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The Constant-Complement Approach
[Bancilhon & Spyratos, ACM TODS’81]

In general, given
get :: S → V

define a V C and
compl :: S → V C

such that
λs → (get s, compl s)

is injective and has an inverse

inv :: (V ,V C )→ S

Then:

put :: S → V → S
put s v ′ = inv (v ′, compl s)

Important: compl should “collapse” as much as possible.
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The Constant-Complement Approach

For a very simple setting,

get :: [α]→ [α] ,

what should be V C and

compl :: [α]→ V C ???

To make

λs → (get s, compl s)

injective, need to record information discarded by get.

Candidates:

1. length of the source list

2. discarded list elements

For the moment, be maximally conservative.
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The Complement Function

compl :: [α]→ (Int, [α])
compl s = let n = (length s)− 1

t = [0..n]
g = zip t s
g ′ = filter (λ(i , )→ notElem i (get t)) g

in (n + 1, map snd g ′)

For example:

get = tail  compl “abcde” = (5, [’a’])

get = take 3  compl “abcde” = (5, [’d’, ’e’])

get = reverse  compl “abcde” = (5, [ ])
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An Inverse of λs → (get s, compl s)

inv :: ([α], (Int, [α]))→ [α]
inv ([ ], (0, )) = [ ]
inv (v ′, (n + 1, as)) =
let t = [0..n]

h = assoc (get t) v ′

g ′ = zip (filter (λi → notElem i (get t)) t) as
h′ = h ++ g ′

in map (λi → fromJust (lookup i h′)) t

For example:

get = tail  inv (“bcde”, (5, [’a’])) = “abcde”

get = take 3  inv (“xyz”, (5, [’d’, ’e’])) = “xyzde”

† Can be thought of as zip for the moment.
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Correctness

To prove formally:

I inv (get s, compl s) = s

I if inv (v , c) defined, then get (inv (v , c)) = v

I if inv (v , c) defined, then compl (inv (v , c)) = c

Use a free theorem [Wadler, FPCA’89], namely that for every

get :: [α]→ [α]

we have, for arbitrary f and l ,

map f (get l) = get (map f l) .
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Altogether, So Far:

compl :: [α]→ (Int, [α])
compl s = let n = (length s)− 1

t = [0..n]
g = zip t s
g ′ = filter (λ(i , )→ notElem i (get t)) g

in (n + 1, map snd g ′)

inv :: ([α], (Int, [α]))→ [α]
inv ([ ], (0, )) = [ ]
inv (v ′, (n + 1, as)) =

let t = [0..n]
h = assoc (get t) v ′

g ′ = zip (filter (λi → notElem i (get t)) t) as
h′ = h ++ g ′

in map (λi → fromJust (lookup i h′)) t
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“Fusion”

Inlining compl and inv into put, plus some clever rewriting:

put [ ] [ ] = [ ]
put s v ′ = let n = (length s)− 1

t = [0..n]
g = zip t s
g ′ = filter (λ(i , )→ notElem i (get t)) g
h = assoc (get t) v ′

h′ = h ++ g ′

in seq h (map (λi → fromJust (lookup i h′)) t)

assoc [ ] [ ] = [ ]
assoc (i : is) (b : bs) = let m = assoc is bs

in case lookup i m of
Nothing → (i , b) : m
Just c | b == c → m

Actual code only slightly more elaborate!
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Overview of the Bidirectionalization Method

0 1 2 3

[1,2,3]
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Extending the Technique

Major Problem:

I Shape-affecting updates lead to failure.

I For example, bff tail “abcde” “xyz” . . .

Analysis as to Why:
I Our approach to making

λs → (get s, compl s)

injective was to record, via compl, the following information:

1. length of the source list
2. discarded list elements

I Being maximally conservative this way often does not
“collapse enough”.

I For example:

get = tail  put “abcde” “xyz” fails precisely because
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Assuming Shape-Injectivity

So assume there is a function

shapeInv :: Int→ Int

with, for every source list s,

length s = shapeInv (length (get s))

Then:

compl :: [α]→

(Int,

[α]

)

compl s = let n = (length s)− 1
t = [0..n]
g = zip t s
g ′ = filter (λ(i , )→ notElem i (get t)) g

in

(n + 1,

map snd g ′

)
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Assuming Shape-Injectivity

inv :: ([α], (Int, [α]))→ [α]
inv ([ ], (0, )) = [ ]
inv (v ′, (n + 1, as)) =
let t = [0..n]

h = assoc (get t) v ′

g ′ = zip (filter (λi → notElem i (get t)) t) as
h′ = h ++ g ′

in map (λi → fromJust (lookup i h′)) t

But how to obtain shapeInv ???

Just for experimentation:

shapeInv :: Int→ Int
shapeInv lv = head [n + 1 | n← [0..], (length (get [0..n])) == lv ]
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Some Tests

Works quite nicely in some cases:

get = tail  put “abcde” “xyz” = “axyz”, using
compl “abcde” = [’a’]

get = init  put “abcde” “xyz” = “xyze”, using
compl “abcde” = [’e’]

But not so in others:

get = take 3  put “abcde” “abc” = “abc”

The problem: have forgotten to take the original source length
into account.

Better:

shapeInv :: Int→ Int→ Int
shapeInv ls lv = head [n + 1 | n← (ls − 1) : [0..],

(length (get [0..n])) == lv ]
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Conclusion

[V., POPL’09]:

I very lightweight, easy access to bidirectionality

I full treatment of equality and ordering constraints

I proofs, using free theorems and equational reasoning

I a datatype-generic account of the whole story

Here:

I a constant-complement perspective on the method

I . . . helps expanding its scope to updates that affect shape

Outlook:

I . . . could also be a way to inject/exploit “user knowledge”

I combination with syntactic bidirectionalization à la
[Matsuda et al., ICFP’07] is work in progress

I efficiency issues untackled so far, . . .
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