Knuth's 0-1-Principle and Beyond

Janis Voigtländer

Technische Universität Dresden

April 23rd, 2009

The Sorting Problem

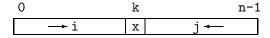
Task: Given a list and an order on the type of elements of this list, produce a sorted list (with same content)!

Example:

- 1. Choose an element x from the input list.
- 2. Partition the remaining elements into two sublists:
 - one containing all elements smaller than x, and
 - one containing all elements greater or equal to x.
- 3. Sort the two sublists recursively.
- 4. The ouput list is the concatenation of:
 - the sorted first sublist,
 - the element x, and
 - the sorted second sublist.

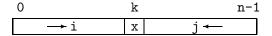
- 1. Choose an element x from the input list.
- 2. Partition the remaining elements into two sublists:
 - one containing all elements smaller than x, and
 - one containing all elements greater or equal to x.
- 3. Sort the two sublists recursively.
- 4. The ouput list is the concatenation of:
 - the sorted first sublist,
 - the element x, and
 - the sorted second sublist.

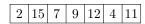
Realisation:



- 1. Choose an element x from the input list.
- 2. Partition the remaining elements into two sublists:
 - one containing all elements smaller than x, and
 - one containing all elements greater or equal to x.
- 3. Sort the two sublists recursively.
- 4. The ouput list is the concatenation of:
 - the sorted first sublist,
 - ▶ the element x, and
 - the sorted second sublist.

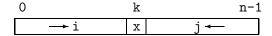
Realisation:

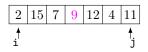




- 1. Choose an element x from the input list.
- 2. Partition the remaining elements into two sublists:
 - one containing all elements smaller than x, and
 - one containing all elements greater or equal to x.
- 3. Sort the two sublists recursively.
- 4. The ouput list is the concatenation of:
 - the sorted first sublist,
 - the element x, and
 - the sorted second sublist.

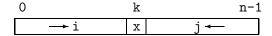
Realisation:





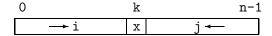
- 1. Choose an element x from the input list.
- 2. Partition the remaining elements into two sublists:
 - one containing all elements smaller than x, and
 - one containing all elements greater or equal to x.
- 3. Sort the two sublists recursively.
- 4. The ouput list is the concatenation of:
 - the sorted first sublist,
 - the element x, and
 - the sorted second sublist.

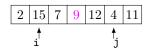
Realisation:



- 1. Choose an element x from the input list.
- 2. Partition the remaining elements into two sublists:
 - one containing all elements smaller than x, and
 - one containing all elements greater or equal to x.
- 3. Sort the two sublists recursively.
- 4. The ouput list is the concatenation of:
 - the sorted first sublist,
 - ▶ the element x, and
 - the sorted second sublist.

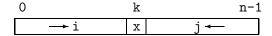
Realisation:

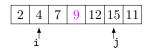




- 1. Choose an element x from the input list.
- 2. Partition the remaining elements into two sublists:
 - one containing all elements smaller than x, and
 - one containing all elements greater or equal to x.
- 3. Sort the two sublists recursively.
- 4. The ouput list is the concatenation of:
 - the sorted first sublist,
 - the element x, and
 - the sorted second sublist.

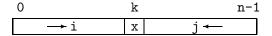
Realisation:

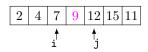




- 1. Choose an element x from the input list.
- 2. Partition the remaining elements into two sublists:
 - one containing all elements smaller than x, and
 - one containing all elements greater or equal to x.
- 3. Sort the two sublists recursively.
- 4. The ouput list is the concatenation of:
 - the sorted first sublist,
 - ▶ the element x, and
 - the sorted second sublist.

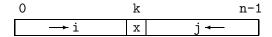
Realisation:

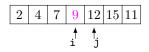




- 1. Choose an element x from the input list.
- 2. Partition the remaining elements into two sublists:
 - one containing all elements smaller than x, and
 - one containing all elements greater or equal to x.
- 3. Sort the two sublists recursively.
- 4. The ouput list is the concatenation of:
 - the sorted first sublist,
 - ▶ the element x, and
 - the sorted second sublist.

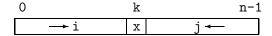
Realisation:

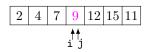




- 1. Choose an element x from the input list.
- 2. Partition the remaining elements into two sublists:
 - one containing all elements smaller than x, and
 - one containing all elements greater or equal to x.
- 3. Sort the two sublists recursively.
- 4. The ouput list is the concatenation of:
 - the sorted first sublist,
 - the element x, and
 - the sorted second sublist.

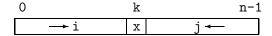
Realisation:

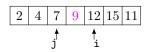




- 1. Choose an element x from the input list.
- 2. Partition the remaining elements into two sublists:
 - one containing all elements smaller than x, and
 - one containing all elements greater or equal to x.
- 3. Sort the two sublists recursively.
- 4. The ouput list is the concatenation of:
 - the sorted first sublist,
 - the element x, and
 - the sorted second sublist.

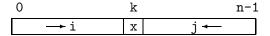
Realisation:

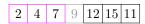




- 1. Choose an element x from the input list.
- 2. Partition the remaining elements into two sublists:
 - one containing all elements smaller than x, and
 - one containing all elements greater or equal to x.
- 3. Sort the two sublists recursively.
- 4. The ouput list is the concatenation of:
 - the sorted first sublist,
 - the element x, and
 - the sorted second sublist.

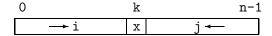
Realisation:

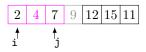




- 1. Choose an element x from the input list.
- 2. Partition the remaining elements into two sublists:
 - one containing all elements smaller than x, and
 - one containing all elements greater or equal to x.
- 3. Sort the two sublists recursively.
- 4. The ouput list is the concatenation of:
 - the sorted first sublist,
 - the element x, and
 - the sorted second sublist.

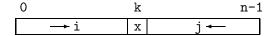
Realisation:

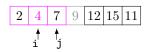




- 1. Choose an element x from the input list.
- 2. Partition the remaining elements into two sublists:
 - one containing all elements smaller than x, and
 - one containing all elements greater or equal to x.
- 3. Sort the two sublists recursively.
- 4. The ouput list is the concatenation of:
 - the sorted first sublist,
 - the element x, and
 - the sorted second sublist.

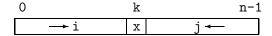
Realisation:





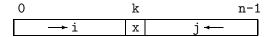
- 1. Choose an element x from the input list.
- 2. Partition the remaining elements into two sublists:
 - one containing all elements smaller than x, and
 - one containing all elements greater or equal to x.
- 3. Sort the two sublists recursively.
- 4. The ouput list is the concatenation of:
 - the sorted first sublist,
 - the element x, and
 - the sorted second sublist.

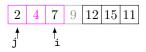
Realisation:



- 1. Choose an element x from the input list.
- 2. Partition the remaining elements into two sublists:
 - one containing all elements smaller than x, and
 - one containing all elements greater or equal to x.
- 3. Sort the two sublists recursively.
- 4. The ouput list is the concatenation of:
 - the sorted first sublist,
 - ▶ the element x, and
 - the sorted second sublist.

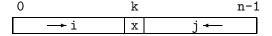
Realisation:





- 1. Choose an element x from the input list.
- 2. Partition the remaining elements into two sublists:
 - one containing all elements smaller than x, and
 - one containing all elements greater or equal to x.
- 3. Sort the two sublists recursively.
- 4. The ouput list is the concatenation of:
 - the sorted first sublist,
 - ▶ the element x, and
 - the sorted second sublist.

Realisation:



Note:

► The Quicksort algorithm uses the following as key operation (to drive the partitioning):

 $compare :: \tau \to \tau \to \mathsf{Bool}$

Note:

► The Quicksort algorithm uses the following as key operation (to drive the partitioning):

compare ::
$$\tau \rightarrow \tau \rightarrow \mathsf{Bool}$$

► The same is true for algorithms like Insertion Sort, Merge Sort, . . .

Note:

► The Quicksort algorithm uses the following as key operation (to drive the partitioning):

compare ::
$$\tau \rightarrow \tau \rightarrow \mathsf{Bool}$$

► The same is true for algorithms like Insertion Sort, Merge Sort, ...

But: Knuth also considered a more restricted class of sorting algorithms, based instead on the following operation:

cswap ::
$$(\tau, \tau) \rightarrow (\tau, \tau)$$

Note:

► The Quicksort algorithm uses the following as key operation (to drive the partitioning):

compare ::
$$\tau \rightarrow \tau \rightarrow \mathsf{Bool}$$

► The same is true for algorithms like Insertion Sort, Merge Sort, ...

But: Knuth also considered a more restricted class of sorting algorithms, based instead on the following operation:

cswap ::
$$(\tau, \tau) \rightarrow (\tau, \tau)$$

1. Split the input list into two sublists of equal length.

- 1. Split the input list into two sublists of equal length.
- 2. Sort the two sublists recursively

- 1. Split the input list into two sublists of equal length.
- 2. Sort the two sublists recursively, the second one in reverse order.

- 1. Split the input list into two sublists of equal length.
- 2. Sort the two sublists recursively, the second one in reverse order.
- 3. Merge the sorted sublists as follows:
 - 3.1 Apply *cswap* to pairs of elements at corresponding positions.

- 1. Split the input list into two sublists of equal length.
- 2. Sort the two sublists recursively, the second one in reverse order.
- 3. Merge the sorted sublists as follows:
 - 3.1 Apply *cswap* to pairs of elements at corresponding positions.
 - 3.2 Split each of the resulting lists in the middle.

- 1. Split the input list into two sublists of equal length.
- 2. Sort the two sublists recursively, the second one in reverse order.
- 3. Merge the sorted sublists as follows:
 - 3.1 Apply *cswap* to pairs of elements at corresponding positions.
 - 3.2 Split each of the resulting lists in the middle.
 - 3.3 Merge the resulting pairs of lists recursively.

- 1. Split the input list into two sublists of equal length.
- 2. Sort the two sublists recursively, the second one in reverse order.
- 3. Merge the sorted sublists as follows:
 - 3.1 Apply cswap to pairs of elements at corresponding positions.
 - 3.2 Split each of the resulting lists in the middle.
 - 3.3 Merge the resulting pairs of lists recursively.
 - 3.4 Concatenate the results.

- 1. Split the input list into two sublists of equal length.
- 2. Sort the two sublists recursively, the second one in reverse order.
- 3. Merge the sorted sublists as follows:
 - 3.1 Apply cswap to pairs of elements at corresponding positions.
 - 3.2 Split each of the resulting lists in the middle.
 - 3.3 Merge the resulting pairs of lists recursively.
 - 3.4 Concatenate the results.

Notes: • works only for lists whose length is a power of two

- 1. Split the input list into two sublists of equal length.
- 2. Sort the two sublists recursively, the second one in reverse order.
- 3. Merge the sorted sublists as follows:
 - 3.1 Apply *cswap* to pairs of elements at corresponding positions.
 - 3.2 Split each of the resulting lists in the middle.
 - 3.3 Merge the resulting pairs of lists recursively.
 - 3.4 Concatenate the results.

Notes:

- works only for lists whose length is a power of two
- complexity is $O(n \cdot \log(n)^2)$

- 1. Split the input list into two sublists of equal length.
- 2. Sort the two sublists recursively, the second one in reverse order.
- 3. Merge the sorted sublists as follows:
 - 3.1 Apply *cswap* to pairs of elements at corresponding positions.
 - 3.2 Split each of the resulting lists in the middle.
 - 3.3 Merge the resulting pairs of lists recursively.
 - 3.4 Concatenate the results.

Notes:

- works only for lists whose length is a power of two
- complexity is $O(n \cdot \log(n)^2)$
- particularly suitable for hardware and parallel implementations

- 1. Split the input list into two sublists of equal length.
- 2. Sort the two sublists recursively, the second one in reverse order.
- 3. Merge the sorted sublists as follows:
 - 3.1 Apply cswap to pairs of elements at corresponding positions.
 - 3.2 Split each of the resulting lists in the middle.
 - 3.3 Merge the resulting pairs of lists recursively.
 - 3.4 Concatenate the results.

Notes:

- works only for lists whose length is a power of two
- complexity is $O(n \cdot \log(n)^2)$
- particularly suitable for hardware and parallel implementations
- correctness is not obvious

Knuth's 0-1-Principle

Informally: If a comparison-swap algorithm sorts Booleans correctly, it sorts integers correctly as well.

Knuth's 0-1-Principle

Informally: If a comparison-swap algorithm sorts Booleans

correctly, it sorts integers correctly as well.

Formally: ???

Informally: If a comparison-swap algorithm sorts Booleans

correctly, it sorts integers correctly as well.

Formally: Use Haskell.

Informally: If a comparison-swap algorithm sorts Booleans

correctly, it sorts integers correctly as well.

Formally: Use Haskell. Let

$$\mathtt{sort} :: ((\alpha, \alpha) \to (\alpha, \alpha)) \to [\alpha] \to [\alpha]$$

Informally: If a comparison-swap algorithm sorts Booleans

correctly, it sorts integers correctly as well.

Formally: Use Haskell. Let

sort ::
$$((\alpha, \alpha) \rightarrow (\alpha, \alpha)) \rightarrow [\alpha] \rightarrow [\alpha]$$

 $f :: (Int, Int) \rightarrow (Int, Int)$
 $f (x, y) = if x > y then (y, x) else (x, y)$
 $g :: (Bool, Bool) \rightarrow (Bool, Bool)$
 $g (x, y) = (x && y, x || y)$

Informally: If a comparison-swap algorithm sorts Booleans

correctly, it sorts integers correctly as well.

Formally: Use Haskell. Let

sort ::
$$((\alpha, \alpha) \rightarrow (\alpha, \alpha)) \rightarrow [\alpha] \rightarrow [\alpha]$$

 $f :: (Int, Int) \rightarrow (Int, Int)$
 $f (x, y) = if x > y then (y, x) else (x, y)$
 $g :: (Bool, Bool) \rightarrow (Bool, Bool)$
 $g (x, y) = (x && y, x || y)$

If for every xs :: [Bool], sort g xs gives the correct result, then for every xs :: [Int], sort f xs gives the correct result.

Informally: If a comparison-swap algorithm sorts Booleans

correctly, it sorts integers correctly as well.

Formally: Use Haskell. Let

sort ::
$$((\alpha, \alpha) \rightarrow (\alpha, \alpha)) \rightarrow [\alpha] \rightarrow [\alpha]$$

 $f :: (Int, Int) \rightarrow (Int, Int)$
 $f (x, y) = if x > y then (y, x) else (x, y)$
 $g :: (Bool, Bool) \rightarrow (Bool, Bool)$
 $g (x, y) = (x && y, x || y)$

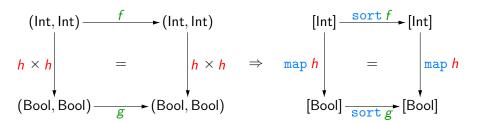
```
If \forall xs :: [Bool], ys = sort \ g \ xs. \ P(xs, ys) \land Q(ys), then \forall xs :: [Int], ys = sort \ f \ xs. \ P(xs, ys) \land Q(ys), where P(xs, ys) := xs and ys contain the same elements in the same multiplicity Q(ys) := ys is sorted
```

Using the Free Theorems Generator

```
Input: sort::((a,a) -> (a,a)) -> [a] -> [a]
Output: forall t1,t2 in TYPES, h::t1->t2.
         forall f::(t1,t1) \to (t1,t1).
          forall g::(t2,t2) \to (t2,t2).
           (forall (x,y) in lift_\{(,)\}(h,h).
             (f x,g y) in lift_{(,)}(h,h))
           ==> (forall xs::[t1].
                 map h (sort f xs) = sort g (map h xs))
       lift_{(,)}(h,h)
        = \{((x1,x2),(y1,y2)) \mid (h x1 = y1)\}
                                  && (h x2 = y2)}
```

More Specific (and Intuitive)

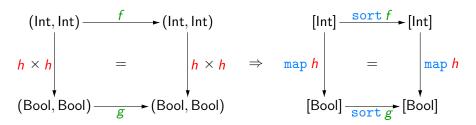
```
For every sort :: ((\alpha, \alpha) \to (\alpha, \alpha)) \to [\alpha] \to [\alpha], f :: (Int, Int) \to (Int, Int), g :: (Bool, Bool) \to (Bool, Bool), and h :: Int \to Bool:
```



7

More Specific (and Intuitive)

```
For every sort :: ((\alpha, \alpha) \to (\alpha, \alpha)) \to [\alpha] \to [\alpha], f :: (Int, Int) \to (Int, Int), g :: (Bool, Bool) \to (Bool, Bool), and h :: Int \to Bool:
```



If f and g are as defined before, then the precondition is fulfilled for any h of the form $h \times = n < x$ for some n :: Int.

7

Informally: If a comparison-swap algorithm sorts Booleans correctly, it sorts integers correctly as well.

Formally: Use Haskell. Let

sort ::
$$((\alpha, \alpha) \rightarrow (\alpha, \alpha)) \rightarrow [\alpha] \rightarrow [\alpha]$$

 $f :: (Int, Int) \rightarrow (Int, Int)$
 $f (x, y) = if x > y then (y, x) else (x, y)$
 $g :: (Bool, Bool) \rightarrow (Bool, Bool)$
 $g (x, y) = (x && y, x || y)$

If $\forall xs :: [Bool], ys = sort \ g \ xs. \ P(xs, ys) \land Q(ys),$ then $\forall xs :: [Int], ys = sort \ f \ xs. \ P(xs, ys) \land Q(ys),$ where P(xs, ys) := xs and ys contain the same elements in the same multiplicity Q(ys) := ys is sorted

Recall: P(xs, ys) := xs and ys contain the same elements in the same multiplicity

Recall: P(xs, ys) := xs and ys contain the same elements in the same multiplicity

Given: $\forall xs :: [Bool], ys = \mathbf{sort} \ g \ xs. \ P(xs, ys)$

Recall: P(xs, ys) := xs and ys contain the same elements in the same multiplicity

Given: $\forall xs :: [Bool], ys = \mathbf{sort} \ g \ xs. \ P(xs, ys)$

To prove: $\forall xs :: [Int], ys = sort f xs. P(xs, ys)$

Recall: P(xs, ys) := xs and ys contain the same elements in the same multiplicity

Given: $\forall xs :: [Bool], ys = sort g xs. P(xs, ys)$ To prove: $\forall xs :: [Int], ys = sort f xs. P(xs, ys)$

Assume there exist us :: [Int] and vs = sort f us with $\neg P(us, vs)$.

Recall: P(xs, ys) := xs and ys contain the same elements in the same multiplicity

Given: $\forall xs :: [Bool], ys = sort g xs. P(xs, ys)$ To prove: $\forall xs :: [Int], ys = sort f xs. P(xs, ys)$

Assume there exist us :: [Int] and vs = sort f us with $\neg P(us, vs)$. Then there is a smallest integer n such that the multiplicities of n in us and vs are not the same.

Recall: P(xs, ys) := xs and ys contain the same elements in the same multiplicity

Given: $\forall xs :: [Bool], ys = sort g xs. P(xs, ys)$ To prove: $\forall xs :: [Int], ys = sort f xs. P(xs, ys)$

Assume there exist us :: [Int] and $vs = sort \ f \ us$ with $\neg P(us, vs)$. Then there is a smallest integer n such that the multiplicities of n in us and vs are not the same. Then for $h \ x = n < x$ the multiplicities of False in $(map \ h \ us)$ and $(map \ h \ vs)$ are different.

9

Recall: P(xs, ys) := xs and ys contain the same elements in the same multiplicity

```
Given: \forall xs :: [Bool], ys = sort g xs. P(xs, ys)
To prove: \forall xs :: [Int], ys = sort f xs. P(xs, ys)
```

Assume there exist us :: [Int] and $vs = sort \ f \ us \ with \neg P(us, vs)$. Then there is a smallest integer n such that the multiplicities of n in us and vs are not the same. Then for $h \ x = n < x$ the multiplicities of False in $(map \ h \ us)$ and $(map \ h \ vs)$ are different. But this is in contradiction to the precondition with:

```
xs = \text{map } h \text{ } us

ys = \text{sort } g \text{ } (\text{map } h \text{ } us)
```

Recall: P(xs, ys) := xs and ys contain the same elements in the same multiplicity

```
Given: \forall xs :: [Bool], ys = sort g xs. P(xs, ys)
To prove: \forall xs :: [Int], ys = sort f xs. P(xs, ys)
```

Assume there exist us :: [Int] and $vs = sort \ f \ us \ with \neg P(us, vs)$. Then there is a smallest integer n such that the multiplicities of n in us and vs are not the same. Then for $h \ x = n < x$ the multiplicities of False in $(map \ h \ us)$ and $(map \ h \ vs)$ are different. But this is in contradiction to the precondition with:

```
xs = \text{map } h \text{ } us

ys = \text{sort } g \text{ } (\text{map } h \text{ } us) = \text{map } h \text{ } (\text{sort } f \text{ } us)
```

Recall: P(xs, ys) := xs and ys contain the same elements in the same multiplicity

```
Given: \forall xs :: [Bool], ys = sort g xs. P(xs, ys)
To prove: \forall xs :: [Int], ys = sort f xs. P(xs, ys)
```

Assume there exist us :: [Int] and vs = sort f us with $\neg P(us, vs)$. Then there is a smallest integer n such that the multiplicities of n in us and vs are not the same. Then for h x = n < x the multiplicities of False in $(map \ h \ us)$ and $(map \ h \ vs)$ are different. But this is in contradiction to the precondition with:

```
xs = \text{map } h \text{ } us

ys = \text{sort } g \text{ } (\text{map } h \text{ } us) = \text{map } h \text{ } (\text{sort } f \text{ } us) = \text{map } h \text{ } vs
```

Recall: Q(ys) := ys is sorted

```
Recall: Q(ys) := ys is sorted
```

Given: $\forall xs :: [Bool], ys = sort g xs. Q(ys)$

```
Recall: Q(ys) := ys is sorted
```

Given: $\forall xs :: [Bool], ys = \mathbf{sort} \ g \ xs. \ Q(ys)$

To prove: $\forall xs :: [Int], ys = sort f xs. Q(ys)$

```
Recall: Q(ys) := ys is sorted
Given: \forall xs :: [Bool], ys = sort g xs. Q(ys)
```

To prove: $\forall xs :: [Int], ys = sort f xs. Q(ys)$

Assume there exist us :: [Int] and vs = sort f us with $\neg Q(vs)$.

```
Recall: Q(ys) := ys is sorted

Given: \forall xs :: [Bool], ys = sort \ g \ xs. \ Q(ys)

To prove: \forall xs :: [Int], ys = sort \ f \ xs. \ Q(ys)
```

Assume there exist us :: [Int] and $vs = sort \ f \ us \ with \ \neg Q(vs)$. Then there are n < m such that an m occurs in vs before an n.

```
Recall: Q(ys) := ys is sorted

Given: \forall xs :: [Bool], ys = sort g xs. Q(ys)

To prove: \forall xs :: [Int], ys = sort f xs. Q(ys)
```

Assume there exist us :: [Int] and $vs = sort \ f \ us \ with \neg Q(vs)$. Then there are n < m such that an m occurs in vs before an n. Then for $h \times = n < x$ a True occurs in $(map \ h \ vs)$ before a False.

```
Recall: Q(ys) := ys is sorted

Given: \forall xs :: [Bool], ys = sort g xs. Q(ys)

To prove: \forall xs :: [Int], ys = sort f xs. Q(ys)
```

Assume there exist us:: [Int] and $vs = sort \ f \ us$ with $\neg Q(vs)$. Then there are n < m such that an m occurs in vs before an n. Then for $h \ x = n < x$ a True occurs in $(map \ h \ vs)$ before a False. But this is in contradiction to the precondition with:

```
xs = map \ h \ us

ys = sort \ g \ (map \ h \ us)
```

```
Recall: Q(ys) := ys is sorted

Given: \forall xs :: [Bool], ys = sort g xs. Q(ys)

To prove: \forall xs :: [Int], ys = sort f xs. Q(ys)
```

Assume there exist us :: [Int] and $vs = sort \ f \ us \ with \ \neg Q(vs)$. Then there are n < m such that an m occurs in vs before an n. Then for $h \ x = n < x$ a True occurs in $(map \ h \ vs)$ before a False. But this is in contradiction to the precondition with:

```
xs = map \ h \ us

ys = sort \ g \ (map \ h \ us) = map \ h \ (sort \ f \ us)
```

```
Recall: Q(ys) := ys is sorted

Given: \forall xs :: [Bool], ys = sort g xs. Q(ys)

To prove: \forall xs :: [Int], ys = sort f xs. Q(ys)
```

Assume there exist us :: [Int] and $vs = sort \ f \ us \ with \ \neg Q(vs)$. Then there are n < m such that an m occurs in vs before an n. Then for $h \ x = n < x$ a True occurs in $(map \ h \ vs)$ before a False. But this is in contradiction to the precondition with:

```
xs = \text{map } h \text{ } us

ys = \text{sort } g \text{ } (\text{map } h \text{ } us) = \text{map } h \text{ } (\text{sort } f \text{ } us) = \text{map } h \text{ } vs
```

Informally: If a comparison-swap algorithm sorts Booleans

correctly, it sorts integers correctly as well.

Formally: Use Haskell. Let

sort ::
$$((\alpha, \alpha) \rightarrow (\alpha, \alpha)) \rightarrow [\alpha] \rightarrow [\alpha]$$

 $f :: (Int, Int) \rightarrow (Int, Int)$
 $f (x, y) = if x > y then (y, x) else (x, y)$
 $g :: (Bool, Bool) \rightarrow (Bool, Bool)$
 $g (x, y) = (x && y, x || y)$

If for every xs :: [Bool], sort g xs gives the correct result, then for every xs :: [Int], sort f xs gives the correct result.

► Knuth's 0-1-Principle allows to reduce algorithm correctness, for comparison-swap sorting, for inputs over an infinite range to correctness over a finite range of values.

- Knuth's 0-1-Principle allows to reduce algorithm correctness, for comparison-swap sorting, for inputs over an infinite range to correctness over a finite range of values.
- ► Free theorems allow for a particularly elegant proof of this principle. (This was not my idea: [Day et al. 1999]!)

- Knuth's 0-1-Principle allows to reduce algorithm correctness, for comparison-swap sorting, for inputs over an infinite range to correctness over a finite range of values.
- ► Free theorems allow for a particularly elegant proof of this principle. (This was not my idea: [Day et al. 1999]!)
- Can we do something similar for other algorithm classes?

- Knuth's 0-1-Principle allows to reduce algorithm correctness, for comparison-swap sorting, for inputs over an infinite range to correctness over a finite range of values.
- ► Free theorems allow for a particularly elegant proof of this principle. (This was not my idea: [Day et al. 1999]!)
- ▶ Can we do something similar for other algorithm classes?
- ▶ Good candidates: algorithms parametrised over some operation, like $cswap :: (\alpha, \alpha) \rightarrow (\alpha, \alpha)$ in the case of sorting.

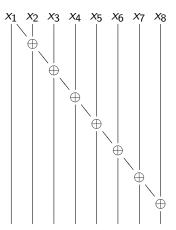
Given: inputs x_1, \ldots, x_n and an associative operation \oplus

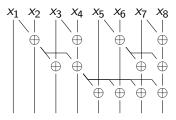
Task: compute the values $x_1, x_1 \oplus x_2, \dots, x_1 \oplus x_2 \oplus \dots \oplus x_n$

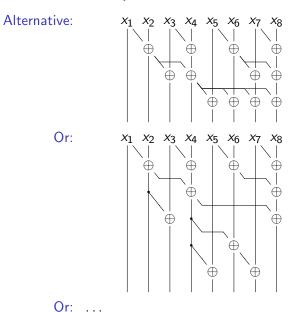
Given: inputs x_1, \ldots, x_n and an associative operation \oplus

Task: compute the values $x_1, x_1 \oplus x_2, \dots, x_1 \oplus x_2 \oplus \dots \oplus x_n$

Solution:







14

In Haskell

Functions of type:

scanl1::
$$(\alpha \to \alpha \to \alpha) \to [\alpha] \to [\alpha]$$

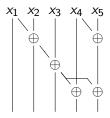
In Haskell

Functions of type:

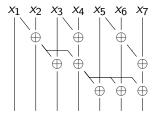
scanl1::
$$(\alpha \to \alpha \to \alpha) \to [\alpha] \to [\alpha]$$

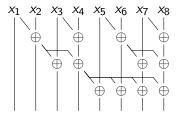
For example, à la [Sklansky 1960]:

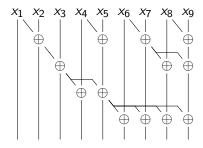
```
\begin{array}{l} \operatorname{sklansky} :: (\alpha \to \alpha \to \alpha) \to [\alpha] \to [\alpha] \\ \operatorname{sklansky} (\oplus) \ [x] = [x] \\ \operatorname{sklansky} (\oplus) \ xs = us + vs \\ \operatorname{where} \ t &= ((\operatorname{length} \ xs) + 1) \ \text{'div'} \ 2 \\ (ys, zs) = \operatorname{splitAt} \ t \ xs \\ us &= \operatorname{sklansky} (\oplus) \ ys \\ vs &= [(\operatorname{last} \ us) \oplus v \ | \ v \leftarrow \operatorname{sklansky} (\oplus) \ zs] \end{array}
```

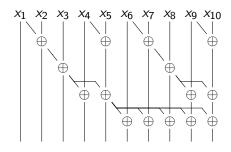



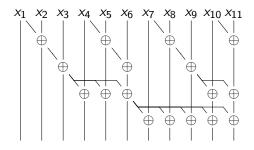


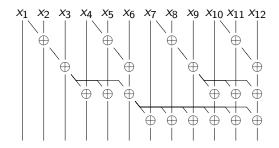


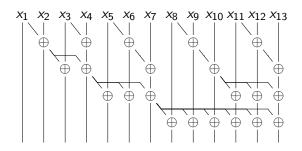


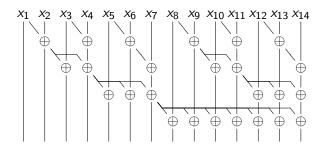


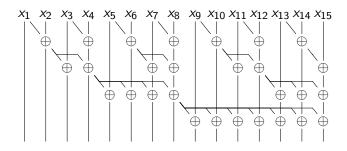


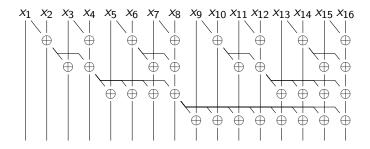


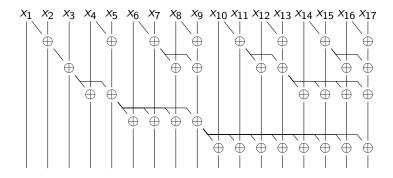


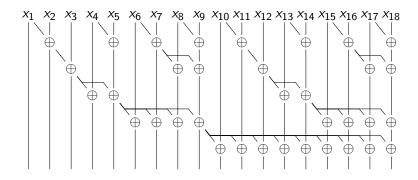


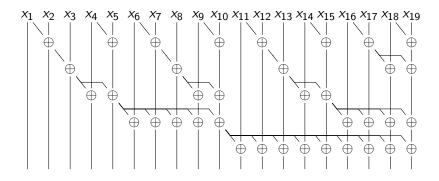


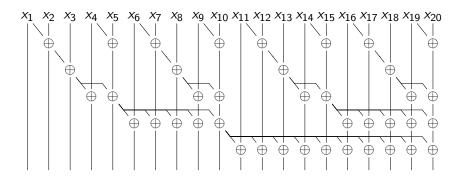












Investigating Particular Instances Only

Knuth's 0-1-Principle

If a comparison-swap algorithm sorts correctly on the Booleans, it does so on arbitrary totally ordered value sets.

Investigating Particular Instances Only

Knuth's 0-1-Principle

If a comparison-swap algorithm sorts correctly on the Booleans, it does so on arbitrary totally ordered value sets.

A Knuth-like 0-1-Principle?

If a parallel prefix algorithm is correct (for associative operations) on the Booleans, it is so on arbitrary value sets.

Investigating Particular Instances Only

Knuth's 0-1-Principle

If a comparison-swap algorithm sorts correctly on the Booleans, it does so on arbitrary totally ordered value sets.

A Knuth-like 0-1-Principle?

If a parallel prefix algorithm is correct (for associative operations) on the Booleans, it is so on arbitrary value sets.

Unfortunately not!

```
Given: scanl1 :: (\alpha \to \alpha \to \alpha) \to [\alpha] \to [\alpha]

scanl1 (\oplus) (x : xs) = go \times xs

where go \times [] = [x]

go \times (y : ys) = x : (go (x \oplus y) ys)
```

```
Given: \operatorname{scanl1} :: (\alpha \to \alpha \to \alpha) \to [\alpha] \to [\alpha]

\operatorname{scanl1} (\oplus) (x : xs) = \operatorname{go} x xs

where \operatorname{go} x [] = [x]

\operatorname{go} x (y : ys) = x : (\operatorname{go} (x \oplus y) ys)

\operatorname{candidate} :: (\alpha \to \alpha \to \alpha) \to [\alpha] \to [\alpha]
```

Given: scanl1 ::
$$(\alpha \to \alpha \to \alpha) \to [\alpha] \to [\alpha]$$

scanl1 (\oplus) $(x:xs) = go \times xs$
where $go \times [] = [x]$
 $go \times (y:ys) = x : (go (x \oplus y) ys)$
candidate :: $(\alpha \to \alpha \to \alpha) \to [\alpha] \to [\alpha]$
data Three = Zero | One | Two

Given:
$$\operatorname{scanl1} :: (\alpha \to \alpha \to \alpha) \to [\alpha] \to [\alpha]$$
 $\operatorname{scanl1} (\oplus) (x : xs) = \operatorname{go} x xs$
 $\operatorname{where} \operatorname{go} x [] = [x]$
 $\operatorname{go} x (y : ys) = x : (\operatorname{go} (x \oplus y) ys)$

$$\operatorname{candidate} :: (\alpha \to \alpha \to \alpha) \to [\alpha] \to [\alpha]$$

$$\operatorname{data} \operatorname{Three} = \operatorname{Zero} | \operatorname{One} | \operatorname{Two}$$

$$\operatorname{Theorem:} \text{ If for every } xs :: [\operatorname{Three}] \text{ and associative}$$
 $(\oplus) :: \operatorname{Three} \to \operatorname{Three} \to \operatorname{Three},$

$$\operatorname{candidate} (\oplus) xs = \operatorname{scanl1} (\oplus) xs,$$

$$\operatorname{then the same holds for every type} \tau, xs :: [\tau], \text{ and}$$

associative $(\oplus) :: \tau \to \tau \to \tau$.

A question: What can candidate :: $(\alpha \to \alpha \to \alpha) \to [\alpha] \to [\alpha]$ do, given an operation \oplus and input list $[x_1, \dots, x_n]$?

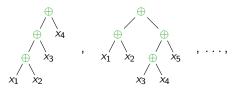
A question: What can candidate :: $(\alpha \to \alpha \to \alpha) \to [\alpha] \to [\alpha]$ do, given an operation \oplus and input list $[x_1, \dots, x_n]$?

The answer: Create an output list consisting of expressions built from \oplus and x_1, \dots, x_n . Independently of the α -type!

A question: What can candidate :: $(\alpha \to \alpha \to \alpha) \to [\alpha] \to [\alpha]$ do, given an operation \oplus and input list $[x_1, \dots, x_n]$?

The answer: Create an output list consisting of expressions built from \oplus and x_1, \dots, x_n . Independently of the α -type!

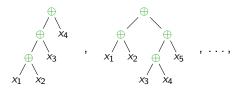
Among these expressions, there are good ones:



A question: What can candidate :: $(\alpha \to \alpha \to \alpha) \to [\alpha] \to [\alpha]$ do, given an operation \oplus and input list $[x_1, \dots, x_n]$?

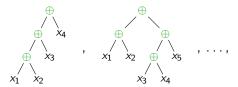
The answer: Create an output list consisting of expressions built from \oplus and x_1, \dots, x_n . Independently of the α -type!

Among these expressions, there are good ones:



bad ones:

Among these expressions, there are good ones:



bad ones:

and ones in the wrong position:

That's How!

Let

\oplus_1	Zero	One	Two	and	\oplus_2	Zero	One	Two
Zero	Zero	One	Two		Zero	Zero	One	Two
	One				One	One	One	Two
Two	Two	Two	Two			Two		

That's How!

Let

\oplus_{1}	Zero	One	Two	and	\oplus_2	Zero	One	Two
Zero	Zero	One	Two		Zero	Zero	One	Two
One	One	Two	Two		One	One	One	Two
Two	Two	Two	Two		Two	Two	One	Two

If candidate (\oplus_1) is correct on each list of the form

$$[(\mathsf{Zero},)^* \ \mathsf{One} \ (,\mathsf{Zero})^* \ (,\mathsf{Two})^*]$$

That's How!

Let

\oplus_{1}	Zero	One	Two	and	\oplus_2	Zero	One	Two
Zero	Zero	One	Two		Zero	Zero	One	Two
One	One	Two	Two		One	One	One	Two
Two	Two	Two	Two		Two	Two	One	Two

If candidate (\oplus_1) is correct on each list of the form

$$[(Zero,)^* One (,Zero)^* (,Two)^*]$$

and candidate (\oplus_2) is correct on each list of the form

$$[(Zero,)^* One, Two (,Zero)^*]$$

then candidate is correct for associative \oplus at arbitrary type.

A Knuth-like 0-1-2-Principle [V. 2008]

Given:
$$\operatorname{scanl1} :: (\alpha \to \alpha \to \alpha) \to [\alpha] \to [\alpha]$$
 $\operatorname{scanl1} (\oplus) (x : xs) = \operatorname{go} x xs$
 $\operatorname{where} \operatorname{go} x [] = [x]$
 $\operatorname{go} x (y : ys) = x : (\operatorname{go} (x \oplus y) ys)$

$$\operatorname{candidate} :: (\alpha \to \alpha \to \alpha) \to [\alpha] \to [\alpha]$$

$$\operatorname{data} \operatorname{Three} = \operatorname{Zero} | \operatorname{One} | \operatorname{Two}$$

$$\operatorname{Theorem:} \text{ If for every } xs :: [\operatorname{Three}] \text{ and associative}$$
 $(\oplus) :: \operatorname{Three} \to \operatorname{Three},$

$$\operatorname{candidate} (\oplus) xs = \operatorname{scanl1} (\oplus) xs,$$

$$\operatorname{then} \operatorname{the same} \operatorname{holds} \text{ for every type } \tau \times s :: [\tau] = s$$

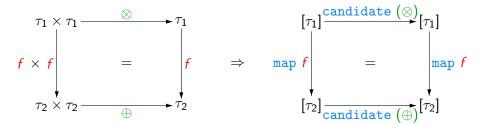
then the same holds for every type τ , $xs:[\tau]$, and associative $(\oplus)::\tau\to\tau\to\tau$.

Using the Free Theorems Generator

```
Input: candidate :: (a \rightarrow a \rightarrow a) \rightarrow [a] \rightarrow [a]
Output: forall t1,t2 in TYPES, f :: t1 -> t2.
          forall g :: t1 -> t1 -> t1.
            forall h :: t2 -> t2 -> t2.
               (forall x :: t1. forall y :: t1.
                  f(g x y) = h(f x)(f y)
               ==> (forall z :: [t1].
                       map f (candidate g z)
                        = candidate h (map f z))
```

Rephrased

For every choice of types τ_1, τ_2 and functions $f :: \tau_1 \to \tau_2$, $(\otimes) :: \tau_1 \to \tau_1 \to \tau_1$, and $(\oplus) :: \tau_2 \to \tau_2 \to \tau_2$:



A Knuth-like 0-1-2-Principle [V. 2008]

Given:
$$\operatorname{scanl1} :: (\alpha \to \alpha \to \alpha) \to [\alpha] \to [\alpha]$$
 $\operatorname{scanl1} (\oplus) (x : xs) = \operatorname{go} x xs$
 $\operatorname{where} \operatorname{go} x [] = [x]$
 $\operatorname{go} x (y : ys) = x : (\operatorname{go} (x \oplus y) ys)$

$$\operatorname{candidate} :: (\alpha \to \alpha \to \alpha) \to [\alpha] \to [\alpha]$$

$$\operatorname{data} \operatorname{Three} = \operatorname{Zero} | \operatorname{One} | \operatorname{Two}$$

$$\operatorname{Theorem:} \text{ If for every } xs :: [\operatorname{Three}] \text{ and associative}$$
 $(\oplus) :: \operatorname{Three} \to \operatorname{Three},$

$$\operatorname{candidate} (\oplus) xs = \operatorname{scanl1} (\oplus) xs,$$

then the same holds for every type τ , $xs:[\tau]$, and associative $(\oplus)::\tau\to\tau\to\tau$.

Decomposing the 0-1-2-Principle

```
Proposition 1: If candidate (\oplus_1) is correct on each list of the form [(\mathsf{Zero},)^*] One (\mathsf{Zero})^* (\mathsf{Two})*] and candidate (\oplus_2) is correct on each list of the form [(\mathsf{Zero},)^*] One, \mathsf{Two} (\mathsf{Zero})*], then for every n \geq 0, candidate (++) [[k] \mid k \leftarrow [0..n]] = [[0..k] \mid k \leftarrow [0..n]] (*).
```

Decomposing the 0-1-2-Principle

Proposition 1: If candidate (\oplus_1) is correct on each list of the form $[(\mathsf{Zero},)^* \ \mathsf{One} \ (,\mathsf{Zero})^* \ (,\mathsf{Two})^*]$ and candidate (\oplus_2) is correct on each list of the form $[(\mathsf{Zero},)^* \ \mathsf{One},\mathsf{Two} \ (,\mathsf{Zero})^*]$, then for every $n \geq 0$,

candidate
$$(++)$$
 [[k] | $k \leftarrow [0..n]$] = [[0..k] | $k \leftarrow [0..n]$] (*).

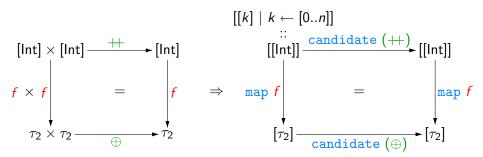
Proposition 2: If for every $n \ge 0$, (*) holds, then candidate is correct for associative \oplus at arbitrary type.

Decomposing the 0-1-2-Principle

Proposition 1: If candidate (\oplus_1) is correct on each list of the form $[(\mathsf{Zero},)^* \ \mathsf{One} \ (,\mathsf{Zero})^* \ (,\mathsf{Two})^*]$ and candidate (\oplus_2) is correct on each list of the form $[(\mathsf{Zero},)^* \ \mathsf{One}, \mathsf{Two} \ (,\mathsf{Zero})^*]$, then for every $n \geq 0$,

candidate
$$(++)$$
 [[k] | $k \leftarrow [0..n]$] = [[0..k] | $k \leftarrow [0..n]$] (*).

Proposition 2: If for every $n \ge 0$, (*) holds, then candidate is correct for associative \oplus at arbitrary type.



What Else?

► For parallel prefix computation, formalisation available in Isabelle/HOL [Böhme 2007].

What Else?

► For parallel prefix computation, formalisation available in Isabelle/HOL [Böhme 2007].

► There is still an interesting story to tell behind how "0-1-2", \oplus_1 , \oplus_2 , ... were found.

What Else?

 For parallel prefix computation, formalisation available in Isabelle/HOL [Böhme 2007].

▶ There is still an interesting story to tell behind how "0-1-2", \oplus_1 , \oplus_2 , . . . were found.

► For which other algorithm classes can one play the same trick?

References I

G.E. Blelloch.

Prefix sums and their applications.

In J.H. Reif, editor, Synthesis of Parallel Algorithms, pages 35-60. Morgan Kaufmann, 1993.

S. Böhme.

Much Ado about Two. Formal proof development.

In The Archive of Formal Proofs.

http://afp.sf.net/entries/MuchAdoAboutTwo.shtml, 2007.

A. Bove and T. Coquand.

Formalising bitonic sort in type theory.

In Types for Proofs and Programs, TYPES 2004, Revised Selected Papers, volume 3839 of LNCS, pages 82–97. Springer-Verlag, 2006.

References II

- N.A. Day, J. Launchbury, and J.R. Lewis. Logical abstractions in Haskell. In *Haskell Workshop, Proceedings*, 1999.
- P. Dybjer, Q. Haiyan, and M. Takeyama.

 Verifying Haskell programs by combining testing, model checking and interactive theorem proving.

 Information & Software Technology, 46(15):1011–1025, 2004.
- D.E. Knuth.

 The Art of Computer Programming, volume 3: Sorting and Searching.

Addison-Wesley, 1973.

References III

Searching for prefix networks to fit in a context using a lazy functional programming language.

Hardware Design and Functional Languages, 2007.

J. Sklansky.

Conditional-sum addition logic.

IRE Transactions on Electronic Computers, EC-9(6):226–231, 1960.

J. Voigtländer.

Much ado about two: A pearl on parallel prefix computation. In *Principles of Programming Languages, Proceedings*, pages 29–35. ACM Press, 2008.