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v
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In general, given
define a V¢ and

such that
As — (get s, compl s)

is injective and has an inverse

inv:(V,V€) =S

Then:

put :S—=>V =S
put s v/ = inv (V/, compl s)

Important: compl should “collapse” as much as possible.



The Constant-Complement Approach
For a very simple setting,
get 2 [a] = [¢],
what should be V¢ and

compl :: [a] = V& 277



The Constant-Complement Approach
For a very simple setting,
get = [a] = [a],
what should be V¢ and
compl :: [a] = V& 277

To make
As — (get s, compl s)

injective, need to record information discarded by get.



The Constant-Complement Approach
For a very simple setting,
get = [a] = [a],
what should be V¢ and
compl :: [a] = V& 277

To make
As — (get s, compl s)

injective, need to record information discarded by get.

Candidates:

1. length of the source list



The Constant-Complement Approach
For a very simple setting,
get = [a] = [a],
what should be V¢ and
compl :: [a] = V& 277

To make
As — (get s, compl s)

injective, need to record information discarded by get.

Candidates:
1. length of the source list
2. discarded list elements



The Constant-Complement Approach
For a very simple setting,
get = [a] = [a],
what should be V¢ and
compl :: [a] = V& 277

To make
As — (get s, compl s)

injective, need to record information discarded by get.

Candidates:
1. length of the source list
2. discarded list elements

For the moment, be maximally conservative.
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inv i ([a], (Int, [@])) — [@]
inv ({1, (0,.)) = I
inv (V/,(n+1,as)) =
let t =[0..n]
h = assocl (get t) v/
g’ =zip (filter (A — notElem i (get t)) t) as
W =h+g
in map (A — fromJust (lookup i h')) t

For example:
get =tail  ~» inv (“bede”, (5,['a'])) = “abcde”

get = take 3 ~» inv (“xyz",(5,[d’,'e])) = "xyzde"

T Can be thought of as zip for the moment.
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To prove formally:
» inv (get s,compl s)=s
» if inv (v, ¢) defined, then get (inv (v,c)) =v

» if inv (v, ¢) defined, then compl (inv (v,c)) =c¢

Use a free theorem [Wadler, FPCA'89], namely that for every
get :: [a] — [o]
we have, for arbitrary f and /,

map f (get I) = get (map f /).

Given an arbitrary list s of length n+ 1,

get s = map (s!) (get [0..n])



Altogether, So Far:

compl :: [a] — (Int,[a])
compl s =let n = (lengths)—1
t =[0..n]
g =zipts
g =filter (A(i,.) — notElem  (get t)) g
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inv :: ([a, (Int, [a])) — [¢]
inv ([],(0,)) =11
inv (V/,(n+1,as)) =
let t =[0..n]
h = assoc (get t) v/
g =zip (filter (A — notElem i (get t)) t) as
W =h+tg
in map (A — fromJust (lookup i h')) t
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“Fusion”

Inlining compl and inv into put, plus some clever rewriting:

pif get [] [] =[]
bff get s v/ =let n = (lengths)—1
t =1[0..n]
g =zipts
g’ =filter (A\(i,.) — notElem / (get t)) g
h = assoc (get t) v/
W =h+g
in seq h (map (A\j — fromJust (lookup i h')) t)

assoc (] 11 =1]
assoc (i :is) (b: bs) =let m = assoc is bs
in case lookup i m of
Nothing — (i,b) :m
Justc|b==c—m

Actual code only slightly more elaborate!
10
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» Shape-affecting updates lead to failure.

» For example, bff tail “abcde” “xyz

Analysis as to Why:
» Qur approach to making

As — (get s, compl s)
injective was to record, via compl, the following information:

1. length of the source list
2. discarded list elements

» Being maximally conservative this way often does not
“collapse enough”.

» For example:

get =tail ~» put “abcde” “xyz" fails precisely because
compl “abcde” = (5,['a"])

12
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Assuming Shape-Injectivity

inv : ([a], [] ) — [a]
inv ([, -)=Il
inv (V/, as ) =
let n = (shapeInv (length v/)) —1
t =1[0..n]

h = assoc (get t) v/
g =zip (filter (A — notElem i (get t)) t) as
K =htg
in map (A — fromJust (lookup i h')) t
But how to obtain shapelInv 777

Just for experimentation:

shapeInv :: Int — Int
shapeInv |, =head [n+1 | n< [0..], (length (get [0..n])) == 1]

14
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Some Tests
Works quite nicely in
get = tail ~»

get = init ~

But not so in others:

some cases:

put “abcde” “xyz" = "axyz", using
compl “abcde” =['a]

put “abcde” “xyz" = "xyze", using

compl “abcde” = ['e’]

get = take 3 ~» put “abcde” "abc” = “abc”

The problem: have forgotten to take the original source length
into account.

Better:

shapeInv :: Int — Int — Int

shapeInv s /, =

head [n+ 1| n<«+ (ls—1):[0.],
(Length (get [0..n])) == 1]

15
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» full treatment of equality and ordering constraints
» proofs, using free theorems and equational reasoning

> a datatype-generic account of the whole story

Here:

> a constant-complement perspective on the method

> ... helps expanding its scope to updates that affect shape
Outlook:
» ... could also be a way to inject/exploit “user knowledge”

» combination with syntactic bidirectionalization a la
[Matsuda et al., ICFP'07] is work in progress

» efficiency issues untackled so far, ...
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