Inductive Program Synthesis for
Bidirectional Transformations

Tobias Godderz, Helmut Grohne, Janis Voigtlander

University of Bonn

Dagstuhl Seminar 15442



Bidirectional Transformation

source view

get

1-1/4



Bidirectional Transformation

source view

get

update

1-2/4



Bidirectional Transformation

source view

get

update

put

1-3/4



Bidirectional Transformation

source view

get

update

A

put

1-—4/4



Bidirectional Transformation

Examples:

" tail

abc “bc”

2 -5/13



Bidirectional Transformation

Examples:

" tail

abc “bc”

update

uden

2-6/13



Bidirectional Transformation

Examples:
“3be” tail > b
update
v
Hade” < “de”

put

2—-7/13



Bidirectional Transformation

Examples:

flatten

> “abac”
lal Ab’ Aal ACY

2-8/13



Bidirectional Transformation

Examples:

flatten

v

uabacn

xay Aby Aay Acy

update

“sbxc”

2-9/13



Bidirectional Transformation

Examples:
flatten Y "
> “abac
lal Ab’ Aal ACY
update
v
- put abxc

9 b K

2 -10/13



Bidirectional Transformation

Examples:

nuboflatten “

abc
‘a’ ‘b’ 'a’ ¢’

2 -11/13



Bidirectional Transformation

Examples:

nuboflatten “

abc
‘a’ ‘b’ 'a’ ¢’

update

" i

xbc

2 -12/13



Bidirectional Transformation

Examples:
nuboflatten _ "
> “abc
lal Ab’ Aal ACY
update
v
< “b”

ut
X' ‘b 'x" ¢ P

2 -13/13



Bidirectional Transformation

source

get

view

A

update

put

3 - 14/15



Bidirectional Transformation — Laws

source

get

view

A

update

put

3 - 15/15



Bidirectional Transformation — Laws

source view

get

Acceptability / GetPut

4 —-16/19



Bidirectional Transformation — Laws

source view

get

A

put

Acceptability / GetPut

4 —17/19



Bidirectional Transformation — Laws

source view

get

update

A

put

Consistency / PutGet

4 —18/19



Bidirectional Transformation — Laws

source view
get R
update
< put
\/
get

Consistency / PutGet

4 —-19/19



Bidirectional Transformation

source

get

view

A

update

put

5 — 20/22



Bidirectional Transformation — PL Approaches

source A view
AN
VY
) \
get\ R
7 )
] \
] \
] \
' \
' \
: \
' ' update
' ]
' '
' ]
\ ]
[} ]
[} ]
\ ]
\ )
< \ 7
\put,
N
W
v

Lenses, DSLs
[Foster et al., ACM TOPLAS'07, ...]

5 —21/22



Bidirectional Transformation — PL Approaches

source view
get i i
]
]
]
]
]
]
: update
"
]
]
]
v
< put

Bidirectionalization
[Matsuda et al., ICFP'07], [V., POPL'09], ...

5 —22/22



Nondeterminism / Choices to make

Let get = sieve with:

nn n ab n

IIbII

"abc" | "abcd" | "abcde"
np" ‘ "bg" ‘ "pg"

nan
a
nn

S

sieves | ""

6 —23/33



Nondeterminism / Choices to make

Let get = sieve with:

S llall Ilabll llabcll Ilabcdll llabcdell

Sleve S nn nn IIbII

np" ‘ "bg" ‘ "pg"

Then, for example:

put n abcdll "Xy“ — n aXCyll

6 —24/33



Nondeterminism / Choices to make

Let get = sieve with:

S nn [ g | ugpn | ngpe" | "abed" | "abcde"
sieve s | "o nn ‘ np" ‘ np" ‘ "bg" ‘ "pg"
Then, for example:
put "abcd" ann — "axcy"

put "abcde" "xy" ="axcye"

6 — 25/33



Nondeterminism / Choices to make

Let get = sieve with:

S nn [ g | ugpn | ngpe" | "abed" | "abcde"
sieve s | "o nn ‘ np" ‘ np" ‘ "pqa" ‘ "bd"
Then, for example:
put "abed" ann — "axcy"
put "abcde" "xy" ="axcye"

put "abcde" "xyz" =

6 — 26/33



Nondeterminism / Choices to make

Let get = sieve with:

S nn [ g | ugpn | ngpe" | "abed" | "abcde"
sieve s | "o nn ‘ np" ‘ np" ‘ "pqa" ‘ "bd"
Then, for example:
put "abed" ann — "axcy"
put "abcde" "xy" ="axcye"

put "abcde" "xyz" = "axcyez"

6 —27/33



Nondeterminism / Choices to make

Let get = sieve with:

S nn [ g | ugpn | ngpe" | "abed" | "abcde"
sieve s | "o nn ‘ np" ‘ np" ‘ "pqa" ‘ "bd"
Then, for example:
put "abed" ann — "axcy"
put "abcde" "xy" ="axcye"

put "abcde" "xyz" ="axcyez" or "axcyez "7

6 — 28/33



Nondeterminism / Choices to make

Let get = sieve with:

s nn [ g | ugpn | ngpe" | "abed" | "abcde"
sieve s | " nn ‘ np" ‘ np" ‘ "bg" ‘ "pg"
Then, for example:
put "abed" "Xy" — "axcy"
put "abcde" "xy" ="axcye"
put "abcde" "xyz" = "axcyez" or "axcyez "7

put "abcd" '"xyz"="axcy z"

6 —29/33



Nondeterminism / Choices to make

Let get = sieve with:

S nn llall n abll llabc" n abcdll llabcde n
sieve s | " nn ‘ np" ‘ np" ‘ "bg" ‘ "pg"
Then, for example:
put Ilabcdll "Xy“ — llaXCyll
put "abcde" "xy" ="axcye"
put "abcde" "xyz" = "axcyez" or "axcyez "7
put "abcd" '"xyz"="axcy z"

put "abcdll "X" —

6 —30/33



Nondeterminism / Choices to make

Let get = sieve with:

S nn llall n abll llabc" n abcdll llabcde n
sieve s | " nn ‘ np" ‘ np" ‘ "bg" ‘ "pg"
Then, for example:
put Ilabcdll "Xy“ — llaXCyll
put "abcde" "xy" ="axcye"
put "abcde" "xyz" = "axcyez" or "axcyez "7
put "abcd" '"xyz"="axcy z"

put "abcdll "X" — "aXC"

6 —31/33



Nondeterminism / Choices to make

Let get = sieve with:

put
put
put
put

s nn [ g | ugpn | ngpe" | "abed" | "abcde"
sieve s | " nn ‘ np" ‘ np" ‘ "bg" ‘ "pg"
Then, for example:
"abed" anu — "axcy"
"abcede" "Xy" —mn axcye"
"abcde" "xyz" ="axcyez" or "axcyez "7
"abed" "XyZ" — "axcy Z"
"abed"  "x" — "axc" or "ax" ?

put

6 —32/33



Nondeterminism / Choices to make

Let get = sieve with:

put
put
put
put

s nn [ g | ugpn | ngpe" | "abed" | "abcde"
sieves | " nn ‘ np" ‘ np" ‘ "bg" ‘ "pg"
Then, for example:
"abed" anu — "axcy"
"abcede" "Xy" —mn axcye"
"abcde" "xyz" = "axcyez" or "axcyez "7
"abed" "XyZ" — "axcy Z"
"abed"  "x" — "axc" or "ax"?, or "cx"?

put

6 — 33/33



Nondeterminism / Choices to make

Let get = head with:

head (x:xs) = x

7 - 34/38



Nondeterminism / Choices to make

Let get = head with:

head (x:xs) = x

Maybe:
put (x:xs) y = [y]

7 - 35/38



Nondeterminism / Choices to make

Let get = head with:

head (x:xs) = x

Maybe:
put (x:xs) y = [y]

But that violates put s (get s) = s!

7 - 36/38



Nondeterminism / Choices to make

Let get = head with:

head (x:xs) = x

Maybe:
put (x:xs) y = [y]
But that violates put s (get s) = s!

Better:

put (x:xs)y |y==x  =(x:xs)
| otherwise = [y]

7 -37/38



Nondeterminism / Choices to make

Let get = head with:

head (x:xs) = x

Maybe:
put (x:xs) y = [y]
But that violates put s (get s) = s!

Better:

put (x:xs)y |y==x  =(x:xs)
| otherwise = [y]

But “really intended”:

put (x:xs) y = (y: xs)

7 - 38/38



A slightly more complex case, with recursion
Let get = init with:

init [x] =]
init (x:xs) = (x:(init xs))

8 — 39/42



A slightly more complex case, with recursion

Let get = init with:

init [x] =]
init (x:xs) = (x:(init xs))

Possible, and correct:

put xs ys | length ys == (length xs) — 1 = ys 4 [last xs]
| otherwise =ysH" "

8 — 40/42



A slightly more complex case, with recursion

Let get = init with:

init [x] =]

init (x:xs) = (x:(init xs))
Possible, and correct:

put xs ys | length ys == (length xs) — 1 = ys 4 [last xs]
| otherwise =ysH" "

But intended:

put xs ys = ys H [last xs]

8 —41/42



A slightly more complex case, with recursion

Let get = init with:

init [x] =]

init (x:xs) = (x:(init xs))
Possible, and correct:

put xs ys | length ys == (length xs) — 1 = ys 4 [last xs]
| otherwise =ysH" "

But intended:

put xs ys = ys H [last xs]

Problem: How to produce the “intuitive” solution?

8 — 42/42



Entry: Inductive Program Synthesis

9 — 43/46



Entry: Inductive Program Synthesis
Problem: Of the well-behavedness laws
put s (get s)=s

get (put sv') =V

only the first one directly delivers /O pairs for put.

9 — 44/46



Entry: Inductive Program Synthesis
Problem: Of the well-behavedness laws
put s (get s)=s

get (put sv') =V

only the first one directly delivers /O pairs for put.

Like, for get = init:

put [a] [] = [a]
put [a,b]  [a]  =[a b]
put [a,b,c] [a,b] =]a,b,c]

put [a, b, c,d] [a, b, c] = [a, b, c,d]

9 — 45/46



Entry: Inductive Program Synthesis
Problem: Of the well-behavedness laws
put s (get s)=s

get (put sv') =V

only the first one directly delivers /O pairs for put.

Like, for get = init:

put [a] [] = [a]
put [a,b]  [a]  =[a b]
put [a,b,c] [a,b] =]a,b,c]

put [a, b, c,d] [a, b, c] = [a, b, c,d]

But then one would synthesize:

put xs ys = xs

9 — 46/46



One possible approach

“Encourage” use of both arguments!

10 — 47/49



One possible approach

“Encourage” use of both arguments!

Instead of:
put [a] [] = [a]
put [a, b] [a]  =[a,b]
use:
put [a] [] = [a]
put [, b] [a]  =[ab]
put [—,_,c] [a,b] =]a,b,c]
put [, , _,d][a,b,c]=][ab,c,d]

10 — 48/49



One possible approach

“Encourage” use of both arguments!

Instead of:
put [a] (] = [a]
put [a, b] [a] = [a, b]
use:
put [a] [] = [a]
put [, b] [a]  =[a b]
put [_,_,c] [a,b] =]a,b,c]
put [, , _,d][a,b,c]=][ab,c,d]
Then, Igor Il synthesizes:
put [a] (] = [a]

put (—:(x:ys)) (a: bs) = (a: (put (x:ys) bs))

10 — 49/49



One possible approach

Also works for get = sieve. Gives:

put xs [] = x5
put (a:(=:xs)) (b:ys)=(a:(b:(put xs ys)))

11 - 50/53



One possible approach

Also works for get = sieve. Gives:

put xs [] = x5
put (a:(=:xs)) (b:ys)=(a:(b:(put xs ys)))

But this put is not defined when (lengths) /2 < length v/

11 —51/53



One possible approach

Also works for get = sieve. Gives:

put xs [] = x5
put (a:(=:xs)) (b:ys)=(a:(b:(put xs ys)))

But this put is not defined when (lengths) /2 < length v/

Idea: Introduce extra examples covering such cases:

put [] [p] = [, b]

(as a “mutation” of put [a, _] [b] = [a, b]).

11 — 52/53



One possible approach

Also works for get = sieve. Gives:
put xs [] = x5
put (a:(=:xs)) (b:ys)=(a:(b:(put xs ys)))

But this put is not defined when (lengths) /2 < length v/

Idea: Introduce extra examples covering such cases:
put [] [b] = [, b]
(as a “mutation” of put [a, _] [b] = [a, b]).

But actually then, in general, also need to express inequality
constraints . . .

11 — 53/53



Conclusion / Outlook

» Bidirectional Transformations:

» “hot topic” in various areas, including PL approaches
» typical weakness: nondeterminism, and limited (or no)
impact of programmer intentions

12 — 54/56



Conclusion / Outlook

» Bidirectional Transformations:
» “hot topic” in various areas, including PL approaches
» typical weakness: nondeterminism, and limited (or no)
impact of programmer intentions

» Connection to Inductive Programming:
» IP as a “helper”, detecting/exploiting regularities
» either naively as a black box, or deeper integration
» further ideas: 1/O pairs per parametricity of get;
user impact through ad-hoc 1/O pairs or
provision of background knowledge;

12 — 55/56



Conclusion / Outlook

» Bidirectional Transformations:
» “hot topic” in various areas, including PL approaches
» typical weakness: nondeterminism, and limited (or no)
impact of programmer intentions

» Connection to Inductive Programming:
» IP as a “helper”, detecting/exploiting regularities
» either naively as a black box, or deeper integration
» further ideas: 1/O pairs per parametricity of get;
user impact through ad-hoc 1/O pairs or
provision of background knowledge;

» Extensions to Igor IlI:

» dealing with wildcards on rhs of 1/0 pairs
» a new operator for introducing accumulating parameters
» some reduction of search space

12 — 56/56



References |

[§ F. Bancilhon and N. Spyratos.
Update semantics of relational views.
ACM Transactions on Database Systems, 6(3):557-575, 1981.

[ J.N. Foster, M.B. Greenwald, J.T. Moore, B.C. Pierce, and A.
Schmitt.
Combinators for bidirectional tree transformations: A linguistic
approach to the view-update problem.
ACM Transactions on Programming Languages and Systems,
29(3):17, 2007.

[§ S. Katayama.
Systematic search for lambda expressions.
In Trends in Functional Programming 2005, Revised Selected
Papers, pages 111-126. Intellect, 2007.

13 - 57/58



References |l

[@ E. Kitzelmann and U. Schmid.
Inductive synthesis of functional programs: An explanation
based generalization approach.
Journal of Machine Learning Research, 7:429-454, 2006.

@ K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi.
Bidirectionalization transformation based on automatic
derivation of view complement functions.

In International Conference on Functional Programming,
Proceedings, pages 47-58. ACM Press, 2007.

[§ J. Voigtlander.
Bidirectionalization for freel!

In Principles of Programming Languages, Proceedings, pages
165-176. ACM Press, 2009.

14 — 58/58



	Bidirectionalization
	Inductive Program Synthesis
	BX + IP
	Conclusion / Outlook
	References



