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Nondeterminism / Choices to make

Let get = head with:

head (x:xs) = x

Maybe:
put (x:xs) y = [y]
But that violates put s (get s) = s!

Better:

put (x:xs)y |y==x  =(x:xs)
| otherwise = [y]

But “really intended”:

put (x:xs) y = (y: xs)
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A slightly more complex case, with recursion

Let get = init with:

init [x] =]

init (x:xs) = (x:(init xs))
Possible, and correct:

put xs ys | length ys == (length xs) — 1 = ys 4 [last xs]
| otherwise =ysH" "

But intended:

put xs ys = ys H [last xs]

Problem: How to produce the “intuitive” solution?
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get (put sv') =V

only the first one directly delivers /O pairs for put.

Like, for get = init:

put [a] [] = [a]
put [a,b]  [a]  =[a b]
put [a,b,c] [a,b] =]a,b,c]

put [a, b, c,d] [a, b, c] = [a, b, c,d]

But then one would synthesize:

put xs ys = xs
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put [a] (] = [a]
put [a, b] [a] = [a, b]
use:
put [a] [] = [a]
put [, b] [a]  =[a b]
put [_,_,c] [a,b] =]a,b,c]
put [, , _,d][a,b,c]=][ab,c,d]
Then, Igor Il synthesizes:
put [a] (] = [a]

put (—:(x:ys)) (a: bs) = (a: (put (x:ys) bs))
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One possible approach

Also works for get = sieve. Gives:
put xs [] = x5
put (a:(=:xs)) (b:ys)=(a:(b:(put xs ys)))

But this put is not defined when (lengths) /2 < length v/

Idea: Introduce extra examples covering such cases:
put [] [b] = [, b]
(as a “mutation” of put [a, _] [b] = [a, b]).

But actually then, in general, also need to express inequality
constraints . . .
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» Bidirectional Transformations:
» “hot topic” in various areas, including PL approaches
» typical weakness: nondeterminism, and limited (or no)
impact of programmer intentions

» Connection to Inductive Programming:
» IP as a “helper”, detecting/exploiting regularities
» either naively as a black box, or deeper integration
» further ideas: 1/O pairs per parametricity of get;
user impact through ad-hoc 1/O pairs or
provision of background knowledge;

» Extensions to Igor IlI:

» dealing with wildcards on rhs of 1/0 pairs
» a new operator for introducing accumulating parameters
» some reduction of search space
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