must work uniformly for every
instantiation of «.

» The output list can only contain elements from the input list /.

» Which, and in which order/multiplicity, can only be decided
based on /.

» The only means for this decision is to inspect the length of /.

Why map f (get /) = get (map f /), Intuitively

> get it Eq o = [a] — [&] must work uniformly for every
instantiation of «.

» The output list can only contain elements from the input list /.

» Which, and in which order/multiplicity, can only be decided
based on /.

» The only means for this decision is to inspect the length of /.

4 Not true! Also possible: check elements of / for equality.

Why map f (get /) = get (map f /), Intuitively

> get it Eq o = [a] — [&] must work uniformly for every
instantiation of «.

» The output list can only contain elements from the input list /.

» Which, and in which order/multiplicity, can only be decided
based on /.

» The only means for this decision is to inspect the length of /.

4 Not true! Also possible: check elements of / for equality.

» The lists (map f /) and / always have equal length.

Why map f (get /) = get (map f /), Intuitively

> get it Eq o = [a] — [&] must work uniformly for every
instantiation of «.

» The output list can only contain elements from the input list /.

» Which, and in which order/multiplicity, can only be decided
based on /.

» The only means for this decision is to inspect the length of /.

4 Not true! Also possible: check elements of / for equality.
> The lists (map f /) and / always have equal length.

But equality checks on corresponding elements are not always
guaranteed to have the same outcome!

Why map f (get /) = get (map f /), Intuitively

> get it Eq o = [a] — [&] must work uniformly for every
instantiation of «.

» The output list can only contain elements from the input list /.

» Which, and in which order/multiplicity, can only be decided
based on /.

» The only means for this decision is to inspect the length of /.

4 Not true! Also possible: check elements of / for equality.
> The lists (map f /) and / always have equal length.

But equality checks on corresponding elements are not always
guaranteed to have the same outcome! They are, if f is “injective”.

Why map f (get /) = get (map f /), Intuitively

> get it Eq o = [a] — [&] must work uniformly for every
instantiation of «.

» The output list can only contain elements from the input list /.

» Which, and in which order/multiplicity, can only be decided
based on /.

» The only means for this decision is to inspect the length of /.

4 Not true! Also possible: check elements of / for equality.
> The lists (map f /) and / always have equal length.

But equality checks on corresponding elements are not always
guaranteed to have the same outcome! They are, if f is “injective”.

» Then, get always chooses “the same” elements from
(map f /) for output as it does from /,

Why map f (get /) = get (map f /), Intuitively

> get it Eq o = [a] — [&] must work uniformly for every
instantiation of «.

» The output list can only contain elements from the input list /.

» Which, and in which order/multiplicity, can only be decided
based on /.

» The only means for this decision is to inspect the length of /.

4 Not true! Also possible: check elements of / for equality.
> The lists (map f /) and / always have equal length.

But equality checks on corresponding elements are not always
guaranteed to have the same outcome! They are, if f is “injective”.

» Then, get always chooses “the same” elements from
(map f I) for output as it does from /, except that in the
former case it outputs their images under f.

Why map f (get /) = get (map f /), Intuitively

> get it Eq o = [a] — [&] must work uniformly for every
instantiation of «.

» The output list can only contain elements from the input list /.

» Which, and in which order/multiplicity, can only be decided
based on /.

» The only means for this decision is to inspect the length of /.

4 Not true! Also possible: check elements of / for equality.
> The lists (map f /) and / always have equal length.

But equality checks on corresponding elements are not always
guaranteed to have the same outcome! They are, if f is “injective”.
» Then, get always chooses “the same” elements from
(map f /) for output as it does from /, except that in the
former case it outputs their images under f.
> (get (map f /1)) is equivalent to (map 7 (get /)).

Why map f (get /) = get (map f /), Intuitively

> get it Eq o = [a] — [&] must work uniformly for every
instantiation of «.

» The output list can only contain elements from the input list /.

» Which, and in which order/multiplicity, can only be decided
based on /.

» The only means for this decision is to inspect the length of /.

4 Not true! Also possible: check elements of / for equality.

> The lists (map f /) and / always have equal length.
But equality checks on corresponding elements are not always
guaranteed to have the same outcome! They are, if f is “injective”.

» Then, get always chooses “the same” elements from
(map f /) for output as it does from /, except that in the
former case it outputs their images under f.

> (get (map f /1)) is equivalent to (map f (get /)).

» This gives a revised free theorem.

More Formally: Dictionary Translation

Every
get 1 Eq a = [o] — [o]
can be seen as a

get' ;1 (¢ — a — Bool) — [a] — [a]

More Formally: Dictionary Translation

Every
get 1 Eq a = [o] — [o]
can be seen as a
get' ;1 (¢ — a — Bool) — [a] — [q],
where for every type 7 that is an instance of Eq,

get, = get', (==);

More Formally: Dictionary Translation

Every
get 1 Eq a = [o] — [o]
can be seen as a
get' ;1 (¢ — a — Bool) — [a] — [q],
where for every type 7 that is an instance of Eq,

get, = get', (==);

The free theorem for get’ is that
map f (get' pl) = get' q (map f /)
provided that for every x and y, p x y = q (f x) (f y).

More Formally: Dictionary Translation

Every
get 1 Eq a = [o] — [o]
can be seen as a
get' ;1 (¢ — a — Bool) — [a] — [q],
where for every type 7 that is an instance of Eq,

get, = get', (==);

The free theorem for get’ is that

map f (get' pl) = get' q (map f /)
provided that for every x and y, p x y = q (f x) (f y).

This means that

map f (get’ (==)1) = get' (==) (map f /)
provided that for every x and y, x ==y iff (f x) == (f y).

More Formally: Dictionary Translation

Every
get 1 Eq a = [o] — [o]
can be seen as a
get' ;1 (¢ — a — Bool) — [a] — [q],
where for every type 7 that is an instance of Eq,

get, = get', (==);

The free theorem for get’ is that

map f (get' pl) = get' q (map f /)
provided that for every x and y, p x y = q (f x) (f y).

This means that
map f (get /) = get (map f /)
provided that for every x and y, x ==y iff (f x) == (f y).

Another Feature: General Recursion

We claimed that for every
g (o — Bool) — [a] — [q]

we have
gp(map f1) = mapf (g(pof)l)
for arbitrary p, f, and /.

Another Feature: General Recursion

We claimed that for every
g (o — Bool) — [a] — [q]

we have
gp(map f1) = mapf (g(pof)l)
for arbitrary p, f, and /.

What about
g (o — Bool) — [a] — [q]

g pl=[head (g p /)] ?

Another Feature: General Recursion

We claimed that for every
g (o — Bool) — [a] — [q]

we have
gp(map f1) = mapf (g(pof)l)
for arbitrary p, f, and /.

What about
g (o — Bool) — [a] — [q]

g pl=[head (g p /)] ?

The above free theorem fails!

Consider, e.g., p=1id, f = const True, and / = [].

Why g p (map f /) =map f (g (pof) I), Intuitively
» g (o — Bool) — [a] — [a] must work uniformly for every
instantiation of «.
» The output list can only contain elements from the input list /.

» Which, and in which order/multiplicity, can only be decided
based on / and the input predicate p.

» The only means for this decision are to inspect the length of /
and to check the outcome of p on its elements.

» The lists (map f /) and / always have equal length.

» Applying p to an element of (map f /) always has the same
outcome as applying (po f) to the corresponding element of /.

» g with p always chooses “the same” elements from (map f /)
for output as does g with (p o f) from /, except that in the
former case it outputs their images under f.

» (g p (map f 1)) is equivalent to (map f (g (po f) /).

» That is what was claimed!

Why g p (map f /) =map f (g (pof) I), Intuitively

» g (o — Bool) — [a] — [a] must work uniformly for every
instantiation of c.

Why g p (map f /) =map f (g (pof) I), Intuitively

» g (o — Bool) — [a] — [a] must work uniformly for every
instantiation of «.

» The output list can only contain elements from the input list /.

Why g p (map f /) =map f (g (pof) I), Intuitively
» g (a — Bool) — [a] — [@] must work uniformly for every
instantiation of «.

» The output list can only contain elements from the input list /.
4 Not true! Also possible: L.

Why g p (map f /) =map f (g (pof) I), Intuitively

» g (o — Bool) — [a] — [a] must work uniformly for every
instantiation of «.
» The output list can only contain elements from the input list /.
4 Not true! Also possible: L.

» Which, and in which order/multiplicity, can only be decided
based on / and the input predicate p.

Why g p (map f /) =map f (g (pof) I), Intuitively

» g (o — Bool) — [a] — [a] must work uniformly for every
instantiation of «.

» The output list can only contain elements from the input list /.

4 Not true! Also possible: L.

» Which, and in which order/multiplicity, can only be decided
based on / and the input predicate p.

» The only means for this decision are to inspect the length of /
and to check the outcome of p on its elements.

Why g p (map f /) =map f (g (pof) I), Intuitively

» g (o — Bool) — [a] — [a] must work uniformly for every
instantiation of «.
» The output list can only contain elements from the input list /.
4 Not true! Also possible: L.

» Which, and in which order/multiplicity, can only be decided
based on / and the input predicate p.

» The only means for this decision are to inspect the length of /
and to check the outcome of p on its elements.

4 Not true! Also possible: checking outcome of p on L.

Why g p (map f /) =map f (g (pof) I), Intuitively

» g (o — Bool) — [a] — [a] must work uniformly for every
instantiation of «.
» The output list can only contain elements from the input list /.
4 Not true! Also possible: L.

» Which, and in which order/multiplicity, can only be decided
based on / and the input predicate p.
» The only means for this decision are to inspect the length of /
and to check the outcome of p on its elements.
4 Not true! Also possible: checking outcome of p on L.

» The lists (map f /) and | always have equal length.

Why g p (map f /) =map f (g (pof) I), Intuitively

» g (o — Bool) — [a] — [a] must work uniformly for every
instantiation of «.

» The output list can only contain elements from the input list /.

4 Not true! Also possible: L.

» Which, and in which order/multiplicity, can only be decided
based on / and the input predicate p.

» The only means for this decision are to inspect the length of /
and to check the outcome of p on its elements.

4 Not true! Also possible: checking outcome of p on L.

» The lists (map f /) and / always have equal length.
» Applying p to an element of (map f /) always has the same
outcome as applying (po f) to the corresponding element of /.

Why g p (map f /) =map f (g (pof) I), Intuitively

» g (o — Bool) — [a] — [a] must work uniformly for every
instantiation of «.

» The output list can only contain elements from the input list /.

4 Not true! Also possible: L.

» Which, and in which order/multiplicity, can only be decided
based on / and the input predicate p.

» The only means for this decision are to inspect the length of /
and to check the outcome of p on its elements.

4 Not true! Also possible: checking outcome of p on L.

» The lists (map f /) and / always have equal length.
» Applying p to an element of (map f /) always has the same
outcome as applying (po f) to the corresponding element of /.

Applying p to L has the same outcome as applying (po f) to L,
provided f is strict (f L = 1).

Why g p (map f /) =map f (g (pof) I), Intuitively

» g (o — Bool) — [a] — [a] must work uniformly for every
instantiation of «.

» The output list can only contain elements from the input list /.
4 Not true! Also possible: L.
» Which, and in which order/multiplicity, can only be decided
based on / and the input predicate p.
» The only means for this decision are to inspect the length of /
and to check the outcome of p on its elements.
4 Not true! Also possible: checking outcome of p on L.
» The lists (map f /) and / always have equal length.

» Applying p to an element of (map f /) always has the same
outcome as applying (po f) to the corresponding element of /.
Applying p to L has the same outcome as applying (po f) to L,
provided f is strict (f L = 1).

» g with p always chooses “the same” elements from (map f /)
for output as does g with (p o f) from /,

Why g p (map f /) =map f (g (pof) I), Intuitively

» The output list can only contain elements from the input list /.
4 Not true! Also possible: L.

» Which, and in which order/multiplicity, can only be decided
based on / and the input predicate p.

» The only means for this decision are to inspect the length of /
and to check the outcome of p on its elements.

4 Not true! Also possible: checking outcome of p on L.
» The lists (map f /) and / always have equal length.
» Applying p to an element of (map f /) always has the same
outcome as applying (po f) to the corresponding element of /.
Applying p to L has the same outcome as applying (po f) to L,
provided f is strict (f L = 1).
» g with p always chooses “the same” elements from (map f /)
for output as does g with (p o f) from /, except that in the
former case it outputs their images under f.

Why g p (map f /) =map f (g (pof) I), Intuitively

» The output list can only contain elements from the input list /.
4 Not true! Also possible: L.
» Which, and in which order/multiplicity, can only be decided
based on / and the input predicate p.
» The only means for this decision are to inspect the length of /
and to check the outcome of p on its elements.
4 Not true! Also possible: checking outcome of p on L.
» The lists (map f /) and / always have equal length.
» Applying p to an element of (map f /) always has the same
outcome as applying (po f) to the corresponding element of /.
Applying p to L has the same outcome as applying (po f) to L,
provided f is strict (f L = 1).
» g with p always chooses “the same” elements from (map f /)
for output as does g with (p o f) from /, except that in the
former case it outputs their images under f.

But they may also choose, at the same positions, to output L.

Why g p (map f /) =map f (g (pof) I), Intuitively

4 Not true! Also possible: L.
» Which, and in which order/multiplicity, can only be decided
based on / and the input predicate p.
» The only means for this decision are to inspect the length of /
and to check the outcome of p on its elements.
4 Not true! Also possible: checking outcome of p on L.
» The lists (map f /) and / always have equal length.
» Applying p to an element of (map f /) always has the same
outcome as applying (po f) to the corresponding element of /.
Applying p to L has the same outcome as applying (po f) to L,
provided f is strict (f L = 1).
» g with p always chooses “the same” elements from (map f /)
for output as does g with (p o f) from /, except that in the
former case it outputs their images under f.

But they may also choose, at the same positions, to output L.

» (g p (map f 1)) is equivalent to (map 7 (g (pof) 1)),

Why g p (map f /) =map f (g (pof) I), Intuitively

» Which, and in which order/multiplicity, can only be decided
based on / and the input predicate p.

» The only means for this decision are to inspect the length of /
and to check the outcome of p on its elements.

4 Not true! Also possible: checking outcome of p on L.

» The lists (map f /) and / always have equal length.
» Applying p to an element of (map f /) always has the same
outcome as applying (po f) to the corresponding element of /.
Applying p to L has the same outcome as applying (po f) to L,
provided f is strict (f L = 1).
» g with p always chooses “the same” elements from (map f /)
for output as does g with (p o f) from /, except that in the
former case it outputs their images under f.

But they may also choose, at the same positions, to output L.

» (g p (map f 1)) is equivalent to (map f (g (pof) 1)),
if f is strict.

Why g p (map f /) =map f (g (pof) I), Intuitively

» Which, and in which order/multiplicity, can only be decided
based on / and the input predicate p.

» The only means for this decision are to inspect the length of /
and to check the outcome of p on its elements.

4 Not true! Also possible: checking outcome of p on L.

» The lists (map f /) and / always have equal length.
» Applying p to an element of (map f /) always has the same
outcome as applying (po f) to the corresponding element of /.

Applying p to L has the same outcome as applying (po f) to L,
provided f is strict (f L = 1).

» g with p always chooses “the same” elements from (map f /)
for output as does g with (p o f) from /, except that in the
former case it outputs their images under f.

But they may also choose, at the same positions, to output L.

» (g p (map f 1)) is equivalent to (map f (g (pof) 1)),
if f is strict.

Recall: The Polymorphic Lambda Calculus
Types: T:=a |7 — 7 | Va.r
Terms: t:=x | M 7t|tt|Nat]|tT
Mx:7kx:71 |[X]]9,a = o(x)

x:mmbEt:m
M= (Ax:mt) i1 — m

|[)\X : Tl.t]]ep a = |[t]]9,a[xn—>a]

Nt — 1 lFu:m
FE(tu):m

[t U]]G,cr = |[t]]0,a [[U]]0,U

a,l+t:7
[(Ao.t) : Yot

|[/\Oé.t]]g70) = |[t]]0[ou—>5],a

[-t:VYarT / . /
T (t7) i el Lt 7o = [thoe 7o

Adding General Recursion

Terms: t:= --- |fixt

10

Adding General Recursion

Terms: t:= --- |fixt

M-t:7r—r

M= (fix t): 7

10

Adding General Recursion
Terms: t:= --- |fixt

(Ft:T—>T
M= (fix t): 7

To provide semantics, types are interpreted as pointed complete
partial orders now, and:

[fix t]o» = |_|([[t]]{,,(r 1).

i>0

10

Adding General Recursion
Terms: t:= --- |fixt

(Ft:T—>T
M= (fix t): 7

To provide semantics, types are interpreted as pointed complete
partial orders now, and:

[fix tlo.. = | |([t]h.0 L)-

i>0

And what about the parametricity theorem?

10

Adding General Recursion
Terms: t:= --- | fix t

l-t:7r—r1
Me(fix t): 7

To provide semantics, types are interpreted as pointed complete
partial orders now, and:

[fix to.o = | | (15, L)-

i>0
And what about the parametricity theorem?
The relevant inductive case is:

MrM-t:7r—r
Me(fix t): 7

10

Adding General Recursion
Terms: t:= --- | fix t

l-t:7r—r1
Me(fix t): 7

To provide semantics, types are interpreted as pointed complete
partial orders now, and:

[fix to.o = | | (15, L)-

i>0
And what about the parametricity theorem?
The relevant inductive case is:

M-t:7r—r7
([[fix t]]91,cr17 [[ﬁx t]]92702) € AT,P

10

Adding General Recursion
Terms: t:= --- | fix t

(Ft:T—>T
M= (fix t): 7

To provide semantics, types are interpreted as pointed complete
partial orders now, and:

[fix to.o = | | (15, L)-

i>0
And what about the parametricity theorem?

The relevant inductive case is:

(IIt]]91,U17 [[t]]927(,2) € AT—mp
([fix t]oy,00. [fix tlo,.00) € Arp

10

Adding General Recursion
Terms: t:= --- | fix t

(Ft:T—>T
M= (fix t): 7

To provide semantics, types are interpreted as pointed complete
partial orders now, and:

[fix to.o = | | (15, L)-

i>0
And what about the parametricity theorem?
The relevant inductive case is:

v(‘917 32) € AT,/J' ([[t]]91,01 ai, l[t]]92,02 32) € AT,P
([fix t]oy,00. [fix tlo,.00) € Arp

10

Adding General Recursion
Terms: t:= --- | fix t

(Ft:T—>T
M= (fix t): 7

To provide semantics, types are interpreted as pointed complete
partial orders now, and:

[fix to.o = | | (15, L)-

i>0
And what about the parametricity theorem?
The relevant inductive case is:

v(‘917 32) € AT,/J' ([[t]]91,01 ai, l[t]]92,02 32) € AT,P
([fix t]oy,00. [fix tlo,.00) € Arp

The parametricity theorem still holds, provided all relations are
strict and continuous.

10

Automatic Generation of Free Theorems

At http://linux.tcs.inf.tu-dresden.de/~voigt/ft:

here and here.

This tool allows to generate free theorems for sublanguages of Haskell as described here.

The source code of the underlying library and a shell-based application using it is available

Please enter a (polymorphic) type, e.g. "(a -> Bool) -> [a] -> [a]" or simply "filter":

Jo :: (a ->Bool) -> [a] -> [a]

Please choose a sublanguage of Haskell:

® no bottoms (hence no general recursion and no selective strictness)
#®igeneral recursion but no selective stricthess

® general recursion and selective strictness

® equational
®inequational

Generate

Please choose a theorem style (without effect in the sublanguage with no bottoms):

11

http://linux.tcs.inf.tu-dresden.de/~voigt/ft

Adding Selective Strictness

Terms: t:= --- |seqtt

12

Adding Selective Strictness

Terms: t:= --- |seqtt

M-t :m Mt

I+ (seq t1 t2) 1Ty

12

Adding Selective Strictness

Terms: t:= --- |seqtt

M-t :m Mt
Fl—(seq t1 t2):7'2

Semantics:

1 if I[t'l:ﬂg,(7 =1

Lseq &], = {[[tzne,a oo # L.

12

Adding Selective Strictness

Terms: t:= --- |seqtt

M-t :m Mt
Fl—(seq t1 t2):7'2

Semantics:

L if [6]p0 = L
[seq t1 t2]p.o = { lulo,

The parametricity theorem is jeopardised again!

|It2]]9,cr if |[t1]]9,a 7& 1.

12

Without seq, g p (map f /) =map f (g (pof) /)

>
>

v

gt (& — Bool) — [a] — [a] must work uniformly.

The output list can only contain elements from the input list /
and L.

Which, and in which order/multiplicity, can only be decided
based on / and the input predicate p.

The only means for this decision are to inspect the length of /
and to check the outcome of p on its elements and on L.
The lists (map f /) and [always have equal length.

Applying p to an element of (map f /) always has the same
outcome as applying (po f) to the corresponding element of /.
Applying p to L has the same outcome as applying (p o f),
provided f is strict.

g with p always chooses “the same” elements from (map f /)
for output as does g with (p o f) from /, except that in the
former case it outputs their images under f, and they may
also choose, at the same positions, to output L.

(g p (map 1)) = (map f (g (pof) 1)), if fis strict.

13

With seq, g p (map f /) =map f (g (pof) /) ?

> g (o — Bool) — [a] — [a] must work uniformly.

14

With seq, g p (map f /) =map f (g (pof) /) ?

> g (o — Bool) — [a] — [a] must work uniformly.
» The output list can only contain elements from the input list /
and L.

14

With seq, g p (map f /) =map f (g (pof) /) ?
> g (o — Bool) — [a] — [a] must work uniformly.

» The output list can only contain elements from the input list /
and L.

» Which, and in which order/multiplicity, can only be decided
based on / and the input predicate p.

14

With seq, g p (map f /) =map f (g (pof) /) ?

> g (o — Bool) — [a] — [a] must work uniformly.
» The output list can only contain elements from the input list /
and L.

» Which, and in which order/multiplicity, can only be decided
based on / and the input predicate p.

» The only means for this decision are to inspect the length of /
and to check the outcome of p on its elements and on L.

14

With seq, g p (map f /) =map f (g (pof) /) ?

> g (o — Bool) — [a] — [a] must work uniformly.
» The output list can only contain elements from the input list /
and L.

» Which, and in which order/multiplicity, can only be decided
based on / and the input predicate p.

» The only means for this decision are to inspect the length of /
and to check the outcome of p on its elements and on L.

4 Not true! Also possible:
» checking elements from [for being L

» checking p for being L

14

With seq, g p (map f /) =map f (g (pof) /) ?

> g (o — Bool) — [a] — [a] must work uniformly.
» The output list can only contain elements from the input list /
and L.

» Which, and in which order/multiplicity, can only be decided
based on / and the input predicate p.

» The only means for this decision are to inspect the length of /
and to check the outcome of p on its elements and on L.

4 Not true! Also possible:
» checking elements from / for being L

» checking p for being L

14

Revising Free Theorems
[Wadler 1989] : for every g :: (o« — Bool) — [a] — [q],
gp(map fl) = mapf (g(pof)l)

> if f strict.

15

Revising Free Theorems
[Wadler 1989] : for every g :: (o« — Bool) — [a] — [q],
gp(map fl) = mapf (g(pof)l)
> if f strict.

[Johann & V. 2004] : in presence of seq, if additionally:

>»p# L,
» f total (Vx # L. f x# 1).

15

Revising Free Theorems

[Wadler 1989] : for every g :: (a« — Bool) — [a] — [a],

gp(map fl) = mapf (g(pof)l)
» if f strict.

[Johann & V. 2004] : in presence of seq, if additionally:

>»p# L,
» f total (Vx # L. f x# 1).

[Johann & V. 2009] : take finite failures into account

[Stenger & V. 2009] : take imprecise error semantics into account

15

Automatic Generation of Counterexamples

The ideal scenario:

» | give the system a type, say g :: (&« — Bool) — [a] — [a].

16

Automatic Generation of Counterexamples

The ideal scenario:

» | give the system a type, say g :: (&« — Bool) — [a] — [a].
» The system gives me the free theorem. Here:

for strict f, gp(mapf /) = mapf (g(pof)l)

16

Automatic Generation of Counterexamples
The ideal scenario:
» | give the system a type, say g :: (&« — Bool) — [a] — [a].
» The system gives me the free theorem. Here:

for strict f, gp(mapf /) = mapf (g(pof)l)

» | ask: why must f be strict? What if it were not?

16

Automatic Generation of Counterexamples
The ideal scenario:
» | give the system a type, say g :: (&« — Bool) — [a] — [a].
» The system gives me the free theorem. Here:
for strict f, gp(mapf /) = mapf (g(pof)l)
» | ask: why must f be strict? What if it were not?

» The system gives me concrete g, p, /, and (nonstrict) f
that refute the thus naivified free theorem.

16

Idea 1: First Capture Non-Counterexamples

Replace
rlEtir—r
M-(fix t): 7
by
=7 € Pointed lFtiT—>r1
M-(fix t): 7

17

Idea 1: First Capture Non-Counterexamples

Replace
(Ft:T—T
M-(fix t): 7

by

[- 7 € Pointed [Ft:T—T

M-(fix t): 7 '

where

o el I 1 € Pointed
' - a0 € Pointed I+ 7m — 7 € Pointed

I Bool € Pointed I+ [r] € Pointed

17

Idea 1: First Capture Non-Counterexamples

Replace
rlEtir—r
M-(fix t): 7
by
=7 € Pointed lFtiT—>r1
M-(fix t): 7 '
where
o el I+ m € Pointed
' - a0 € Pointed I+ 7m — 7 € Pointed
I Bool € Pointed I+ [r] € Pointed

Gain: Relations interpreting non-Pointed types need not be
strict anymore, but parametricity theorem still holds!
[Launchbury & Paterson 1996]

17

Idea 2: Search for Terms in the Difference Set

For the example, search for a g such that
a* Fg:(a— Bool) = [a] — [a]

but not
atg:(a— Bool) — [a] — [a]

18

|dea 2: Search for Terms in the Difference Set
For the example, search for a g such that
a* Fg:(a— Bool) = [a] — [a]
but not

atg:(a— Bool) — [a] — [a]

Natural first rule:

I+ 7 ¢ Pointed
Mk (fix (Ax:7.x)) =7

18

|dea 2: Search for Terms in the Difference Set
For the example, search for a g such that
a* Fg:(a— Bool) = [a] — [a]
but not

atg:(a— Bool) — [a] — [a]

Natural first rule:

I+ 7 ¢ Pointed
Mk (fix (Ax:7.x)) =7

Problem: For term search, not all rules are “syntax-directed”.

18

|dea 2: Search for Terms in the Difference Set
For the example, search for a g such that
a* Fg:(a— Bool) = [a] — [a]
but not

atg:(a— Bool) — [a] — [a]

Natural first rule:

I+ 7 ¢ Pointed
Mk (fix (Ax:7.x)) =7

Problem: For term search, not all rules are “syntax-directed”.

Particularly:
Nt — N-u:m

ME(tu):m

18

|dea 2: Search for Terms in the Difference Set
For the example, search for a g such that
a* Fg:(a— Bool) = [a] — [a]
but not

atg:(a— Bool) — [a] — [a]

Natural first rule:

I+ 7 ¢ Pointed
Mk (fix (Ax:7.x)) =7

Problem: For term search, not all rules are “syntax-directed”.

Particularly:
N —m I+ i

([T2

18

|dea 2: Search for Terms in the Difference Set
For the example, search for a g such that
a* Fg:(a— Bool) = [a] — [a]
but not

atg:(a— Bool) — [a] — [a]

Natural first rule:

I+ 7 ¢ Pointed
Mk (fix (Ax:7.x)) =7

Problem: For term search, not all rules are “syntax-directed”.

Particularly:
N = —-m I+ i

([T2

18

|dea 3: Use the Curry/Howard-Isomorphism

» [Dyckhoff 1992] gives a proof search procedure for
intuitionistic propositional logic.

19

|dea 3: Use the Curry/Howard-Isomorphism

» [Dyckhoff 1992] gives a proof search procedure for
intuitionistic propositional logic.

» It has been turned into a fix-free term generator for
polymorphic types (Djinn, by L. Augustsson).

19

|dea 3: Use the Curry/Howard-Isomorphism

» [Dyckhoff 1992] gives a proof search procedure for
intuitionistic propositional logic.

» It has been turned into a fix-free term generator for
polymorphic types (Djinn, by L. Augustsson).

» We mix it with our rule

I+ 7 ¢ Pointed
Mk (fix (Ax:7.x)) 7

and perform further adaptations ...

19

An Example

The Free Theorem

The theorem generated for functions of the type

f :: (a -> Int) -> Int

forall t1,t2 in TYPES, g :: tl -> t2, g strict.
forall p :: tl -> Int.

forall q 12 -> Int.

(forall x :: tl. p x = q (g x)) ==> (fp = f q)

The Counterexample

By disregarding the strictness condition on g the theorem becomes wrong. The term

‘ f= (\xl-> (x1_|_))

is a counterexample.

By setting tL = t2 = ... = () and

‘g = const ()

the following would be a consequence of the thus "naivified" free theorem:

(fp)y = (fq)

where

P = (\x1 -> 0)

q = (\x1 -> (case x1 of {() -> ©}))

But this is wrong since with the above f it reduces to:

0=_1I_

20

Another Example

The Free Theorem

The theorem generated for functions of the type

‘f i [a] -> Int

is:

forall t1,t2 in TYPES, g :: t1 -> t2, g strict.
forall x :: [t1]. f x = f (map g x)

The Counterexample

Disregarding the strictness condition on g the algorithm found no counterexample.

21

Another Example

The Free Theorem

The theorem generated for functions of the type

‘f::[a] -> Int ‘

is:

forall t1,t2 in TYPES, g :: t1 -> t2, g strict.
forall x :: [t1]. f x = f (map g x)

The Counterexample

Disregarding the strictness condition on g the algorithm found no counterexample.

Future work:

> investigate soundness and completeness more formally

Another Example

The Free Theorem

The theorem generated for functions of the type

‘f::[a] -> Int ‘

is:

forall t1,t2 in TYPES, g :: t1 -> t2, g strict.
forall x :: [t1]. f x = f (map g x)

The Counterexample

Disregarding the strictness condition on g the algorithm found no counterexample.

Future work:

> investigate soundness and completeness more formally

» study counterexample generation in the presence of
selective strictness, finite failures, ...

Some Interesting Further Reading

» Program transformations based on free theorems:
[Gill et al. 1993], ..., [Svenningsson 2002], ...,
[Pardo et al. 2009]

22

Some Interesting Further Reading

» Program transformations based on free theorems:
[Gill et al. 1993], ..., [Svenningsson 2002], ...,
[Pardo et al. 2009]

» Parametricity in operational semantics:
[Pitts 2000], [Johann 2002], ...

22

Some Interesting Further Reading

» Program transformations based on free theorems:
[Gill et al. 1993], ..., [Svenningsson 2002], ...,
[Pardo et al. 2009]

» Parametricity in operational semantics:
[Pitts 2000], [Johann 2002], ...

» Parametricity for strict languages ("ML, not Haskell"):
[Pitts 2005], [Ahmed 2006], ..., [Ahmed et al. 2009]

22

Some Interesting Further Reading

» Program transformations based on free theorems:
[Gill et al. 1993], ..., [Svenningsson 2002], ...,
[Pardo et al. 2009]

» Parametricity in operational semantics:
[Pitts 2000], [Johann 2002], ...

» Parametricity for strict languages ("ML, not Haskell"):
[Pitts 2005], [Ahmed 2006], ..., [Ahmed et al. 2009]

» Parametricity and dynamic typing:

[Washburn & Weirich 2005], [Matthews & Ahmed 2008], . ..

22

Some Interesting Further Reading

» Program transformations based on free theorems:
[Gill et al. 1993], ..., [Svenningsson 2002], ...,
[Pardo et al. 2009]

» Parametricity in operational semantics:
[Pitts 2000], [Johann 2002], ...

» Parametricity for strict languages ("ML, not Haskell"):
[Pitts 2005], [Ahmed 2006], ..., [Ahmed et al. 2009]

» Parametricity and dynamic typing:

[Washburn & Weirich 2005], [Matthews & Ahmed 2008], . ..

» Parametricity and computational effects:
[Mggelberg & Simpson 2007]

22

References |

@ A.J. Ahmed, D. Dreyer, and A. Rossberg.
State-dependent representation independence.

In Principles of Programming Languages, Proceedings, pages
340-353. ACM Press, 2009.

@ A.J. Ahmed.
Step-indexed syntactic logical relations for recursive and
quantified types.
In European Symposium on Programming, Proceedings,
volume 3924 of LNCS, pages 69-83. Springer-Verlag, 2006.

@ R. Dyckhoff.
Contraction-free sequent calculi for intuitionistic logic.
Journal of Symbolic Logic, 57(3):795-807, 1992.

23

References |l

@ A. Gill, J. Launchbury, and S.L. Peyton Jones.
A short cut to deforestation.
In Functional Programming Languages and Computer
Architecture, Proceedings, pages 223-232. ACM Press, 1993.

@ P. Johann.
A generalization of short-cut fusion and its correctness proof.
Higher-Order and Symbolic Computation, 15(4):273-300,
2002.

@ P. Johann and J. Voigtlinder.

Free theorems in the presence of seq.

In Principles of Programming Languages, Proceedings, pages
99-110. ACM Press, 2004.

References Il|

[§ P. Johann and J. Voigtlander.
A family of syntactic logical relations for the semantics of
Haskell-like languages.
Information and Computation, 207(2):341-368, 20009.

[@ J. Launchbury and R. Paterson.
Parametricity and unboxing with unpointed types.
In European Symposium on Programming, Proceedings,
volume 1058 of LNCS, pages 204—218. Springer-Verlag, 1996.

[@ J. Matthews and A.J. Ahmed.
Parametric polymorphism through run-time sealing or,
theorems for low, low prices!
In European Symposium on Programming, Proceedings,
volume 4960 of LNCS, pages 16-31. Springer-Verlag, 2008.

References IV

B R.E. Mggelberg and A.K. Simpson.
Relational parametricity for computational effects.
In Logic in Computer Science, Proceedings, pages 346—355.
IEEE Computer Society, 2007.

@ A. Pardo, J.P. Fernandes, and J. Saraiva.
Shortcut fusion rules for the derivation of circular and
higher-order monadic programs.
In Partial Evaluation and Program Manipulation, Proceedings,
pages 81-90. ACM Press, 2009.

@ A.M. Pitts.
Parametric polymorphism and operational equivalence.

Mathematical Structures in Computer Science, 10(3):321-359,
2000.

26

References V

@ A.M. Pitts.
Typed operational reasoning.
In B.C. Pierce, editor, Advanced Topics in Types and
Programming Languages, pages 245-289. MIT Press, 2005.

[§ F. Stenger and J. Voigtlander.
Parametricity for Haskell with imprecise error semantics.

In Typed Lambda Calculi and Applications, Proceedings,
LNCS. Springer-Verlag, 20009.

[§ J. Svenningsson.
Shortcut fusion for accumulating parameters & zip-like
functions.
In International Conference on Functional Programming,
Proceedings, pages 124-132. ACM Press, 2002.

References VI

@ P. Wadler.
Theorems for free!
In Functional Programming Languages and Computer
Architecture, Proceedings, pages 347-359. ACM Press, 1989.

[P. Wadler and S. Blott.
How to make ad-hoc polymorphism less ad hoc.
In Principles of Programming Languages, Proceedings, pages
60-76. ACM Press, 1989.

[@ G. Washburn and S. Weirich.
Generalizing parametricity using information-flow.
In Logic in Computer Science, Proceedings, pages 62—71. IEEE
Computer Society, 2005.

28

	Type Classes
	General Recursion
	Selective Strictness
	Counterexample Generation
	References

