Efficiency of
 Bidirectional Transformations

J. Voigtländer

University of Bonn
Dagstuhl Seminar "bx"
January 20th, 2011

Bidirectional Transformation

Bidirectionalization

Bidirectional Transformation

Syntactic Bidirectionalization
[Matsuda et al., ICFP'07]

Bidirectional Transformation

Semantic Bidirectionalization
[V., POPL'09]

Semantic Bidirectionalization (Complete, for Lists)

put :: Eq $\alpha \Rightarrow[\alpha] \rightarrow[\alpha] \rightarrow[\alpha]$
put [] [] $=$ []
put $s v^{\prime} \mid(s /=[])=$
let $t=[0 . .(($ length $s)-1)]$
$g=\operatorname{lntMap.fromDistinctAscList(zipts)~}$
$h=\operatorname{assoc}($ get $t) v^{\prime}$
$h^{\prime}=\operatorname{IntMap}$.union $h g$
in map $\left(\lambda i \rightarrow\right.$ fromJust (IntMap.lookup $\left.\left.i h^{\prime}\right)\right) t$
assoc :: Eq $\alpha \Rightarrow[\mathrm{Int}] \rightarrow[\alpha] \rightharpoonup \operatorname{IntMap} \alpha$
assoc [] [] $=\operatorname{IntMap}$.empty
$\operatorname{assoc}(i: i s)(b: b s)=$
let $m=$ assoc is bs
in case IntMap.lookup i m of
Nothing $\quad \rightarrow$ IntMap.insert i b m
Just $c \mid(b==c) \rightarrow m$

Some Experiments Done

Measurements "halve, normalized"

Many Questions

- Do we even care (yet) about efficiency issues?

Many Questions

- Do we even care (yet) about efficiency issues?
- What is it that we should measure/compare? Efficiency in terms of what?

Many Questions

- Do we even care (yet) about efficiency issues?
- What is it that we should measure/compare? Efficiency in terms of what?
- What are the sources of inefficiency?

Many Questions

- Do we even care (yet) about efficiency issues?
- What is it that we should measure/compare? Efficiency in terms of what?
- What are the sources of inefficiency?
- How can we improve efficiency?

Many Questions

- Do we even care (yet) about efficiency issues?
- What is it that we should measure/compare? Efficiency in terms of what?
- What are the sources of inefficiency?
- How can we improve efficiency?
- Does it have side effects for qualitative/semantic issues?

What to Measure/Compare?

runtime of put $v^{\prime} s$, variable $|s|$

What to Measure/Compare?

runtime of put $v^{\prime} s$, variable $|s|$

Possible alternatives:

- measure whole roundtrips

What to Measure/Compare?

runtime of put $v^{\prime} s$, variable $|s|$

Possible alternatives:

- measure whole roundtrips
- measure over histories, for incrementality

What to Measure/Compare?

runtime of put $v^{\prime} s$, variable $|s|$

Possible alternatives:

- measure whole roundtrips
- measure over histories, for incrementality
- account for more fine-grained cost division

What to Measure/Compare?

runtime of put $v^{\prime} s$, variable $|s|$

Possible alternatives:

- measure whole roundtrips
- measure over histories, for incrementality
- account for more fine-grained cost division
- make v^{\prime} variable as well

What to Measure/Compare?

runtime of put $v^{\prime} s$, variable $|s|$

Possible alternatives:

- measure whole roundtrips
- measure over histories, for incrementality
- account for more fine-grained cost division
- make v^{\prime} variable as well
- express in terms of "update delta"

What to Measure/Compare?

runtime of put $v^{\prime} s$, variable $|s|$

Possible alternatives:

- measure whole roundtrips
- measure over histories, for incrementality
- account for more fine-grained cost division
- make v^{\prime} variable as well
- express in terms of "update delta"
- ???

Sources of Inefficiency?

- Syntactic Bidirectionalization:
- explicit computation of complement
- nondeterminism in syntactically inverted intermediate program

Sources of Inefficiency?

- Syntactic Bidirectionalization:
- explicit computation of complement
- nondeterminism in syntactically inverted intermediate program
- Semantic Bidirectionalization:
- costly management of index map
- a lot of abstraction overhead
- lack of intensional knowledge about get

Sources of Inefficiency?

- Syntactic Bidirectionalization:
- explicit computation of complement
- nondeterminism in syntactically inverted intermediate program
- Semantic Bidirectionalization:
- costly management of index map
- a lot of abstraction overhead
- lack of intensional knowledge about get
- Technique XYZ:
- ???
- . .

How to Improve Efficiency?

- Obviously, by removing sources of inefficiency. $)^{-}$

How to Improve Efficiency?

- Obviously, by removing sources of inefficiency. ©
- Algorithm/data structure engineering?

Semantic Bidirectionalization (Complete, for Lists)

put :: Eq $\alpha \Rightarrow[\alpha] \rightarrow[\alpha] \rightarrow[\alpha]$
put [] [] $=$ []
put $s v^{\prime} \mid(s /=[])=$
let $t=[0 . .(($ length $s)-1)]$
$g=\operatorname{lntMap.fromDistinctAscList(zipts)~}$
$h=\operatorname{assoc}($ get $t) v^{\prime}$
$h^{\prime}=\operatorname{IntMap}$.union $h g$
in map $\left(\lambda i \rightarrow\right.$ fromJust (IntMap.lookup $\left.\left.i h^{\prime}\right)\right) t$
assoc :: Eq $\alpha \Rightarrow[\mathrm{Int}] \rightarrow[\alpha] \rightharpoonup \operatorname{IntMap} \alpha$
assoc [] [] $=\operatorname{IntMap}$.empty
$\operatorname{assoc}(i: i s)(b: b s)=$
let $m=$ assoc is bs
in case IntMap.lookup i m of
Nothing $\quad \rightarrow$ IntMap.insert i b m
Just $c \mid(b==c) \rightarrow m$

How to Improve Efficiency?

- Obviously, by removing sources of inefficiency. ©
- Algorithm/data structure engineering?

How to Improve Efficiency?

- Obviously, by removing sources of inefficiency. ©
- Algorithm/data structure engineering?
- Partial application/evaluation:

$$
\text { 〈get, put〉 }:: S \rightarrow(V, V \rightharpoonup S)
$$

Semantic Bidirectionalization (Complete, for Lists)

put :: Eq $\alpha \Rightarrow[\alpha] \rightarrow[\alpha] \rightarrow[\alpha]$
put [] [] $=$ []
put $s v^{\prime} \mid(s /=[])=$
let $t=[0 . .(($ length $s)-1)]$
$g=\operatorname{lntMap.fromDistinctAscList(zipts)~}$
$h=\operatorname{assoc}($ get $t) v^{\prime}$
$h^{\prime}=\operatorname{IntMap}$.union $h g$
in map $\left(\lambda i \rightarrow\right.$ fromJust (IntMap.lookup $\left.\left.i h^{\prime}\right)\right) t$
assoc :: Eq $\alpha \Rightarrow[\mathrm{Int}] \rightarrow[\alpha] \rightharpoonup \operatorname{IntMap} \alpha$
assoc [] [] $=\operatorname{IntMap}$.empty
$\operatorname{assoc}(i: i s)(b: b s)=$
let $m=$ assoc is bs
in case IntMap.lookup i m of
Nothing $\quad \rightarrow$ IntMap.insert i b m
Just $c \mid(b==c) \rightarrow m$

How to Improve Efficiency?

- Obviously, by removing sources of inefficiency. ©
- Algorithm/data structure engineering?
- Partial application/evaluation:

$$
\text { 〈get, put〉 }:: S \rightarrow(V, V \rightharpoonup S)
$$

How to Improve Efficiency?

- Obviously, by removing sources of inefficiency. ©
- Algorithm/data structure engineering?
- Partial application/evaluation:

$$
\langle\text { get, put〉 }:: S \rightarrow(V, V \rightharpoonup S)
$$

- Inlining get, plus equational reasoning?

Semantic Bidirectionalization (Complete, for Lists)

put :: Eq $\alpha \Rightarrow[\alpha] \rightarrow[\alpha] \rightarrow[\alpha]$
put [] [] $=$ []
put $s v^{\prime} \mid(s /=[])=$
let $t=[0 . .(($ length $s)-1)]$
$g=\operatorname{lntMap.fromDistinctAscList(zipts)~}$
$h=\operatorname{assoc}($ get $t) v^{\prime}$
$h^{\prime}=\operatorname{IntMap}$.union $h g$
in map $\left(\lambda i \rightarrow\right.$ fromJust (IntMap.lookup $\left.\left.i h^{\prime}\right)\right) t$
assoc :: Eq $\alpha \Rightarrow[\mathrm{Int}] \rightarrow[\alpha] \rightharpoonup \operatorname{IntMap} \alpha$
assoc [] [] $=\operatorname{IntMap}$.empty
$\operatorname{assoc}(i: i s)(b: b s)=$
let $m=$ assoc is bs
in case IntMap.lookup i m of
Nothing $\quad \rightarrow$ IntMap.insert i b m
Just $c \mid(b==c) \rightarrow m$

How to Improve Efficiency?

- Obviously, by removing sources of inefficiency. ©
- Algorithm/data structure engineering?
- Partial application/evaluation:

$$
\langle\text { get, put }\rangle:: S \rightarrow(V, V \rightharpoonup S)
$$

- Inlining get, plus equational reasoning?
- More standard program transformations?
- ???

Many Questions

- Do we even care (yet) about efficiency issues?
- What is it that we should measure/compare? Efficiency in terms of what?
- What are the sources of inefficiency?
- How can we improve efficiency?
- Does it have side effects for qualitative/semantic issues?

References

围 K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi. Bidirectionalization transformation based on automatic derivation of view complement functions.
In International Conference on Functional Programming,
Proceedings, pages 47-58. ACM Press, 2007.
囯 J. Voigtländer.
Bidirectionalization for free!
In Principles of Programming Languages, Proceedings, pages 165-176. ACM Press, 2009.

