
Inductive Program Synthesis for
Bidirectional Transformations

Tobias Gödderz, Helmut Grohne, Janis Voigtländer

University of Bonn

Dagstuhl Seminar 15442

Bidirectional Transformation

source view

s v

s ′ v ′

get

1 – 1/4

Bidirectional Transformation

source view

s v

s ′ v ′

get

update

1 – 2/4

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

1 – 3/4

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

1 – 4/4

Bidirectional Transformation

Examples:

“abc” “bc”

“ade” “de”

tail

2 – 5/13

Bidirectional Transformation

Examples:

“abc” “bc”

“ade” “de”

tail

update

2 – 6/13

Bidirectional Transformation

Examples:

“abc” “bc”

“ade” “de”

tail

put

update

2 – 7/13

Bidirectional Transformation

Examples:

‘a’ ‘b’ ‘a’ ‘c’
“abac”

‘a’ ‘b’ ‘x’ ‘c’
“abxc”

flatten

2 – 8/13

Bidirectional Transformation

Examples:

‘a’ ‘b’ ‘a’ ‘c’
“abac”

‘a’ ‘b’ ‘x’ ‘c’
“abxc”

flatten

update

2 – 9/13

Bidirectional Transformation

Examples:

‘a’ ‘b’ ‘a’ ‘c’
“abac”

‘a’ ‘b’ ‘x’ ‘c’
“abxc”

flatten

put

update

2 – 10/13

Bidirectional Transformation

Examples:

‘a’ ‘b’ ‘a’ ‘c’
“abc”

‘x’ ‘b’ ‘x’ ‘c’
“xbc”

nub ◦ flatten

2 – 11/13

Bidirectional Transformation

Examples:

‘a’ ‘b’ ‘a’ ‘c’
“abc”

‘x’ ‘b’ ‘x’ ‘c’
“xbc”

nub ◦ flatten

update

2 – 12/13

Bidirectional Transformation

Examples:

‘a’ ‘b’ ‘a’ ‘c’
“abc”

‘x’ ‘b’ ‘x’ ‘c’
“xbc”

nub ◦ flatten

put

update

2 – 13/13

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

3 – 14/15

Bidirectional Transformation – Laws

source view

s v

s ′ v ′

get

put

update

3 – 15/15

Bidirectional Transformation – Laws

source view

s v

s v

get

=

Acceptability / GetPut

4 – 16/19

Bidirectional Transformation – Laws

source view

s v

s v

get

put

==

Acceptability / GetPut

4 – 17/19

Bidirectional Transformation – Laws

source view

s v

s ′ v ′

get

put

update

Consistency / PutGet

4 – 18/19

Bidirectional Transformation – Laws

source view

s v

s ′ v ′

get

put

update

get

Consistency / PutGet

4 – 19/19

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

5 – 20/22

Bidirectional Transformation – PL Approaches

source view

s v

s ′ v ′

get

put

update

Lenses, DSLs

[Foster et al., ACM TOPLAS’07, . . .]

5 – 21/22

Bidirectional Transformation – PL Approaches

source view

s v

s ′ v ′

get

put

update

Bidirectionalization

[Matsuda et al., ICFP’07], [V., POPL’09], . . .

5 – 22/22

Nondeterminism / Choices to make

Let get = sieve with:

s "" "a" "ab" "abc" "abcd" "abcde"

sieve s "" "" "b" "b" "bd" "bd"

Then, for example:

put "abcd" "xy" = "axcy"

put "abcde" "xy" = "axcye"

put "abcde" "xyz"= "axcyez" or "axcyez " ?

put "abcd" "xyz"= "axcy z"

put "abcd" "x" = "axc" or "ax" ? , or "cx" ?

6 – 23/33

Nondeterminism / Choices to make

Let get = sieve with:

s "" "a" "ab" "abc" "abcd" "abcde"

sieve s "" "" "b" "b" "bd" "bd"

Then, for example:

put "abcd" "xy" = "axcy"

put "abcde" "xy" = "axcye"

put "abcde" "xyz"= "axcyez" or "axcyez " ?

put "abcd" "xyz"= "axcy z"

put "abcd" "x" = "axc" or "ax" ? , or "cx" ?

6 – 24/33

Nondeterminism / Choices to make

Let get = sieve with:

s "" "a" "ab" "abc" "abcd" "abcde"

sieve s "" "" "b" "b" "bd" "bd"

Then, for example:

put "abcd" "xy" = "axcy"

put "abcde" "xy" = "axcye"

put "abcde" "xyz"= "axcyez" or "axcyez " ?

put "abcd" "xyz"= "axcy z"

put "abcd" "x" = "axc" or "ax" ? , or "cx" ?

6 – 25/33

Nondeterminism / Choices to make

Let get = sieve with:

s "" "a" "ab" "abc" "abcd" "abcde"

sieve s "" "" "b" "b" "bd" "bd"

Then, for example:

put "abcd" "xy" = "axcy"

put "abcde" "xy" = "axcye"

put "abcde" "xyz"=

"axcyez" or "axcyez " ?

put "abcd" "xyz"= "axcy z"

put "abcd" "x" = "axc" or "ax" ? , or "cx" ?

6 – 26/33

Nondeterminism / Choices to make

Let get = sieve with:

s "" "a" "ab" "abc" "abcd" "abcde"

sieve s "" "" "b" "b" "bd" "bd"

Then, for example:

put "abcd" "xy" = "axcy"

put "abcde" "xy" = "axcye"

put "abcde" "xyz"= "axcyez"

or "axcyez " ?

put "abcd" "xyz"= "axcy z"

put "abcd" "x" = "axc" or "ax" ? , or "cx" ?

6 – 27/33

Nondeterminism / Choices to make

Let get = sieve with:

s "" "a" "ab" "abc" "abcd" "abcde"

sieve s "" "" "b" "b" "bd" "bd"

Then, for example:

put "abcd" "xy" = "axcy"

put "abcde" "xy" = "axcye"

put "abcde" "xyz"= "axcyez" or "axcyez " ?

put "abcd" "xyz"= "axcy z"

put "abcd" "x" = "axc" or "ax" ? , or "cx" ?

6 – 28/33

Nondeterminism / Choices to make

Let get = sieve with:

s "" "a" "ab" "abc" "abcd" "abcde"

sieve s "" "" "b" "b" "bd" "bd"

Then, for example:

put "abcd" "xy" = "axcy"

put "abcde" "xy" = "axcye"

put "abcde" "xyz"= "axcyez" or "axcyez " ?

put "abcd" "xyz"= "axcy z"

put "abcd" "x" = "axc" or "ax" ? , or "cx" ?

6 – 29/33

Nondeterminism / Choices to make

Let get = sieve with:

s "" "a" "ab" "abc" "abcd" "abcde"

sieve s "" "" "b" "b" "bd" "bd"

Then, for example:

put "abcd" "xy" = "axcy"

put "abcde" "xy" = "axcye"

put "abcde" "xyz"= "axcyez" or "axcyez " ?

put "abcd" "xyz"= "axcy z"

put "abcd" "x" =

"axc" or "ax" ? , or "cx" ?

6 – 30/33

Nondeterminism / Choices to make

Let get = sieve with:

s "" "a" "ab" "abc" "abcd" "abcde"

sieve s "" "" "b" "b" "bd" "bd"

Then, for example:

put "abcd" "xy" = "axcy"

put "abcde" "xy" = "axcye"

put "abcde" "xyz"= "axcyez" or "axcyez " ?

put "abcd" "xyz"= "axcy z"

put "abcd" "x" = "axc"

or "ax" ? , or "cx" ?

6 – 31/33

Nondeterminism / Choices to make

Let get = sieve with:

s "" "a" "ab" "abc" "abcd" "abcde"

sieve s "" "" "b" "b" "bd" "bd"

Then, for example:

put "abcd" "xy" = "axcy"

put "abcde" "xy" = "axcye"

put "abcde" "xyz"= "axcyez" or "axcyez " ?

put "abcd" "xyz"= "axcy z"

put "abcd" "x" = "axc" or "ax" ?

, or "cx" ?

6 – 32/33

Nondeterminism / Choices to make

Let get = sieve with:

s "" "a" "ab" "abc" "abcd" "abcde"

sieve s "" "" "b" "b" "bd" "bd"

Then, for example:

put "abcd" "xy" = "axcy"

put "abcde" "xy" = "axcye"

put "abcde" "xyz"= "axcyez" or "axcyez " ?

put "abcd" "xyz"= "axcy z"

put "abcd" "x" = "axc" or "ax" ? , or "cx" ?

6 – 33/33

Nondeterminism / Choices to make

Let get = head with:

head (x : xs) = x

Maybe:

put (x : xs) y = [y]

But that violates put s (get s) = s !

Better:

put (x : xs) y | y == x = (x : xs)
| otherwise = [y]

But “really intended”:

put (x : xs) y = (y : xs)

7 – 34/38

Nondeterminism / Choices to make

Let get = head with:

head (x : xs) = x

Maybe:

put (x : xs) y = [y]

But that violates put s (get s) = s !

Better:

put (x : xs) y | y == x = (x : xs)
| otherwise = [y]

But “really intended”:

put (x : xs) y = (y : xs)

7 – 35/38

Nondeterminism / Choices to make

Let get = head with:

head (x : xs) = x

Maybe:

put (x : xs) y = [y]

But that violates put s (get s) = s !

Better:

put (x : xs) y | y == x = (x : xs)
| otherwise = [y]

But “really intended”:

put (x : xs) y = (y : xs)

7 – 36/38

Nondeterminism / Choices to make

Let get = head with:

head (x : xs) = x

Maybe:

put (x : xs) y = [y]

But that violates put s (get s) = s !

Better:

put (x : xs) y | y == x = (x : xs)
| otherwise = [y]

But “really intended”:

put (x : xs) y = (y : xs)

7 – 37/38

Nondeterminism / Choices to make

Let get = head with:

head (x : xs) = x

Maybe:

put (x : xs) y = [y]

But that violates put s (get s) = s !

Better:

put (x : xs) y | y == x = (x : xs)
| otherwise = [y]

But “really intended”:

put (x : xs) y = (y : xs)

7 – 38/38

A slightly more complex case, with recursion

Let get = init with:

init [x] = []
init (x : xs) = (x : (init xs))

Possible, and correct:

put xs ys | length ys == (length xs)− 1 = ys ++ [last xs]
| otherwise = ys ++ " "

But intended:

put xs ys = ys ++ [last xs]

Problem: How to produce the “intuitive” solution?

8 – 39/42

A slightly more complex case, with recursion

Let get = init with:

init [x] = []
init (x : xs) = (x : (init xs))

Possible, and correct:

put xs ys | length ys == (length xs)− 1 = ys ++ [last xs]
| otherwise = ys ++ " "

But intended:

put xs ys = ys ++ [last xs]

Problem: How to produce the “intuitive” solution?

8 – 40/42

A slightly more complex case, with recursion

Let get = init with:

init [x] = []
init (x : xs) = (x : (init xs))

Possible, and correct:

put xs ys | length ys == (length xs)− 1 = ys ++ [last xs]
| otherwise = ys ++ " "

But intended:

put xs ys = ys ++ [last xs]

Problem: How to produce the “intuitive” solution?

8 – 41/42

A slightly more complex case, with recursion

Let get = init with:

init [x] = []
init (x : xs) = (x : (init xs))

Possible, and correct:

put xs ys | length ys == (length xs)− 1 = ys ++ [last xs]
| otherwise = ys ++ " "

But intended:

put xs ys = ys ++ [last xs]

Problem: How to produce the “intuitive” solution?

8 – 42/42

Entry: Inductive Program Synthesis

Problem: Of the well-behavedness laws

put s (get s) = s

get (put s v ′) = v ′

only the first one directly delivers I/O pairs for put.

Like, for get = init:

put [a] [] = [a]
put [a, b] [a] = [a, b]
put [a, b, c] [a, b] = [a, b, c]
put [a, b, c , d] [a, b, c] = [a, b, c , d]

But then one would synthesize:

put xs ys = xs

1. possible solution: Enforce use of both arguments?

9 – 43/46

Entry: Inductive Program Synthesis

Problem: Of the well-behavedness laws

put s (get s) = s

get (put s v ′) = v ′

only the first one directly delivers I/O pairs for put.

Like, for get = init:

put [a] [] = [a]
put [a, b] [a] = [a, b]
put [a, b, c] [a, b] = [a, b, c]
put [a, b, c , d] [a, b, c] = [a, b, c , d]

But then one would synthesize:

put xs ys = xs

1. possible solution: Enforce use of both arguments?

9 – 44/46

Entry: Inductive Program Synthesis

Problem: Of the well-behavedness laws

put s (get s) = s

get (put s v ′) = v ′

only the first one directly delivers I/O pairs for put.

Like, for get = init:

put [a] [] = [a]
put [a, b] [a] = [a, b]
put [a, b, c] [a, b] = [a, b, c]
put [a, b, c , d] [a, b, c] = [a, b, c , d]

But then one would synthesize:

put xs ys = xs

1. possible solution: Enforce use of both arguments?

9 – 45/46

Entry: Inductive Program Synthesis

Problem: Of the well-behavedness laws

put s (get s) = s

get (put s v ′) = v ′

only the first one directly delivers I/O pairs for put.

Like, for get = init:

put [a] [] = [a]
put [a, b] [a] = [a, b]
put [a, b, c] [a, b] = [a, b, c]
put [a, b, c , d] [a, b, c] = [a, b, c , d]

But then one would synthesize:

put xs ys = xs

1. possible solution: Enforce use of both arguments?

9 – 46/46

One possible approach

“Encourage” use of both arguments!

Instead of:

put [a] [] = [a]
put [a, b] [a] = [a, b]
· · ·

use:

put [a] [] = [a]
put [, b] [a] = [a, b]
put [, , c] [a, b] = [a, b, c]
put [, , , d] [a, b, c] = [a, b, c , d]

Then, Igor II synthesizes:

put [a] [] = [a]
put (: (x : ys)) (a : bs) = (a : (put (x : ys) bs))

10 – 47/49

One possible approach

“Encourage” use of both arguments!

Instead of:

put [a] [] = [a]
put [a, b] [a] = [a, b]
· · ·

use:

put [a] [] = [a]
put [, b] [a] = [a, b]
put [, , c] [a, b] = [a, b, c]
put [, , , d] [a, b, c] = [a, b, c , d]

Then, Igor II synthesizes:

put [a] [] = [a]
put (: (x : ys)) (a : bs) = (a : (put (x : ys) bs))

10 – 48/49

One possible approach

“Encourage” use of both arguments!

Instead of:

put [a] [] = [a]
put [a, b] [a] = [a, b]
· · ·

use:

put [a] [] = [a]
put [, b] [a] = [a, b]
put [, , c] [a, b] = [a, b, c]
put [, , , d] [a, b, c] = [a, b, c , d]

Then, Igor II synthesizes:

put [a] [] = [a]
put (: (x : ys)) (a : bs) = (a : (put (x : ys) bs))

10 – 49/49

One possible approach

Also works for get = sieve. Gives:

put xs [] = xs
put (a : (: xs)) (b : ys) = (a : (b : (put xs ys)))

But this put is not defined when (length s) / 2< length v ′.

Idea: Introduce extra examples covering such cases:

put [] [b] = [, b]

(as a “mutation” of put [a,] [b] = [a, b]).

But actually then, in general, also need to express inequality
constraints . . .

11 – 50/53

One possible approach

Also works for get = sieve. Gives:

put xs [] = xs
put (a : (: xs)) (b : ys) = (a : (b : (put xs ys)))

But this put is not defined when (length s) / 2< length v ′.

Idea: Introduce extra examples covering such cases:

put [] [b] = [, b]

(as a “mutation” of put [a,] [b] = [a, b]).

But actually then, in general, also need to express inequality
constraints . . .

11 – 51/53

One possible approach

Also works for get = sieve. Gives:

put xs [] = xs
put (a : (: xs)) (b : ys) = (a : (b : (put xs ys)))

But this put is not defined when (length s) / 2< length v ′.

Idea: Introduce extra examples covering such cases:

put [] [b] = [, b]

(as a “mutation” of put [a,] [b] = [a, b]).

But actually then, in general, also need to express inequality
constraints . . .

11 – 52/53

One possible approach

Also works for get = sieve. Gives:

put xs [] = xs
put (a : (: xs)) (b : ys) = (a : (b : (put xs ys)))

But this put is not defined when (length s) / 2< length v ′.

Idea: Introduce extra examples covering such cases:

put [] [b] = [, b]

(as a “mutation” of put [a,] [b] = [a, b]).

But actually then, in general, also need to express inequality
constraints . . .

11 – 53/53

Conclusion / Outlook

I Bidirectional Transformations:

I “hot topic” in various areas, including PL approaches
I typical weakness: nondeterminism, and limited (or no)

impact of programmer intentions

I Connection to Inductive Programming:

I IP as a “helper”, detecting/exploiting regularities
I either naively as a black box, or deeper integration
I further ideas: I/O pairs per parametricity of get;

user impact through ad-hoc I/O pairs or
provision of background knowledge;
. . .

I Extensions to Igor II:

I dealing with wildcards on rhs of I/O pairs
I a new operator for introducing accumulating parameters
I some reduction of search space

12 – 54/56

Conclusion / Outlook

I Bidirectional Transformations:

I “hot topic” in various areas, including PL approaches
I typical weakness: nondeterminism, and limited (or no)

impact of programmer intentions

I Connection to Inductive Programming:

I IP as a “helper”, detecting/exploiting regularities
I either naively as a black box, or deeper integration
I further ideas: I/O pairs per parametricity of get;

user impact through ad-hoc I/O pairs or
provision of background knowledge;
. . .

I Extensions to Igor II:

I dealing with wildcards on rhs of I/O pairs
I a new operator for introducing accumulating parameters
I some reduction of search space

12 – 55/56

Conclusion / Outlook

I Bidirectional Transformations:

I “hot topic” in various areas, including PL approaches
I typical weakness: nondeterminism, and limited (or no)

impact of programmer intentions

I Connection to Inductive Programming:

I IP as a “helper”, detecting/exploiting regularities
I either naively as a black box, or deeper integration
I further ideas: I/O pairs per parametricity of get;

user impact through ad-hoc I/O pairs or
provision of background knowledge;
. . .

I Extensions to Igor II:

I dealing with wildcards on rhs of I/O pairs
I a new operator for introducing accumulating parameters
I some reduction of search space

12 – 56/56

References I

F. Bancilhon and N. Spyratos.
Update semantics of relational views.
ACM Transactions on Database Systems, 6(3):557–575, 1981.

J.N. Foster, M.B. Greenwald, J.T. Moore, B.C. Pierce, and A.
Schmitt.
Combinators for bidirectional tree transformations: A linguistic
approach to the view-update problem.
ACM Transactions on Programming Languages and Systems,
29(3):17, 2007.

S. Katayama.
Systematic search for lambda expressions.
In Trends in Functional Programming 2005, Revised Selected
Papers, pages 111–126. Intellect, 2007.

13 – 57/58

References II

E. Kitzelmann and U. Schmid.
Inductive synthesis of functional programs: An explanation
based generalization approach.
Journal of Machine Learning Research, 7:429–454, 2006.

K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi.
Bidirectionalization transformation based on automatic
derivation of view complement functions.
In International Conference on Functional Programming,
Proceedings, pages 47–58. ACM Press, 2007.

J. Voigtländer.
Bidirectionalization for free!
In Principles of Programming Languages, Proceedings, pages
165–176. ACM Press, 2009.

14 – 58/58

	Bidirectionalization
	Inductive Program Synthesis
	BX + IP
	Conclusion / Outlook
	References

