Semantic Bidirectionalisation

Janis Voigtländer
Technische Universität Dresden

April 21st, 2009

Bidirectional Transformation

Acceptability / GetPut

Bidirectional Transformation

Acceptability / GetPut

Bidirectional Transformation

Consistency / PutGet

Bidirectional Transformation

Consistency / PutGet

Bidirectional Transformation

Bidirectional Transformation

Bidirectional Transformation

Bidirectionalisation
[Matsuda et al., ICFP'07]

Bidirectional Transformation

Syntactic Bidirectionalisation
[Matsuda et al., ICFP'07]

Bidirectional Transformation

Semantic Bidirectionalisation

Bidirectional Transformation

Semantic Bidirectionalisation

> [V., POPL'09]

Semantic Bidirectionalisation

Aim: Write a higher-order function bff such that any get and bff get satisfy GetPut, PutGet,

Semantic Bidirectionalisation

Aim: Write a higher-order function $\mathrm{bff}{ }^{1}$ such that any get and bff get satisfy GetPut, PutGet,

Semantic Bidirectionalisation

Aim: Write a higher-order function $\mathrm{bff}{ }^{1}$ such that any get and bff get satisfy GetPut, PutGet,
Examples:

Semantic Bidirectionalisation

Aim: Write a higher-order function $\mathrm{bff}{ }^{1}$ such that any get and bff get satisfy GetPut, PutGet,

Examples:

Semantic Bidirectionalisation

Aim: Write a higher-order function $\mathrm{bff}{ }^{1}$ such that any get and bff get satisfy GetPut, PutGet,

Examples:

Semantic Bidirectionalisation

Aim: Write a higher-order function $\mathrm{bff} \mathrm{f}^{1}$ such that any get and bff get satisfy GetPut, PutGet,

Examples:

Semantic Bidirectionalisation

Aim: Write a higher-order function $\mathrm{bff} \mathrm{f}^{1}$ such that any get and bff get satisfy GetPut, PutGet,

Examples:

Semantic Bidirectionalisation

Aim: Write a higher-order function $\mathrm{bff}{ }^{1}$ such that any get and bff get satisfy GetPut, PutGet,

Examples:

[^0]
Semantic Bidirectionalisation

Aim: Write a higher-order function $\mathrm{bff} \mathrm{f}^{1}$ such that any get and bff get satisfy GetPut, PutGet,

Examples:

Semantic Bidirectionalisation

Aim: Write a higher-order function $\mathrm{bff} \mathrm{f}^{1}$ such that any get and bff get satisfy GetPut, PutGet,

Examples:

Semantic Bidirectionalisation

Aim: Write a higher-order function $\mathrm{bff}{ }^{1}$ such that any get and bff get satisfy GetPut, PutGet,

Examples:

[^1]
Analysing Specific Instances

Assume we are given some

$$
\text { get }::[\alpha] \rightarrow[\alpha]
$$

How can we, or bff, analyse it without access to its source code?

Analysing Specific Instances

Assume we are given some

$$
\text { get }::[\alpha] \rightarrow[\alpha]
$$

How can we, or bff, analyse it without access to its source code?
Idea: How about applying get to some input?

Analysing Specific Instances

Assume we are given some

$$
\text { get }::[\alpha] \rightarrow[\alpha]
$$

How can we, or bff, analyse it without access to its source code?
Idea: How about applying get to some input?
Like:

$$
\text { get }[0 . . n]= \begin{cases}{[1 . . n]} & \text { if get }=\text { tail } \\ {[n . .0]} & \text { if get }=\text { reverse } \\ {[0 . .(\min 4 n)]} & \text { if get }=\text { take } 5 \\ & \vdots\end{cases}
$$

Analysing Specific Instances

Assume we are given some

$$
\text { get }::[\alpha] \rightarrow[\alpha]
$$

How can we, or bff, analyse it without access to its source code?
Idea: How about applying get to some input?
Like:

$$
\text { get }[0 . . n]= \begin{cases}{[1 . . n]} & \text { if get }=\text { tail } \\ {[n . .0]} & \text { if get }=\text { reverse } \\ {[0 . .(\min 4 n)]} & \text { if get }=\text { take } 5 \\ & \vdots\end{cases}
$$

Then transfer the gained insights to source lists other than $[0 . . n]$!

Using a Free Theorem [Wadler, FPCA'89]

For every

$$
\text { get }::[\alpha] \rightarrow[\alpha]
$$

we have

$$
\operatorname{map} f(\text { get } l)=\operatorname{get}(\operatorname{map} f l)
$$

for arbitrary f and l, where

$$
\begin{aligned}
& \text { map }::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta] \\
& \operatorname{map} f[] \quad=[] \\
& \operatorname{map} f(a: a s)=(f a):(\operatorname{map} f a s)
\end{aligned}
$$

Using a Free Theorem [Wadler, FPCA'89]

For every

$$
\text { get }::[\alpha] \rightarrow[\alpha]
$$

we have

$$
\operatorname{map} f(\text { get } I)=\operatorname{get}(\operatorname{map} f I)
$$

for arbitrary f and l, where

$$
\begin{aligned}
& \operatorname{map}::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta] \\
& \operatorname{map} f[]=[] \\
& \operatorname{map} f(a: a s)=(f a):(\operatorname{map} f a s)
\end{aligned}
$$

Given an arbitrary list s of length $n+1$, set $I=[0 . . n], f=(s!!)$, leading to:

$$
\operatorname{map}(s!!)(\operatorname{get}[0 . . n])=\operatorname{get}(\operatorname{map}(s!!)[0 . . n])
$$

Using a Free Theorem [Wadler, FPCA'89]

For every

$$
\text { get }::[\alpha] \rightarrow[\alpha]
$$

we have

$$
\operatorname{map} f(\text { get } I)=\operatorname{get}(\operatorname{map} f I)
$$

for arbitrary f and l, where

$$
\begin{aligned}
& \operatorname{map}::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta] \\
& \operatorname{map} f[]=[] \\
& \operatorname{map} f(a: a s)=\left(\begin{array}{ll}
f & a):(\operatorname{map} f a s)
\end{array}\right.
\end{aligned}
$$

Given an arbitrary list s of length $n+1$, set $I=[0 . . n], f=(s!!)$, leading to:

$$
\begin{aligned}
\operatorname{map}(s!!)(\operatorname{get}[0 . . n]) & =\operatorname{get}(\underbrace{\operatorname{map}(s!!)[0 . . n]}_{s}) \\
& =\operatorname{get}\left(\begin{array}{l}
\text { gen }
\end{array}\right)
\end{aligned}
$$

Using a Free Theorem [Wadler, FPCA'89]

For every

$$
\text { get }::[\alpha] \rightarrow[\alpha]
$$

we have

$$
\operatorname{map} f(\operatorname{get} I)=\operatorname{get}(\operatorname{map} f l)
$$

for arbitrary f and l, where

$$
\begin{aligned}
& \operatorname{map}::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta] \\
& \operatorname{map} f[]=[] \\
& \operatorname{map} f(a: a s)=(f a):(\operatorname{map} f a s)
\end{aligned}
$$

Given an arbitrary list s of length $n+1$,

$$
\begin{array}{r}
\operatorname{map}(s!!)(\text { get }[0 . . n]) \\
=\text { get } s
\end{array}
$$

Using a Free Theorem [Wadler, FPCA'89]

For every

$$
\text { get }::[\alpha] \rightarrow[\alpha]
$$

we have

$$
\operatorname{map} f(\operatorname{get} I)=\operatorname{get}(\operatorname{map} f l)
$$

for arbitrary f and l, where

$$
\begin{aligned}
& \operatorname{map}::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta] \\
& \operatorname{map} f[]=[] \\
& \operatorname{map} f(a: a s)=(f a):(\operatorname{map} f a s)
\end{aligned}
$$

Given an arbitrary list s of length $n+1$,

$$
\operatorname{get} s=\operatorname{map}(s!!)(\operatorname{get}[0 . . n])
$$

The Resulting Bidirectionalisation Scheme by Example

The Resulting Bidirectionalisation Scheme by Example

The Resulting Bidirectionalisation Scheme by Example

The Resulting Bidirectionalisation Scheme by Example

The Resulting Bidirectionalisation Scheme by Example

The Resulting Bidirectionalisation Scheme by Example

The Resulting Bidirectionalisation Scheme by Example

The Implementation (here: lists only, inefficient version)

$$
\begin{aligned}
& \text { bff get } s v^{\prime}=\text { let } n=(\text { length } s)-1 \\
& t=[0 . . n] \\
& g=z i p t s \\
& h=\operatorname{assoc}(\operatorname{get} t) v^{\prime} \\
& h^{\prime}=h+g \\
& \text { in seq } \left.h\left(\operatorname{map}\left(\lambda i \rightarrow \text { fromJust (lookup } i h^{\prime}\right)\right) t\right) \\
& \text { assoc [] [] }=\text { [] } \\
& \operatorname{assoc}(i: i s)(b: b s)=\text { let } m=\text { assoc is } b s \\
& \text { in case lookup } i m \text { of } \\
& \text { Nothing } \quad \rightarrow(i, b): m \\
& \text { Just } c \mid b==c \rightarrow m
\end{aligned}
$$

The Implementation (here: lists only, inefficient version)

```
bff get \(s v^{\prime}=\) let \(n=(\) length \(s)-1\)
\(t=[0 . . n]\)
\(g=\operatorname{zip} t s\)
\(h=\operatorname{assoc}(\) get \(t) v^{\prime}\)
\(h^{\prime}=h+g\)
in \(\operatorname{seq} h\left(\right.\) map \(\left(\lambda i \rightarrow\right.\) fromJust (lookup \(\left.\left.\left.i h^{\prime}\right)\right) t\right)\)
assoc [] [] = []
\(\operatorname{assoc}(i: i s)(b: b s)=\) let \(m=\) assoc is bs
                                    in case lookup \(i m\) of
                                    Nothing \(\quad \rightarrow(i, b): m\)
                                    Just \(c \mid b=c \rightarrow m\)
```

- actual code only slightly more elaborate
- online: http://linux.tcs.inf.tu-dresden.de/~bff

Another Interesting Example

What Else?

[V., POPL'09]:

- full treatment of equality and ordering constraints
- proofs, using free theorems and equational reasoning
- a datatype-generic account of the whole story

What Else?

[V., POPL'09]:

- full treatment of equality and ordering constraints
- proofs, using free theorems and equational reasoning
- a datatype-generic account of the whole story

Pros of the approach:

- liberation from syntactic constraints
- very lightweight, easy access to bidirectionality

What Else?

[V., POPL'09]:

- full treatment of equality and ordering constraints
- proofs, using free theorems and equational reasoning
- a datatype-generic account of the whole story

Pros of the approach:

- liberation from syntactic constraints
- very lightweight, easy access to bidirectionality

Cons of the approach:

- efficiency still leaves room for improvement
- partiality, e.g., rejection of shape-affecting updates so far

What Else?

[V., POPL'09]:

- full treatment of equality and ordering constraints
- proofs, using free theorems and equational reasoning
- a datatype-generic account of the whole story

Pros of the approach:

- liberation from syntactic constraints
- very lightweight, easy access to bidirectionality

Cons of the approach:

- efficiency still leaves room for improvement
- partiality, e.g., rejection of shape-affecting updates so far

Outlook:

- a constant-complement perspective on the method
- ... helps expanding its scope to updates that affect shape

Short Course "Free Theorems and Applications"

Three lectures, 22nd-24th April, 16.00-17.00, room IF 3.02

1. Free Theorems - Foundations

- from intuition to a formal account
- actually deriving free theorems

2. Knuth's 0-1-Principle and Beyond

- reducing algorithm correctness from infinite to finite cases
- comparison-swap sorting and parallel prefix computation

3. Free Theorems and "Real" Languages

- free theorems and type classes
- free theorems and general recursion
- automatic generation of counterexamples

References I

E. Fancilhon and N. Spyratos.

Update semantics of relational views.
ACM Transactions on Database Systems, 6(3):557-575, 1981.
(i) J.N. Foster, M.B. Greenwald, J.T. Moore, B.C. Pierce, and A. Schmitt.

Combinators for bidirectional tree transformations: A linguistic approach to the view-update problem.
ACM Transactions on Programming Languages and Systems, 29(3):17, 2007.

R K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi.
Bidirectionalization transformation based on automatic derivation of view complement functions.
In International Conference on Functional Programming, Proceedings, pages 47-58. ACM Press, 2007.

References II

圄 J. Voigtländer.
Bidirectionalization for free!
In Principles of Programming Languages, Proceedings, pages 165-176. ACM Press, 2009.

- P. Wadler.

Theorems for free!
In Functional Programming Languages and Computer
Architecture, Proceedings, pages 347-359. ACM Press, 1989.

[^0]: 1 "Bidirectionalisation for free!"

[^1]: 1 "Bidirectionalisation for free!"

