
Free Theorems — Foundations

Janis Voigtländer

Technische Universität Dresden

April 22nd, 2009

Using a Free Theorem [Wadler 1989]

For every
get :: [α] → [α]

we have
map f (get l) = get (map f l)

for arbitrary f and l , where

map :: (α → β) → [α] → [β]
map f [] = []
map f (a : as) = (f a) : (map f as)

1

Using a Free Theorem [Wadler 1989]

For every
get :: [α] → [α]

we have
map f (get l) = get (map f l)

for arbitrary f and l , where

map :: (α → β) → [α] → [β]
map f [] = []
map f (a : as) = (f a) : (map f as)

But how do we know this?

1

Why map f (get l) = get (map f l), Intuitively

◮ get :: [α] → [α] must work uniformly for every instantiation
of α.

2

Why map f (get l) = get (map f l), Intuitively

◮ get :: [α] → [α] must work uniformly for every instantiation
of α.

◮ The output list can only contain elements from the input list l .

2

Why map f (get l) = get (map f l), Intuitively

◮ get :: [α] → [α] must work uniformly for every instantiation
of α.

◮ The output list can only contain elements from the input list l .

◮ Which, and in which order/multiplicity, can only be decided
based on l .

2

Why map f (get l) = get (map f l), Intuitively

◮ get :: [α] → [α] must work uniformly for every instantiation
of α.

◮ The output list can only contain elements from the input list l .

◮ Which, and in which order/multiplicity, can only be decided
based on l .

◮ The only means for this decision is to inspect the length of l .

2

Why map f (get l) = get (map f l), Intuitively

◮ get :: [α] → [α] must work uniformly for every instantiation
of α.

◮ The output list can only contain elements from the input list l .

◮ Which, and in which order/multiplicity, can only be decided
based on l .

◮ The only means for this decision is to inspect the length of l .

◮ The lists (map f l) and l always have equal length.

2

Why map f (get l) = get (map f l), Intuitively

◮ get :: [α] → [α] must work uniformly for every instantiation
of α.

◮ The output list can only contain elements from the input list l .

◮ Which, and in which order/multiplicity, can only be decided
based on l .

◮ The only means for this decision is to inspect the length of l .

◮ The lists (map f l) and l always have equal length.

◮ get always chooses “the same” elements from (map f l) for
output as it does from l ,

2

Why map f (get l) = get (map f l), Intuitively

◮ get :: [α] → [α] must work uniformly for every instantiation
of α.

◮ The output list can only contain elements from the input list l .

◮ Which, and in which order/multiplicity, can only be decided
based on l .

◮ The only means for this decision is to inspect the length of l .

◮ The lists (map f l) and l always have equal length.

◮ get always chooses “the same” elements from (map f l) for
output as it does from l , except that in the former case it
outputs their images under f .

2

Why map f (get l) = get (map f l), Intuitively

◮ get :: [α] → [α] must work uniformly for every instantiation
of α.

◮ The output list can only contain elements from the input list l .

◮ Which, and in which order/multiplicity, can only be decided
based on l .

◮ The only means for this decision is to inspect the length of l .

◮ The lists (map f l) and l always have equal length.

◮ get always chooses “the same” elements from (map f l) for
output as it does from l , except that in the former case it
outputs their images under f .

◮ (get (map f l)) is equivalent to (map f (get l)).

2

Why map f (get l) = get (map f l), Intuitively

◮ get :: [α] → [α] must work uniformly for every instantiation
of α.

◮ The output list can only contain elements from the input list l .

◮ Which, and in which order/multiplicity, can only be decided
based on l .

◮ The only means for this decision is to inspect the length of l .

◮ The lists (map f l) and l always have equal length.

◮ get always chooses “the same” elements from (map f l) for
output as it does from l , except that in the former case it
outputs their images under f .

◮ (get (map f l)) is equivalent to (map f (get l)).

◮ That is what was claimed!

2

Another Example

takeWhile :: (α → Bool) → [α] → [α]
takeWhile p [] = []
takeWhile p (a : as) | p a = a : (takeWhile p as)

| otherwise = []

3

Another Example

takeWhile :: (α → Bool) → [α] → [α]
takeWhile p [] = []
takeWhile p (a : as) | p a = a : (takeWhile p as)

| otherwise = []

For arbitrary p, f , and l :

takeWhile p (map f l) = map f (takeWhile (p ◦ f) l)

Provable by induction.

3

Another Example

takeWhile :: (α → Bool) → [α] → [α]
takeWhile p [] = []
takeWhile p (a : as) | p a = a : (takeWhile p as)

| otherwise = []

For arbitrary p, f , and l :

takeWhile p (map f l) = map f (takeWhile (p ◦ f) l)

Provable by induction.

Or again as a free theorem.

3

Another Example

takeWhile :: (α → Bool) → [α] → [α]

For arbitrary p, f , and l :

takeWhile p (map f l) = map f (takeWhile (p ◦ f) l)

Provable by induction.

Or again as a free theorem.

3

Another Example

takeWhile :: (α → Bool) → [α] → [α]

filter :: (α → Bool) → [α] → [α]

For arbitrary p, f , and l :

takeWhile p (map f l) = map f (takeWhile (p ◦ f) l)

filter p (map f l) = map f (filter (p ◦ f) l)

3

Another Example

takeWhile :: (α → Bool) → [α] → [α]

filter :: (α → Bool) → [α] → [α]

g :: (α → Bool) → [α] → [α]

For arbitrary p, f , and l :

takeWhile p (map f l) = map f (takeWhile (p ◦ f) l)

filter p (map f l) = map f (filter (p ◦ f) l)

g p (map f l) = map f (g (p ◦ f) l)

3

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

4

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .

4

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .

◮ Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

4

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .

◮ Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

◮ The only means for this decision are to inspect the length of l

and to check the outcome of p on its elements.

4

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .

◮ Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

◮ The only means for this decision are to inspect the length of l

and to check the outcome of p on its elements.

◮ The lists (map f l) and l always have equal length.

4

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .

◮ Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

◮ The only means for this decision are to inspect the length of l

and to check the outcome of p on its elements.

◮ The lists (map f l) and l always have equal length.

◮ Applying p to an element of (map f l) always has the same
outcome as applying (p ◦ f) to the corresponding element of l .

4

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .

◮ Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

◮ The only means for this decision are to inspect the length of l

and to check the outcome of p on its elements.

◮ The lists (map f l) and l always have equal length.

◮ Applying p to an element of (map f l) always has the same
outcome as applying (p ◦ f) to the corresponding element of l .

◮ g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f) from l , except that in the
former case it outputs their images under f .

4

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .

◮ Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

◮ The only means for this decision are to inspect the length of l

and to check the outcome of p on its elements.

◮ The lists (map f l) and l always have equal length.

◮ Applying p to an element of (map f l) always has the same
outcome as applying (p ◦ f) to the corresponding element of l .

◮ g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f) from l , except that in the
former case it outputs their images under f .

◮ (g p (map f l)) is equivalent to (map f (g (p ◦ f) l)).

4

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .

◮ Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

◮ The only means for this decision are to inspect the length of l

and to check the outcome of p on its elements.

◮ The lists (map f l) and l always have equal length.

◮ Applying p to an element of (map f l) always has the same
outcome as applying (p ◦ f) to the corresponding element of l .

◮ g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f) from l , except that in the
former case it outputs their images under f .

◮ (g p (map f l)) is equivalent to (map f (g (p ◦ f) l)).

◮ That is what was claimed!

4

Automatic Generation of Free Theorems

At http://linux.tcs.inf.tu-dresden.de/∼voigt/ft:

5

http://linux.tcs.inf.tu-dresden.de/~voigt/ft

Automatic Generation of Free Theorems

5

Formal Background: Parametric Polymorphism

Question: What g have type ∀α. (α → Bool) → [α] → [α] ?

6

Formal Background: Parametric Polymorphism

Question: What g have type ∀α. (α → Bool) → [α] → [α] ?

Approach: Give denotations of types as sets. (A bit naive . . .)

6

Formal Background: Parametric Polymorphism

Question: What g have type ∀α. (α → Bool) → [α] → [α] ?

Approach: Give denotations of types as sets. (A bit naive . . .)

[[Bool]] = {True,False}
[[Int]] = {. . . ,−2,−1, 0, 1, 2, . . . }

6

Formal Background: Parametric Polymorphism

Question: What g have type ∀α. (α → Bool) → [α] → [α] ?

Approach: Give denotations of types as sets. (A bit naive . . .)

[[Bool]] = {True,False}
[[Int]] = {. . . ,−2,−1, 0, 1, 2, . . . }
[[(τ1, τ2)]] = [[τ1]] × [[τ2]]
[[[τ]]] = {[x1, . . . , xn] | n ≥ 0, xi ∈ [[τ]]}

6

Formal Background: Parametric Polymorphism

Question: What g have type ∀α. (α → Bool) → [α] → [α] ?

Approach: Give denotations of types as sets. (A bit naive . . .)

[[Bool]] = {True,False}
[[Int]] = {. . . ,−2,−1, 0, 1, 2, . . . }
[[(τ1, τ2)]] = [[τ1]] × [[τ2]]
[[[τ]]] = {[x1, . . . , xn] | n ≥ 0, xi ∈ [[τ]]}
[[τ1 → τ2]] = {f : [[τ1]] → [[τ2]]}

6

Formal Background: Parametric Polymorphism

Question: What g have type ∀α. (α → Bool) → [α] → [α] ?

Approach: Give denotations of types as sets. (A bit naive . . .)

[[Bool]] = {True,False}
[[Int]] = {. . . ,−2,−1, 0, 1, 2, . . . }
[[(τ1, τ2)]] = [[τ1]] × [[τ2]]
[[[τ]]] = {[x1, . . . , xn] | n ≥ 0, xi ∈ [[τ]]}
[[τ1 → τ2]] = {f : [[τ1]] → [[τ2]]}
[[∀α.τ]] = ?

6

Formal Background: Parametric Polymorphism

Question: What g have type ∀α. (α → Bool) → [α] → [α] ?

Approach: Give denotations of types as sets. (A bit naive . . .)

[[Bool]] = {True,False}
[[Int]] = {. . . ,−2,−1, 0, 1, 2, . . . }
[[(τ1, τ2)]] = [[τ1]] × [[τ2]]
[[[τ]]] = {[x1, . . . , xn] | n ≥ 0, xi ∈ [[τ]]}
[[τ1 → τ2]] = {f : [[τ1]] → [[τ2]]}
[[∀α.τ]] = ?

◮ g ∈ [[∀α.τ]] would have to be a whole “collection” of values:
for every type τ ′, an instance with type τ [τ ′/α].

6

Formal Background: Parametric Polymorphism

Question: What g have type ∀α. (α → Bool) → [α] → [α] ?

Approach: Give denotations of types as sets. (A bit naive . . .)

[[Bool]] = {True,False}
[[Int]] = {. . . ,−2,−1, 0, 1, 2, . . . }
[[(τ1, τ2)]] = [[τ1]] × [[τ2]]
[[[τ]]] = {[x1, . . . , xn] | n ≥ 0, xi ∈ [[τ]]}
[[τ1 → τ2]] = {f : [[τ1]] → [[τ2]]}
[[∀α.τ]] = ?

◮ g ∈ [[∀α.τ]] would have to be a whole “collection” of values:
for every type τ ′, an instance with type τ [τ ′/α].

◮ [[∀α.τ]] = {g | ∀τ ′. gτ ′ ∈ [[τ [τ ′/α]]]} ?

6

Formal Background: Parametric Polymorphism

Question: What g have type ∀α. (α → Bool) → [α] → [α] ?

Approach: Give denotations of types as sets. (A bit naive . . .)

[[Bool]] = {True,False}
[[Int]] = {. . . ,−2,−1, 0, 1, 2, . . . }
[[(τ1, τ2)]] = [[τ1]] × [[τ2]]
[[[τ]]] = {[x1, . . . , xn] | n ≥ 0, xi ∈ [[τ]]}
[[τ1 → τ2]] = {f : [[τ1]] → [[τ2]]}
[[∀α.τ]] = ?

◮ g ∈ [[∀α.τ]] would have to be a whole “collection” of values:
for every type τ ′, an instance with type τ [τ ′/α].

◮ [[∀α.τ]] = {g | ∀τ ′. gτ ′ ∈ [[τ [τ ′/α]]]} ?

◮ But this includes “ad-hoc polymorphic” functions!

6

Unwanted Ad-Hoc Polymorphism: Example

◮ With the proposed definition,
[[∀α. (α,α) → α]] = {g | ∀τ. gτ : [[τ]] × [[τ]] → [[τ]]}.

7

Unwanted Ad-Hoc Polymorphism: Example

◮ With the proposed definition,
[[∀α. (α,α) → α]] = {g | ∀τ. gτ : [[τ]] × [[τ]] → [[τ]]}.

◮ But this also allows a g with

gBool (x , y) = not x

gInt (x , y) = y + 1 ,

which is not possible in Haskell at type ∀α. (α,α) → α.

7

Unwanted Ad-Hoc Polymorphism: Example

◮ With the proposed definition,
[[∀α. (α,α) → α]] = {g | ∀τ. gτ : [[τ]] × [[τ]] → [[τ]]}.

◮ But this also allows a g with

gBool (x , y) = not x

gInt (x , y) = y + 1 ,

which is not possible in Haskell at type ∀α. (α,α) → α.

◮ To prevent this, we have to compare

gBool : [[Bool]] × [[Bool]] → [[Bool]] and
gInt : [[Int]] × [[Int]] → [[Int]] ,

and ensure that they “behave identically”.

7

Unwanted Ad-Hoc Polymorphism: Example

◮ With the proposed definition,
[[∀α. (α,α) → α]] = {g | ∀τ. gτ : [[τ]] × [[τ]] → [[τ]]}.

◮ But this also allows a g with

gBool (x , y) = not x

gInt (x , y) = y + 1 ,

which is not possible in Haskell at type ∀α. (α,α) → α.

◮ To prevent this, we have to compare

gBool : [[Bool]] × [[Bool]] → [[Bool]] and
gInt : [[Int]] × [[Int]] → [[Int]] ,

and ensure that they “behave identically”.
But how?

7

Key Idea [Reynolds 1983]

Use arbitrary relations to tie instances together!

8

Key Idea [Reynolds 1983]

Use arbitrary relations to tie instances together!

In the example (g :: ∀α. (α,α) → α):

◮ Choose a relation R ⊆ [[Bool]] × [[Int]].

8

Key Idea [Reynolds 1983]

Use arbitrary relations to tie instances together!

In the example (g :: ∀α. (α,α) → α):

◮ Choose a relation R ⊆ [[Bool]] × [[Int]].

◮ Call (x1, x2) ∈ [[Bool]] × [[Bool]] and (y1, y2) ∈ [[Int]] × [[Int]]
related if (x1, y1) ∈ R and (x2, y2) ∈ R.

8

Key Idea [Reynolds 1983]

Use arbitrary relations to tie instances together!

In the example (g :: ∀α. (α,α) → α):

◮ Choose a relation R ⊆ [[Bool]] × [[Int]].

◮ Call (x1, x2) ∈ [[Bool]] × [[Bool]] and (y1, y2) ∈ [[Int]] × [[Int]]
related if (x1, y1) ∈ R and (x2, y2) ∈ R.

◮ Call f1 : [[Bool]] × [[Bool]] → [[Bool]], f2 : [[Int]] × [[Int]] → [[Int]]
related if related inputs lead to related outputs.

8

Key Idea [Reynolds 1983]

Use arbitrary relations to tie instances together!

In the example (g :: ∀α. (α,α) → α):

◮ Choose a relation R ⊆ [[Bool]] × [[Int]].

◮ Call (x1, x2) ∈ [[Bool]] × [[Bool]] and (y1, y2) ∈ [[Int]] × [[Int]]
related if (x1, y1) ∈ R and (x2, y2) ∈ R.

◮ Call f1 : [[Bool]] × [[Bool]] → [[Bool]], f2 : [[Int]] × [[Int]] → [[Int]]
related if related inputs lead to related outputs.

◮ Then gBool and gInt with

gBool (x , y) = not x

gInt (x , y) = y + 1

are not related for choice of, e.g., R = {(True, 1)}.

8

Key Idea [Reynolds 1983]

Use arbitrary relations to tie instances together!

In the example (g :: ∀α. (α,α) → α):

◮ Choose a relation R ⊆ [[Bool]] × [[Int]].

◮ Call (x1, x2) ∈ [[Bool]] × [[Bool]] and (y1, y2) ∈ [[Int]] × [[Int]]
related if (x1, y1) ∈ R and (x2, y2) ∈ R.

◮ Call f1 : [[Bool]] × [[Bool]] → [[Bool]], f2 : [[Int]] × [[Int]] → [[Int]]
related if related inputs lead to related outputs.

◮ Then gBool and gInt with

gBool (x , y) = not x

gInt (x , y) = y + 1

are not related for choice of, e.g., R = {(True, 1)}.

Reynolds: g ∈ [[∀α.τ]] iff for every τ1, τ2 and R ⊆ [[τ1]] × [[τ2]],
gτ1 is related to gτ2 by the “propagation” of R
along τ .

8

Polymorphic Lambda Calculus

[Girard 1972, Reynolds 1974]

Types: τ := α | τ → τ | ∀α.τ

Terms: t := x | λx : τ.t | t t | Λα.t | t τ

9

Polymorphic Lambda Calculus

[Girard 1972, Reynolds 1974]

Types: τ := α | τ → τ | ∀α.τ

Terms: t := x | λx : τ.t | t t | Λα.t | t τ

Γ, x : τ ⊢ x : τ

9

Polymorphic Lambda Calculus

[Girard 1972, Reynolds 1974]

Types: τ := α | τ → τ | ∀α.τ

Terms: t := x | λx : τ.t | t t | Λα.t | t τ

Γ, x : τ ⊢ x : τ

Γ, x : τ1 ⊢ t : τ2

Γ ⊢ (λx : τ1.t) : τ1 → τ2

9

Polymorphic Lambda Calculus

[Girard 1972, Reynolds 1974]

Types: τ := α | τ → τ | ∀α.τ

Terms: t := x | λx : τ.t | t t | Λα.t | t τ

Γ, x : τ ⊢ x : τ

Γ, x : τ1 ⊢ t : τ2

Γ ⊢ (λx : τ1.t) : τ1 → τ2

Γ ⊢ t : τ1 → τ2 Γ ⊢ u : τ1

Γ ⊢ (t u) : τ2

9

Polymorphic Lambda Calculus

[Girard 1972, Reynolds 1974]

Types: τ := α | τ → τ | ∀α.τ

Terms: t := x | λx : τ.t | t t | Λα.t | t τ

Γ, x : τ ⊢ x : τ

Γ, x : τ1 ⊢ t : τ2

Γ ⊢ (λx : τ1.t) : τ1 → τ2

Γ ⊢ t : τ1 → τ2 Γ ⊢ u : τ1

Γ ⊢ (t u) : τ2

α,Γ ⊢ t : τ

Γ ⊢ (Λα.t) : ∀α.τ

9

Polymorphic Lambda Calculus

[Girard 1972, Reynolds 1974]

Types: τ := α | τ → τ | ∀α.τ

Terms: t := x | λx : τ.t | t t | Λα.t | t τ

Γ, x : τ ⊢ x : τ

Γ, x : τ1 ⊢ t : τ2

Γ ⊢ (λx : τ1.t) : τ1 → τ2

Γ ⊢ t : τ1 → τ2 Γ ⊢ u : τ1

Γ ⊢ (t u) : τ2

α,Γ ⊢ t : τ

Γ ⊢ (Λα.t) : ∀α.τ

Γ ⊢ t : ∀α.τ
Γ ⊢ (t τ ′) : τ [τ ′/α]

9

Polymorphic Lambda Calculus

[Girard 1972, Reynolds 1974]

Types: τ := α | τ → τ | ∀α.τ

Terms: t := x | λx : τ.t | t t | Λα.t | t τ

Γ, x : τ ⊢ x : τ [[x]]θ,σ = σ(x)

Γ, x : τ1 ⊢ t : τ2

Γ ⊢ (λx : τ1.t) : τ1 → τ2
[[λx : τ1.t]]θ,σ a = [[t]]θ,σ[x 7→a]

Γ ⊢ t : τ1 → τ2 Γ ⊢ u : τ1

Γ ⊢ (t u) : τ2
[[t u]]θ,σ = [[t]]θ,σ [[u]]θ,σ

α,Γ ⊢ t : τ

Γ ⊢ (Λα.t) : ∀α.τ
[[Λα.t]]θ,σ S = [[t]]θ[α7→S],σ

Γ ⊢ t : ∀α.τ
Γ ⊢ (t τ ′) : τ [τ ′/α]

[[t τ ′]]θ,σ = [[t]]θ,σ [[τ ′]]θ

9

Parametricity Theorem [Reynolds 1983, Wadler 1989]

Given τ and environments θ1, θ2, ρ with ρ(α) ⊆ θ1(α) × θ2(α),
define ∆τ,ρ ⊆ [[τ]]θ1

× [[τ]]θ2
as follows:

10

Parametricity Theorem [Reynolds 1983, Wadler 1989]

Given τ and environments θ1, θ2, ρ with ρ(α) ⊆ θ1(α) × θ2(α),
define ∆τ,ρ ⊆ [[τ]]θ1

× [[τ]]θ2
as follows:

∆α,ρ = ρ(α)

10

Parametricity Theorem [Reynolds 1983, Wadler 1989]

Given τ and environments θ1, θ2, ρ with ρ(α) ⊆ θ1(α) × θ2(α),
define ∆τ,ρ ⊆ [[τ]]θ1

× [[τ]]θ2
as follows:

∆α,ρ = ρ(α)
∆τ1→τ2,ρ = {(f1, f2) | ∀(a1, a2) ∈ ∆τ1,ρ. (f1 a1, f2 a2) ∈ ∆τ2,ρ}

10

Parametricity Theorem [Reynolds 1983, Wadler 1989]

Given τ and environments θ1, θ2, ρ with ρ(α) ⊆ θ1(α) × θ2(α),
define ∆τ,ρ ⊆ [[τ]]θ1

× [[τ]]θ2
as follows:

∆α,ρ = ρ(α)
∆τ1→τ2,ρ = {(f1, f2) | ∀(a1, a2) ∈ ∆τ1,ρ. (f1 a1, f2 a2) ∈ ∆τ2,ρ}
∆∀α.τ,ρ = {(g1, g2) | ∀R ⊆ S1 × S2. (g1 S1, g2 S2) ∈ ∆τ,ρ[α7→R]}

10

Parametricity Theorem [Reynolds 1983, Wadler 1989]

Given τ and environments θ1, θ2, ρ with ρ(α) ⊆ θ1(α) × θ2(α),
define ∆τ,ρ ⊆ [[τ]]θ1

× [[τ]]θ2
as follows:

∆α,ρ = ρ(α)
∆τ1→τ2,ρ = {(f1, f2) | ∀(a1, a2) ∈ ∆τ1,ρ. (f1 a1, f2 a2) ∈ ∆τ2,ρ}
∆∀α.τ,ρ = {(g1, g2) | ∀R ⊆ S1 × S2. (g1 S1, g2 S2) ∈ ∆τ,ρ[α7→R]}

Then, for every closed term t of closed type τ :

([[t]]∅,∅, [[t]]∅,∅) ∈ ∆τ,∅.

10

Proof Sketch

Prove the following more general statement:

Γ ⊢ t : τ implies ([[t]]θ1,σ1
, [[t]]θ2,σ2

) ∈ ∆τ,ρ ,
provided (σ1(x), σ2(x)) ∈ ∆τ ′,ρ for every x : τ ′ in Γ

by induction on the structure of typing derivations.

11

Proof Sketch

Prove the following more general statement:

Γ ⊢ t : τ implies ([[t]]θ1,σ1
, [[t]]θ2,σ2

) ∈ ∆τ,ρ ,
provided (σ1(x), σ2(x)) ∈ ∆τ ′,ρ for every x : τ ′ in Γ

by induction on the structure of typing derivations.
The base case is immediate.

11

Proof Sketch

Prove the following more general statement:

Γ ⊢ t : τ implies ([[t]]θ1,σ1
, [[t]]θ2,σ2

) ∈ ∆τ,ρ ,
provided (σ1(x), σ2(x)) ∈ ∆τ ′,ρ for every x : τ ′ in Γ

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

Γ, x : τ1 ⊢ t : τ2

Γ ⊢ (λx : τ1.t) : τ1 → τ2

11

Proof Sketch

Prove the following more general statement:

Γ ⊢ t : τ implies ([[t]]θ1,σ1
, [[t]]θ2,σ2

) ∈ ∆τ,ρ ,
provided (σ1(x), σ2(x)) ∈ ∆τ ′,ρ for every x : τ ′ in Γ

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

Γ, x : τ1 ⊢ t : τ2

([[λx : τ1.t]]θ1,σ1
, [[λx : τ1.t]]θ2,σ2

) ∈ ∆τ1→τ2,ρ

11

Proof Sketch

Prove the following more general statement:

Γ ⊢ t : τ implies ([[t]]θ1,σ1
, [[t]]θ2,σ2

) ∈ ∆τ,ρ ,
provided (σ1(x), σ2(x)) ∈ ∆τ ′,ρ for every x : τ ′ in Γ

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

∀(a1, a2) ∈ ∆τ1,ρ. ([[t]]θ1,σ1[x 7→a1], [[t]]θ2,σ2[x 7→a2]) ∈ ∆τ2,ρ

([[λx : τ1.t]]θ1,σ1
, [[λx : τ1.t]]θ2,σ2

) ∈ ∆τ1→τ2,ρ

11

Proof Sketch

Prove the following more general statement:

Γ ⊢ t : τ implies ([[t]]θ1,σ1
, [[t]]θ2,σ2

) ∈ ∆τ,ρ ,
provided (σ1(x), σ2(x)) ∈ ∆τ ′,ρ for every x : τ ′ in Γ

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

∀(a1, a2) ∈ ∆τ1,ρ. ([[t]]θ1,σ1[x 7→a1], [[t]]θ2,σ2[x 7→a2]) ∈ ∆τ2,ρ

([[λx : τ1.t]]θ1,σ1
, [[λx : τ1.t]]θ2,σ2

) ∈ ∆τ1→τ2,ρ

Γ ⊢ t : τ1 → τ2 Γ ⊢ u : τ1

Γ ⊢ (t u) : τ2

11

Proof Sketch

Prove the following more general statement:

Γ ⊢ t : τ implies ([[t]]θ1,σ1
, [[t]]θ2,σ2

) ∈ ∆τ,ρ ,
provided (σ1(x), σ2(x)) ∈ ∆τ ′,ρ for every x : τ ′ in Γ

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

∀(a1, a2) ∈ ∆τ1,ρ. ([[t]]θ1,σ1[x 7→a1], [[t]]θ2,σ2[x 7→a2]) ∈ ∆τ2,ρ

([[λx : τ1.t]]θ1,σ1
, [[λx : τ1.t]]θ2,σ2

) ∈ ∆τ1→τ2,ρ

Γ ⊢ t : τ1 → τ2 Γ ⊢ u : τ1

([[t u]]θ1,σ1
, [[t u]]θ2,σ2

) ∈ ∆τ2,ρ

11

Proof Sketch

Prove the following more general statement:

Γ ⊢ t : τ implies ([[t]]θ1,σ1
, [[t]]θ2,σ2

) ∈ ∆τ,ρ ,
provided (σ1(x), σ2(x)) ∈ ∆τ ′,ρ for every x : τ ′ in Γ

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

∀(a1, a2) ∈ ∆τ1,ρ. ([[t]]θ1,σ1[x 7→a1], [[t]]θ2,σ2[x 7→a2]) ∈ ∆τ2,ρ

([[λx : τ1.t]]θ1,σ1
, [[λx : τ1.t]]θ2,σ2

) ∈ ∆τ1→τ2,ρ

([[t]]θ1,σ1
, [[t]]θ2,σ2

) ∈ ∆τ1→τ2,ρ ([[u]]θ1,σ1
, [[u]]θ2,σ2

) ∈ ∆τ1,ρ

([[t u]]θ1,σ1
, [[t u]]θ2,σ2

) ∈ ∆τ2,ρ

11

Proof Sketch

Prove the following more general statement:

Γ ⊢ t : τ implies ([[t]]θ1,σ1
, [[t]]θ2,σ2

) ∈ ∆τ,ρ ,
provided (σ1(x), σ2(x)) ∈ ∆τ ′,ρ for every x : τ ′ in Γ

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

∀(a1, a2) ∈ ∆τ1,ρ. ([[t]]θ1,σ1[x 7→a1], [[t]]θ2,σ2[x 7→a2]) ∈ ∆τ2,ρ

([[λx : τ1.t]]θ1,σ1
, [[λx : τ1.t]]θ2,σ2

) ∈ ∆τ1→τ2,ρ

([[t]]θ1,σ1
, [[t]]θ2,σ2

) ∈ ∆τ1→τ2,ρ ([[u]]θ1,σ1
, [[u]]θ2,σ2

) ∈ ∆τ1,ρ

([[t u]]θ1,σ1
, [[t u]]θ2,σ2

) ∈ ∆τ2,ρ

α,Γ ⊢ t : τ

Γ ⊢ (Λα.t) : ∀α.τ

11

Proof Sketch

Prove the following more general statement:

Γ ⊢ t : τ implies ([[t]]θ1,σ1
, [[t]]θ2,σ2

) ∈ ∆τ,ρ ,
provided (σ1(x), σ2(x)) ∈ ∆τ ′,ρ for every x : τ ′ in Γ

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

∀(a1, a2) ∈ ∆τ1,ρ. ([[t]]θ1,σ1[x 7→a1], [[t]]θ2,σ2[x 7→a2]) ∈ ∆τ2,ρ

([[λx : τ1.t]]θ1,σ1
, [[λx : τ1.t]]θ2,σ2

) ∈ ∆τ1→τ2,ρ

([[t]]θ1,σ1
, [[t]]θ2,σ2

) ∈ ∆τ1→τ2,ρ ([[u]]θ1,σ1
, [[u]]θ2,σ2

) ∈ ∆τ1,ρ

([[t u]]θ1,σ1
, [[t u]]θ2,σ2

) ∈ ∆τ2,ρ

α,Γ ⊢ t : τ

([[Λα.t]]θ1,σ1
, [[Λα.t]]θ2,σ2

) ∈ ∆∀α.τ,ρ

11

Proof Sketch

Prove the following more general statement:

Γ ⊢ t : τ implies ([[t]]θ1,σ1
, [[t]]θ2,σ2

) ∈ ∆τ,ρ ,
provided (σ1(x), σ2(x)) ∈ ∆τ ′,ρ for every x : τ ′ in Γ

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

∀(a1, a2) ∈ ∆τ1,ρ. ([[t]]θ1,σ1[x 7→a1], [[t]]θ2,σ2[x 7→a2]) ∈ ∆τ2,ρ

([[λx : τ1.t]]θ1,σ1
, [[λx : τ1.t]]θ2,σ2

) ∈ ∆τ1→τ2,ρ

([[t]]θ1,σ1
, [[t]]θ2,σ2

) ∈ ∆τ1→τ2,ρ ([[u]]θ1,σ1
, [[u]]θ2,σ2

) ∈ ∆τ1,ρ

([[t u]]θ1,σ1
, [[t u]]θ2,σ2

) ∈ ∆τ2,ρ

∀R ⊆ S1 × S2. ([[t]]θ1[α7→S1],σ1
, [[t]]θ2[α7→S2],σ2

) ∈ ∆τ,ρ[α7→R]

([[Λα.t]]θ1,σ1
, [[Λα.t]]θ2,σ2

) ∈ ∆∀α.τ,ρ

11

Proof Sketch

Prove the following more general statement:

Γ ⊢ t : τ implies ([[t]]θ1,σ1
, [[t]]θ2,σ2

) ∈ ∆τ,ρ ,
provided (σ1(x), σ2(x)) ∈ ∆τ ′,ρ for every x : τ ′ in Γ

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

∀(a1, a2) ∈ ∆τ1,ρ. ([[t]]θ1,σ1[x 7→a1], [[t]]θ2,σ2[x 7→a2]) ∈ ∆τ2,ρ

([[λx : τ1.t]]θ1,σ1
, [[λx : τ1.t]]θ2,σ2

) ∈ ∆τ1→τ2,ρ

([[t]]θ1,σ1
, [[t]]θ2,σ2

) ∈ ∆τ1→τ2,ρ ([[u]]θ1,σ1
, [[u]]θ2,σ2

) ∈ ∆τ1,ρ

([[t u]]θ1,σ1
, [[t u]]θ2,σ2

) ∈ ∆τ2,ρ

∀R ⊆ S1 × S2. ([[t]]θ1[α7→S1],σ1
, [[t]]θ2[α7→S2],σ2

) ∈ ∆τ,ρ[α7→R]

([[Λα.t]]θ1,σ1
, [[Λα.t]]θ2,σ2

) ∈ ∆∀α.τ,ρ

Γ ⊢ t : ∀α.τ
Γ ⊢ (t τ ′) : τ [τ ′/α]

11

Proof Sketch

Prove the following more general statement:

Γ ⊢ t : τ implies ([[t]]θ1,σ1
, [[t]]θ2,σ2

) ∈ ∆τ,ρ ,
provided (σ1(x), σ2(x)) ∈ ∆τ ′,ρ for every x : τ ′ in Γ

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

∀(a1, a2) ∈ ∆τ1,ρ. ([[t]]θ1,σ1[x 7→a1], [[t]]θ2,σ2[x 7→a2]) ∈ ∆τ2,ρ

([[λx : τ1.t]]θ1,σ1
, [[λx : τ1.t]]θ2,σ2

) ∈ ∆τ1→τ2,ρ

([[t]]θ1,σ1
, [[t]]θ2,σ2

) ∈ ∆τ1→τ2,ρ ([[u]]θ1,σ1
, [[u]]θ2,σ2

) ∈ ∆τ1,ρ

([[t u]]θ1,σ1
, [[t u]]θ2,σ2

) ∈ ∆τ2,ρ

∀R ⊆ S1 × S2. ([[t]]θ1[α7→S1],σ1
, [[t]]θ2[α7→S2],σ2

) ∈ ∆τ,ρ[α7→R]

([[Λα.t]]θ1,σ1
, [[Λα.t]]θ2,σ2

) ∈ ∆∀α.τ,ρ

Γ ⊢ t : ∀α.τ
([[t τ ′]]θ1,σ1

, [[t τ ′]]θ2,σ2
) ∈ ∆τ [τ ′/α],ρ

11

Proof Sketch

Prove the following more general statement:

Γ ⊢ t : τ implies ([[t]]θ1,σ1
, [[t]]θ2,σ2

) ∈ ∆τ,ρ ,
provided (σ1(x), σ2(x)) ∈ ∆τ ′,ρ for every x : τ ′ in Γ

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

∀(a1, a2) ∈ ∆τ1,ρ. ([[t]]θ1,σ1[x 7→a1], [[t]]θ2,σ2[x 7→a2]) ∈ ∆τ2,ρ

([[λx : τ1.t]]θ1,σ1
, [[λx : τ1.t]]θ2,σ2

) ∈ ∆τ1→τ2,ρ

([[t]]θ1,σ1
, [[t]]θ2,σ2

) ∈ ∆τ1→τ2,ρ ([[u]]θ1,σ1
, [[u]]θ2,σ2

) ∈ ∆τ1,ρ

([[t u]]θ1,σ1
, [[t u]]θ2,σ2

) ∈ ∆τ2,ρ

∀R ⊆ S1 × S2. ([[t]]θ1[α7→S1],σ1
, [[t]]θ2[α7→S2],σ2

) ∈ ∆τ,ρ[α7→R]

([[Λα.t]]θ1,σ1
, [[Λα.t]]θ2,σ2

) ∈ ∆∀α.τ,ρ

([[t]]θ1,σ1
, [[t]]θ2,σ2

) ∈ ∆∀α.τ,ρ

([[t τ ′]]θ1,σ1
, [[t τ ′]]θ2,σ2

) ∈ ∆τ [τ ′/α],ρ

11

Adding Datatypes

Types: τ := · · · | Bool | [τ]

Terms: t := · · · | True | False | []τ | t : t | case t of {· · · }

12

Adding Datatypes

Types: τ := · · · | Bool | [τ]

Terms: t := · · · | True | False | []τ | t : t | case t of {· · · }

Γ ⊢ True : Bool , Γ ⊢ False : Bool , Γ ⊢ []τ : [τ]

Γ ⊢ t : τ Γ ⊢ u : [τ]

Γ ⊢ (t : u) : [τ]

Γ ⊢ t : Bool Γ ⊢ u : τ Γ ⊢ v : τ
Γ ⊢ (case t of {True → u ; False → v}) : τ

Γ ⊢ t : [τ ′] Γ ⊢ u : τ Γ, x1 : τ ′, x2 : [τ ′] ⊢ v : τ

Γ ⊢ (case t of {[] → u ; (x1 : x2) → v}) : τ

12

Adding Datatypes

Types: τ := · · · | Bool | [τ]

Terms: t := · · · | True | False | []τ | t : t | case t of {· · · }

Γ ⊢ True : Bool , Γ ⊢ False : Bool , Γ ⊢ []τ : [τ]

Γ ⊢ t : τ Γ ⊢ u : [τ]

Γ ⊢ (t : u) : [τ]

Γ ⊢ t : Bool Γ ⊢ u : τ Γ ⊢ v : τ
Γ ⊢ (case t of {True → u ; False → v}) : τ

Γ ⊢ t : [τ ′] Γ ⊢ u : τ Γ, x1 : τ ′, x2 : [τ ′] ⊢ v : τ

Γ ⊢ (case t of {[] → u ; (x1 : x2) → v}) : τ

With the straightforward extension of the semantics and with

∆Bool,ρ = {(True,True), (False,False)}
∆[τ],ρ = {([x1, . . . , xn], [y1, . . . , yn]) | n ≥ 0, (xi , yi) ∈ ∆τ,ρ} ,

the parametricity theorem still holds.
12

Now Formal Counterpart to Intuitive Reasoning

Given g of type ∀α. (α → Bool) → ([α] → [α]),
by the parametricity theorem:

(g, g) ∈ ∆∀α. (α→Bool)→([α]→[α]),∅

13

Now Formal Counterpart to Intuitive Reasoning

Given g of type ∀α. (α → Bool) → ([α] → [α]),
by the parametricity theorem:

(g, g) ∈ ∆∀α. (α→Bool)→([α]→[α]),∅

⇔ ∀R ∈ Rel . (g, g) ∈ ∆(α→Bool)→([α]→[α]),[α7→R]

by definition of ∆

13

Now Formal Counterpart to Intuitive Reasoning

Given g of type ∀α. (α → Bool) → ([α] → [α]),
by the parametricity theorem:

(g, g) ∈ ∆∀α. (α→Bool)→([α]→[α]),∅

⇔ ∀R ∈ Rel . (g, g) ∈ ∆(α→Bool)→([α]→[α]),[α7→R]

⇔ ∀R ∈ Rel , (a1, a2) ∈ ∆α→Bool,[α7→R]. (g a1, g a2) ∈ ∆[α]→[α],[α7→R]

by definition of ∆

13

Now Formal Counterpart to Intuitive Reasoning

Given g of type ∀α. (α → Bool) → ([α] → [α]),
by the parametricity theorem:

(g, g) ∈ ∆∀α. (α→Bool)→([α]→[α]),∅

⇔ ∀R ∈ Rel . (g, g) ∈ ∆(α→Bool)→([α]→[α]),[α7→R]

⇔ ∀R ∈ Rel , (a1, a2) ∈ ∆α→Bool,[α7→R]. (g a1, g a2) ∈ ∆[α]→[α],[α7→R]

⇔ ∀R ∈ Rel , (a1, a2) ∈ ∆α→Bool,[α7→R], (l1, l2) ∈ ∆[α],[α7→R].

(g a1 l1, g a2 l2) ∈ ∆[α],[α7→R]

by definition of ∆

13

Now Formal Counterpart to Intuitive Reasoning

Given g of type ∀α. (α → Bool) → ([α] → [α]),
by the parametricity theorem:

(g, g) ∈ ∆∀α. (α→Bool)→([α]→[α]),∅

⇔ ∀R ∈ Rel . (g, g) ∈ ∆(α→Bool)→([α]→[α]),[α7→R]

⇔ ∀R ∈ Rel , (a1, a2) ∈ ∆α→Bool,[α7→R]. (g a1, g a2) ∈ ∆[α]→[α],[α7→R]

⇔ ∀R ∈ Rel , (a1, a2) ∈ ∆α→Bool,[α7→R], (l1, l2) ∈ ∆[α],[α7→R].

(g a1 l1, g a2 l2) ∈ ∆[α],[α7→R]

⇒ ∀(a1, a2) ∈ ∆α→Bool,[α7→f], (l1, l2) ∈ (map f).

(g a1 l1, g a2 l2) ∈ (map f)
by instantiating R = f and realising that ∆[α],[α7→f] = map f

for every function f

13

Now Formal Counterpart to Intuitive Reasoning

Given g of type ∀α. (α → Bool) → ([α] → [α]),
by the parametricity theorem:

(g, g) ∈ ∆∀α. (α→Bool)→([α]→[α]),∅

⇔ ∀R ∈ Rel . (g, g) ∈ ∆(α→Bool)→([α]→[α]),[α7→R]

⇔ ∀R ∈ Rel , (a1, a2) ∈ ∆α→Bool,[α7→R]. (g a1, g a2) ∈ ∆[α]→[α],[α7→R]

⇔ ∀R ∈ Rel , (a1, a2) ∈ ∆α→Bool,[α7→R], (l1, l2) ∈ ∆[α],[α7→R].

(g a1 l1, g a2 l2) ∈ ∆[α],[α7→R]

⇒ ∀(a1, a2) ∈ ∆α→Bool,[α7→f], (l1, l2) ∈ (map f).

(g a1 l1, g a2 l2) ∈ (map f)
⇒ ∀(l1, l2) ∈ (map f). (g (p ◦ f) l1, g p l2) ∈ (map f)

by instantiating (a1, a2) = (p ◦ f , p) ∈ ∆α→Bool,[α7→f]

for every function f and predicate p.

13

Now Formal Counterpart to Intuitive Reasoning

Given g of type ∀α. (α → Bool) → ([α] → [α]),
by the parametricity theorem:

(g, g) ∈ ∆∀α. (α→Bool)→([α]→[α]),∅

⇔ ∀R ∈ Rel . (g, g) ∈ ∆(α→Bool)→([α]→[α]),[α7→R]

⇔ ∀R ∈ Rel , (a1, a2) ∈ ∆α→Bool,[α7→R]. (g a1, g a2) ∈ ∆[α]→[α],[α7→R]

⇔ ∀R ∈ Rel , (a1, a2) ∈ ∆α→Bool,[α7→R], (l1, l2) ∈ ∆[α],[α7→R].

(g a1 l1, g a2 l2) ∈ ∆[α],[α7→R]

⇒ ∀(a1, a2) ∈ ∆α→Bool,[α7→f], (l1, l2) ∈ (map f).

(g a1 l1, g a2 l2) ∈ (map f)
⇒ ∀(l1, l2) ∈ (map f). (g (p ◦ f) l1, g p l2) ∈ (map f)
⇔ ∀l1. map f (g (p ◦ f) l1) = g p (map f l1)

by inlining

for every function f and predicate p.

13

Now Formal Counterpart to Intuitive Reasoning

Given g of type ∀α. (α → Bool) → ([α] → [α]),
by the parametricity theorem:

(g, g) ∈ ∆∀α. (α→Bool)→([α]→[α]),∅

⇔ ∀R ∈ Rel . (g, g) ∈ ∆(α→Bool)→([α]→[α]),[α7→R]

⇔ ∀R ∈ Rel , (a1, a2) ∈ ∆α→Bool,[α7→R]. (g a1, g a2) ∈ ∆[α]→[α],[α7→R]

⇔ ∀R ∈ Rel , (a1, a2) ∈ ∆α→Bool,[α7→R], (l1, l2) ∈ ∆[α],[α7→R].

(g a1 l1, g a2 l2) ∈ ∆[α],[α7→R]

⇒ ∀(a1, a2) ∈ ∆α→Bool,[α7→f], (l1, l2) ∈ (map f).

(g a1 l1, g a2 l2) ∈ (map f)
⇒ ∀(l1, l2) ∈ (map f). (g (p ◦ f) l1, g p l2) ∈ (map f)
⇔ ∀l1. map f (g (p ◦ f) l1) = g p (map f l1)

for every function f and predicate p.

That is what was claimed!

13

References

J.-Y. Girard.
Interprétation functionelle et élimination des coupures dans

l’arithmétique d’ordre supérieure.
PhD thesis, Université Paris VII, 1972.

J.C. Reynolds.
Towards a theory of type structure.
In Colloque sur la Programmation, Proceedings, pages
408–423. Springer-Verlag, 1974.

J.C. Reynolds.
Types, abstraction and parametric polymorphism.
In Information Processing, Proceedings, pages 513–523.
Elsevier Science Publishers B.V., 1983.

P. Wadler.
Theorems for free!
In Functional Programming Languages and Computer

Architecture, Proceedings, pages 347–359. ACM Press, 1989.
14

	Free Theorems, Intuitively
	Parametric Polymorphism
	Polymorphic Lambda Calculus
	Parametricity Theorem
	Example Derivation
	References

