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The Constant-Complement Approach
[Bancilhon & Spyratos, ACM TODS’81]

Given
get :: S → V

define a C and

res :: S → C

such that

paired = λs → (get s, res s)

is injective and has an inverse inv :: (V ,C )→ S .

Then:
put :: V → S → S
put v ′ s = inv (v ′, res s)
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The Constant-Complement Approach

Guarantees “reasonability”:

I put (get s) s = s

I get (put v ′ s) = v ′

I put v ′′ (put v ′ s) = put v ′′ s

Example:

inv :: (Nat,Nat2)→ Nat
inv (v ′, c) = 2 ∗ v ′ + c

Then:

put :: Nat→ Nat→ Nat
put v ′ s = inv (v ′, res s)

= 2 ∗ v ′ + s ‘mod‘ 2

Another choice for complement:

get :: Nat→ Nat res :: Nat→ Nat
get n = n ‘div‘ 2 res n = n

inv :: (Nat,Nat) ⇀ Nat
inv (v ′, c) | (v ′ == get c) = c

Then:
put :: Nat→ Nat ⇀ Nat
put v ′ s | (v ′ == get s) = s
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Catering for Partiality

Still require that get :: S → V and res :: S → C
are total and that paired is injective.

But allow inv :: (V ,C ) ⇀ S , and instead of being
a full inverse of paired, only require that:

I inv ◦ paired = id

I paired ◦ inv v id

Guarantees (only):

I put (get s) s = s

I get (put v ′ s) v v ′

I (put v ′ s)⇓ ⇒ put v ′′ (put v ′ s) = put v ′′ s
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Choices to Make

For
get :: Nat→ Nat
get n = n ‘div‘ 2

clearly
put :: Nat→ Nat→ Nat
put v ′ s = 2 ∗ v ′ + s ‘mod‘ 2

better than

put :: Nat→ Nat ⇀ Nat
put v ′ s | (v ′ == get s) = s

But what about:

put :: Nat→ Nat→ Nat
put v ′ s = 2 ∗ v ′ + (v ′ + ((s + 1) ‘mod‘ 4) ‘div‘ 2) ‘mod‘ 2
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Choices to Make

Different complement functions (res) lead to
different update functions (put):

v ′ \ s 0 1 2 3

0 0 1 0 1
1 2 3 2 3
2 4 5 4 5
3 6 7 6 7

vs.

v ′ \ s 0 1 2 3

0 0 1 1 0
1 3 2 2 3
2 4 5 5 4
3 7 6 6 7

In fact, res :: S → C is the only “handle” we have
for influencing the choice of put.
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Small Complements

The bad thing about

res :: Nat→ Nat
res n = n

is that it is “too injective”.

Note that we need

paired = λs → (get s, res s)

to be injective, but not res itself.

In fact, the “less injective”, the better!
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Summary of the Approach to Bidirectionalization

Given get :: S → V , find C and res :: S → C such
that paired = λs → (get s, res s) is injective and
res is as small as possible with respect to �.

Define (an effective!) inv :: (V ,C ) ⇀ S with:

inv (v ′, c) =

{
⊥ if ¬∃s ′. paired s ′ = (v ′, c)

s ′ if paired s ′ = (v ′, c)

Set:

put :: V → S ⇀ S
put v ′ s = inv (v ′, res s)
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Taking Stock

[Matsuda et al., ICFP’07]:

I depends on syntactic restraints

I allows (ad-hoc) some shape-changing updates

[V., POPL’09]:

I very lightweight, easy access to bidirectionality

I essential role: polymorphic function types

I major problem: rejects shape-changing updates

[V. et al., ICFP’10]:

I synthesis of the two techniques

I inherits limitations in program coverage from both

I strictly better in terms of updatability than either
11



Scorecard
syntactic semantic combined

Update? State-based

Bijective? No

Well behaved? Yes

Very well behaved? Yes No

Choice of put? No Yes

Total? No
12
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