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Using a Free Theorem [Wadler 1989]

For every
get :: [α] → [α]

we have
map f (get l) = get (map f l)

for arbitrary f and l , where

map :: (α → β) → [α] → [β]
map f [ ] = [ ]
map f (a : as) = (f a) : (map f as)
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But how do we know this?
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Why map f (get l) = get (map f l), Intuitively

◮ get :: [α] → [α] must work uniformly for every instantiation
of α.
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Why map f (get l) = get (map f l), Intuitively

◮ get :: [α] → [α] must work uniformly for every instantiation
of α.

◮ The output list can only contain elements from the input list l .

◮ Which, and in which order/multiplicity, can only be decided
based on l .

◮ The only means for this decision is to inspect the length of l .

◮ The lists (map f l) and l always have equal length.

◮ get always chooses “the same” elements from (map f l) for
output as it does from l , except that in the former case it
outputs their images under f .

◮ (get (map f l)) is equivalent to (map f (get l)).

◮ That is what was claimed!
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Another Example

takeWhile :: (α → Bool) → [α] → [α]
takeWhile p [ ] = [ ]
takeWhile p (a : as) | p a = a : (takeWhile p as)

| otherwise = [ ]
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Another Example

takeWhile :: (α → Bool) → [α] → [α]

filter :: (α → Bool) → [α] → [α]

g :: (α → Bool) → [α] → [α]

For arbitrary p, f , and l :

takeWhile p (map f l) = map f (takeWhile (p ◦ f ) l)

filter p (map f l) = map f (filter (p ◦ f ) l)

g p (map f l) = map f (g (p ◦ f ) l)
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Why g p (map f l) = map f (g (p ◦ f ) l), Intuitively

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.
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Automatic Generation of Free Theorems

At http://linux.tcs.inf.tu-dresden.de/∼voigt/ft:
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◮ g ∈ [[∀α.τ ]] would have to be a whole “collection” of values:
for every type τ ′, an instance with type τ [τ ′/α].

◮ [[∀α.τ ]] = {g | ∀τ ′. gτ ′ ∈ [[τ [τ ′/α]]]} ?

◮ But this includes “ad-hoc polymorphic” functions!
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Unwanted Ad-Hoc Polymorphism: Example

◮ With the proposed definition,
[[∀α. (α,α) → α]] = {g | ∀τ. gτ : [[τ ]] × [[τ ]] → [[τ ]]}.
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Key Idea [Reynolds 1983]

Use arbitrary relations to tie instances together!
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Key Idea [Reynolds 1983]

Use arbitrary relations to tie instances together!

In the example (g :: ∀α. (α,α) → α):

◮ Choose a relation R ⊆ [[Bool]] × [[Int]].

◮ Call (x1, x2) ∈ [[Bool]] × [[Bool]] and (y1, y2) ∈ [[Int]] × [[Int]]
related if (x1, y1) ∈ R and (x2, y2) ∈ R.

◮ Call f1 : [[Bool]] × [[Bool]] → [[Bool]], f2 : [[Int]] × [[Int]] → [[Int]]
related if related inputs lead to related outputs.

◮ Then gBool and gInt with

gBool (x , y) = not x

gInt (x , y) = y + 1

are not related for choice of, e.g., R = {(True, 1)}.

Reynolds: g ∈ [[∀α.τ ]] iff for every τ1, τ2 and R ⊆ [[τ1]] × [[τ2]],
gτ1 is related to gτ2 by the “propagation” of R
along τ .
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Polymorphic Lambda Calculus

[Girard 1972, Reynolds 1974]

Types: τ := α | τ → τ | ∀α.τ

Terms: t := x | λx : τ.t | t t | Λα.t | t τ
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Polymorphic Lambda Calculus

[Girard 1972, Reynolds 1974]

Types: τ := α | τ → τ | ∀α.τ

Terms: t := x | λx : τ.t | t t | Λα.t | t τ

Γ, x : τ ⊢ x : τ [[x ]]θ,σ = σ(x)

Γ, x : τ1 ⊢ t : τ2

Γ ⊢ (λx : τ1.t) : τ1 → τ2
[[λx : τ1.t]]θ,σ a = [[t]]θ,σ[x 7→a]

Γ ⊢ t : τ1 → τ2 Γ ⊢ u : τ1

Γ ⊢ (t u) : τ2
[[t u]]θ,σ = [[t]]θ,σ [[u]]θ,σ

α,Γ ⊢ t : τ

Γ ⊢ (Λα.t) : ∀α.τ
[[Λα.t]]θ,σ S = [[t]]θ[α7→S],σ

Γ ⊢ t : ∀α.τ
Γ ⊢ (t τ ′) : τ [τ ′/α]

[[t τ ′]]θ,σ = [[t]]θ,σ [[τ ′]]θ
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Parametricity Theorem [Reynolds 1983, Wadler 1989]

Given τ and environments θ1, θ2, ρ with ρ(α) ⊆ θ1(α) × θ2(α),
define ∆τ,ρ ⊆ [[τ ]]θ1

× [[τ ]]θ2
as follows:
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) ∈ ∆τ,ρ ,
provided (σ1(x), σ2(x)) ∈ ∆τ ′,ρ for every x : τ ′ in Γ

by induction on the structure of typing derivations.
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Terms: t := · · · | True | False | [ ]τ | t : t | case t of {· · · }

Γ ⊢ True : Bool , Γ ⊢ False : Bool , Γ ⊢ [ ]τ : [τ ]

Γ ⊢ t : τ Γ ⊢ u : [τ ]

Γ ⊢ (t : u) : [τ ]

Γ ⊢ t : Bool Γ ⊢ u : τ Γ ⊢ v : τ
Γ ⊢ (case t of {True → u ; False → v}) : τ

Γ ⊢ t : [τ ′] Γ ⊢ u : τ Γ, x1 : τ ′, x2 : [τ ′] ⊢ v : τ

Γ ⊢ (case t of {[] → u ; (x1 : x2) → v}) : τ

With the straightforward extension of the semantics and with

∆Bool,ρ = {(True,True), (False,False)}
∆[τ ],ρ = {([x1, . . . , xn], [y1, . . . , yn]) | n ≥ 0, (xi , yi ) ∈ ∆τ,ρ} ,

the parametricity theorem still holds.
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Now Formal Counterpart to Intuitive Reasoning

Given g of type ∀α. (α → Bool) → ([α] → [α]),
by the parametricity theorem:

(g, g) ∈ ∆∀α. (α→Bool)→([α]→[α]),∅
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⇔ ∀R ∈ Rel , (a1, a2) ∈ ∆α→Bool,[α7→R], (l1, l2) ∈ ∆[α],[α7→R].

(g a1 l1, g a2 l2) ∈ ∆[α],[α7→R]

⇒ ∀(a1, a2) ∈ ∆α→Bool,[α7→f ], (l1, l2) ∈ (map f ).

(g a1 l1, g a2 l2) ∈ (map f )
by instantiating R = f and realising that ∆[α],[α7→f ] = map f

for every function f
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That is what was claimed!
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