Semantic Bidirectionalization and the Constant-Complement Perspective

Janis Voigtländer

University of Bonn

BT-in-ABC'10

Acceptability / GetPut

Acceptability / GetPut

Consistency / PutGet

Lenses, DSLs [Foster et al., ACM TOPLAS'07, ...]

Bidirectionalization [Matsuda et al., ICFP'07]

Syntactic Bidirectionalization [Matsuda et al., ICFP'07]

Semantic Bidirectionalization

Semantic Bidirectionalization [V., POPL'09]

Aim: Write a higher-order function bff such that any get and bff get satisfy GetPut, PutGet,

Aim: Write a higher-order function **bff**[†] such that any get and **bff** get satisfy GetPut, PutGet,

Aim: Write a higher-order function **bff**[†] such that any get and **bff** get satisfy GetPut, PutGet,

Aim: Write a higher-order function **bff**[†] such that any get and **bff** get satisfy GetPut, PutGet,

Aim: Write a higher-order function **bff**[†] such that any get and **bff** get satisfy GetPut, PutGet,

Aim: Write a higher-order function **bff**[†] such that any get and **bff** get satisfy GetPut, PutGet,

Aim: Write a higher-order function **bff**[†] such that any get and **bff** get satisfy GetPut, PutGet,

Aim: Write a higher-order function **bff**[†] such that any get and **bff** get satisfy GetPut, PutGet,

Aim: Write a higher-order function **bff**[†] such that any get and **bff** get satisfy GetPut, PutGet,

Aim: Write a higher-order function **bff**[†] such that any get and **bff** get satisfy GetPut, PutGet,

Aim: Write a higher-order function **bff**[†] such that any get and **bff** get satisfy GetPut, PutGet,

[†] "Bidirectionalization for free!"

The Constant-Complement Approach [Bancilhon & Spyratos, ACM TODS'81]

In general, given

 $\texttt{get}::S \to V$

The Constant-Complement Approach [Bancilhon & Spyratos, ACM TODS'81]

In general, given

$$\texttt{get}::S \to V$$

define a V^{C} and

 $\texttt{compl} :: S \to V^C$
In general, given

$$\texttt{get}::S\to V$$

define a V^{C} and

 $\texttt{compl}::S \to V^C$

such that

$$\lambda s
ightarrow (\texttt{get } s, \texttt{compl } s)$$

is injective

In general, given

$$\texttt{get}::S \to V$$

define a V^{C} and

 $\texttt{compl} :: S \to V^C$

such that

$$\lambda s
ightarrow (ext{get} s, ext{compl} s)$$

is injective and has an inverse

$$\texttt{inv} :: (V, V^{C}) \rightarrow S$$

In general, given

$$\texttt{get}::S \to V$$

define a V^{C} and

 $\texttt{compl} :: S \to V^C$

such that

$$\lambda s
ightarrow (ext{get} s, ext{compl} s)$$

is injective and has an inverse

$$\texttt{inv} :: (V, V^{C}) \rightarrow S$$

Then:

$$\begin{array}{l} \texttt{put} :: S \to V \to S \\ \texttt{put} \; s \; v' = \texttt{inv} \; (v', \texttt{compl} \; s) \end{array}$$

In general, given

$$\texttt{get}::S \to V$$

define a V^{C} and

 $\texttt{compl} :: S \to V^C$

such that

$$\lambda s
ightarrow (ext{get} s, ext{compl} s)$$

is injective and has an inverse

$$\texttt{inv}::(V,V^{C}) \rightarrow S$$

Then:

put ::
$$S \rightarrow V \rightarrow S$$

put $s \ v' = inv \ (v', compl s)$

Important: compl should "collapse" as much as possible.

For a very simple setting,

 ${\tt get} :: [\alpha] \to [\alpha]$,

what should be $V^{\mathcal{C}}$ and

 $\operatorname{compl} :: [\alpha] \to V^C$???

For a very simple setting,

 ${\tt get} :: [\alpha] \to [\alpha]$,

what should be $V^{\mathcal{C}}$ and

$$\operatorname{compl} :: [\alpha] \to V^{\mathcal{C}}$$
 ???

To make

$$\lambda s \rightarrow (\texttt{get } s, \texttt{compl } s)$$

injective, need to record information discarded by get.

For a very simple setting,

 ${\tt get} :: [\alpha] \to [\alpha]$,

what should be $V^{\mathcal{C}}$ and

$$\operatorname{compl} :: [\alpha] \to V^{\mathcal{C}}$$
 ???

To make

$$\lambda s
ightarrow (\texttt{get } s, \texttt{compl } s)$$

injective, need to record information discarded by get.

Candidates:

1. length of the source list

For a very simple setting,

 ${\tt get} :: [\alpha] \to [\alpha]$,

what should be $V^{\mathcal{C}}$ and

$$\operatorname{compl} :: [\alpha] \to V^{\mathcal{C}}$$
 ???

To make

$$\lambda s
ightarrow (\texttt{get } s, \texttt{compl } s)$$

injective, need to record information discarded by get.

Candidates:

- 1. length of the source list
- 2. discarded list elements

For a very simple setting,

 ${\tt get} :: [\alpha] \to [\alpha]$,

what should be $V^{\mathcal{C}}$ and

$$\operatorname{compl} :: [\alpha] \to V^{\mathcal{C}}$$
 ???

To make

$$\lambda s
ightarrow (\texttt{get } s, \texttt{compl } s)$$

injective, need to record information discarded by get.

Candidates:

- 1. length of the source list
- 2. discarded list elements

For the moment, be maximally conservative.

$$\begin{array}{l} \operatorname{compl} :: [\alpha] \to (\operatorname{Int}, [\alpha]) \\ \operatorname{compl} s = \operatorname{let} n = (\operatorname{length} s) - 1 \\ t = [0..n] \\ g = \operatorname{zip} t s \\ g' = \operatorname{filter} (\lambda(i, _) \to \operatorname{notElem} i (\operatorname{get} t)) g \\ \operatorname{in} (n+1, \operatorname{map} \operatorname{snd} g') \end{array}$$

$$\begin{array}{l} \operatorname{compl} :: [\alpha] \to (\operatorname{Int}, [\alpha]) \\ \operatorname{compl} s = \operatorname{let} n = (\operatorname{length} s) - 1 \\ t = [0..n] \\ g = \operatorname{zip} t s \\ g' = \operatorname{filter} (\lambda(i, _) \to \operatorname{notElem} i (\operatorname{get} t)) g \\ \operatorname{in} (n+1, \operatorname{map} \operatorname{snd} g') \end{array}$$

For example:

get = tail \rightsquigarrow compl "abcde" = (5, ['a'])

$$\begin{array}{l} \operatorname{compl} :: [\alpha] \to (\operatorname{Int}, [\alpha]) \\ \operatorname{compl} s = \operatorname{let} n = (\operatorname{length} s) - 1 \\ t = [0..n] \\ g = \operatorname{zip} t s \\ g' = \operatorname{filter} (\lambda(i, _) \to \operatorname{notElem} i (\operatorname{get} t)) g \\ \operatorname{in} (n+1, \operatorname{map} \operatorname{snd} g') \end{array}$$

For example:

$$\begin{array}{l} \operatorname{compl} :: [\alpha] \to (\operatorname{Int}, [\alpha]) \\ \operatorname{compl} s = \operatorname{let} n = (\operatorname{length} s) - 1 \\ t = [0..n] \\ g = \operatorname{zip} t s \\ g' = \operatorname{filter} (\lambda(i, _) \to \operatorname{notElem} i (\operatorname{get} t)) g \\ \operatorname{in} (n+1, \operatorname{map} \operatorname{snd} g') \end{array}$$

For example:

$$\begin{aligned} & \text{inv} :: ([\alpha], (\text{Int}, [\alpha])) \rightarrow [\alpha] \\ & \text{inv} ([], (0, _)) = [] \\ & \text{inv} (v', (n + 1, as)) = \\ & \text{let } t = [0..n] \\ & h = \text{assoc} (\text{get } t) v' \\ & g' = \text{zip} (\text{filter} (\lambda i \rightarrow \text{notElem } i (\text{get } t)) t) \text{ as} \\ & h' = h + g' \\ & \text{in } \text{map} (\lambda i \rightarrow \text{fromJust} (\text{lookup } i h')) t \end{aligned}$$

$$\begin{split} & \texttt{inv} :: ([\alpha], (\texttt{Int}, [\alpha])) \to [\alpha] \\ & \texttt{inv} ([], (0, _)) = [] \\ & \texttt{inv} (v', (n+1, as)) = \\ & \texttt{let} \ t \ = [0..n] \\ & h \ = \texttt{assoc}^{\dagger} \ (\texttt{get} \ t) \ v' \\ & g' = \texttt{zip} \ (\texttt{filter} \ (\lambda i \to \texttt{notElem} \ i \ (\texttt{get} \ t)) \ t) \ as \\ & h' = h + g' \\ & \texttt{in} \ \texttt{map} \ (\lambda i \to \texttt{fromJust} \ (\texttt{lookup} \ i \ h')) \ t \end{split}$$

$$\begin{split} & \text{inv} :: ([\alpha], (\text{Int}, [\alpha])) \rightarrow [\alpha] \\ & \text{inv} ([], (0, _)) = [] \\ & \text{inv} (v', (n + 1, as)) = \\ & \text{let } t = [0..n] \\ & h = \text{assoc}^{\dagger} (\text{get } t) v' \\ & g' = \text{zip} (\text{filter} (\lambda i \rightarrow \text{notElem } i (\text{get } t)) t) \text{ as} \\ & h' = h + g' \\ & \text{in } \text{map} (\lambda i \rightarrow \text{fromJust} (\text{lookup } i h')) t \end{aligned}$$

For example:

 $\texttt{get} = \texttt{tail} \quad \rightsquigarrow \quad \texttt{inv} (\texttt{``bcde''}, (5, ['a'])) = \texttt{``abcde''}$

 † Can be thought of as zip for the moment.

$$\begin{split} & \texttt{inv} :: ([\alpha], (\texttt{Int}, [\alpha])) \rightarrow [\alpha] \\ & \texttt{inv} ([], (0, _)) = [] \\ & \texttt{inv} (v', (n+1, as)) = \\ & \texttt{let} \ t \ = [0..n] \\ & h \ = \texttt{assoc}^{\dagger} \ (\texttt{get} \ t) \ v' \\ & g' = \texttt{zip} \ (\texttt{filter} \ (\lambda i \rightarrow \texttt{notElem} \ i \ (\texttt{get} \ t)) \ t) \ as \\ & h' = h + g' \\ & \texttt{in} \ \texttt{map} \ (\lambda i \rightarrow \texttt{fromJust} \ (\texttt{lookup} \ i \ h')) \ t \end{split}$$

For example:

[†] Can be thought of as zip for the moment.

To prove formally:

- inv (get s, compl s) = s
- if inv (v, c) defined, then get (inv (v, c)) = v

• if inv (v, c) defined, then compl (inv (v, c)) = c

To prove formally:

- inv (get s, compl s) = s
- if inv (v, c) defined, then get (inv (v, c)) = v
- if inv (v, c) defined, then compl (inv (v, c)) = c

Use a free theorem [Wadler, FPCA'89], namely that for every $\texttt{get}::[\alpha]\to [\alpha]$

we have, for arbitrary f and l,

 $\operatorname{map} f (\operatorname{get} I) = \operatorname{get} (\operatorname{map} f I).$

To prove formally:

- inv (get s, compl s) = s
- if inv (v, c) defined, then get (inv (v, c)) = v
- if inv (v, c) defined, then compl (inv (v, c)) = c

Use a free theorem [Wadler, FPCA'89], namely that for every $\gcd: [\alpha] \to [\alpha]$

we have, for arbitrary f and l,

$$\operatorname{map} f (\operatorname{get} I) = \operatorname{get} (\operatorname{map} f I).$$

Given an arbitrary list s of length n + 1, set l = [0..n], f = (s !!), leading to:

$$map(s!!)(get[0..n]) = get(map(s!!)[0..n])$$

To prove formally:

- inv (get s, compl s) = s
- if inv (v, c) defined, then get (inv (v, c)) = v
- if inv (v, c) defined, then compl (inv (v, c)) = c

Use a free theorem [Wadler, FPCA'89], namely that for every $\gcd: [\alpha] \to [\alpha]$

we have, for arbitrary f and I,

$$\operatorname{map} f (\operatorname{get} I) = \operatorname{get} (\operatorname{map} f I).$$

Given an arbitrary list s of length n + 1, set l = [0..n], f = (s !!), leading to:

$$\max (s !!) (get [0..n]) = get (\underbrace{\max (s !!) [0..n]}_{s})$$
$$= get s$$

To prove formally:

- inv (get s, compl s) = s
- if inv (v, c) defined, then get (inv (v, c)) = v
- if inv (v, c) defined, then compl (inv (v, c)) = c

Use a free theorem [Wadler, FPCA'89], namely that for every $\gcd: [\alpha] \to [\alpha]$

we have, for arbitrary f and I,

$$\operatorname{map} f (\operatorname{get} I) = \operatorname{get} (\operatorname{map} f I).$$

Given an arbitrary list s of length n + 1,

To prove formally:

- inv (get s, compl s) = s
- if inv (v, c) defined, then get (inv (v, c)) = v
- if inv (v, c) defined, then compl (inv (v, c)) = c

Use a free theorem [Wadler, FPCA'89], namely that for every $\gcd::[\alpha]\to [\alpha]$

we have, for arbitrary f and l,

$$\operatorname{map} f (\operatorname{get} I) = \operatorname{get} (\operatorname{map} f I).$$

Given an arbitrary list s of length n + 1,

get
$$s = map(s!!) (get [0..n])$$

Altogether, So Far:

$$\begin{array}{l} \operatorname{compl} :: [\alpha] \to (\operatorname{Int}, [\alpha]) \\ \operatorname{compl} s = \operatorname{let} n = (\operatorname{length} s) - 1 \\ t = [0..n] \\ g = \operatorname{zip} t s \\ g' = \operatorname{filter} (\lambda(i, _) \to \operatorname{notElem} i (\operatorname{get} t)) g \\ \operatorname{in} (n+1, \operatorname{map} \operatorname{snd} g') \\ \end{array}$$

$$\begin{array}{l} \operatorname{inv} :: ([\alpha], (\operatorname{Int}, [\alpha])) \to [\alpha] \\ \operatorname{inv} ([], (0, _)) = [] \\ \operatorname{inv} (v', (n+1, as)) = \\ \operatorname{let} t = [0..n] \\ h = \operatorname{assoc} (\operatorname{get} t) v' \\ g' = \operatorname{zip} (\operatorname{filter} (\lambda i \to \operatorname{notElem} i (\operatorname{get} t)) t) as \\ h' = h + g' \\ \operatorname{in} \operatorname{map} (\lambda i \to \operatorname{fromJust} (\operatorname{lookup} i h')) t \end{array}$$

Inlining compl and inv into put, plus some clever rewriting:

put [] [] = []
put
$$s v' = let n = (length s) - 1$$

 $t = [0..n]$
 $g = zip t s$
 $g' = filter (\lambda(i, -) \rightarrow notElem i (get t)) g$
 $h = assoc (get t) v'$
 $h' = h + g'$
in see h (mean () i \rightarrow from lust (lecture i h')) t

in seq $h \pmod{(\max(\lambda i \to \texttt{fromJust}(\texttt{lookup} i h')) t)}$

Inlining $\tt compl$ and $\tt inv$ into $\tt put,$ plus some clever rewriting:

$$\begin{array}{l} \texttt{put} [] [] = [] \\ \texttt{put} \ s \ v' = \texttt{let} \ n \ = (\texttt{length} \ s) - 1 \\ t \ = [0..n] \\ g \ = \texttt{zip} \ t \ s \\ g' = \texttt{filter} \ (\lambda(i, _) \rightarrow \texttt{notElem} \ i \ (\texttt{get} \ t)) \ g \\ h \ = \texttt{assoc} \ (\texttt{get} \ t) \ v' \\ h' = h + g' \\ \texttt{in} \ \texttt{seq} \ h \ (\texttt{map} \ (\lambda i \rightarrow \texttt{fromJust} \ (\texttt{lookup} \ i \ h')) \ t) \end{array}$$

assoc [] [] = []
assoc (i:is) (b:bs) = let
$$m =$$
assoc is bs
in case lookup i m of
Nothing $\rightarrow (i,b): m$
Just $c \mid b == c \rightarrow m$

Inlining compl and inv into put, plus some clever rewriting: bff get || || = ||bff get s v' =let n = (length s) - 1t = [0..n]g = zip t s $g' = \text{filter} (\lambda(i,)) \rightarrow \text{notElem } i (get t)) g$ $h = \operatorname{assoc} (\operatorname{get} t) v'$ h' = h + g'in seq $h \pmod{(\lambda i \to \text{fromJust}(\text{lookup } i h'))} t$ assoc[] [] = []assoc(i:is)(b:bs) = let m = assoc is bsin case lookup i m of Nothing $\rightarrow (i, b) : m$

Just $c \mid b == c \rightarrow m$

Inlining compl and inv into put, plus some clever rewriting:
bff get [] [] = []
bff get
$$s \ v' = let \ n = (length \ s) - 1$$

 $t = [0..n]$
 $g = zip \ t \ s$
 $g' = filter (\lambda(i, _) \rightarrow notElem \ i \ (get \ t)) \ g$
 $h = assoc \ (get \ t) \ v'$
 $h' = h + + g'$
in seq $h \ (map \ (\lambda i \rightarrow fromJust \ (lookup \ i \ h')) \ t)$
assoc [] [] = []
assoc $(i : is) \ (b : bs) = let \ m = assoc \ is \ bs$
in case lookup $i \ m \ of$
Nothing $\rightarrow (i, b) : m$
Just $c \mid b == c \rightarrow m$

Actual code only slightly more elaborate!

Overview of the Bidirectionalization Method

Major Problem:

Shape-affecting updates lead to failure.

Major Problem:

- Shape-affecting updates lead to failure.
- For example, bff tail "abcde" "xyz" ...

Major Problem:

- Shape-affecting updates lead to failure.
- For example, bff tail "abcde" "xyz" ...

Analysis as to Why:

Our approach to making

$$\lambda s \rightarrow (\texttt{get } s, \texttt{compl } s)$$

injective was to record, via compl, the following information:

- 1. length of the source list
- 2. discarded list elements

Major Problem:

- Shape-affecting updates lead to failure.
- For example, bff tail "abcde" "xyz" ...

Analysis as to Why:

Our approach to making

$$\lambda s \rightarrow (\texttt{get } s, \texttt{compl } s)$$

injective was to record, via compl, the following information:

- 1. length of the source list
- 2. discarded list elements
- Being maximally conservative this way often does not "collapse enough".

Major Problem:

- Shape-affecting updates lead to failure.
- For example, bff tail "abcde" "xyz" ...

Analysis as to Why:

Our approach to making

$$\lambda s \rightarrow (\texttt{get } s, \texttt{compl } s)$$

injective was to record, via compl, the following information:

- 1. length of the source list
- 2. discarded list elements
- Being maximally conservative this way often does not "collapse enough".
- For example:

Assuming Shape-Injectivity

So assume there is a function

```
\texttt{shapeInv} :: \mathsf{Int} \to \mathsf{Int}
```

with, for every source list *s*,

length s = shapeInv (length (get s))

Assuming Shape-Injectivity

So assume there is a function

```
\texttt{shapeInv} :: \mathsf{Int} \to \mathsf{Int}
```

with, for every source list s,

length s = shapeInv (length (get s))

Then:

$$\begin{array}{l} \operatorname{compl} :: [\alpha] \to (\operatorname{Int}, [\alpha]) \\ \operatorname{compl} s = \operatorname{let} n = (\operatorname{length} s) - 1 \\ t = [0..n] \\ g = \operatorname{zip} t s \\ g' = \operatorname{filter} (\lambda(i, _) \to \operatorname{notElem} i (\operatorname{get} t)) g \\ \operatorname{in} (n+1, \operatorname{map} \operatorname{snd} g') \end{array}$$
So assume there is a function

 $\texttt{shapeInv} :: \mathsf{Int} \to \mathsf{Int}$

with, for every source list s,

length s = shapeInv (length (get s))

Then:

$$\begin{array}{ll} \operatorname{compl} :: [\alpha] \to & [\alpha] \\ \operatorname{compl} s = \operatorname{let} n &= (\operatorname{length} s) - 1 \\ & t &= [0..n] \\ & g &= \operatorname{zip} t s \\ & g' = \operatorname{filter} (\lambda(i, _) \to \operatorname{notElem} i (\operatorname{get} t)) g \\ & \operatorname{in} & \operatorname{map} \operatorname{snd} g' \end{array}$$

$$\begin{split} & \texttt{inv} :: ([\alpha], (\texttt{Int}, [\alpha])) \to [\alpha] \\ & \texttt{inv} ([], (0, _)) = [] \\ & \texttt{inv} (v', (n+1, as)) = \\ & \texttt{let} \ t \ = [0..n] \\ & h = \texttt{assoc} (\texttt{get} \ t) \ v' \\ & g' = \texttt{zip} (\texttt{filter} (\lambda i \to \texttt{notElem} \ i (\texttt{get} \ t)) \ t) \ as \\ & h' = h + g' \\ & \texttt{in} \ \texttt{map} (\lambda i \to \texttt{fromJust} (\texttt{lookup} \ i \ h')) \ t \end{aligned}$$

$$\begin{array}{ll} \operatorname{inv} :: ([\alpha], & [\alpha] \end{array}) \to [\alpha] \\ \operatorname{inv} ([], & _{-}) = [] \\ \operatorname{inv} (v', & as) = \\ & \operatorname{let} n = (\operatorname{shapeInv} (\operatorname{length} v')) - 1 \\ & t = [0..n] \\ & h = \operatorname{assoc} (\operatorname{get} t) v' \\ & g' = \operatorname{zip} (\operatorname{filter} (\lambda i \to \operatorname{notElem} i (\operatorname{get} t)) t) as \\ & h' = h + g' \\ & \operatorname{in} \operatorname{map} (\lambda i \to \operatorname{fromJust} (\operatorname{lookup} i h')) t \end{array}$$

$$\begin{array}{ll} \operatorname{inv} :: ([\alpha], & [\alpha] \end{array}) \to [\alpha] \\ \operatorname{inv} ([], & _{-}) = [] \\ \operatorname{inv} (v', & as) = \\ & \operatorname{let} n = (\operatorname{shapeInv} (\operatorname{length} v')) - 1 \\ & t = [0..n] \\ & h = \operatorname{assoc} (\operatorname{get} t) v' \\ & g' = \operatorname{zip} (\operatorname{filter} (\lambda i \to \operatorname{notElem} i (\operatorname{get} t)) t) as \\ & h' = h + g' \\ & \operatorname{in} \operatorname{map} (\lambda i \to \operatorname{fromJust} (\operatorname{lookup} i h')) t \end{array}$$

But how to obtain shapeInv ???

$$\begin{array}{ll} \operatorname{inv} :: ([\alpha], & [\alpha] \end{array}) \to [\alpha] \\ \operatorname{inv} ([], & _{-}) = [] \\ \operatorname{inv} (v', & as) = \\ & \operatorname{let} n = (\operatorname{shapeInv} (\operatorname{length} v')) - 1 \\ & t = [0..n] \\ & h = \operatorname{assoc} (\operatorname{get} t) v' \\ & g' = \operatorname{zip} (\operatorname{filter} (\lambda i \to \operatorname{notElem} i (\operatorname{get} t)) t) as \\ & h' = h + g' \\ & \operatorname{in} \operatorname{map} (\lambda i \to \operatorname{fromJust} (\operatorname{lookup} i h')) t \end{array}$$

But how to obtain shapeInv ???

Just for experimentation:

shapeInv :: Int \rightarrow Int
shapeInv $l_v = \text{head} [n+1 \mid n \leftarrow [0..], (length (get [0..n])) == l_v]$

Works quite nicely in some cases:

Works quite nicely in some cases:

Works quite nicely in some cases:

But not so in others:

 $get = take 3 \rightarrow put$ "abcde" "abc" = "abc"

Works quite nicely in some cases:

But not so in others:

 $get = take 3 \quad \rightsquigarrow \quad put "abcde" "abc" = "abc"$

The problem: have forgotten to take the original source length into account.

Works quite nicely in some cases:

But not so in others:

 $get = take 3 \quad \rightsquigarrow \quad put "abcde" "abc" = "abc"$

The problem: have forgotten to take the original source length into account.

Better:

 $\begin{array}{l} \texttt{shapeInv} :: \texttt{Int} \to \texttt{Int} \\ \texttt{shapeInv} \ \textit{l}_{s} \ \textit{l}_{v} = \texttt{head} \ [n+1 \mid n \leftarrow (\textit{l}_{s}-1) : [0..], \\ & (\texttt{length} \ (\texttt{get} \ [0..n])) == \textit{l}_{v}] \end{array}$

- [V., POPL'09]:
 - very lightweight, easy access to bidirectionality
 - full treatment of equality and ordering constraints
 - proofs, using free theorems and equational reasoning
 - a datatype-generic account of the whole story

- [V., POPL'09]:
 - very lightweight, easy access to bidirectionality
 - full treatment of equality and ordering constraints
 - proofs, using free theorems and equational reasoning
 - a datatype-generic account of the whole story

Here:

- a constant-complement perspective on the method
- ... helps expanding its scope to updates that affect shape

- [V., POPL'09]:
 - very lightweight, easy access to bidirectionality
 - full treatment of equality and ordering constraints
 - proofs, using free theorems and equational reasoning
 - a datatype-generic account of the whole story

Here:

- a constant-complement perspective on the method
- ... helps expanding its scope to updates that affect shape

Outlook:

... could also be a way to inject/exploit "user knowledge"

- [V., POPL'09]:
 - very lightweight, easy access to bidirectionality
 - full treatment of equality and ordering constraints
 - proofs, using free theorems and equational reasoning
 - a datatype-generic account of the whole story

Here:

- a constant-complement perspective on the method
- \blacktriangleright ... helps expanding its scope to updates that affect shape

Outlook:

- ... could also be a way to inject/exploit "user knowledge"
- combination with syntactic bidirectionalization à la [Matsuda et al., ICFP'07] is work in progress

- [V., POPL'09]:
 - very lightweight, easy access to bidirectionality
 - full treatment of equality and ordering constraints
 - proofs, using free theorems and equational reasoning
 - a datatype-generic account of the whole story

Here:

- a constant-complement perspective on the method
- ▶ ... helps expanding its scope to updates that affect shape

Outlook:

- ... could also be a way to inject/exploit "user knowledge"
- combination with syntactic bidirectionalization à la [Matsuda et al., ICFP'07] is work in progress
- efficiency issues untackled so far, ...

References I

- F. Bancilhon and N. Spyratos.
 Update semantics of relational views.
 ACM Transactions on Database Systems, 6(3):557–575, 1981.
- J.N. Foster, M.B. Greenwald, J.T. Moore, B.C. Pierce, and A. Schmitt.

Combinators for bidirectional tree transformations: A linguistic approach to the view-update problem.

ACM Transactions on Programming Languages and Systems, 29(3):17, 2007.

K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi. Bidirectionalization transformation based on automatic derivation of view complement functions.

In International Conference on Functional Programming, Proceedings, pages 47–58. ACM Press, 2007.

References II

J. Voigtländer.

Bidirectionalization for free!

In *Principles of Programming Languages, Proceedings*, pages 165–176. ACM Press, 2009.

P. Wadler.

Theorems for free!

In Functional Programming Languages and Computer Architecture, Proceedings, pages 347–359. ACM Press, 1989.