Free Theorems — Foundations

Janis Voigtländer

Technische Universität Dresden

April 22nd, 2009

Using a Free Theorem [Wadler 1989]

For every

 $\texttt{get}::[\alpha] \to [\alpha]$

we have

$$map f (get l) = get (map f l)$$

for arbitrary f and l, where

$$\begin{array}{l} \max p :: (\alpha \to \beta) \to [\alpha] \to [\beta] \\ \max p f [] &= [] \\ \max p f (a:as) = (f a) : (\max p f as) \end{array}$$

Using a Free Theorem [Wadler 1989]

For every

 $\texttt{get}::[\alpha] \to [\alpha]$

we have

$$map f (get l) = get (map f l)$$

for arbitrary f and l, where

$$\begin{array}{l} \max p :: (\alpha \to \beta) \to [\alpha] \to [\beta] \\ \max f [] &= [] \\ \max p f (a:as) = (f a) : (\max f as) \end{array}$$

But how do we know this?

• get :: $[\alpha] \rightarrow [\alpha]$ must work uniformly for every instantiation of α .

- ▶ get :: $[\alpha] \rightarrow [\alpha]$ must work uniformly for every instantiation of α .
- ► The output list can only contain elements from the input list *I*.

- ▶ get :: $[\alpha] \rightarrow [\alpha]$ must work uniformly for every instantiation of α .
- ► The output list can only contain elements from the input list *I*.
- Which, and in which order/multiplicity, can only be decided based on *I*.

- ▶ get :: $[\alpha] \rightarrow [\alpha]$ must work uniformly for every instantiation of α .
- ► The output list can only contain elements from the input list *I*.
- Which, and in which order/multiplicity, can only be decided based on *I*.
- ► The only means for this decision is to inspect the length of *I*.

- ▶ get :: $[\alpha] \rightarrow [\alpha]$ must work uniformly for every instantiation of α .
- ► The output list can only contain elements from the input list *I*.
- Which, and in which order/multiplicity, can only be decided based on *I*.
- ► The only means for this decision is to inspect the length of *I*.
- ► The lists (map f l) and l always have equal length.

- ▶ get :: $[\alpha] \rightarrow [\alpha]$ must work uniformly for every instantiation of α .
- ► The output list can only contain elements from the input list *I*.
- Which, and in which order/multiplicity, can only be decided based on *I*.
- ► The only means for this decision is to inspect the length of *I*.
- ► The lists (map f l) and l always have equal length.
- get always chooses "the same" elements from (map f l) for output as it does from l,

- ▶ get :: $[\alpha] \rightarrow [\alpha]$ must work uniformly for every instantiation of α .
- ► The output list can only contain elements from the input list *I*.
- Which, and in which order/multiplicity, can only be decided based on *I*.
- ► The only means for this decision is to inspect the length of *I*.
- ► The lists (map f l) and l always have equal length.
- get always chooses "the same" elements from (map f l) for output as it does from l, except that in the former case it outputs their images under f.

- ▶ get :: $[\alpha] \rightarrow [\alpha]$ must work uniformly for every instantiation of α .
- ► The output list can only contain elements from the input list *I*.
- Which, and in which order/multiplicity, can only be decided based on *I*.
- ► The only means for this decision is to inspect the length of *I*.
- ► The lists (map f l) and l always have equal length.
- get always chooses "the same" elements from (map f l) for output as it does from l, except that in the former case it outputs their images under f.
- (get (map f I)) is equivalent to (map f (get I)).

- ▶ get :: $[\alpha] \rightarrow [\alpha]$ must work uniformly for every instantiation of α .
- ► The output list can only contain elements from the input list *I*.
- Which, and in which order/multiplicity, can only be decided based on *I*.
- ► The only means for this decision is to inspect the length of *I*.
- ► The lists (map f l) and l always have equal length.
- get always chooses "the same" elements from (map f l) for output as it does from l, except that in the former case it outputs their images under f.
- (get (map f I)) is equivalent to (map f (get I)).
- That is what was claimed!

$$\begin{array}{ll} \texttt{takeWhile} :: (\alpha \to \texttt{Bool}) \to [\alpha] \to [\alpha] \\ \texttt{takeWhile} p \begin{bmatrix} 1 \\ \end{array} = \begin{bmatrix} 1 \\ \end{bmatrix} \\ \texttt{takeWhile} p (a:as) \mid p a \\ \mid \texttt{otherwise} = \begin{bmatrix} 1 \end{bmatrix} \end{array}$$

$$\begin{array}{ll} \texttt{takeWhile} :: (\alpha \to \texttt{Bool}) \to [\alpha] \to [\alpha] \\ \texttt{takeWhile} p \begin{bmatrix} 1 \\ \end{array} = \begin{bmatrix} 1 \\ \end{bmatrix} \\ \texttt{takeWhile} p (a:as) \mid p a \\ \mid \texttt{otherwise} = \begin{bmatrix} 1 \end{bmatrix} \end{array}$$

For arbitrary p, f, and l: takeWhile $p \pmod{f l} = \operatorname{map} f (\operatorname{takeWhile} (p \circ f) l)$ Provable by induction.

$$\begin{array}{ll} \texttt{takeWhile} :: (\alpha \to \texttt{Bool}) \to [\alpha] \to [\alpha] \\ \texttt{takeWhile} p \begin{bmatrix} 1 \\ \end{array} = \begin{bmatrix} 1 \\ \end{bmatrix} \\ \texttt{takeWhile} p (a:as) \mid p a \\ \mid \texttt{otherwise} = \begin{bmatrix} 1 \end{bmatrix} \end{array}$$

For arbitrary p, f, and l: takeWhile $p \pmod{f l} = \operatorname{map} f (\operatorname{takeWhile} (p \circ f) l)$

Provable by induction.

Or again as a free theorem.

 $\texttt{takeWhile}:: (\alpha \to \mathsf{Bool}) \to [\alpha] \to [\alpha]$

```
For arbitrary p, f, and l:

takeWhile p \pmod{f l} = \operatorname{map} f (\operatorname{takeWhile} (p \circ f) l)

Provable by induction
```

Provable by induction.

Or again as a free theorem.

takeWhile::
$$(\alpha \to \mathsf{Bool}) \to [\alpha] \to [\alpha]$$

filter:: $(\alpha \to \mathsf{Bool}) \to [\alpha] \to [\alpha]$

For arbitrary p, f, and l: takeWhile $p \pmod{f l} = \operatorname{map} f (\operatorname{takeWhile} (p \circ f) l)$ filter $p \pmod{f l} = \operatorname{map} f (\operatorname{filter} (p \circ f) l)$

takeWhile::
$$(\alpha \to \mathsf{Bool}) \to [\alpha] \to [\alpha]$$

filter:: $(\alpha \to \mathsf{Bool}) \to [\alpha] \to [\alpha]$
g:: $(\alpha \to \mathsf{Bool}) \to [\alpha] \to [\alpha]$

For arbitrary p, f, and l: takeWhile $p \pmod{f} = \max f (\text{takeWhile} (p \circ f) l)$ filter $p \pmod{f} = \max f (\text{filter} (p \circ f) l)$ $g p \pmod{f} = \max f (g (p \circ f) l)$ Why g p (map f l) = map f (g ($p \circ f$) l), Intuitively

▶ g :: $(\alpha \rightarrow \text{Bool}) \rightarrow [\alpha] \rightarrow [\alpha]$ must work uniformly for every instantiation of α .

Why g p (map f l) = map f (g ($p \circ f$) l), Intuitively

▶ g :: $(\alpha \rightarrow \text{Bool}) \rightarrow [\alpha] \rightarrow [\alpha]$ must work uniformly for every instantiation of α .

► The output list can only contain elements from the input list *I*.

- ▶ g :: $(\alpha \rightarrow \text{Bool}) \rightarrow [\alpha] \rightarrow [\alpha]$ must work uniformly for every instantiation of α .
- ► The output list can only contain elements from the input list *I*.
- Which, and in which order/multiplicity, can only be decided based on *I* and the input predicate *p*.

- ▶ g :: $(\alpha \rightarrow \text{Bool}) \rightarrow [\alpha] \rightarrow [\alpha]$ must work uniformly for every instantiation of α .
- ► The output list can only contain elements from the input list *I*.
- Which, and in which order/multiplicity, can only be decided based on *I* and the input predicate *p*.
- The only means for this decision are to inspect the length of *l* and to check the outcome of *p* on its elements.

- ▶ g :: $(\alpha \rightarrow \text{Bool}) \rightarrow [\alpha] \rightarrow [\alpha]$ must work uniformly for every instantiation of α .
- ► The output list can only contain elements from the input list *I*.
- Which, and in which order/multiplicity, can only be decided based on *I* and the input predicate *p*.
- The only means for this decision are to inspect the length of *l* and to check the outcome of *p* on its elements.
- The lists (map f I) and I always have equal length.

- ▶ g :: $(\alpha \rightarrow \text{Bool}) \rightarrow [\alpha] \rightarrow [\alpha]$ must work uniformly for every instantiation of α .
- ► The output list can only contain elements from the input list *I*.
- Which, and in which order/multiplicity, can only be decided based on *I* and the input predicate *p*.
- The only means for this decision are to inspect the length of *l* and to check the outcome of *p* on its elements.
- The lists (map f I) and I always have equal length.
- Applying p to an element of (map f l) always has the same outcome as applying (p ∘ f) to the corresponding element of l.

- ▶ g :: $(\alpha \rightarrow \text{Bool}) \rightarrow [\alpha] \rightarrow [\alpha]$ must work uniformly for every instantiation of α .
- ► The output list can only contain elements from the input list *I*.
- Which, and in which order/multiplicity, can only be decided based on *I* and the input predicate *p*.
- The only means for this decision are to inspect the length of *l* and to check the outcome of *p* on its elements.
- The lists (map f I) and I always have equal length.
- Applying p to an element of (map f l) always has the same outcome as applying (p ∘ f) to the corresponding element of l.
- ▶ g with p always chooses "the same" elements from (map f l) for output as does g with (p ∘ f) from l, except that in the former case it outputs their images under f.

- ▶ g :: $(\alpha \rightarrow \text{Bool}) \rightarrow [\alpha] \rightarrow [\alpha]$ must work uniformly for every instantiation of α .
- ► The output list can only contain elements from the input list *I*.
- Which, and in which order/multiplicity, can only be decided based on *I* and the input predicate *p*.
- The only means for this decision are to inspect the length of *l* and to check the outcome of *p* on its elements.
- The lists (map f I) and I always have equal length.
- Applying p to an element of (map f l) always has the same outcome as applying (p ∘ f) to the corresponding element of l.
- ▶ g with p always chooses "the same" elements from (map f l) for output as does g with (p ∘ f) from l, except that in the former case it outputs their images under f.
- (g p (map f l)) is equivalent to $(map f (g (p \circ f) l))$.

- ▶ g :: $(\alpha \rightarrow \text{Bool}) \rightarrow [\alpha] \rightarrow [\alpha]$ must work uniformly for every instantiation of α .
- ► The output list can only contain elements from the input list *I*.
- Which, and in which order/multiplicity, can only be decided based on *I* and the input predicate *p*.
- The only means for this decision are to inspect the length of *l* and to check the outcome of *p* on its elements.
- The lists (map f I) and I always have equal length.
- Applying p to an element of (map f l) always has the same outcome as applying (p ∘ f) to the corresponding element of l.
- g with p always chooses "the same" elements from (map f l) for output as does g with (p ∘ f) from l, except that in the former case it outputs their images under f.
- (g p (map f l)) is equivalent to $(map f (g (p \circ f) l))$.
- That is what was claimed!

Automatic Generation of Free Theorems

At http://linux.tcs.inf.tu-dresden.de/~voigt/ft:

This tool allows to generate free theorems for sublanguages of Haskell as described here.

The source code of the underlying library and a shell-based application using it is available <u>here</u> and <u>here</u>.

Please enter a (polymorphic) type, e.g. "(a -> Bool) -> [a] -> [a]" or simply "filter":

g :: (a -> Bool) -> [a] -> [a]

Please choose a sublanguage of Haskell:

no bottoms (hence no general recursion and no selective strictness)

general recursion but no selective strictness

general recursion and selective strictness

Please choose a theorem style (without effect in the sublanguage with no bottoms):

equational

inequational

Generate

Automatic Generation of Free Theorems

The theorem generated for functions of the type

g :: forall a . (a -> Bool) -> [a] -> [a]

in the sublanguage of Haskell with no bottoms is:

The structural lifting occurring therein is defined as follows:

Reducing all permissible relation variables to functions yields:

```
forall tl,t2 in TYPES, f :: tl -> t2.
forall q :: tl -> Bool.
forall q :: t2 -> Bool.
(forall x :: tl. p x = q (f x))
==> (forall y :: [tl]. map f (g p y) = g q (map f y))
```

Export as PDF

Show type instantiations

<u>Help page</u>

Question: What g have type $\forall \alpha$. $(\alpha \rightarrow \text{Bool}) \rightarrow [\alpha] \rightarrow [\alpha]$?

$$\begin{tabular}{ll} [Bool] &= \{ {\sf True}, {\sf False} \} \\ [[{\sf Int}]] &= \{ \dots, -2, -1, 0, 1, 2, \dots \} \end{tabular}$$

$$\begin{bmatrix} \mathsf{Bool} \end{bmatrix} = \{\mathsf{True}, \mathsf{False}\} \\ \begin{bmatrix} \mathsf{Int} \end{bmatrix} = \{\dots, -2, -1, 0, 1, 2, \dots\} \\ \begin{bmatrix} (\tau_1, \tau_2) \end{bmatrix} = \llbracket \tau_1 \rrbracket \times \llbracket \tau_2 \rrbracket \\ \\ \llbracket [\tau] \rrbracket = \{[x_1, \dots, x_n] \mid n \ge 0, x_i \in \llbracket \tau \rrbracket\}$$

$$\begin{bmatrix} \mathsf{Bool} \end{bmatrix} = \{\mathsf{True}, \mathsf{False} \} \\ \begin{bmatrix} \mathsf{Int} \end{bmatrix} = \{\dots, -2, -1, 0, 1, 2, \dots\} \\ \begin{bmatrix} (\tau_1, \tau_2) \end{bmatrix} = \llbracket \tau_1 \rrbracket \times \llbracket \tau_2 \rrbracket \\ \\ \llbracket [\tau] \rrbracket = \{ [x_1, \dots, x_n] \mid n \ge 0, x_i \in \llbracket \tau \rrbracket \} \\ \\ \llbracket \tau_1 \to \tau_2 \rrbracket = \{ f : \llbracket \tau_1 \rrbracket \to \llbracket \tau_2 \rrbracket \} \end{aligned}$$

$$\begin{bmatrix} \mathsf{Bool} \end{bmatrix} = \{\mathsf{True}, \mathsf{False} \} \\ \begin{bmatrix} \mathsf{Int} \end{bmatrix} = \{\dots, -2, -1, 0, 1, 2, \dots \} \\ \begin{bmatrix} (\tau_1, \tau_2) \end{bmatrix} = \begin{bmatrix} \tau_1 \end{bmatrix} \times \begin{bmatrix} \tau_2 \end{bmatrix} \\ \begin{bmatrix} [\tau] \end{bmatrix} = \{ [x_1, \dots, x_n] \mid n \ge 0, x_i \in \llbracket \tau \rrbracket \} \\ \begin{bmatrix} \tau_1 \to \tau_2 \end{bmatrix} = \{ f : \llbracket \tau_1 \rrbracket \to \llbracket \tau_2 \rrbracket \} \\ \begin{bmatrix} \forall \alpha. \tau \rrbracket = ? \end{bmatrix}$$

Question: What g have type $\forall \alpha$. $(\alpha \rightarrow \text{Bool}) \rightarrow [\alpha] \rightarrow [\alpha]$? Approach: Give denotations of types as sets. (A bit naive ...)

$$\begin{bmatrix} \mathsf{Bool} \end{bmatrix} = \{\mathsf{True}, \mathsf{False} \} \\ \begin{bmatrix} \mathsf{Int} \end{bmatrix} = \{\dots, -2, -1, 0, 1, 2, \dots \} \\ \begin{bmatrix} (\tau_1, \tau_2) \end{bmatrix} = \llbracket \tau_1 \rrbracket \times \llbracket \tau_2 \rrbracket \\ \llbracket [\tau] \rrbracket = \{ [x_1, \dots, x_n] \mid n \ge 0, x_i \in \llbracket \tau \rrbracket \} \\ \llbracket \tau_1 \to \tau_2 \rrbracket = \{ f : \llbracket \tau_1 \rrbracket \to \llbracket \tau_2 \rrbracket \} \\ \llbracket \forall \alpha. \tau \rrbracket = ? \end{aligned}$$

▶ $g \in \llbracket \forall \alpha. \tau \rrbracket$ would have to be a whole "collection" of values: for every type τ' , an instance with type $\tau[\tau'/\alpha]$.
Formal Background: Parametric Polymorphism

Question: What g have type $\forall \alpha$. $(\alpha \rightarrow \text{Bool}) \rightarrow [\alpha] \rightarrow [\alpha]$? Approach: Give denotations of types as sets. (A bit naive ...)

$$\begin{bmatrix} \mathsf{Bool} \end{bmatrix} = \{\mathsf{True}, \mathsf{False} \} \\ \begin{bmatrix} \mathsf{Int} \end{bmatrix} = \{\dots, -2, -1, 0, 1, 2, \dots \} \\ \begin{bmatrix} (\tau_1, \tau_2) \end{bmatrix} = \llbracket \tau_1 \rrbracket \times \llbracket \tau_2 \rrbracket \\ \llbracket [\tau] \rrbracket = \{ [x_1, \dots, x_n] \mid n \ge 0, x_i \in \llbracket \tau \rrbracket \} \\ \llbracket \tau_1 \to \tau_2 \rrbracket = \{ f : \llbracket \tau_1 \rrbracket \to \llbracket \tau_2 \rrbracket \} \\ \llbracket \forall \alpha. \tau \rrbracket = ? \end{aligned}$$

- ▶ $g \in \llbracket \forall \alpha. \tau \rrbracket$ would have to be a whole "collection" of values: for every type τ' , an instance with type $\tau[\tau'/\alpha]$.
- $\bullet \llbracket \forall \alpha. \tau \rrbracket = \{ g \mid \forall \tau'. g_{\tau'} \in \llbracket \tau [\tau' / \alpha] \rrbracket \} ?$

Formal Background: Parametric Polymorphism

Question: What g have type $\forall \alpha$. $(\alpha \rightarrow \text{Bool}) \rightarrow [\alpha] \rightarrow [\alpha]$? Approach: Give denotations of types as sets. (A bit naive ...)

$$\begin{bmatrix} \mathsf{Bool} \end{bmatrix} = \{\mathsf{True}, \mathsf{False} \} \\ \begin{bmatrix} \mathsf{Int} \end{bmatrix} = \{\dots, -2, -1, 0, 1, 2, \dots \} \\ \begin{bmatrix} (\tau_1, \tau_2) \end{bmatrix} = \llbracket \tau_1 \rrbracket \times \llbracket \tau_2 \rrbracket \\ \llbracket [\tau] \rrbracket = \{ [x_1, \dots, x_n] \mid n \ge 0, x_i \in \llbracket \tau \rrbracket \} \\ \llbracket \tau_1 \to \tau_2 \rrbracket = \{ f : \llbracket \tau_1 \rrbracket \to \llbracket \tau_2 \rrbracket \} \\ \llbracket \forall \alpha. \tau \rrbracket = ? \end{aligned}$$

- ▶ $g \in \llbracket \forall \alpha. \tau \rrbracket$ would have to be a whole "collection" of values: for every type τ' , an instance with type $\tau[\tau'/\alpha]$.
- $\bullet \llbracket \forall \alpha. \tau \rrbracket = \{ g \mid \forall \tau'. g_{\tau'} \in \llbracket \tau [\tau' / \alpha] \rrbracket \} ?$
- But this includes "ad-hoc polymorphic" functions!

▶ With the proposed definition,

 $\llbracket \forall \alpha. (\alpha, \alpha) \to \alpha \rrbracket = \{ g \mid \forall \tau. g_{\tau} : \llbracket \tau \rrbracket \times \llbracket \tau \rrbracket \to \llbracket \tau \rrbracket \}.$

- ▶ With the proposed definition, $\llbracket \forall \alpha. (\alpha, \alpha) \rightarrow \alpha \rrbracket = \{g \mid \forall \tau. g_{\tau} : \llbracket \tau \rrbracket \times \llbracket \tau \rrbracket \rightarrow \llbracket \tau \rrbracket \}.$
- But this also allows a g with

$$g_{\text{Bool}}(x,y) = \operatorname{not} x$$

$$g_{\text{Int}}(x,y) = y+1,$$

which is not possible in Haskell at type $\forall \alpha. (\alpha, \alpha) \rightarrow \alpha$.

- ▶ With the proposed definition, $\llbracket \forall \alpha. (\alpha, \alpha) \rightarrow \alpha \rrbracket = \{g \mid \forall \tau. g_{\tau} : \llbracket \tau \rrbracket \times \llbracket \tau \rrbracket \rightarrow \llbracket \tau \rrbracket \}.$
- But this also allows a g with

$$\begin{array}{lll} g_{\mathsf{Bool}} \left(x, y \right) \; = \; \underset{x, y}{\mathsf{not}} \; x \\ g_{\mathsf{Int}} \left(x, y \right) \; = \; y + 1 \, , \end{array}$$

which is not possible in Haskell at type $\forall \alpha. (\alpha, \alpha) \rightarrow \alpha$.

To prevent this, we have to compare

$$\begin{array}{ll} g_{\mathsf{Bool}} & : & \llbracket \mathsf{Bool} \rrbracket \times \llbracket \mathsf{Bool} \rrbracket \to \llbracket \mathsf{Bool} \rrbracket & \mbox{and} \\ g_{\mathsf{Int}} & : & \llbracket \mathsf{Int} \rrbracket \times \llbracket \mathsf{Int} \rrbracket \to \llbracket \mathsf{Int} \rrbracket, \end{array}$$

and ensure that they "behave identically".

- ▶ With the proposed definition, $\llbracket \forall \alpha. (\alpha, \alpha) \rightarrow \alpha \rrbracket = \{g \mid \forall \tau. g_{\tau} : \llbracket \tau \rrbracket \times \llbracket \tau \rrbracket \rightarrow \llbracket \tau \rrbracket \}.$
- But this also allows a g with

$$\begin{array}{lll} g_{\mathsf{Bool}} \left(x, y \right) \; = \; \underset{x, y}{\mathsf{not}} \; x \\ g_{\mathsf{Int}} \left(x, y \right) \; = \; y + 1 \, , \end{array}$$

which is not possible in Haskell at type $\forall \alpha. (\alpha, \alpha) \rightarrow \alpha$.

To prevent this, we have to compare

$$\begin{array}{ll} g_{\mathsf{Bool}} & : & \llbracket \mathsf{Bool} \rrbracket \times \llbracket \mathsf{Bool} \rrbracket \to \llbracket \mathsf{Bool} \rrbracket & \mbox{and} \\ g_{\mathsf{Int}} & : & \llbracket \mathsf{Int} \rrbracket \times \llbracket \mathsf{Int} \rrbracket \to \llbracket \mathsf{Int} \rrbracket, \end{array}$$

and ensure that they "behave identically". But how?

Use arbitrary relations to tie instances together!

Use arbitrary relations to tie instances together! In the example (g :: $\forall \alpha$. (α, α) $\rightarrow \alpha$):

• Choose a relation $\mathcal{R} \subseteq \llbracket \mathsf{Bool} \rrbracket \times \llbracket \mathsf{Int} \rrbracket$.

Use arbitrary relations to tie instances together! In the example (g :: $\forall \alpha$. (α, α) $\rightarrow \alpha$):

- Choose a relation $\mathcal{R} \subseteq \llbracket \mathsf{Bool} \rrbracket \times \llbracket \mathsf{Int} \rrbracket$.
- ▶ Call $(x_1, x_2) \in \llbracket Bool \rrbracket \times \llbracket Bool \rrbracket$ and $(y_1, y_2) \in \llbracket Int \rrbracket \times \llbracket Int \rrbracket$ related if $(x_1, y_1) \in \mathcal{R}$ and $(x_2, y_2) \in \mathcal{R}$.

Use arbitrary relations to tie instances together! In the example (g :: $\forall \alpha$. (α, α) $\rightarrow \alpha$):

- Choose a relation $\mathcal{R} \subseteq \llbracket \mathsf{Bool} \rrbracket \times \llbracket \mathsf{Int} \rrbracket$.
- ▶ Call $(x_1, x_2) \in \llbracket Bool \rrbracket \times \llbracket Bool \rrbracket$ and $(y_1, y_2) \in \llbracket Int \rrbracket \times \llbracket Int \rrbracket$ related if $(x_1, y_1) \in \mathcal{R}$ and $(x_2, y_2) \in \mathcal{R}$.
- Call f₁ : [[Bool]] × [[Bool]] → [[Bool]], f₂ : [[Int]] × [[Int]] → [[Int]] related if related inputs lead to related outputs.

Use arbitrary relations to tie instances together! In the example (g :: $\forall \alpha$. (α, α) $\rightarrow \alpha$):

- Choose a relation $\mathcal{R} \subseteq \llbracket \mathsf{Bool} \rrbracket \times \llbracket \mathsf{Int} \rrbracket$.
- ▶ Call $(x_1, x_2) \in \llbracket Bool \rrbracket \times \llbracket Bool \rrbracket$ and $(y_1, y_2) \in \llbracket Int \rrbracket \times \llbracket Int \rrbracket$ related if $(x_1, y_1) \in \mathcal{R}$ and $(x_2, y_2) \in \mathcal{R}$.
- Call f₁ : [[Bool]] × [[Bool]] → [[Bool]], f₂ : [[Int]] × [[Int]] → [[Int]] related if related inputs lead to related outputs.
- Then g_{Bool} and g_{Int} with

$$g_{\text{Bool}}(x,y) = \operatorname{not} x$$

 $g_{\text{Int}}(x,y) = y+1$

are not related for choice of, e.g., $\mathcal{R} = \{(\mathsf{True}, 1)\}.$

Use arbitrary relations to tie instances together! In the example (g :: $\forall \alpha$. (α, α) $\rightarrow \alpha$):

- Choose a relation $\mathcal{R} \subseteq \llbracket \mathsf{Bool} \rrbracket \times \llbracket \mathsf{Int} \rrbracket$.
- ▶ Call $(x_1, x_2) \in \llbracket Bool \rrbracket \times \llbracket Bool \rrbracket$ and $(y_1, y_2) \in \llbracket Int \rrbracket \times \llbracket Int \rrbracket$ related if $(x_1, y_1) \in \mathcal{R}$ and $(x_2, y_2) \in \mathcal{R}$.
- Call f₁ : [[Bool]] × [[Bool]] → [[Bool]], f₂ : [[Int]] × [[Int]] → [[Int]] related if related inputs lead to related outputs.
- Then g_{Bool} and g_{Int} with

$$g_{\text{Bool}}(x, y) = \text{not } x$$

$$g_{\text{Int}}(x, y) = y + 1$$

are not related for choice of, e.g., $\mathcal{R} = \{(\mathsf{True}, 1)\}.$

Reynolds: $g \in \llbracket \forall \alpha. \tau \rrbracket$ iff for every τ_1, τ_2 and $\mathcal{R} \subseteq \llbracket \tau_1 \rrbracket \times \llbracket \tau_2 \rrbracket$, g_{τ_1} is related to g_{τ_2} by the "propagation" of \mathcal{R} along τ . Polymorphic Lambda Calculus [Girard 1972, Reynolds 1974]

 $\begin{array}{l} \text{Types:} \ \tau := \alpha \mid \tau \to \tau \mid \forall \alpha. \tau \\ \text{Terms:} \ t := x \mid \lambda x : \tau. t \mid t \mid \Lambda \alpha. t \mid t \mid \tau \end{array}$

Polymorphic Lambda Calculus [Girard 1972, Reynolds 1974]

Types:
$$\tau := \alpha \mid \tau \to \tau \mid \forall \alpha. \tau$$

Terms: $t := x \mid \lambda x : \tau. t \mid t t \mid \Lambda \alpha. t \mid t \tau$
 $\Gamma, x : \tau \vdash x : \tau$

Polymorphic Lambda Calculus [Girard 1972, Reynolds 1974]

$$\begin{array}{l} \text{Types: } \tau := \alpha \mid \tau \to \tau \mid \forall \alpha.\tau \\ \text{Terms: } t := x \mid \lambda x : \tau.t \mid t \mid \Lambda \alpha.t \mid t \mid \tau \\ \Gamma, x : \tau \vdash x : \tau \\ \hline \Gamma, x : \tau_1 \vdash t : \tau_2 \\ \hline \Gamma \vdash (\lambda x : \tau_1.t) : \tau_1 \to \tau_2 \end{array}$$

Polymorphic Lambda Calculus [Girard 1972, Reynolds 1974] Types: $\tau := \alpha \mid \tau \to \tau \mid \forall \alpha. \tau$ Terms: $t := x \mid \lambda x : \tau \cdot t \mid t \mid \Lambda \alpha \cdot t \mid t \tau$ $\Gamma, x : \tau \vdash x : \tau$ $\Gamma, x : \tau_1 \vdash t : \tau_2$ $\Gamma \vdash (\lambda x : \tau_1 \cdot t) : \tau_1 \to \tau_2$ $\Gamma \vdash t : \tau_1 \to \tau_2 \qquad \Gamma \vdash u : \tau_1$ $\Gamma \vdash (t \ u) : \tau_2$

Polymorphic Lambda Calculus [Girard 1972, Reynolds 1974] Types: $\tau := \alpha \mid \tau \to \tau \mid \forall \alpha. \tau$ Terms: $t := x \mid \lambda x : \tau \cdot t \mid t \mid \Lambda \alpha \cdot t \mid t \tau$ $\Gamma, x : \tau \vdash x : \tau$ $\Gamma, x : \tau_1 \vdash t : \tau_2$ $\Gamma \vdash (\lambda x : \tau_1 \cdot t) : \tau_1 \to \tau_2$ $\Gamma \vdash t : \tau_1 \to \tau_2 \qquad \Gamma \vdash u : \tau_1$ $\Gamma \vdash (t \ u) : \tau_2$ $\alpha, \Gamma \vdash t : \tau$ $\Gamma \vdash (\Lambda \alpha. t) : \forall \alpha. \tau$

Polymorphic Lambda Calculus [Girard 1972, Reynolds 1974] Types: $\tau := \alpha \mid \tau \to \tau \mid \forall \alpha. \tau$ Terms: $t := x \mid \lambda x : \tau \cdot t \mid t \mid \Lambda \alpha \cdot t \mid t \tau$ $\Gamma, x : \tau \vdash x : \tau$ $\Gamma, x : \tau_1 \vdash t : \tau_2$ $\Gamma \vdash (\lambda x : \tau_1 \cdot t) : \tau_1 \to \tau_2$ $\Gamma \vdash t : \tau_1 \to \tau_2 \qquad \Gamma \vdash u : \tau_1$ $\Gamma \vdash (t \ u) : \tau_2$ $\alpha, \Gamma \vdash t : \tau$ $\Gamma \vdash (\Lambda \alpha. t) : \forall \alpha. \tau$ $\Gamma \vdash t : \forall \alpha. \tau$ $\Gamma \vdash (t \tau') : \tau[\tau'/\alpha]$

Polymorphic Lambda Calculus [Girard 1972, Reynolds 1974] Types: $\tau := \alpha \mid \tau \to \tau \mid \forall \alpha. \tau$ Terms: $t := x \mid \lambda x : \tau . t \mid t t \mid \Lambda \alpha . t \mid t \tau$ $[x]_{\theta,\sigma}$ $= \sigma(x)$ $\Gamma, x : \tau \vdash x : \tau$ $\Gamma, x : \tau_1 \vdash t : \tau_2$ $\llbracket \lambda x : \tau_1 \cdot t \rrbracket_{\theta,\sigma} a = \llbracket t \rrbracket_{\theta,\sigma[x \mapsto a]}$ $\overline{\Gamma \vdash (\lambda x : \tau_1 \cdot t)} : \tau_1 \to \tau_2$ $\Gamma \vdash t : \tau_1 \to \tau_2 \qquad \Gamma \vdash u : \tau_1$ $\begin{bmatrix} t & u \end{bmatrix}_{\theta,\sigma}$ $= \llbracket t \rrbracket_{\theta,\sigma} \llbracket u \rrbracket_{\theta,\sigma}$ $\Gamma \vdash (t \ u) : \tau_2$ $\alpha, \Gamma \vdash t : \tau$ $\llbracket \Lambda \alpha.t \rrbracket_{\theta,\sigma} S = \llbracket t \rrbracket_{\theta[\alpha \mapsto S],\sigma}$ $\Gamma \vdash (\Lambda \alpha. t) : \forall \alpha. \tau$ $\Gamma \vdash t : \forall \alpha. \tau$ $[t \tau']_{\theta,\sigma}$ $= \llbracket t \rrbracket_{\theta,\sigma} \llbracket \tau' \rrbracket_{\theta}$ $\Gamma \vdash (t \tau') : \tau[\tau'/\alpha]$

Given τ and environments θ_1, θ_2, ρ with $\rho(\alpha) \subseteq \theta_1(\alpha) \times \theta_2(\alpha)$, define $\Delta_{\tau,\rho} \subseteq \llbracket \tau \rrbracket_{\theta_1} \times \llbracket \tau \rrbracket_{\theta_2}$ as follows:

Given τ and environments θ_1, θ_2, ρ with $\rho(\alpha) \subseteq \theta_1(\alpha) \times \theta_2(\alpha)$, define $\Delta_{\tau,\rho} \subseteq \llbracket \tau \rrbracket_{\theta_1} \times \llbracket \tau \rrbracket_{\theta_2}$ as follows:

$$\Delta_{\alpha,\rho} = \rho(\alpha)$$

Given τ and environments θ_1, θ_2, ρ with $\rho(\alpha) \subseteq \theta_1(\alpha) \times \theta_2(\alpha)$, define $\Delta_{\tau,\rho} \subseteq \llbracket \tau \rrbracket_{\theta_1} \times \llbracket \tau \rrbracket_{\theta_2}$ as follows:

$$egin{array}{lll} \Delta_{lpha,
ho}&=&
ho(lpha)\ \Delta_{ au_1
ightarrow au_{ au_2,
ho}}&=&\{(f_1,f_2)\mid orall(a_1,a_2)\in\Delta_{ au_1,
ho}.\;(f_1\;a_1,f_2\;a_2)\in\Delta_{ au_2,
ho}\} \end{array}$$

Given τ and environments θ_1, θ_2, ρ with $\rho(\alpha) \subseteq \theta_1(\alpha) \times \theta_2(\alpha)$, define $\Delta_{\tau,\rho} \subseteq \llbracket \tau \rrbracket_{\theta_1} \times \llbracket \tau \rrbracket_{\theta_2}$ as follows:

$$\begin{array}{lll} \Delta_{\alpha,\rho} & = & \rho(\alpha) \\ \Delta_{\tau_1 \to \tau_2,\rho} & = & \{(f_1, f_2) \mid \forall (a_1, a_2) \in \Delta_{\tau_1,\rho}. \ (f_1 \ a_1, f_2 \ a_2) \in \Delta_{\tau_2,\rho} \} \\ \Delta_{\forall \alpha,\tau,\rho} & = & \{(g_1, g_2) \mid \forall \mathcal{R} \subseteq S_1 \times S_2. \ (g_1 \ S_1, g_2 \ S_2) \in \Delta_{\tau,\rho[\alpha \mapsto \mathcal{R}]} \} \end{array}$$

Given τ and environments θ_1, θ_2, ρ with $\rho(\alpha) \subseteq \theta_1(\alpha) \times \theta_2(\alpha)$, define $\Delta_{\tau,\rho} \subseteq \llbracket \tau \rrbracket_{\theta_1} \times \llbracket \tau \rrbracket_{\theta_2}$ as follows:

$$\begin{array}{lll} \Delta_{\alpha,\rho} & = & \rho(\alpha) \\ \Delta_{\tau_1 \to \tau_2,\rho} & = & \{(f_1, f_2) \mid \forall (a_1, a_2) \in \Delta_{\tau_1,\rho}. \ (f_1 \ a_1, f_2 \ a_2) \in \Delta_{\tau_2,\rho} \} \\ \Delta_{\forall \alpha,\tau,\rho} & = & \{(g_1, g_2) \mid \forall \mathcal{R} \subseteq S_1 \times S_2. \ (g_1 \ S_1, g_2 \ S_2) \in \Delta_{\tau,\rho[\alpha \mapsto \mathcal{R}]} \} \end{array}$$

Then, for every closed term t of closed type τ :

 $(\llbracket t \rrbracket_{\emptyset,\emptyset}, \llbracket t \rrbracket_{\emptyset,\emptyset}) \in \Delta_{\tau,\emptyset}.$

Prove the following more general statement:

$$\begin{split} & \Gamma \vdash t : \tau \text{ implies } (\llbracket t \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau, \rho} \text{ ,} \\ & \text{provided } (\sigma_1(x), \sigma_2(x)) \in \Delta_{\tau', \rho} \text{ for every } x : \tau' \text{ in } \Gamma \end{split}$$

by induction on the structure of typing derivations.

Prove the following more general statement:

$$\begin{split} & \Gamma \vdash t : \tau \text{ implies } (\llbracket t \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau, \rho} \text{ ,} \\ & \text{provided } (\sigma_1(x), \sigma_2(x)) \in \Delta_{\tau', \rho} \text{ for every } x : \tau' \text{ in } \Gamma \end{split}$$

by induction on the structure of typing derivations. The base case is immediate.

Prove the following more general statement:

$$\begin{split} & \Gamma \vdash t : \tau \text{ implies } (\llbracket t \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau, \rho} \text{ ,} \\ & \text{provided } (\sigma_1(x), \sigma_2(x)) \in \Delta_{\tau', \rho} \text{ for every } x : \tau' \text{ in } \Gamma \end{split}$$

$$\frac{\Gamma, x: \tau_1 \vdash t: \tau_2}{\Gamma \vdash (\lambda x: \tau_1.t): \tau_1 \to \tau_2}$$

Prove the following more general statement:

$$\begin{split} & \Gamma \vdash t : \tau \text{ implies } (\llbracket t \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau, \rho} \text{ ,} \\ & \text{provided } (\sigma_1(x), \sigma_2(x)) \in \Delta_{\tau', \rho} \text{ for every } x : \tau' \text{ in } \Gamma \end{split}$$

Prove the following more general statement:

$$\begin{split} & \Gamma \vdash t : \tau \text{ implies } (\llbracket t \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau, \rho} \text{ ,} \\ & \text{provided } (\sigma_1(x), \sigma_2(x)) \in \Delta_{\tau', \rho} \text{ for every } x : \tau' \text{ in } \Gamma \end{split}$$

$$rac{orall (m{a}_1,m{a}_2)\in\Delta_{ au_1,
ho}. (\llbracket t
rbracket_{m{\theta}_1,\sigma_1[imes\mapstom{a}_1]},\llbracket t
rbracket_{m{\theta}_2,\sigma_2[imes\mapstom{a}_2]})\in\Delta_{ au_2,
ho}}{(\llbracket \lambda x: au_1.t
rbracket_{m{ heta}_1,\sigma_1},\llbracket \lambda x: au_1.t
rbracket_{m{ heta}_2,\sigma_2})\in\Delta_{ au_1 o au_2,
ho}}$$

Prove the following more general statement:

$$\begin{split} & \Gamma \vdash t : \tau \text{ implies } (\llbracket t \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau, \rho} \text{ ,} \\ & \text{provided } (\sigma_1(x), \sigma_2(x)) \in \Delta_{\tau', \rho} \text{ for every } x : \tau' \text{ in } \Gamma \end{split}$$

Prove the following more general statement:

$$\begin{split} & \Gamma \vdash t : \tau \text{ implies } (\llbracket t \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau, \rho} \text{ ,} \\ & \text{provided } (\sigma_1(x), \sigma_2(x)) \in \Delta_{\tau', \rho} \text{ for every } x : \tau' \text{ in } \Gamma \end{split}$$

$$\begin{array}{l} \forall (a_1, a_2) \in \Delta_{\tau_1, \rho} \cdot \left(\llbracket t \rrbracket_{\theta_1, \sigma_1[\mathsf{x} \mapsto a_1]}, \llbracket t \rrbracket_{\theta_2, \sigma_2[\mathsf{x} \mapsto a_2]}\right) \in \Delta_{\tau_2, \rho} \\ \hline \left(\llbracket \lambda \mathsf{x} : \tau_1 . t \rrbracket_{\theta_1, \sigma_1}, \llbracket \lambda \mathsf{x} : \tau_1 . t \rrbracket_{\theta_2, \sigma_2}\right) \in \Delta_{\tau_1 \to \tau_2, \rho} \\ \hline \frac{\Gamma \vdash t : \tau_1 \to \tau_2 \quad \Gamma \vdash u : \tau_1}{\left(\llbracket t \ u \rrbracket_{\theta_1, \sigma_1}, \llbracket t \ u \rrbracket_{\theta_2, \sigma_2}\right) \in \Delta_{\tau_2, \rho}} \end{array}$$

Prove the following more general statement:

$$\begin{split} & \Gamma \vdash t : \tau \text{ implies } (\llbracket t \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau, \rho} \text{ ,} \\ & \text{provided } (\sigma_1(x), \sigma_2(x)) \in \Delta_{\tau', \rho} \text{ for every } x : \tau' \text{ in } \Gamma \end{split}$$

$$\frac{\forall (a_1, a_2) \in \Delta_{\tau_1, \rho}. (\llbracket t \rrbracket_{\theta_1, \sigma_1} [\mathsf{x} \mapsto a_1], \llbracket t \rrbracket_{\theta_2, \sigma_2} [\mathsf{x} \mapsto a_2]) \in \Delta_{\tau_2, \rho}}{(\llbracket \lambda \mathsf{x} : \tau_1.t \rrbracket_{\theta_1, \sigma_1}, \llbracket \lambda \mathsf{x} : \tau_1.t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau_1 \to \tau_2, \rho}} \\ \frac{(\llbracket t \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau_1 \to \tau_2, \rho}}{(\llbracket t \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau_2, \rho}}$$

Prove the following more general statement:

$$\begin{split} & \Gamma \vdash t : \tau \text{ implies } (\llbracket t \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau, \rho} \text{ ,} \\ & \text{provided } (\sigma_1(x), \sigma_2(x)) \in \Delta_{\tau', \rho} \text{ for every } x : \tau' \text{ in } \Gamma \end{split}$$

$$\frac{\forall (a_1, a_2) \in \Delta_{\tau_1, \rho}. (\llbracket t \rrbracket_{\theta_1, \sigma_1[x \mapsto a_1]}, \llbracket t \rrbracket_{\theta_2, \sigma_2[x \mapsto a_2]}) \in \Delta_{\tau_2, \rho}}{(\llbracket \lambda x : \tau_1.t \rrbracket_{\theta_1, \sigma_1}, \llbracket \lambda x : \tau_1.t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau_1 \to \tau_2, \rho}} \\
(\llbracket t \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau_1 \to \tau_2, \rho} (\llbracket u \rrbracket_{\theta_1, \sigma_1}, \llbracket u \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau_1, \rho} \\
(\llbracket t \ u \rrbracket_{\theta_1, \sigma_1}, \llbracket t \ u \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau_2, \rho} \\
\underline{\alpha, \Gamma \vdash t : \tau} \\
\overline{\Gamma \vdash (\Lambda \alpha.t) : \forall \alpha. \tau}$$

Prove the following more general statement:

$$\begin{split} & \Gamma \vdash t : \tau \text{ implies } (\llbracket t \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau, \rho} \text{ ,} \\ & \text{provided } (\sigma_1(x), \sigma_2(x)) \in \Delta_{\tau', \rho} \text{ for every } x : \tau' \text{ in } \Gamma \end{split}$$

$$\frac{\forall (a_1, a_2) \in \Delta_{\tau_1, \rho}. (\llbracket t \rrbracket_{\theta_1, \sigma_1[x \mapsto a_1]}, \llbracket t \rrbracket_{\theta_2, \sigma_2[x \mapsto a_2]}) \in \Delta_{\tau_2, \rho}}{(\llbracket \lambda x : \tau_1.t \rrbracket_{\theta_1, \sigma_1}, \llbracket \lambda x : \tau_1.t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau_1 \to \tau_2, \rho}} \\
(\llbracket t \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau_1 \to \tau_2, \rho} (\llbracket u \rrbracket_{\theta_1, \sigma_1}, \llbracket u \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau_1, \rho} \\
(\llbracket t \ u \rrbracket_{\theta_1, \sigma_1}, \llbracket t \ u \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau_2, \rho} \\
\frac{\alpha, \Gamma \vdash t : \tau}{(\llbracket \Lambda \alpha.t \rrbracket_{\theta_1, \sigma_1}, \llbracket \Lambda \alpha.t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\forall \alpha.\tau, \rho}}$$

Prove the following more general statement:

$$\begin{split} & \Gamma \vdash t : \tau \text{ implies } (\llbracket t \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau, \rho} \text{ ,} \\ & \text{provided } (\sigma_1(x), \sigma_2(x)) \in \Delta_{\tau', \rho} \text{ for every } x : \tau' \text{ in } \Gamma \end{split}$$

$$\begin{array}{c} \frac{\forall (a_1, a_2) \in \Delta_{\tau_1, \rho}. \left(\llbracket t \rrbracket_{\theta_1, \sigma_1 [\mathsf{x} \mapsto a_1]}, \llbracket t \rrbracket_{\theta_2, \sigma_2 [\mathsf{x} \mapsto a_2]} \right) \in \Delta_{\tau_2, \rho}}{\left(\llbracket \lambda \mathsf{x} : \tau_1.t \rrbracket_{\theta_1, \sigma_1}, \llbracket \lambda \mathsf{x} : \tau_1.t \rrbracket_{\theta_2, \sigma_2} \right) \in \Delta_{\tau_1 \to \tau_2, \rho}} \\ \frac{\left(\llbracket t \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2} \right) \in \Delta_{\tau_1 \to \tau_2, \rho}}{\left(\llbracket t \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2} \right) \in \Delta_{\tau_2, \rho}} \\ \frac{\forall \mathcal{R} \subseteq S_1 \times S_2. \left(\llbracket t \rrbracket_{\theta_1 [\alpha \mapsto S_1], \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2} \right) \in \Delta_{\tau, \rho [\alpha \mapsto \mathcal{R}]}}{\left(\llbracket \Lambda \alpha.t \rrbracket_{\theta_1, \sigma_1}, \llbracket \Lambda \alpha.t \rrbracket_{\theta_2, \sigma_2} \right) \in \Delta_{\forall \alpha.\tau, \rho}} \end{array}$$

Prove the following more general statement:

$$\begin{split} & \Gamma \vdash t : \tau \text{ implies } (\llbracket t \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau, \rho} \text{ ,} \\ & \text{provided } (\sigma_1(x), \sigma_2(x)) \in \Delta_{\tau', \rho} \text{ for every } x : \tau' \text{ in } \Gamma \end{split}$$

$$\begin{array}{c} \frac{\forall (a_1, a_2) \in \Delta_{\tau_1, \rho}. (\llbracket t \rrbracket_{\theta_1, \sigma_1[x \mapsto a_1]}, \llbracket t \rrbracket_{\theta_2, \sigma_2[x \mapsto a_2]}) \in \Delta_{\tau_2, \rho}}{(\llbracket \lambda x : \tau_1.t \rrbracket_{\theta_1, \sigma_1}, \llbracket \lambda x : \tau_1.t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau_1 \to \tau_2, \rho}} \\ (\llbracket t \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau_1 \to \tau_2, \rho} & (\llbracket u \rrbracket_{\theta_1, \sigma_1}, \llbracket u \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau_1, \rho} \\ (\llbracket t \ u \rrbracket_{\theta_1, \sigma_1}, \llbracket t \ u \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau_2, \rho} \\ \frac{\forall \mathcal{R} \subseteq S_1 \times S_2. (\llbracket t \rrbracket_{\theta_1[\alpha \mapsto S_1], \sigma_1}, \llbracket t \rrbracket_{\theta_2[\alpha \mapsto S_2], \sigma_2}) \in \Delta_{\tau, \rho[\alpha \mapsto \mathcal{R}]}}{(\llbracket \Lambda \alpha.t \rrbracket_{\theta_1, \sigma_1}, \llbracket \Lambda \alpha.t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\forall \alpha.\tau, \rho}} \\ \frac{\overline{\Gamma} \vdash t : \forall \alpha.\tau}{\overline{\Gamma} \vdash (t \ \tau') : \tau[\tau'/\alpha]} \end{array}$$
Proof Sketch

Prove the following more general statement:

$$\begin{split} & \Gamma \vdash t : \tau \text{ implies } (\llbracket t \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau, \rho} \text{ ,} \\ & \text{provided } (\sigma_1(x), \sigma_2(x)) \in \Delta_{\tau', \rho} \text{ for every } x : \tau' \text{ in } \Gamma \end{split}$$

by induction on the structure of typing derivations. The base case is immediate. In the step cases:

$$\frac{\forall (a_1, a_2) \in \Delta_{\tau_1, \rho}. (\llbracket t \rrbracket_{\theta_1, \sigma_1[x \mapsto a_1]}, \llbracket t \rrbracket_{\theta_2, \sigma_2[x \mapsto a_2]}) \in \Delta_{\tau_2, \rho}}{(\llbracket \lambda x : \tau_1.t \rrbracket_{\theta_1, \sigma_1}, \llbracket \lambda x : \tau_1.t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau_1 \to \tau_2, \rho}} \\ (\llbracket t \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau_1 \to \tau_2, \rho} (\llbracket u \rrbracket_{\theta_1, \sigma_1}, \llbracket u \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau_1, \rho}} \\ (\llbracket t \amalg_{\theta_1, \sigma_1}, \llbracket t \amalg_{\theta_1, \sigma_1}, \llbracket t \amalg_{\theta_2, \sigma_2}) \in \Delta_{\tau_2, \rho}} \\ \frac{\forall \mathcal{R} \subseteq S_1 \times S_2. (\llbracket t \rrbracket_{\theta_1[\alpha \mapsto S_1], \sigma_1}, \llbracket t \rrbracket_{\theta_2[\alpha \mapsto S_2], \sigma_2}) \in \Delta_{\tau, \rho[\alpha \mapsto \mathcal{R}]}}{(\llbracket \Lambda \alpha.t \rrbracket_{\theta_1, \sigma_1}, \llbracket \Lambda \alpha.t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau(\tau'/\alpha], \rho}} \\ \frac{\Gamma \vdash t : \forall \alpha. \tau}{(\llbracket t \tau' \rrbracket_{\theta_1, \sigma_1}, \llbracket t \tau' \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau[\tau'/\alpha], \rho}}$$

Proof Sketch

Prove the following more general statement:

$$\begin{split} & \Gamma \vdash t : \tau \text{ implies } (\llbracket t \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau, \rho} \text{ ,} \\ & \text{provided } (\sigma_1(x), \sigma_2(x)) \in \Delta_{\tau', \rho} \text{ for every } x : \tau' \text{ in } \Gamma \end{split}$$

by induction on the structure of typing derivations. The base case is immediate. In the step cases:

$$\begin{array}{c} \frac{\forall (a_1, a_2) \in \Delta_{\tau_1, \rho}. (\llbracket t \rrbracket_{\theta_1, \sigma_1[x \mapsto a_1]}, \llbracket t \rrbracket_{\theta_2, \sigma_2[x \mapsto a_2]}) \in \Delta_{\tau_2, \rho}}{(\llbracket \lambda x : \tau_1.t \rrbracket_{\theta_1, \sigma_1}, \llbracket \lambda x : \tau_1.t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau_1 \to \tau_2, \rho}} \\ (\llbracket t \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau_1 \to \tau_2, \rho} & (\llbracket u \rrbracket_{\theta_1, \sigma_1}, \llbracket u \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau_1, \rho} \\ \hline (\llbracket t \ u \rrbracket_{\theta_1, \sigma_1}, \llbracket t \ u \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau_2, \rho} \\ \frac{\forall \mathcal{R} \subseteq S_1 \times S_2. (\llbracket t \rrbracket_{\theta_1, \sigma_1}, \llbracket t \ u \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\forall \alpha \cdot \tau, \rho} \\ \hline (\llbracket t \ u \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\forall \alpha \cdot \tau, \rho} \\ \hline (\llbracket t \ u \rrbracket_{\theta_1, \sigma_1}, \llbracket t \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\forall \alpha \cdot \tau, \rho} \\ \hline (\llbracket t \ \tau' \rrbracket_{\theta_1, \sigma_1}, \llbracket t \ \tau' \rrbracket_{\theta_2, \sigma_2}) \in \Delta_{\tau_1, \rho} \end{array}$$

Adding Datatypes

Types:
$$\tau := \cdots | \text{Bool} | [\tau]$$

Terms: $t := \cdots | \text{True} | \text{False} | []_{\tau} | t : t | case t of { \cdots }$

Adding Datatypes

Types:
$$\tau := \cdots \mid \text{Bool} \mid [\tau]$$

Terms: $t := \cdots \mid \text{True} \mid \text{False} \mid []_{\tau} \mid t : t \mid \text{case } t \text{ of } \{\cdots\}$
 $\Gamma \vdash \text{True} : \text{Bool} , \Gamma \vdash \text{False} : \text{Bool} , \Gamma \vdash []_{\tau} : [\tau]$
 $\frac{\Gamma \vdash t : \tau \quad \Gamma \vdash u : [\tau]}{\Gamma \vdash (t : u) : [\tau]}$
 $\frac{\Gamma \vdash t : \text{Bool} \quad \Gamma \vdash u : \tau \quad \Gamma \vdash v : \tau}{\Gamma \vdash (\text{case } t \text{ of } \{\text{True} \rightarrow u; \text{False} \rightarrow v\}) : \tau}$
 $\frac{\Gamma \vdash t : [\tau'] \quad \Gamma \vdash u : \tau \quad \Gamma, x_1 : \tau', x_2 : [\tau'] \vdash v : \tau}{\Gamma \vdash (\text{case } t \text{ of } \{[] \rightarrow u; (x_1 : x_2) \rightarrow v\}) : \tau}$

Adding Datatypes

Types:
$$\tau := \cdots \mid \text{Bool} \mid [\tau]$$

Terms: $t := \cdots \mid \text{True} \mid \text{False} \mid []_{\tau} \mid t : t \mid \text{case } t \text{ of } \{\cdots\}$
 $\Gamma \vdash \text{True} : \text{Bool} , \Gamma \vdash \text{False} : \text{Bool} , \Gamma \vdash []_{\tau} : [\tau]$
 $\frac{\Gamma \vdash t : \tau \quad \Gamma \vdash u : [\tau]}{\Gamma \vdash (t : u) : [\tau]}$
 $\frac{\Gamma \vdash t : \text{Bool} \quad \Gamma \vdash u : \tau \quad \Gamma \vdash v : \tau}{\Gamma \vdash (\text{case } t \text{ of } \{\text{True} \rightarrow u; \text{False} \rightarrow v\}) : \tau}$
 $\frac{\Gamma \vdash t : [\tau'] \quad \Gamma \vdash u : \tau \quad \Gamma, x_1 : \tau', x_2 : [\tau'] \vdash v : \tau}{\Gamma \vdash (\text{case } t \text{ of } \{[] \rightarrow u; (x_1 : x_2) \rightarrow v\}) : \tau}$

With the straightforward extension of the semantics and with

$$\begin{array}{ll} \Delta_{\mathsf{Bool},\rho} &= \{(\mathsf{True},\mathsf{True}),(\mathsf{False},\mathsf{False})\}\\ \Delta_{[\tau],\rho} &= \{([x_1,\ldots,x_n],[y_1,\ldots,y_n]) \mid n \geq 0,(x_i,y_i) \in \Delta_{\tau,\rho}\},\\ \text{the parametricity theorem still holds.} \end{array}$$

Given g of type $\forall \alpha$. $(\alpha \rightarrow \text{Bool}) \rightarrow ([\alpha] \rightarrow [\alpha])$, by the parametricity theorem:

 $(\mathsf{g},\mathsf{g}) \in \Delta_{\forall \alpha.\; (\alpha \to \mathsf{Bool}) \to ([\alpha] \to [\alpha]), \emptyset}$

Given g of type $\forall \alpha$. $(\alpha \rightarrow \text{Bool}) \rightarrow ([\alpha] \rightarrow [\alpha])$, by the parametricity theorem:

$$\begin{array}{l} (\mathsf{g},\mathsf{g}) \in \Delta_{\forall \alpha. \ (\alpha \to \mathsf{Bool}) \to ([\alpha] \to [\alpha]), \emptyset} \\ \Leftrightarrow \forall \mathcal{R} \in \mathit{Rel}. \ (\mathsf{g},\mathsf{g}) \in \Delta_{(\alpha \to \mathsf{Bool}) \to ([\alpha] \to [\alpha]), [\alpha \mapsto \mathcal{R}]} \\ \text{by definition of } \Delta \end{array}$$

Given g of type $\forall \alpha$. $(\alpha \rightarrow \text{Bool}) \rightarrow ([\alpha] \rightarrow [\alpha])$, by the parametricity theorem:

$\begin{array}{l} (\mathrm{g},\mathrm{g}) \in \Delta_{\forall \alpha. \ (\alpha \to \mathsf{Bool}) \to ([\alpha] \to [\alpha]), \emptyset} \\ \Leftrightarrow \forall \mathcal{R} \in \mathit{Rel}. \ (\mathrm{g},\mathrm{g}) \in \Delta_{(\alpha \to \mathsf{Bool}) \to ([\alpha] \to [\alpha]), [\alpha \mapsto \mathcal{R}]} \\ \Leftrightarrow \forall \mathcal{R} \in \mathit{Rel}, (a_1, a_2) \in \Delta_{\alpha \to \mathsf{Bool}, [\alpha \mapsto \mathcal{R}]}. \ (\mathrm{g} \ a_1, \mathrm{g} \ a_2) \in \Delta_{[\alpha] \to [\alpha], [\alpha \mapsto \mathcal{R}]} \\ \text{by definition of } \Delta \end{array}$

Given g of type $\forall \alpha$. $(\alpha \rightarrow \text{Bool}) \rightarrow ([\alpha] \rightarrow [\alpha])$, by the parametricity theorem:

 $\begin{array}{l} (\mathbf{g},\mathbf{g}) \in \Delta_{\forall \alpha. \ (\alpha \to \mathsf{Bool}) \to ([\alpha] \to [\alpha]), \emptyset} \\ \Leftrightarrow \ \forall \mathcal{R} \in \mathit{Rel}. \ (\mathbf{g},\mathbf{g}) \in \Delta_{(\alpha \to \mathsf{Bool}) \to ([\alpha] \to [\alpha]), [\alpha \mapsto \mathcal{R}]} \\ \Leftrightarrow \ \forall \mathcal{R} \in \mathit{Rel}, (a_1, a_2) \in \Delta_{\alpha \to \mathsf{Bool}, [\alpha \mapsto \mathcal{R}]}. \ (\mathbf{g} \ a_1, \mathbf{g} \ a_2) \in \Delta_{[\alpha] \to [\alpha], [\alpha \mapsto \mathcal{R}]} \\ \Leftrightarrow \ \forall \mathcal{R} \in \mathit{Rel}, (a_1, a_2) \in \Delta_{\alpha \to \mathsf{Bool}, [\alpha \mapsto \mathcal{R}]}. \ (\mathbf{f}_1, \mathbf{f}_2) \in \Delta_{[\alpha], [\alpha \mapsto \mathcal{R}]}. \\ (\mathbf{g} \ a_1 \ l_1, \mathbf{g} \ a_2 \ l_2) \in \Delta_{[\alpha], [\alpha \mapsto \mathcal{R}]} \\ \text{by definition of } \Delta \end{array}$

Given g of type $\forall \alpha$. ($\alpha \rightarrow \text{Bool}$) $\rightarrow ([\alpha] \rightarrow [\alpha])$, by the parametricity theorem:

 $\begin{array}{l} (\mathbf{g},\mathbf{g}) \in \Delta_{\forall \alpha.} (\alpha \rightarrow \mathsf{Bool}) \rightarrow ([\alpha] \rightarrow [\alpha]), \emptyset \\ \Leftrightarrow \forall \mathcal{R} \in Rel. \ (\mathbf{g},\mathbf{g}) \in \Delta_{(\alpha \rightarrow \mathsf{Bool}) \rightarrow ([\alpha] \rightarrow [\alpha]), [\alpha \rightarrow \mathcal{R}]} \\ \Leftrightarrow \forall \mathcal{R} \in Rel, (a_1, a_2) \in \Delta_{\alpha \rightarrow \mathsf{Bool}, [\alpha \rightarrow \mathcal{R}]}. \ (\mathbf{g} \ a_1, \mathbf{g} \ a_2) \in \Delta_{[\alpha] \rightarrow [\alpha], [\alpha \rightarrow \mathcal{R}]} \\ \Leftrightarrow \forall \mathcal{R} \in Rel, (a_1, a_2) \in \Delta_{\alpha \rightarrow \mathsf{Bool}, [\alpha \rightarrow \mathcal{R}]}. \ (\mathbf{g} \ a_1, \mathbf{g} \ a_2) \in \Delta_{[\alpha], [\alpha \rightarrow \mathcal{R}]}. \\ (\mathbf{g} \ a_1 \ l_1, \mathbf{g} \ a_2 \ l_2) \in \Delta_{[\alpha], [\alpha \rightarrow \mathcal{R}]} \\ \Rightarrow \forall (a_1, a_2) \in \Delta_{\alpha \rightarrow \mathsf{Bool}, [\alpha \rightarrow \mathcal{R}]}, (l_1, l_2) \in (\mathsf{map} \ f). \\ (\mathbf{g} \ a_1 \ l_1, \mathbf{g} \ a_2 \ l_2) \in (\mathsf{map} \ f) \\ \text{by instantiating } \mathcal{R} = f \text{ and realising that } \Delta_{[\alpha], [\alpha \rightarrow f]} = \mathsf{map} \ f \end{array}$

for every function f

Given g of type $\forall \alpha$. ($\alpha \rightarrow \text{Bool}$) $\rightarrow ([\alpha] \rightarrow [\alpha])$, by the parametricity theorem:

$$\begin{split} &(g,g) \in \Delta_{\forall \alpha. (\alpha \to \text{Bool}) \to ([\alpha] \to [\alpha]), \emptyset} \\ \Leftrightarrow &\forall \mathcal{R} \in Rel. (g,g) \in \Delta_{(\alpha \to \text{Bool}) \to ([\alpha] \to [\alpha]), [\alpha \mapsto \mathcal{R}]} \\ \Leftrightarrow &\forall \mathcal{R} \in Rel, (a_1, a_2) \in \Delta_{\alpha \to \text{Bool}, [\alpha \mapsto \mathcal{R}]} \cdot (g \ a_1, g \ a_2) \in \Delta_{[\alpha] \to [\alpha], [\alpha \mapsto \mathcal{R}]} \\ \Leftrightarrow &\forall \mathcal{R} \in Rel, (a_1, a_2) \in \Delta_{\alpha \to \text{Bool}, [\alpha \mapsto \mathcal{R}]}, (l_1, l_2) \in \Delta_{[\alpha], [\alpha \mapsto \mathcal{R}]} \\ &(g \ a_1 \ l_1, g \ a_2 \ l_2) \in \Delta_{[\alpha], [\alpha \mapsto \mathcal{R}]} \\ \Rightarrow &\forall (a_1, a_2) \in \Delta_{\alpha \to \text{Bool}, [\alpha \mapsto \mathcal{R}]}, (l_1, l_2) \in (\text{map } f). \\ &(g \ a_1 \ l_1, g \ a_2 \ l_2) \in (\text{map } f) \\ \Rightarrow &\forall (l_1, l_2) \in (\text{map } f). (g \ (p \circ f) \ l_1, g \ p \ l_2) \in (\text{map } f) \\ &\text{by instantiating } (a_1, a_2) = (p \circ f, p) \in \Delta_{\alpha \to \text{Bool}, [\alpha \mapsto f]} \end{split}$$

for every function f and predicate p.

Given g of type $\forall \alpha$. ($\alpha \rightarrow \text{Bool}$) $\rightarrow ([\alpha] \rightarrow [\alpha])$, by the parametricity theorem:

 $\Leftrightarrow \forall \mathcal{R} \in \textit{Rel.} (g, g) \in \Delta_{(\alpha \to \text{Bool}) \to ([\alpha] \to [\alpha]), [\alpha \mapsto \mathcal{R}]}$ $\Leftrightarrow \forall \mathcal{R} \in \operatorname{Rel}, (a_1, a_2) \in \Delta_{\alpha \to \operatorname{Bool}, [\alpha \mapsto \mathcal{R}]}. \ (g \ a_1, g \ a_2) \in \Delta_{[\alpha] \to [\alpha], [\alpha \mapsto \mathcal{R}]}$ $\Leftrightarrow \forall \mathcal{R} \in Rel, (a_1, a_2) \in \Delta_{\alpha \to \text{Bool}, [\alpha \mapsto \mathcal{R}]}, (l_1, l_2) \in \Delta_{[\alpha], [\alpha \mapsto \mathcal{R}]}.$ $(g a_1 l_1, g a_2 l_2) \in \Delta_{[\alpha], [\alpha \mapsto \mathcal{R}]}$ $\Rightarrow \forall (a_1, a_2) \in \Delta_{\alpha \to \mathsf{Bool}, [\alpha \mapsto f]}, (l_1, l_2) \in (\mathsf{map} \ f).$ $(g a_1 l_1, g a_2 l_2) \in (map f)$ $\Rightarrow \forall (l_1, l_2) \in (\text{map } f). (g (p \circ f) l_1, g p l_2) \in (\text{map } f)$ $\Leftrightarrow \forall l_1. \text{ map } f (g (p \circ f) l_1) = g p (\text{map } f l_1)$ by inlining

for every function f and predicate p.

Given g of type $\forall \alpha$. $(\alpha \rightarrow \text{Bool}) \rightarrow ([\alpha] \rightarrow [\alpha])$, by the parametricity theorem:

 $\begin{array}{l} (\mathbf{g}, \mathbf{g}) \in \Delta_{\forall \alpha. \ (\alpha \to \mathsf{Bool}) \to ([\alpha] \to [\alpha]), \emptyset} \\ \Leftrightarrow \forall \mathcal{R} \in \mathit{Rel.} \ (\mathbf{g}, \mathbf{g}) \in \Delta_{(\alpha \to \mathsf{Bool}) \to ([\alpha] \to [\alpha]), [\alpha \mapsto \mathcal{R}]} \\ \Leftrightarrow \forall \mathcal{R} \in \mathit{Rel.} \ (a_1, a_2) \in \Delta_{\alpha \to \mathsf{Bool}, [\alpha \mapsto \mathcal{R}]} \cdot \ (\mathbf{g} \ a_1, \mathbf{g} \ a_2) \in \Delta_{[\alpha] \to [\alpha], [\alpha \mapsto \mathcal{R}]} \\ \Leftrightarrow \forall \mathcal{R} \in \mathit{Rel.} \ (a_1, a_2) \in \Delta_{\alpha \to \mathsf{Bool}, [\alpha \mapsto \mathcal{R}]}, \ (l_1, l_2) \in \Delta_{[\alpha], [\alpha \mapsto \mathcal{R}]} \\ \quad (\mathbf{g} \ a_1 \ l_1, \mathbf{g} \ a_2 \ l_2) \in \Delta_{[\alpha], [\alpha \mapsto \mathcal{R}]} \\ \Rightarrow \forall (a_1, a_2) \in \Delta_{\alpha \to \mathsf{Bool}, [\alpha \mapsto \mathcal{R}]}, \ (l_1, l_2) \in (\mathsf{map} \ f) \\ \quad (\mathbf{g} \ a_1 \ l_1, \mathbf{g} \ a_2 \ l_2) \in (\mathsf{map} \ f) \\ \Rightarrow \forall (l_1, l_2) \in (\mathsf{map} \ f) . \ (\mathbf{g} \ (p \circ f) \ l_1, \mathbf{g} \ p \ l_2) \in (\mathsf{map} \ f) \\ \Leftrightarrow \forall l_1. \ \mathsf{map} \ f \ (\mathbf{g} \ (p \circ f) \ l_1) = \mathbf{g} \ p \ (\mathsf{map} \ f \ l_1) \end{array}$

for every function f and predicate p.

That is what was claimed!

References

J.-Y. Girard.

Interprétation functionelle et élimination des coupures dans l'arithmétique d'ordre supérieure. PhD thesis, Université Paris VII, 1972.

J.C. Reynolds.

Towards a theory of type structure.

In Colloque sur la Programmation, Proceedings, pages 408-423. Springer-Verlag, 1974.

J.C. Reynolds.

Types, abstraction and parametric polymorphism. In Information Processing, Proceedings, pages 513–523. Elsevier Science Publishers B.V., 1983.

P. Wadler.

Theorems for free!

In Functional Programming Languages and Computer Architecture, Proceedings, pages 347–359. ACM Press, 1989.