Semantic Bidirectionalization and the
Constant-Complement Perspective

Janis Voigtlander
University of Bonn

BT-in-ABC'10

Bidirectional Transformation

source view

get

Bidirectional Transformation

source

get

view

update

Bidirectional Transformation

source

get

put

view

update

Bidirectional Transformation

source

get

A

put

view

update

Bidirectional Transformation

source view

get

Acceptability / GetPut

Bidirectional Transformation

source view

get

A

put

Acceptability / GetPut

Bidirectional Transformation

source view

get

update

A

put

Consistency / PutGet

Bidirectional Transformation

source view
get R
update
< put
\/
get

Consistency / PutGet

Bidirectional Transformation

source

get

A

put

view

update

Bidirectional Transformation

source

A view
4 N\
4 \
4 \
gety -
[} \
] \
[\
] \
[\
] \
i i
' ' update
[}]
]]
] []
\ i
)]
\]
\]
LY 'l
- \ [
\put,
A4
A\ W4
v

Lenses, DSLs
[Foster et al., ACM TOPLAS'07, ...]

Bidirectional Transformation

source view

get

update

A

put

Bidirectionalization
[Matsuda et al., ICFP'07]

Bidirectional Transformation

source view

get

update

Qrrccccccccca=

A

put

Syntactic Bidirectionalization
[Matsuda et al., ICFP'07]

Bidirectional Transformation

source view

get

i

update

Qrrccccccccca=

-~

A

put

Semantic Bidirectionalization

Bidirectional Transformation

source view

get

i

update

Qrrccccccccca=

Q\

A

put

Semantic Bidirectionalization
[V., POPL'09]

Semantic Bidirectionalization

Aim: Write a higher-order function bff such that any
get and bff get satisfy GetPut, PutGet,

Semantic Bidirectionalization

Aim: Write a higher-order function bff such that any
get and bff get satisfy GetPut, PutGet,

f “Bidirectionalization for free!”

Semantic Bidirectionalization

Aim: Write a higher-order function bff such that any
get and bff get satisfy GetPut, PutGet,

Examples:

" tail

abc > “bc”

f “Bidirectionalization for free!”

Semantic Bidirectionalization

Aim: Write a higher-order function bff such that any
get and bff get satisfy GetPut, PutGet,

Examples:
HabC” tall > “bC”
update
v
“de”

f “Bidirectionalization for free!”

Semantic Bidirectionalization

Aim: Write a higher-order function bff such that any
get and bff get satisfy GetPut, PutGet,

Examples:
HabC” tall > “bcll
update
v
ade” < bEf tail de

f “Bidirectionalization for free!”

Semantic Bidirectionalization

Aim: Write a higher-order function bff such that any
get and bff get satisfy GetPut, PutGet,

Examples:

flatten

> “abac”
lal Abl lal lCY

f “Bidirectionalization for free!”

Semantic Bidirectionalization

Aim: Write a higher-order function bff such that any
get and bff get satisfy GetPut, PutGet,

Examples:
flatten _ "
» “abac
lal Abl lal lcl
update
v
“abxc”

f “Bidirectionalization for free!”

Semantic Bidirectionalization

Aim: Write a higher-order function bff such that any
get and bff get satisfy GetPut, PutGet,

Examples:
flatten o "
» “abac
lal Abl lal lcl
update
v
Ch N LA, < bff flatten abxc
a' ‘b’ 'x' ‘c

f “Bidirectionalization for free!”

Semantic Bidirectionalization

Aim: Write a higher-order function bff such that any
get and bff get satisfy GetPut, PutGet,

Examples:

nuboflatten “

abc
‘a" ‘b’ a’ '

f “Bidirectionalization for free!”

Semantic Bidirectionalization

Aim: Write a higher-order function bff such that any
get and bff get satisfy GetPut, PutGet,

Examples:
nuboflatten T
> “abc
lal Abl lal lcl
update
v
“Xbc”

f “Bidirectionalization for free!”

Semantic Bidirectionalization

Aim: Write a higher-order function bff such that any
get and bff get satisfy GetPut, PutGet,

Examples:
nuboflatten T
*> “abc
lal Abl lal lcl
update
v
: “Xbc”
N bff (nuboflatten)
x" ‘b’ X' ‘c

f “Bidirectionalization for free!”

Overview of the Bidirectionalization Method

tailoflatten “

‘b’ ‘a’ ‘¢’ ‘a’

bff (tailoflatten)

> aca

update

Overview of the Bidirectionalization Method

‘b’ ‘a’ ‘¢’ ‘a’

? “xca"

bff (tailoflatten)

Overview of the Bidirectionalization Method

“xca"”

Overview of the Bidirectionalization Method

01 2 3
1 0o b
AN L
D ——_—
NIRRT 2 = 'c
a' ‘c’ ‘a 3 g

“xca"

Overview of the Bidirectionalization Method

tailoflatten [1,2,3]
01 2 3
1 0= b
AN o
—_
NIRRT 2 —='c
a'‘c ‘a 3 i

“xca"”

Overview of the Bidirectionalization Method

tailoflatten

0"

1—
2 —
3 —

oA oo

T
5 s o
3

- [1,2,3]

Overview of the Bidirectionalization Method

tailoflatten . [1 2 3]
01 2 3
0—"'b
R e
B
NIRRT 2 —='c
a ¢ ‘a 3y
Y
0 ‘b' 15 0
1 — 'x .
5 i «— |2 = 'c
o 3 —="'a

N AN

“vca”

Overview of the Bidirectionalization Method

tailoflatten . [1 2 3]
01 2 3
0—"'b
R e
B
NIRRT 2 —='c
a ¢ ‘a 3y
Y
0 ‘b' 15 0
1 — 'x .
2 —='c |27
o 3 —="'a

e
> N

The Constant-Complement Approach
[Bancilhon & Spyratos, ACM TODS'81]

In general, given
get 1S =V

The Constant-Complement Approach
[Bancilhon & Spyratos, ACM TODS'81]

In general, given
get:S—>V

define a V€ and
compl 1 § — V€

The Constant-Complement Approach
[Bancilhon & Spyratos, ACM TODS'81]

In general, given
define a V¢ and

such that
As — (get s, compl s)

is injective

The Constant-Complement Approach
[Bancilhon & Spyratos, ACM TODS'81]

In general, given
define a V¢ and

such that
As — (get s, compl s)

is injective and has an inverse

inv:(V,V€) =S

The Constant-Complement Approach
[Bancilhon & Spyratos, ACM TODS'81]

In general, given
define a V¢ and

such that
As — (get s, compl s)

is injective and has an inverse

inv:(V,V€) =S

Then:

put :S—=>V =S
put s v/ =inv (V/, compl s)

The Constant-Complement Approach
[Bancilhon & Spyratos, ACM TODS'81]

In general, given
define a V¢ and

such that
As — (get s, compl s)

is injective and has an inverse

inv:(V,V€) =S

Then:

put :S—=>V =S
put s v/ = inv (V/, compl s)

Important: compl should “collapse” as much as possible.

The Constant-Complement Approach
For a very simple setting,
get 2 [a] = [¢],
what should be V¢ and

compl :: [a] = V& 277

The Constant-Complement Approach
For a very simple setting,
get = [a] = [a],
what should be V¢ and
compl :: [a] = V& 277

To make
As — (get s, compl s)

injective, need to record information discarded by get.

The Constant-Complement Approach
For a very simple setting,
get = [a] = [a],
what should be V¢ and
compl :: [a] = V& 277

To make
As — (get s, compl s)

injective, need to record information discarded by get.

Candidates:

1. length of the source list

The Constant-Complement Approach
For a very simple setting,
get = [a] = [a],
what should be V¢ and
compl :: [a] = V& 277

To make
As — (get s, compl s)

injective, need to record information discarded by get.

Candidates:
1. length of the source list
2. discarded list elements

The Constant-Complement Approach
For a very simple setting,
get = [a] = [a],
what should be V¢ and
compl :: [a] = V& 277

To make
As — (get s, compl s)

injective, need to record information discarded by get.

Candidates:
1. length of the source list
2. discarded list elements

For the moment, be maximally conservative.

The Complement Function

compl :: [a] = (Int, [a])

compl s =let n = (lengths)—1
t =1[0..n]
g =zipts

g = filter (\(i,.) — notElem i (get t)) g
in (n+1,map snd g’)

The Complement Function

compl :: [a] = (Int, [a])

compl s =let n = (lengths)—1
t =1[0..n]
g =zipts

g = filter (\(i,.) — notElem i (get t)) g
in (n+1,map snd g’)

For example:

get = tail ~» compl “"abcde” = (5,['a'])

The Complement Function

compl :: [a] = (Int, [a])

compl s =let n = (lengths)—1
t =1[0..n]
g =zipts

g = filter (\(i,.) — notElem i (get t)) g
in (n+1,map snd g’)

For example:
get = tail ~» compl “"abcde” = (5,['a'])
get =take 3 ~» compl “abcde” = (5,['d","¢e’])

The Complement Function

compl :: [a] = (Int, [a])

compl s =let n = (lengths)—1
t =1[0..n]
g =zipts

g = filter (\(i,.) — notElem i (get t)) g
in (n+1,map snd g’)

For example:
get = tail ~ compl “abcde” = (5,['a'])
get =take 3 ~» compl “abcde” = (5,['d","¢e’])

get = reverse ~» compl “abcde” = (5,[])

An Inverse of A\s — (get s, compl s)

inv : ([of, (Int, [a])) — [¢]
inv ([1,(0,)) = 1
inv (V/,(n+1,as)) =
let t =[0..n]
h = assoc (get t) v/
g’ =zip (filter (A — notElem i (get t)) t) as
W =h+g
in map (A — fromJust (lookup i h')) t

An Inverse of A\s — (get s, compl s)

inv : ([of, (Int, [a])) — [¢]
inv ([1,(0,)) = 1
inv (V/,(n+1,as)) =
let t =[0..n]
h = assocl (get t) v/
g’ =zip (filter (M — notElem i (get t)) t) as
W =h+g
in map (A — fromJust (lookup i h')) t

T Can be thought of as zip for the moment.

An Inverse of A\s — (get s, compl s)

inv i ([a], (Int, [@])) — [@]
inv ({1, (0,.)) = I
inv (V/,(n+1,as)) =
let t =[0..n]
h = assocl (get t) v/
g’ =zip (filter (A — notElem i (get t)) t) as
W =h+g
in map (A — fromJust (lookup i h')) t

For example:
get =tail ~» inv (“bede”, (5,['a'])) = “abcde”

T Can be thought of as zip for the moment.

An Inverse of A\s — (get s, compl s)

inv i ([a], (Int, [@])) — [@]
inv ({1, (0,.)) = I
inv (V/,(n+1,as)) =
let t =[0..n]
h = assocl (get t) v/
g’ =zip (filter (A — notElem i (get t)) t) as
W =h+g
in map (A — fromJust (lookup i h')) t

For example:
get =tail ~» inv (“bede”, (5,['a'])) = “abcde”

get = take 3 ~» inv (“xyz",(5,[d’,'e])) = "xyzde"

T Can be thought of as zip for the moment.

Correctness

To prove formally:
» inv (get s,compl s)=s
» if inv (v, ¢) defined, then get (inv (v,c)) =v

» if inv (v, ¢) defined, then compl (inv (v,c)) =c¢

Correctness

To prove formally:
» inv (get s,compl s)=s
» if inv (v, ¢) defined, then get (inv (v,c)) =v

» if inv (v, ¢) defined, then compl (inv (v,c)) =c¢

Use a free theorem [Wadler, FPCA'89], namely that for every
get :: [a] — [o]
we have, for arbitrary f and /,

map f (get I) = get (map f /).

Correctness

To prove formally:
» inv (get s,compl s)=s
» if inv (v, ¢) defined, then get (inv (v,c)) =v

» if inv (v, ¢) defined, then compl (inv (v,c)) =c¢

Use a free theorem [Wadler, FPCA'89], namely that for every
get :: [a] — [o]
we have, for arbitrary f and /,
map f (get I) = get (map f /).

Given an arbitrary list s of length n+ 1, set / = [0..n], f = (s!),
leading to:

map (s!!) (get [0..n]) = get (map (s!!) [0..n])

Correctness

To prove formally:
» inv (get s,compl s)=s
» if inv (v, ¢) defined, then get (inv (v,c)) =v

» if inv (v, ¢) defined, then compl (inv (v,c)) =c¢

Use a free theorem [Wadler, FPCA'89], namely that for every
get :: [a] — [o]

we have, for arbitrary f and /,

map f (get I) = get (map f /).
Given an arbitrary list s of length n+ 1, set / = [0..n], f = (s!),
leading to:
map (s!!) (get [0..n]) = get (map (s!!) [0..n])
—_———

= get S

Correctness

To prove formally:
» inv (get s,compl s)=s
» if inv (v, ¢) defined, then get (inv (v,c)) =v

» if inv (v, ¢) defined, then compl (inv (v,c)) =c¢

Use a free theorem [Wadler, FPCA'89], namely that for every
get :: [a] — [o]
we have, for arbitrary f and /,

map f (get I) = get (map f /).

Given an arbitrary list s of length n+ 1,

map (s!!) (get [0..n])
= gets

Correctness

To prove formally:
» inv (get s,compl s)=s
» if inv (v, ¢) defined, then get (inv (v,c)) =v

» if inv (v, ¢) defined, then compl (inv (v,c)) =c¢

Use a free theorem [Wadler, FPCA'89], namely that for every
get :: [a] — [o]
we have, for arbitrary f and /,

map f (get I) = get (map f /).

Given an arbitrary list s of length n+ 1,

get s = map (s!) (get [0..n])

Altogether, So Far:

compl :: [a] — (Int,[a])
compl s =let n = (lengths)—1
t =[0..n]
g =zipts
g =filter (A(i,.) — notElem (get t)) g
in (n+1,map snd g’)

inv :: ([a, (Int, [a])) — [¢]
inv ([],(0,)) =11
inv (V/,(n+1,as)) =
let t =[0..n]
h = assoc (get t) v/
g =zip (filter (A — notElem i (get t)) t) as
W =h+tg
in map (A — fromJust (lookup i h')) t

“Fusion”

Inlining compl and inv into put, plus some clever rewriting:

put [] []1=1]
put s v/ =let n = (lengths)—1
t =1[0..n]
g =zipts
g’ =filter (\(i,.) — notElem / (get t)) g
h = assoc (get t) v/
W =h+g
in seq h (map (A\i — fromJust (lookup i h')) t)

10

“Fusion”

Inlining compl and inv into put, plus some clever rewriting:

put [] []1=1]
put s v/ =let n = (lengths)—1
t =1[0..n]
g =zipts
g’ =filter (\(i,.) — notElem / (get t)) g
h = assoc (get t) v/
W =h+g
in seq h (map (A\i — fromJust (lookup i h')) t)

assoc (] 11 =1]
assoc (i :is) (b: bs) =let m = assoc is bs
in case lookup i m of
Nothing — (i,b) :m
Justc|b==c—m

10

“Fusion”

Inlining compl and inv into put, plus some clever rewriting:

bif get [] [] =[]
bff get s v/ =let n = (lengths)—1
t =1[0..n]
g =zipts
g’ =filter (A\(i,.) — notElem / (get t)) g
h = assoc (get t) v/
W =h+g
in seq h (map (A\j — fromJust (lookup i h')) t)

assoc (] 11 =1]
assoc (i :is) (b: bs) =let m = assoc is bs
in case lookup i m of
Nothing — (i,b) :m
Justc|b==c—m

10

“Fusion”

Inlining compl and inv into put, plus some clever rewriting:

pif get [] [] =[]
bff get s v/ =let n = (lengths)—1
t =1[0..n]
g =zipts
g’ =filter (A\(i,.) — notElem / (get t)) g
h = assoc (get t) v/
W =h+g
in seq h (map (A\j — fromJust (lookup i h')) t)

assoc (] 11 =1]
assoc (i :is) (b: bs) =let m = assoc is bs
in case lookup i m of
Nothing — (i,b) :m
Justc|b==c—m

Actual code only slightly more elaborate!
10

Overview of the Bidirectionalization Method

tailoflatten . [1 2 3]
01 2 3
0—"'b
R e
B
NIRRT 2 —='c
a ¢ ‘a 3y
Y
0 ‘b' 15 0
1 — 'x .
2 —='c |27
o 3 —="'a

e
> N

Extending the Technique

Major Problem:

» Shape-affecting updates lead to failure.

12

Extending the Technique

Major Problem:
» Shape-affecting updates lead to failure.

» For example, bff tail “abcde” “xyz”

12

Extending the Technique

Major Problem:
» Shape-affecting updates lead to failure.

» For example, bff tail “abcde” “xyz

Analysis as to Why:
» Qur approach to making

As — (get s, compl s)

injective was to record, via compl, the following information:

1. length of the source list
2. discarded list elements

12

Extending the Technique

Major Problem:
» Shape-affecting updates lead to failure.

» For example, bff tail “abcde” “xyz

Analysis as to Why:
» Qur approach to making

As — (get s, compl s)

injective was to record, via compl, the following information:

1. length of the source list
2. discarded list elements

» Being maximally conservative this way often does not
“collapse enough”.

12

Extending the Technique

Major Problem:

» Shape-affecting updates lead to failure.

» For example, bff tail “abcde” “xyz

Analysis as to Why:
» Qur approach to making

As — (get s, compl s)
injective was to record, via compl, the following information:

1. length of the source list
2. discarded list elements

» Being maximally conservative this way often does not
“collapse enough”.

» For example:

get =tail ~» put “abcde” “xyz" fails precisely because
compl “abcde” = (5,['a"])

12

Assuming Shape-Injectivity
So assume there is a function
shapeInv :: Int — Int
with, for every source list s,

length s = shapeInv (length (get s))

13

Assuming Shape-Injectivity
So assume there is a function
shapeInv :: Int — Int
with, for every source list s,

length s = shapeInv (length (get s))

Then:

compl :: [a] = (Int, [])
compl s =let n = (lengths)—1
t =1[0..n]
g =zipts
g’ = filter (A(i,.) — notElem /i (get t)) g
in (n+1,map snd g’)

13

Assuming Shape-Injectivity
So assume there is a function
shapeInv :: Int — Int
with, for every source list s,

length s = shapeInv (length (get s))

Then:
compl :: [a] — (o]
compl s =let n = (lengths)—1
t =1[0..n]
g =zipts

g’ = filter (A(i,.) — notElem /i (get t)) g
in map snd g’

13

Assuming Shape-Injectivity

inv i ([a], (Int, [@])) — [@]
inv ({1, (0,.)) = I
inv (V/,(n+1,as)) =
let t =[0..n]
h = assoc (get t) v/
g’ =zip (filter (A — notElem i (get t)) t) as
W =h+g
in map (A — fromJust (lookup i h')) t

14

Assuming Shape-Injectivity

inv ([, [a]) — [o]
inv ([, -)=Il
inv (V/, as) =
let n = (shapeInv (length v/')) —1
t =1[0..n]

h = assoc (get t) v/
g =zip (filter (A — notElem i (get t)) t) as
h/ — h%g/

in map (A — fromJust (lookup i h')) t

14

Assuming Shape-Injectivity

inv i ([of, [a]) = [a]
inv ([I, -)=1
inv (V/, as) =
let n = (shapelnv (length v')) —1
t =1[0..n]
h = assoc (get t) v/

g =zip (filter (A — notElem i (get t)) t) as
K =htg
in map (A — fromJust (lookup i h')) t

But how to obtain shapelnv 777

14

Assuming Shape-Injectivity

inv : ([a], []) — [a]
inv ([, -)=Il
inv (V/, as) =
let n = (shapeInv (length v/)) —1
t =1[0..n]

h = assoc (get t) v/
g =zip (filter (A — notElem i (get t)) t) as
K =htg
in map (A — fromJust (lookup i h')) t
But how to obtain shapelInv 777

Just for experimentation:

shapeInv :: Int — Int
shapeInv |, =head [n+1 | n< [0..], (length (get [0..n])) == 1]

14

Some Tests

Works quite nicely in some cases:

get =tail ~» put “abcde” “xyz" =
compl “abcde” =['a]

“axyz", using

15

Some Tests

Works quite nicely in some cases:

get = tail ~»

get = init ~

put “abcde” “xyz" =
compl “abcde” = ['a’]

put “abcde” “xyz" =

compl “abcde” = ['e’]

“axyz", using

“xyze", using

15

Some Tests

Works quite nicely in some cases:
get =tail ~» put “abcde” “xyz' = "axyz", using
compl “abcde” =['a]

get =init ~» put “abcde” “xyz" = "xyze", using

compl “abcde” = ['e’]

But not so in others:

get = take 3 ~» put “abcde” "abc” = “abc”

15

Some Tests
Works quite nicely in
get = tail ~»

get = init ~

But not so in others:

some cases:

put “abcde” “xyz" = "axyz", using

compl “abcde” =['a]

put “abcde” "xyz" = "xyze", using

compl “abcde” = ['e’]

get = take 3 ~» put “abcde” "abc” = “abc”

The problem: have forgotten to take the original source length
into account.

15

Some Tests
Works quite nicely in
get = tail ~»

get = init ~

But not so in others:

some cases:

put “abcde” “xyz" = "axyz", using
compl “abcde” =['a]

put “abcde” “xyz" = "xyze", using

compl “abcde” = ['e’]

get = take 3 ~» put “abcde” "abc” = “abc”

The problem: have forgotten to take the original source length
into account.

Better:

shapeInv :: Int — Int — Int

shapeInv s /, =

head [n+ 1| n<«+ (ls—1):[0.],
(Length (get [0..n])) == 1]

15

Conclusion

[V., POPL'09]:

>

v

v

v

very lightweight, easy access to bidirectionality
full treatment of equality and ordering constraints
proofs, using free theorems and equational reasoning

a datatype-generic account of the whole story

16

Conclusion

[V., POPL'09]:

» very lightweight, easy access to bidirectionality

v

full treatment of equality and ordering constraints

v

proofs, using free theorems and equational reasoning

v

a datatype-generic account of the whole story

Here:
> a constant-complement perspective on the method

> ... helps expanding its scope to updates that affect shape

16

Conclusion

[V., POPL'09]:

» very lightweight, easy access to bidirectionality

v

full treatment of equality and ordering constraints

v

proofs, using free theorems and equational reasoning

v

a datatype-generic account of the whole story

Here:
> a constant-complement perspective on the method

> ... helps expanding its scope to updates that affect shape

Outlook:

» ... could also be a way to inject/exploit “user knowledge”

16

Conclusion

[V., POPL'09]:
» very lightweight, easy access to bidirectionality
» full treatment of equality and ordering constraints
» proofs, using free theorems and equational reasoning

> a datatype-generic account of the whole story

Here:

> a constant-complement perspective on the method

> ... helps expanding its scope to updates that affect shape
Outlook:
» ... could also be a way to inject/exploit “user knowledge”

» combination with syntactic bidirectionalization a la
[Matsuda et al., ICFP'07] is work in progress

16

Conclusion

[V., POPL'09]:
» very lightweight, easy access to bidirectionality
» full treatment of equality and ordering constraints
» proofs, using free theorems and equational reasoning

> a datatype-generic account of the whole story

Here:

> a constant-complement perspective on the method

> ... helps expanding its scope to updates that affect shape
Outlook:
» ... could also be a way to inject/exploit “user knowledge”

» combination with syntactic bidirectionalization a la
[Matsuda et al., ICFP'07] is work in progress

» efficiency issues untackled so far, ...

16

References |

[§ F. Bancilhon and N. Spyratos.
Update semantics of relational views.
ACM Transactions on Database Systems, 6(3):557-575, 1981.

@ J.N. Foster, M.B. Greenwald, J.T. Moore, B.C. Pierce, and A.
Schmitt.
Combinators for bidirectional tree transformations: A linguistic
approach to the view-update problem.
ACM Transactions on Programming Languages and Systems,

29(3):17, 2007.

[1 K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi.
Bidirectionalization transformation based on automatic
derivation of view complement functions.

In International Conference on Functional Programming,
Proceedings, pages 47-58. ACM Press, 2007.

17

References |l

J. Voigtlander.
Bidirectionalization for freel!

In Principles of Programming Languages, Proceedings, pages
165-176. ACM Press, 20009.

P. Wadler.
Theorems for freel
In Functional Programming Languages and Computer
Architecture, Proceedings, pages 347-359. ACM Press, 1989.

18

	Bidirectional Transformation
	Semantic Bidirectionalization
	A Constant-Complement Perspective
	Extending the Technique
	Conclusion
	References

