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Nondeterminism / Choices to make

Let get = sieve with:

s "" "a" "ab" "abc" "abcd" "abcde"

sieve s "" "" "b" "b" "bd" "bd"

Then, for example:

put "abcd" "xy" = "axcy"

put "abcde" "xy" = "axcye"

put "abcde" "xyz"= "axcyez" or "axcyez " ?

put "abcd" "xyz"= "axcy z"

put "abcd" "x" = "axc" or "ax" ? , or "cx" ?
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Nondeterminism / Choices to make

Let get = head with:

head (x : xs) = x

Maybe:

put (x : xs) y = [y ]

But that violates put s (get s) = s !

Better:

put (x : xs) y | y == x = (x : xs)
| otherwise = [y ]

But “really intended”:
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A slightly more complex case, with recursion

Let get = init with:

init [x ] = [ ]
init (x : xs) = (x : (init xs))

Possible, and correct:

put xs ys | length ys == (length xs)− 1 = ys ++ [last xs ]
| otherwise = ys ++ " "

But intended:

put xs ys = ys ++ [last xs ]

Problem: How to produce the “intuitive” solution?
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Entry: Inductive Program Synthesis

Problem: Of the well-behavedness laws

put s (get s) = s

get (put s v ′) = v ′

only the first one directly delivers I/O pairs for put.

Like, for get = init:

put [a ] [ ] = [a ]
put [a, b ] [a ] = [a, b ]
put [a, b, c ] [a, b ] = [a, b, c ]
put [a, b, c , d ] [a, b, c ] = [a, b, c , d ]

But then one would synthesize:

put xs ys = xs

1. possible solution: Enforce use of both arguments?
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One possible approach

“Encourage” use of both arguments!

Instead of:

put [a ] [ ] = [a ]
put [a, b ] [a ] = [a, b ]
· · ·

use:

put [a ] [ ] = [a ]
put [ , b ] [a ] = [a, b ]
put [ , , c ] [a, b ] = [a, b, c ]
put [ , , , d ] [a, b, c ] = [a, b, c , d ]

Then, Igor II synthesizes:

put [a ] [ ] = [a ]
put ( : (x : ys)) (a : bs) = (a : (put (x : ys) bs))
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One possible approach

Also works for get = sieve. Gives:

put xs [ ] = xs
put (a : ( : xs)) (b : ys) = (a : (b : (put xs ys)))

But this put is not defined when (length s) / 2< length v ′.

Idea: Introduce extra examples covering such cases:

put [ ] [b ] = [ , b ]

(as a “mutation” of put [a, ] [b ] = [a, b ]).

But actually then, in general, also need to express inequality
constraints . . .
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Conclusion / Outlook

I Bidirectional Transformations:

I “hot topic” in various areas, including PL approaches
I typical weakness: nondeterminism, and limited (or no)

impact of programmer intentions

I Connection to Inductive Programming:

I IP as a “helper”, detecting/exploiting regularities
I either naively as a black box, or deeper integration
I further ideas: I/O pairs per parametricity of get;

user impact through ad-hoc I/O pairs or
provision of background knowledge;
. . .

I Extensions to Igor II:

I dealing with wildcards on rhs of I/O pairs
I a new operator for introducing accumulating parameters
I some reduction of search space
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