
Semantic Bidirectionalization and the
Constant-Complement Perspective

Janis Voigtländer

University of Bonn

BT-in-ABC’10

Bidirectional Transformation

source view

s v

s ′ v ′

get

1

Bidirectional Transformation

source view

s v

s ′ v ′

get

update

1

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

1

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

1

Bidirectional Transformation

source view

s v

s v

get

=

Acceptability / GetPut

1

Bidirectional Transformation

source view

s v

s v

get

put

=

Acceptability / GetPut

1

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

Consistency / PutGet

1

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

get

Consistency / PutGet

1

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

1

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

Lenses, DSLs

[Foster et al., ACM TOPLAS’07, . . .]

1

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

Syntactic

Bidirectionalization

[Matsuda et al., ICFP’07]

1

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

Syntactic Bidirectionalization

[Matsuda et al., ICFP’07]

1

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

?

Semantic Bidirectionalization

[V., POPL’09]

1

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

X

Semantic Bidirectionalization

[V., POPL’09]

1

Semantic Bidirectionalization

Aim: Write a higher-order function bff such that any
get and bff get satisfy GetPut, PutGet,

Examples:

† “Bidirectionalization for free!”

2

Semantic Bidirectionalization

Aim: Write a higher-order function bff† such that any
get and bff get satisfy GetPut, PutGet,

Examples:

† “Bidirectionalization for free!” 2

Semantic Bidirectionalization

Aim: Write a higher-order function bff† such that any
get and bff get satisfy GetPut, PutGet,

Examples:

“abc” “bc”

“ade” “de”

tail

† “Bidirectionalization for free!” 2

Semantic Bidirectionalization

Aim: Write a higher-order function bff† such that any
get and bff get satisfy GetPut, PutGet,

Examples:

“abc” “bc”

“ade” “de”

tail

update

† “Bidirectionalization for free!” 2

Semantic Bidirectionalization

Aim: Write a higher-order function bff† such that any
get and bff get satisfy GetPut, PutGet,

Examples:

“abc” “bc”

“ade” “de”

tail

bff tail

update

† “Bidirectionalization for free!” 2

Semantic Bidirectionalization

Aim: Write a higher-order function bff† such that any
get and bff get satisfy GetPut, PutGet,

Examples:

‘a’ ‘b’ ‘a’ ‘c’
“abac”

‘a’ ‘b’ ‘x’ ‘c’
“abxc”

flatten

† “Bidirectionalization for free!” 2

Semantic Bidirectionalization

Aim: Write a higher-order function bff† such that any
get and bff get satisfy GetPut, PutGet,

Examples:

‘a’ ‘b’ ‘a’ ‘c’
“abac”

‘a’ ‘b’ ‘x’ ‘c’
“abxc”

flatten

update

† “Bidirectionalization for free!” 2

Semantic Bidirectionalization

Aim: Write a higher-order function bff† such that any
get and bff get satisfy GetPut, PutGet,

Examples:

‘a’ ‘b’ ‘a’ ‘c’
“abac”

‘a’ ‘b’ ‘x’ ‘c’
“abxc”

flatten

bff flatten

update

† “Bidirectionalization for free!” 2

Semantic Bidirectionalization

Aim: Write a higher-order function bff† such that any
get and bff get satisfy GetPut, PutGet,

Examples:

‘a’ ‘b’ ‘a’ ‘c’
“abc”

‘x’ ‘b’ ‘x’ ‘c’
“xbc”

nub ◦ flatten

† “Bidirectionalization for free!” 2

Semantic Bidirectionalization

Aim: Write a higher-order function bff† such that any
get and bff get satisfy GetPut, PutGet,

Examples:

‘a’ ‘b’ ‘a’ ‘c’
“abc”

‘x’ ‘b’ ‘x’ ‘c’
“xbc”

nub ◦ flatten

update

† “Bidirectionalization for free!” 2

Semantic Bidirectionalization

Aim: Write a higher-order function bff† such that any
get and bff get satisfy GetPut, PutGet,

Examples:

‘a’ ‘b’ ‘a’ ‘c’
“abc”

‘x’ ‘b’ ‘x’ ‘c’
“xbc”

nub ◦ flatten

bff (nub ◦ flatten)

update

† “Bidirectionalization for free!” 2

Overview of the Bidirectionalization Method

0 1 2 3

[1,2,3]

‘b’ ‘a’ ‘c’ ‘a’

0 → ‘b’

1 → ‘a’

2 → ‘c’

3 → ‘a’

“aca”

0 → ‘b’

1 → ‘x’

2 → ‘c’

3 → ‘a’

1 → ‘x’

2 → ‘c’

3 → ‘a’

? “xca”
bff (tail ◦ flatten)

tail ◦ flatten

update

t

3

Overview of the Bidirectionalization Method

0 1 2 3

[1,2,3]

‘b’ ‘a’ ‘c’ ‘a’

0 → ‘b’

1 → ‘a’

2 → ‘c’

3 → ‘a’

“aca”

0 → ‘b’

1 → ‘x’

2 → ‘c’

3 → ‘a’

1 → ‘x’

2 → ‘c’

3 → ‘a’

? “xca”
bff (tail ◦ flatten)

v ′

s

t

3

Overview of the Bidirectionalization Method

0 1 2 3

[1,2,3]

‘b’ ‘a’ ‘c’ ‘a’

0 → ‘b’

1 → ‘a’

2 → ‘c’

3 → ‘a’

“aca”

0 → ‘b’

1 → ‘x’

2 → ‘c’

3 → ‘a’

1 → ‘x’

2 → ‘c’

3 → ‘a’

? “xca” v ′

s

t

3

Overview of the Bidirectionalization Method

0 1 2 3

[1,2,3]

‘b’ ‘a’ ‘c’ ‘a’

0 → ‘b’

1 → ‘a’

2 → ‘c’

3 → ‘a’

“aca”

0 → ‘b’

1 → ‘x’

2 → ‘c’

3 → ‘a’

1 → ‘x’

2 → ‘c’

3 → ‘a’

? “xca” v ′

s

t

g

3

Overview of the Bidirectionalization Method

0 1 2 3

[1,2,3]

‘b’ ‘a’ ‘c’ ‘a’

0 → ‘b’

1 → ‘a’

2 → ‘c’

3 → ‘a’

“aca”

0 → ‘b’

1 → ‘x’

2 → ‘c’

3 → ‘a’

1 → ‘x’

2 → ‘c’

3 → ‘a’

? “xca”

tail ◦ flatten

v ′

s

t

g

get t

3

Overview of the Bidirectionalization Method

0 1 2 3

[1,2,3]

‘b’ ‘a’ ‘c’ ‘a’

0 → ‘b’

1 → ‘a’

2 → ‘c’

3 → ‘a’

“aca”

0 → ‘b’

1 → ‘x’

2 → ‘c’

3 → ‘a’

1 → ‘x’

2 → ‘c’

3 → ‘a’

? “xca”

tail ◦ flatten

v ′

s

t

g

get t

h

3

Overview of the Bidirectionalization Method

0 1 2 3

[1,2,3]

‘b’ ‘a’ ‘c’ ‘a’

0 → ‘b’

1 → ‘a’

2 → ‘c’

3 → ‘a’

“aca”

0 → ‘b’

1 → ‘x’

2 → ‘c’

3 → ‘a’

1 → ‘x’

2 → ‘c’

3 → ‘a’

? “xca”

tail ◦ flatten

v ′

s

t

g

get t

h
h′

3

Overview of the Bidirectionalization Method

0 1 2 3

[1,2,3]

‘b’ ‘a’ ‘c’ ‘a’

0 → ‘b’

1 → ‘a’

2 → ‘c’

3 → ‘a’

“aca”

0 → ‘b’

1 → ‘x’

2 → ‘c’

3 → ‘a’

1 → ‘x’

2 → ‘c’

3 → ‘a’

‘b’ ‘x’ ‘c’ ‘a’
“xca”

tail ◦ flatten

v ′

s

t

g

get t

h
h′

3

The Constant-Complement Approach
[Bancilhon & Spyratos, ACM TODS’81]

In general, given
get :: S → V

define a V C and
compl :: S → V C

such that
λs → (get s, compl s)

is injective and has an inverse

inv :: (V ,V C)→ S

Then:

put :: S → V → S
put s v ′ = inv (v ′, compl s)

Important: compl should “collapse” as much as possible.

4

The Constant-Complement Approach
[Bancilhon & Spyratos, ACM TODS’81]

In general, given
get :: S → V

define a V C and
compl :: S → V C

such that
λs → (get s, compl s)

is injective and has an inverse

inv :: (V ,V C)→ S

Then:

put :: S → V → S
put s v ′ = inv (v ′, compl s)

Important: compl should “collapse” as much as possible.

4

The Constant-Complement Approach
[Bancilhon & Spyratos, ACM TODS’81]

In general, given
get :: S → V

define a V C and
compl :: S → V C

such that
λs → (get s, compl s)

is injective

and has an inverse

inv :: (V ,V C)→ S

Then:

put :: S → V → S
put s v ′ = inv (v ′, compl s)

Important: compl should “collapse” as much as possible.

4

The Constant-Complement Approach
[Bancilhon & Spyratos, ACM TODS’81]

In general, given
get :: S → V

define a V C and
compl :: S → V C

such that
λs → (get s, compl s)

is injective and has an inverse

inv :: (V ,V C)→ S

Then:

put :: S → V → S
put s v ′ = inv (v ′, compl s)

Important: compl should “collapse” as much as possible.

4

The Constant-Complement Approach
[Bancilhon & Spyratos, ACM TODS’81]

In general, given
get :: S → V

define a V C and
compl :: S → V C

such that
λs → (get s, compl s)

is injective and has an inverse

inv :: (V ,V C)→ S

Then:

put :: S → V → S
put s v ′ = inv (v ′, compl s)

Important: compl should “collapse” as much as possible.

4

The Constant-Complement Approach
[Bancilhon & Spyratos, ACM TODS’81]

In general, given
get :: S → V

define a V C and
compl :: S → V C

such that
λs → (get s, compl s)

is injective and has an inverse

inv :: (V ,V C)→ S

Then:

put :: S → V → S
put s v ′ = inv (v ′, compl s)

Important: compl should “collapse” as much as possible.
4

The Constant-Complement Approach

For a very simple setting,

get :: [α]→ [α] ,

what should be V C and

compl :: [α]→ V C ???

To make

λs → (get s, compl s)

injective, need to record information discarded by get.

Candidates:

1. length of the source list

2. discarded list elements

For the moment, be maximally conservative.

5

The Constant-Complement Approach

For a very simple setting,

get :: [α]→ [α] ,

what should be V C and

compl :: [α]→ V C ???

To make

λs → (get s, compl s)

injective, need to record information discarded by get.

Candidates:

1. length of the source list

2. discarded list elements

For the moment, be maximally conservative.

5

The Constant-Complement Approach

For a very simple setting,

get :: [α]→ [α] ,

what should be V C and

compl :: [α]→ V C ???

To make

λs → (get s, compl s)

injective, need to record information discarded by get.

Candidates:

1. length of the source list

2. discarded list elements

For the moment, be maximally conservative.

5

The Constant-Complement Approach

For a very simple setting,

get :: [α]→ [α] ,

what should be V C and

compl :: [α]→ V C ???

To make

λs → (get s, compl s)

injective, need to record information discarded by get.

Candidates:

1. length of the source list

2. discarded list elements

For the moment, be maximally conservative.

5

The Constant-Complement Approach

For a very simple setting,

get :: [α]→ [α] ,

what should be V C and

compl :: [α]→ V C ???

To make

λs → (get s, compl s)

injective, need to record information discarded by get.

Candidates:

1. length of the source list

2. discarded list elements

For the moment, be maximally conservative.
5

The Complement Function

compl :: [α]→ (Int, [α])
compl s = let n = (length s)− 1

t = [0..n]
g = zip t s
g ′ = filter (λ(i ,)→ notElem i (get t)) g

in (n + 1, map snd g ′)

For example:

get = tail compl “abcde” = (5, [’a’])

get = take 3 compl “abcde” = (5, [’d’, ’e’])

get = reverse compl “abcde” = (5, [])

6

The Complement Function

compl :: [α]→ (Int, [α])
compl s = let n = (length s)− 1

t = [0..n]
g = zip t s
g ′ = filter (λ(i ,)→ notElem i (get t)) g

in (n + 1, map snd g ′)

For example:

get = tail compl “abcde” = (5, [’a’])

get = take 3 compl “abcde” = (5, [’d’, ’e’])

get = reverse compl “abcde” = (5, [])

6

The Complement Function

compl :: [α]→ (Int, [α])
compl s = let n = (length s)− 1

t = [0..n]
g = zip t s
g ′ = filter (λ(i ,)→ notElem i (get t)) g

in (n + 1, map snd g ′)

For example:

get = tail compl “abcde” = (5, [’a’])

get = take 3 compl “abcde” = (5, [’d’, ’e’])

get = reverse compl “abcde” = (5, [])

6

The Complement Function

compl :: [α]→ (Int, [α])
compl s = let n = (length s)− 1

t = [0..n]
g = zip t s
g ′ = filter (λ(i ,)→ notElem i (get t)) g

in (n + 1, map snd g ′)

For example:

get = tail compl “abcde” = (5, [’a’])

get = take 3 compl “abcde” = (5, [’d’, ’e’])

get = reverse compl “abcde” = (5, [])

6

An Inverse of λs → (get s, compl s)

inv :: ([α], (Int, [α]))→ [α]
inv ([], (0,)) = []
inv (v ′, (n + 1, as)) =
let t = [0..n]

h = assoc (get t) v ′

g ′ = zip (filter (λi → notElem i (get t)) t) as
h′ = h ++ g ′

in map (λi → fromJust (lookup i h′)) t

For example:

get = tail inv (“bcde”, (5, [’a’])) = “abcde”

get = take 3 inv (“xyz”, (5, [’d’, ’e’])) = “xyzde”

† Can be thought of as zip for the moment.

7

An Inverse of λs → (get s, compl s)

inv :: ([α], (Int, [α]))→ [α]
inv ([], (0,)) = []
inv (v ′, (n + 1, as)) =
let t = [0..n]

h = assoc† (get t) v ′

g ′ = zip (filter (λi → notElem i (get t)) t) as
h′ = h ++ g ′

in map (λi → fromJust (lookup i h′)) t

For example:

get = tail inv (“bcde”, (5, [’a’])) = “abcde”

get = take 3 inv (“xyz”, (5, [’d’, ’e’])) = “xyzde”

† Can be thought of as zip for the moment. 7

An Inverse of λs → (get s, compl s)

inv :: ([α], (Int, [α]))→ [α]
inv ([], (0,)) = []
inv (v ′, (n + 1, as)) =
let t = [0..n]

h = assoc† (get t) v ′

g ′ = zip (filter (λi → notElem i (get t)) t) as
h′ = h ++ g ′

in map (λi → fromJust (lookup i h′)) t

For example:

get = tail inv (“bcde”, (5, [’a’])) = “abcde”

get = take 3 inv (“xyz”, (5, [’d’, ’e’])) = “xyzde”

† Can be thought of as zip for the moment. 7

An Inverse of λs → (get s, compl s)

inv :: ([α], (Int, [α]))→ [α]
inv ([], (0,)) = []
inv (v ′, (n + 1, as)) =
let t = [0..n]

h = assoc† (get t) v ′

g ′ = zip (filter (λi → notElem i (get t)) t) as
h′ = h ++ g ′

in map (λi → fromJust (lookup i h′)) t

For example:

get = tail inv (“bcde”, (5, [’a’])) = “abcde”

get = take 3 inv (“xyz”, (5, [’d’, ’e’])) = “xyzde”

† Can be thought of as zip for the moment. 7

Correctness

To prove formally:

I inv (get s, compl s) = s

I if inv (v , c) defined, then get (inv (v , c)) = v

I if inv (v , c) defined, then compl (inv (v , c)) = c

Use a free theorem [Wadler, FPCA’89], namely that for every

get :: [α]→ [α]

we have, for arbitrary f and l ,

map f (get l) = get (map f l) .

8

Correctness

To prove formally:

I inv (get s, compl s) = s

I if inv (v , c) defined, then get (inv (v , c)) = v

I if inv (v , c) defined, then compl (inv (v , c)) = c

Use a free theorem [Wadler, FPCA’89], namely that for every

get :: [α]→ [α]

we have, for arbitrary f and l ,

map f (get l) = get (map f l) .

8

Correctness

To prove formally:

I inv (get s, compl s) = s

I if inv (v , c) defined, then get (inv (v , c)) = v

I if inv (v , c) defined, then compl (inv (v , c)) = c

Use a free theorem [Wadler, FPCA’89], namely that for every

get :: [α]→ [α]

we have, for arbitrary f and l ,

map f (get l) = get (map f l) .

Given an arbitrary list s of length n + 1, set l = [0..n], f = (s !!),
leading to:

map (s !!) (get [0..n]) = get (map (s !!) [0..n])

︸ ︷︷ ︸
= get s

8

Correctness

To prove formally:

I inv (get s, compl s) = s

I if inv (v , c) defined, then get (inv (v , c)) = v

I if inv (v , c) defined, then compl (inv (v , c)) = c

Use a free theorem [Wadler, FPCA’89], namely that for every

get :: [α]→ [α]

we have, for arbitrary f and l ,

map f (get l) = get (map f l) .

Given an arbitrary list s of length n + 1, set l = [0..n], f = (s !!),
leading to:

map (s !!) (get [0..n]) = get (map (s !!) [0..n])︸ ︷︷ ︸
= get s

8

Correctness

To prove formally:

I inv (get s, compl s) = s

I if inv (v , c) defined, then get (inv (v , c)) = v

I if inv (v , c) defined, then compl (inv (v , c)) = c

Use a free theorem [Wadler, FPCA’89], namely that for every

get :: [α]→ [α]

we have, for arbitrary f and l ,

map f (get l) = get (map f l) .

Given an arbitrary list s of length n + 1,

set l = [0..n], f = (s !!),
leading to:

map (s !!) (get [0..n])

= get (map (s !!) [0..n])︸ ︷︷ ︸

= get s
8

Correctness

To prove formally:

I inv (get s, compl s) = s

I if inv (v , c) defined, then get (inv (v , c)) = v

I if inv (v , c) defined, then compl (inv (v , c)) = c

Use a free theorem [Wadler, FPCA’89], namely that for every

get :: [α]→ [α]

we have, for arbitrary f and l ,

map f (get l) = get (map f l) .

Given an arbitrary list s of length n + 1,

set l = [0..n], f = (s !!),
leading to:

get s = map (s !!) (get [0..n])

8

Altogether, So Far:

compl :: [α]→ (Int, [α])
compl s = let n = (length s)− 1

t = [0..n]
g = zip t s
g ′ = filter (λ(i ,)→ notElem i (get t)) g

in (n + 1, map snd g ′)

inv :: ([α], (Int, [α]))→ [α]
inv ([], (0,)) = []
inv (v ′, (n + 1, as)) =

let t = [0..n]
h = assoc (get t) v ′

g ′ = zip (filter (λi → notElem i (get t)) t) as
h′ = h ++ g ′

in map (λi → fromJust (lookup i h′)) t

9

“Fusion”

Inlining compl and inv into put, plus some clever rewriting:

put [] [] = []
put s v ′ = let n = (length s)− 1

t = [0..n]
g = zip t s
g ′ = filter (λ(i ,)→ notElem i (get t)) g
h = assoc (get t) v ′

h′ = h ++ g ′

in seq h (map (λi → fromJust (lookup i h′)) t)

assoc [] [] = []
assoc (i : is) (b : bs) = let m = assoc is bs

in case lookup i m of
Nothing → (i , b) : m
Just c | b == c → m

Actual code only slightly more elaborate!

10

“Fusion”

Inlining compl and inv into put, plus some clever rewriting:

put [] [] = []
put s v ′ = let n = (length s)− 1

t = [0..n]
g = zip t s
g ′ = filter (λ(i ,)→ notElem i (get t)) g
h = assoc (get t) v ′

h′ = h ++ g ′

in seq h (map (λi → fromJust (lookup i h′)) t)

assoc [] [] = []
assoc (i : is) (b : bs) = let m = assoc is bs

in case lookup i m of
Nothing → (i , b) : m
Just c | b == c → m

Actual code only slightly more elaborate!

10

“Fusion”

Inlining compl and inv into put, plus some clever rewriting:

bff get [] [] = []
bff get s v ′ = let n = (length s)− 1

t = [0..n]
g = zip t s
g ′ = filter (λ(i ,)→ notElem i (get t)) g
h = assoc (get t) v ′

h′ = h ++ g ′

in seq h (map (λi → fromJust (lookup i h′)) t)

assoc [] [] = []
assoc (i : is) (b : bs) = let m = assoc is bs

in case lookup i m of
Nothing → (i , b) : m
Just c | b == c → m

Actual code only slightly more elaborate!

10

“Fusion”

Inlining compl and inv into put, plus some clever rewriting:

bff get [] [] = []
bff get s v ′ = let n = (length s)− 1

t = [0..n]
g = zip t s
g ′ = filter (λ(i ,)→ notElem i (get t)) g
h = assoc (get t) v ′

h′ = h ++ g ′

in seq h (map (λi → fromJust (lookup i h′)) t)

assoc [] [] = []
assoc (i : is) (b : bs) = let m = assoc is bs

in case lookup i m of
Nothing → (i , b) : m
Just c | b == c → m

Actual code only slightly more elaborate!
10

Overview of the Bidirectionalization Method

0 1 2 3

[1,2,3]

‘b’ ‘a’ ‘c’ ‘a’

0 → ‘b’

1 → ‘a’

2 → ‘c’

3 → ‘a’

“aca”

0 → ‘b’

1 → ‘x’

2 → ‘c’

3 → ‘a’

1 → ‘x’

2 → ‘c’

3 → ‘a’

‘b’ ‘x’ ‘c’ ‘a’
“xca”

tail ◦ flatten

v ′

s

t

g

get t

h
h′

11

Extending the Technique

Major Problem:

I Shape-affecting updates lead to failure.

I For example, bff tail “abcde” “xyz” . . .

Analysis as to Why:
I Our approach to making

λs → (get s, compl s)

injective was to record, via compl, the following information:

1. length of the source list
2. discarded list elements

I Being maximally conservative this way often does not
“collapse enough”.

I For example:

get = tail put “abcde” “xyz” fails precisely because
compl “abcde” = (5, [’a’])

12

Extending the Technique

Major Problem:

I Shape-affecting updates lead to failure.

I For example, bff tail “abcde” “xyz” . . .

Analysis as to Why:
I Our approach to making

λs → (get s, compl s)

injective was to record, via compl, the following information:

1. length of the source list
2. discarded list elements

I Being maximally conservative this way often does not
“collapse enough”.

I For example:

get = tail put “abcde” “xyz” fails precisely because
compl “abcde” = (5, [’a’])

12

Extending the Technique

Major Problem:

I Shape-affecting updates lead to failure.

I For example, bff tail “abcde” “xyz” . . .

Analysis as to Why:
I Our approach to making

λs → (get s, compl s)

injective was to record, via compl, the following information:

1. length of the source list
2. discarded list elements

I Being maximally conservative this way often does not
“collapse enough”.

I For example:

get = tail put “abcde” “xyz” fails precisely because
compl “abcde” = (5, [’a’])

12

Extending the Technique

Major Problem:

I Shape-affecting updates lead to failure.

I For example, bff tail “abcde” “xyz” . . .

Analysis as to Why:
I Our approach to making

λs → (get s, compl s)

injective was to record, via compl, the following information:

1. length of the source list
2. discarded list elements

I Being maximally conservative this way often does not
“collapse enough”.

I For example:

get = tail put “abcde” “xyz” fails precisely because
compl “abcde” = (5, [’a’])

12

Extending the Technique

Major Problem:

I Shape-affecting updates lead to failure.

I For example, bff tail “abcde” “xyz” . . .

Analysis as to Why:
I Our approach to making

λs → (get s, compl s)

injective was to record, via compl, the following information:

1. length of the source list
2. discarded list elements

I Being maximally conservative this way often does not
“collapse enough”.

I For example:

get = tail put “abcde” “xyz” fails precisely because
compl “abcde” = (5, [’a’])

12

Assuming Shape-Injectivity

So assume there is a function

shapeInv :: Int→ Int

with, for every source list s,

length s = shapeInv (length (get s))

Then:

compl :: [α]→

(Int,

[α]

)

compl s = let n = (length s)− 1
t = [0..n]
g = zip t s
g ′ = filter (λ(i ,)→ notElem i (get t)) g

in

(n + 1,

map snd g ′

)

13

Assuming Shape-Injectivity

So assume there is a function

shapeInv :: Int→ Int

with, for every source list s,

length s = shapeInv (length (get s))

Then:

compl :: [α]→ (Int, [α])
compl s = let n = (length s)− 1

t = [0..n]
g = zip t s
g ′ = filter (λ(i ,)→ notElem i (get t)) g

in (n + 1, map snd g ′)

13

Assuming Shape-Injectivity

So assume there is a function

shapeInv :: Int→ Int

with, for every source list s,

length s = shapeInv (length (get s))

Then:

compl :: [α]→

(Int,

[α]

)

compl s = let n = (length s)− 1
t = [0..n]
g = zip t s
g ′ = filter (λ(i ,)→ notElem i (get t)) g

in

(n + 1,

map snd g ′

)

13

Assuming Shape-Injectivity

inv :: ([α], (Int, [α]))→ [α]
inv ([], (0,)) = []
inv (v ′, (n + 1, as)) =
let t = [0..n]

h = assoc (get t) v ′

g ′ = zip (filter (λi → notElem i (get t)) t) as
h′ = h ++ g ′

in map (λi → fromJust (lookup i h′)) t

But how to obtain shapeInv ???

Just for experimentation:

shapeInv :: Int→ Int
shapeInv lv = head [n + 1 | n← [0..], (length (get [0..n])) == lv]

14

Assuming Shape-Injectivity

inv :: ([α],

(Int,

[α]

)

)→ [α]
inv ([],

(0,)

) = []
inv (v ′,

(n + 1,

as

)

) =
let n = (shapeInv (length v ′))− 1

t = [0..n]
h = assoc (get t) v ′

g ′ = zip (filter (λi → notElem i (get t)) t) as
h′ = h ++ g ′

in map (λi → fromJust (lookup i h′)) t

But how to obtain shapeInv ???

Just for experimentation:

shapeInv :: Int→ Int
shapeInv lv = head [n + 1 | n← [0..], (length (get [0..n])) == lv]

14

Assuming Shape-Injectivity

inv :: ([α],

(Int,

[α]

)

)→ [α]
inv ([],

(0,)

) = []
inv (v ′,

(n + 1,

as

)

) =
let n = (shapeInv (length v ′))− 1

t = [0..n]
h = assoc (get t) v ′

g ′ = zip (filter (λi → notElem i (get t)) t) as
h′ = h ++ g ′

in map (λi → fromJust (lookup i h′)) t

But how to obtain shapeInv ???

Just for experimentation:

shapeInv :: Int→ Int
shapeInv lv = head [n + 1 | n← [0..], (length (get [0..n])) == lv]

14

Assuming Shape-Injectivity

inv :: ([α],

(Int,

[α]

)

)→ [α]
inv ([],

(0,)

) = []
inv (v ′,

(n + 1,

as

)

) =
let n = (shapeInv (length v ′))− 1

t = [0..n]
h = assoc (get t) v ′

g ′ = zip (filter (λi → notElem i (get t)) t) as
h′ = h ++ g ′

in map (λi → fromJust (lookup i h′)) t

But how to obtain shapeInv ???

Just for experimentation:

shapeInv :: Int→ Int
shapeInv lv = head [n + 1 | n← [0..], (length (get [0..n])) == lv]

14

Some Tests

Works quite nicely in some cases:

get = tail put “abcde” “xyz” = “axyz”, using
compl “abcde” = [’a’]

get = init put “abcde” “xyz” = “xyze”, using
compl “abcde” = [’e’]

But not so in others:

get = take 3 put “abcde” “abc” = “abc”

The problem: have forgotten to take the original source length
into account.

Better:

shapeInv :: Int→ Int→ Int
shapeInv ls lv = head [n + 1 | n← (ls − 1) : [0..],

(length (get [0..n])) == lv]

15

Some Tests

Works quite nicely in some cases:

get = tail put “abcde” “xyz” = “axyz”, using
compl “abcde” = [’a’]

get = init put “abcde” “xyz” = “xyze”, using
compl “abcde” = [’e’]

But not so in others:

get = take 3 put “abcde” “abc” = “abc”

The problem: have forgotten to take the original source length
into account.

Better:

shapeInv :: Int→ Int→ Int
shapeInv ls lv = head [n + 1 | n← (ls − 1) : [0..],

(length (get [0..n])) == lv]

15

Some Tests

Works quite nicely in some cases:

get = tail put “abcde” “xyz” = “axyz”, using
compl “abcde” = [’a’]

get = init put “abcde” “xyz” = “xyze”, using
compl “abcde” = [’e’]

But not so in others:

get = take 3 put “abcde” “abc” = “abc”

The problem: have forgotten to take the original source length
into account.

Better:

shapeInv :: Int→ Int→ Int
shapeInv ls lv = head [n + 1 | n← (ls − 1) : [0..],

(length (get [0..n])) == lv]

15

Some Tests

Works quite nicely in some cases:

get = tail put “abcde” “xyz” = “axyz”, using
compl “abcde” = [’a’]

get = init put “abcde” “xyz” = “xyze”, using
compl “abcde” = [’e’]

But not so in others:

get = take 3 put “abcde” “abc” = “abc”

The problem: have forgotten to take the original source length
into account.

Better:

shapeInv :: Int→ Int→ Int
shapeInv ls lv = head [n + 1 | n← (ls − 1) : [0..],

(length (get [0..n])) == lv]

15

Some Tests

Works quite nicely in some cases:

get = tail put “abcde” “xyz” = “axyz”, using
compl “abcde” = [’a’]

get = init put “abcde” “xyz” = “xyze”, using
compl “abcde” = [’e’]

But not so in others:

get = take 3 put “abcde” “abc” = “abc”

The problem: have forgotten to take the original source length
into account.

Better:

shapeInv :: Int→ Int→ Int
shapeInv ls lv = head [n + 1 | n← (ls − 1) : [0..],

(length (get [0..n])) == lv]
15

Conclusion

[V., POPL’09]:

I very lightweight, easy access to bidirectionality

I full treatment of equality and ordering constraints

I proofs, using free theorems and equational reasoning

I a datatype-generic account of the whole story

Here:

I a constant-complement perspective on the method

I . . . helps expanding its scope to updates that affect shape

Outlook:

I . . . could also be a way to inject/exploit “user knowledge”

I combination with syntactic bidirectionalization à la
[Matsuda et al., ICFP’07] is work in progress

I efficiency issues untackled so far, . . .

16

Conclusion

[V., POPL’09]:

I very lightweight, easy access to bidirectionality

I full treatment of equality and ordering constraints

I proofs, using free theorems and equational reasoning

I a datatype-generic account of the whole story

Here:

I a constant-complement perspective on the method

I . . . helps expanding its scope to updates that affect shape

Outlook:

I . . . could also be a way to inject/exploit “user knowledge”

I combination with syntactic bidirectionalization à la
[Matsuda et al., ICFP’07] is work in progress

I efficiency issues untackled so far, . . .

16

Conclusion

[V., POPL’09]:

I very lightweight, easy access to bidirectionality

I full treatment of equality and ordering constraints

I proofs, using free theorems and equational reasoning

I a datatype-generic account of the whole story

Here:

I a constant-complement perspective on the method

I . . . helps expanding its scope to updates that affect shape

Outlook:

I . . . could also be a way to inject/exploit “user knowledge”

I combination with syntactic bidirectionalization à la
[Matsuda et al., ICFP’07] is work in progress

I efficiency issues untackled so far, . . .

16

Conclusion

[V., POPL’09]:

I very lightweight, easy access to bidirectionality

I full treatment of equality and ordering constraints

I proofs, using free theorems and equational reasoning

I a datatype-generic account of the whole story

Here:

I a constant-complement perspective on the method

I . . . helps expanding its scope to updates that affect shape

Outlook:

I . . . could also be a way to inject/exploit “user knowledge”

I combination with syntactic bidirectionalization à la
[Matsuda et al., ICFP’07] is work in progress

I efficiency issues untackled so far, . . .

16

Conclusion

[V., POPL’09]:

I very lightweight, easy access to bidirectionality

I full treatment of equality and ordering constraints

I proofs, using free theorems and equational reasoning

I a datatype-generic account of the whole story

Here:

I a constant-complement perspective on the method

I . . . helps expanding its scope to updates that affect shape

Outlook:

I . . . could also be a way to inject/exploit “user knowledge”

I combination with syntactic bidirectionalization à la
[Matsuda et al., ICFP’07] is work in progress

I efficiency issues untackled so far, . . .

16

References I

F. Bancilhon and N. Spyratos.
Update semantics of relational views.
ACM Transactions on Database Systems, 6(3):557–575, 1981.

J.N. Foster, M.B. Greenwald, J.T. Moore, B.C. Pierce, and A.
Schmitt.
Combinators for bidirectional tree transformations: A linguistic
approach to the view-update problem.
ACM Transactions on Programming Languages and Systems,
29(3):17, 2007.

K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi.
Bidirectionalization transformation based on automatic
derivation of view complement functions.
In International Conference on Functional Programming,
Proceedings, pages 47–58. ACM Press, 2007.

17

References II

J. Voigtländer.
Bidirectionalization for free!
In Principles of Programming Languages, Proceedings, pages
165–176. ACM Press, 2009.

P. Wadler.
Theorems for free!
In Functional Programming Languages and Computer
Architecture, Proceedings, pages 347–359. ACM Press, 1989.

18

	Bidirectional Transformation
	Semantic Bidirectionalization
	A Constant-Complement Perspective
	Extending the Technique
	Conclusion
	References

