Semantic Bidirectionalization and the Constant-Complement Perspective

Janis Voigtländer
University of Bonn
BT-in-ABC'10

Bidirectional Transformation

Acceptability / GetPut

Bidirectional Transformation

Acceptability / GetPut

Bidirectional Transformation

Consistency / PutGet

Bidirectional Transformation

Consistency / PutGet

Bidirectional Transformation

Bidirectional Transformation

[Foster et al., ACM TOPLAS'07, ...]

Bidirectional Transformation

Bidirectionalization
[Matsuda et al., ICFP'07]

Bidirectional Transformation

Syntactic Bidirectionalization
[Matsuda et al., ICFP'07]

Bidirectional Transformation

Semantic Bidirectionalization

Bidirectional Transformation

Semantic Bidirectionalization
[V., POPL'09]

Semantic Bidirectionalization

Aim: Write a higher-order function bff such that any get and bff get satisfy GetPut, PutGet,

Semantic Bidirectionalization

Aim: Write a higher-order function $\mathrm{bff}{ }^{\dagger}$ such that any get and bff get satisfy GetPut, PutGet,

Semantic Bidirectionalization

Aim: Write a higher-order function bff^{\dagger} such that any get and bff get satisfy GetPut, PutGet,

Examples:

Semantic Bidirectionalization

Aim: Write a higher-order function bff^{\dagger} such that any get and bff get satisfy GetPut, PutGet,
Examples:

Semantic Bidirectionalization

Aim: Write a higher-order function bff^{\dagger} such that any get and bff get satisfy GetPut, PutGet,
Examples:

Semantic Bidirectionalization

Aim: Write a higher-order function bff^{\dagger} such that any get and bff get satisfy GetPut, PutGet,

Examples:

Semantic Bidirectionalization

Aim: Write a higher-order function bff^{\dagger} such that any get and bff get satisfy GetPut, PutGet,
Examples:

Semantic Bidirectionalization

Aim: Write a higher-order function bff^{\dagger} such that any get and bff get satisfy GetPut, PutGet,
Examples:

Semantic Bidirectionalization

Aim: Write a higher-order function bff^{\dagger} such that any get and bff get satisfy GetPut, PutGet,
Examples:

Semantic Bidirectionalization

Aim: Write a higher-order function bff^{\dagger} such that any get and bff get satisfy GetPut, PutGet,
Examples:

Semantic Bidirectionalization

Aim: Write a higher-order function bff^{\dagger} such that any get and bff get satisfy GetPut, PutGet,
Examples:

Overview of the Bidirectionalization Method

Overview of the Bidirectionalization Method

Overview of the Bidirectionalization Method

"xca" v^{\prime}

Overview of the Bidirectionalization Method

"xca" ${ }^{\prime}$

Overview of the Bidirectionalization Method

"xca" v^{\prime}

Overview of the Bidirectionalization Method

Overview of the Bidirectionalization Method

Overview of the Bidirectionalization Method

The Constant-Complement Approach
[Bancilhon \& Spyratos, ACM TODS'81]
In general, given

$$
\text { get }:: S \rightarrow V
$$

The Constant-Complement Approach
[Bancilhon \& Spyratos, ACM TODS'81]
In general, given

$$
\text { get }:: S \rightarrow V
$$

define a V^{C} and

$$
\text { compl }:: S \rightarrow V^{C}
$$

The Constant-Complement Approach

[Bancilhon \& Spyratos, ACM TODS'81]
In general, given

$$
\text { get }:: S \rightarrow V
$$

define a V^{C} and

$$
\text { compl }:: S \rightarrow V^{C}
$$

such that

$$
\lambda s \rightarrow(\text { get } s, \text { compl } s)
$$

is injective

The Constant-Complement Approach

[Bancilhon \& Spyratos, ACM TODS'81]
In general, given

$$
\text { get }:: S \rightarrow V
$$

define a V^{C} and

$$
\text { compl }:: S \rightarrow V^{C}
$$

such that

$$
\lambda s \rightarrow(\text { get } s, \text { compl } s)
$$

is injective and has an inverse

$$
\text { inv }::\left(V, V^{C}\right) \rightarrow S
$$

The Constant-Complement Approach

[Bancilhon \& Spyratos, ACM TODS'81]
In general, given

$$
\text { get }:: S \rightarrow V
$$

define a V^{C} and

$$
\text { compl }:: S \rightarrow V^{C}
$$

such that

$$
\lambda s \rightarrow(\text { get } s, \text { compl } s)
$$

is injective and has an inverse

$$
\text { inv }::\left(V, V^{C}\right) \rightarrow S
$$

Then:

$$
\begin{aligned}
& \text { put }:: S \rightarrow V \rightarrow S \\
& \text { put } s v^{\prime}=\operatorname{inv}\left(v^{\prime}, \text { compl } s\right)
\end{aligned}
$$

The Constant-Complement Approach

[Bancilhon \& Spyratos, ACM TODS'81]
In general, given

$$
\text { get }:: S \rightarrow V
$$

define a V^{C} and

$$
\text { compl }:: S \rightarrow V^{C}
$$

such that

$$
\lambda s \rightarrow(\text { get } s, \text { compl } s)
$$

is injective and has an inverse

$$
\text { inv }::\left(V, V^{C}\right) \rightarrow S
$$

Then:

$$
\begin{aligned}
& \text { put }:: S \rightarrow V \rightarrow S \\
& \text { put } s v^{\prime}=\operatorname{inv}\left(v^{\prime}, \text { compl } s\right)
\end{aligned}
$$

Important: compl should "collapse" as much as possible.

The Constant-Complement Approach

For a very simple setting,

$$
\text { get }::[\alpha] \rightarrow[\alpha]
$$

what should be V^{C} and

$$
\text { compl :: }[\alpha] \rightarrow V^{C} \quad \text { ??? }
$$

The Constant-Complement Approach

For a very simple setting,

$$
\text { get }::[\alpha] \rightarrow[\alpha] \text {, }
$$

what should be V^{C} and

$$
\text { compl }::[\alpha] \rightarrow V^{C} \quad ? ? ?
$$

To make

$$
\lambda s \rightarrow(\text { get } s, \text { compl } s)
$$

injective, need to record information discarded by get.

The Constant-Complement Approach

For a very simple setting,

$$
\text { get }::[\alpha] \rightarrow[\alpha] \text {, }
$$

what should be V^{C} and

$$
\text { compl }::[\alpha] \rightarrow V^{C} \quad ? ? ?
$$

To make

$$
\lambda s \rightarrow(\text { get } s, \text { compl } s)
$$

injective, need to record information discarded by get.

Candidates:

1. length of the source list

The Constant-Complement Approach

For a very simple setting,

$$
\text { get }::[\alpha] \rightarrow[\alpha] \text {, }
$$

what should be V^{C} and

$$
\text { compl }::[\alpha] \rightarrow V^{C} \quad ? ? ?
$$

To make

$$
\lambda s \rightarrow(\text { get } s, \text { compl } s)
$$

injective, need to record information discarded by get.
Candidates:

1. length of the source list
2. discarded list elements

The Constant-Complement Approach

For a very simple setting,

$$
\text { get }::[\alpha] \rightarrow[\alpha] \text {, }
$$

what should be V^{C} and

$$
\text { compl }::[\alpha] \rightarrow V^{C} \quad ? ? ?
$$

To make

$$
\lambda s \rightarrow(\text { get } s, \text { compl } s)
$$

injective, need to record information discarded by get.

Candidates:

1. length of the source list
2. discarded list elements

For the moment, be maximally conservative.

The Complement Function

$$
\begin{aligned}
& \text { compl }::[\alpha] \rightarrow(\text { Int, }[\alpha]) \\
& \text { compl } s=\text { let } n \\
& \qquad=(\text { length } s)-1 \\
& t
\end{aligned} \quad=[0 . . n] .
$$

The Complement Function

$$
\begin{aligned}
& \text { compl :: }[\alpha] \rightarrow(\text { Int, }[\alpha]) \\
& \text { compl } s=\text { let } n=(\text { length } s)-1 \\
& t \\
& t=[0 . . n] \\
& g=\text { zip } t s \\
& g^{\prime}=\text { filter }(\lambda(i,,) \rightarrow \text { notElem } i(\text { get } t)) g \\
& \text { in }\left(n+1, \text { map snd } g^{\prime}\right)
\end{aligned}
$$

For example:

$$
\text { get }=\text { tail } \quad \rightsquigarrow \text { compl "abcde" }=(5,[\text { 'a'] })
$$

The Complement Function

$$
\begin{aligned}
\text { compl }::[\alpha] \rightarrow & (\text { Int, }[\alpha]) \\
\text { compl } s=\text { let } n & =(\text { length } s)-1 \\
t & =[0 . . n] \\
g & =\text { zip } t s \\
g^{\prime} & =\text { filter }(\lambda(i,,) \rightarrow \text { notElem } i(\text { get } t)) g \\
\text { in }(n & \left(n, \text { map snd } g^{\prime}\right)
\end{aligned}
$$

For example:

$$
\begin{array}{lll}
\text { get }=\text { tail } & \rightsquigarrow & \text { compl "abcde" }=(5,[' a ']) \\
\text { get }=\text { take } 3 & \rightsquigarrow & \text { compl "abcde" }=(5,[\text { 'd', 'e'] })
\end{array}
$$

The Complement Function

$$
\begin{aligned}
\text { compl }::[\alpha] \rightarrow & (\text { Int, }[\alpha]) \\
\text { compl } s=\text { let } n & =(\text { length } s)-1 \\
t & =[0 . . n] \\
g & =\text { zip } t s \\
g^{\prime} & =\text { filter }(\lambda(i,,) \rightarrow \text { notElem } i(\text { get } t)) g \\
\text { in }(n & \left(n, \text { map snd } g^{\prime}\right)
\end{aligned}
$$

For example:

$$
\begin{array}{lll}
\text { get }=\text { tail } & \rightsquigarrow & \text { compl "abcde" }=\left(5,\left[' a^{\prime}\right]\right) \\
\text { get }=\text { take } 3 & \rightsquigarrow & \text { compl "abcde" }=\left(5,\left[' d ', \text { 'e'] }^{\prime}\right]\right) \\
\text { get }=\text { reverse } & \rightsquigarrow & \text { compl "abcde" }=(5,[])
\end{array}
$$

An Inverse of $\lambda s \rightarrow($ get s, compl $s)$

$$
\begin{aligned}
& \text { inv }::([\alpha],(\text { Int },[\alpha])) \rightarrow[\alpha] \\
& \text { inv }([],(0,-))=[] \\
& \text { inv }\left(v^{\prime},(n+1, \text { as })\right)= \\
& \text { let } t=[0 . . n] \\
& \quad h=\operatorname{assoc}(\text { get } t) v^{\prime} \\
& \quad g^{\prime}=\operatorname{zip}(\text { filter }(\lambda i \rightarrow \text { notElem } i(\text { get } t)) t) \text { as } \\
& \\
& \quad h^{\prime}=h+g^{\prime} \\
& \text { in } \operatorname{map}\left(\lambda i \rightarrow \text { fromJust }\left(\text { lookup } i h^{\prime}\right)\right) t
\end{aligned}
$$

An Inverse of $\lambda s \rightarrow($ get s, compl $s)$

$$
\begin{aligned}
& \text { inv }::([\alpha],(\text { Int },[\alpha])) \rightarrow[\alpha] \\
& \text { inv }([],(0,-))=[] \\
& \text { inv }\left(v^{\prime},(n+1, \text { as })\right)= \\
& \text { let } t=[0 . . n] \\
& \quad h=\operatorname{assoc}{ }^{\dagger}(\text { get } t) v^{\prime} \\
& \quad g^{\prime}=\operatorname{zip}(\text { filter }(\lambda i \rightarrow \text { notElem } i(\text { get } t)) t) \text { as } \\
& \\
& h^{\prime}=h+g^{\prime} \\
& \text { in } \operatorname{map}\left(\lambda i \rightarrow \text { fromJust }\left(\text { lookup } i h^{\prime}\right)\right) t
\end{aligned}
$$

An Inverse of $\lambda s \rightarrow($ get s, compl $s)$

$$
\begin{aligned}
& \text { inv }::([\alpha],(\text { Int },[\alpha])) \rightarrow[\alpha] \\
& \text { inv }([],(0,-))=[] \\
& \text { inv }\left(v^{\prime},(n+1, \text { as })\right)= \\
& \text { let } t=[0 . . n] \\
& \quad h=\operatorname{assoc^{\dagger }(\text {get}t)v^{\prime }} \\
& \quad g^{\prime}=\operatorname{zip}(\text { filter }(\lambda i \rightarrow \text { notElem } i(\text { get } t)) t) \text { as } \\
& \quad h^{\prime}=h+g^{\prime} \\
& \text { in } \operatorname{map}\left(\lambda i \rightarrow \text { fromJust }\left(\text { lookup } i h^{\prime}\right)\right) t
\end{aligned}
$$

For example:

$$
\text { get }=\text { tail } \rightsquigarrow \quad \text { inv }\left(\text { "bcde" },\left(5,\left[{ }^{\prime}{ }^{\prime}\right]\right)\right)=\text { "abcde" }
$$

An Inverse of $\lambda s \rightarrow($ get s, compl $s)$

$$
\begin{aligned}
& \text { inv }::([\alpha],(\operatorname{lnt},[\alpha])) \rightarrow[\alpha] \\
& \text { inv }([],(0,-))=[] \\
& \text { inv }\left(v^{\prime},(n+1, \text { as })\right)= \\
& \text { let } t=[0 . . n] \\
& \quad h=\operatorname{assoc}{ }^{\dagger}(\text { get } t) v^{\prime} \\
& g^{\prime}=\text { zip }(\text { filter }(\lambda i \rightarrow \text { notElem } i(\text { get } t)) t) \text { as } \\
& h^{\prime}=h+g^{\prime} \\
& \text { in map }\left(\lambda i \rightarrow \text { fromJust }\left(\text { lookup } i h^{\prime}\right)\right) t
\end{aligned}
$$

For example:

$$
\begin{array}{lll}
\text { get }=\text { tail } & \rightsquigarrow \quad \operatorname{inv}(" b c d e ",(5,[' a ']))=\text { "abcde" } \\
\text { get }=\text { take } 3 \rightsquigarrow \quad \operatorname{inv}(" x y z ",(5,[' d ', ' e ']))=\text { "xyzde" }
\end{array}
$$

Correctness

To prove formally:

- inv $($ get s, compl $s)=s$
- if inv (v, c) defined, then get $(\operatorname{inv}(v, c))=v$
- if inv (v, c) defined, then compl (inv $(v, c))=c$

Correctness

To prove formally:

- inv $($ get s, compl $s)=s$
- if inv (v, c) defined, then get $(\operatorname{inv}(v, c))=v$
- if inv (v, c) defined, then compl (inv $(v, c))=c$

Use a free theorem [Wadler, FPCA'89], namely that for every

$$
\text { get }::[\alpha] \rightarrow[\alpha]
$$

we have, for arbitrary f and I,

$$
\operatorname{map} f(\text { get } I)=\operatorname{get}(\operatorname{map} f l)
$$

Correctness

To prove formally:

- inv $($ get s, compl $s)=s$
- if inv (v, c) defined, then get $(\operatorname{inv}(v, c))=v$
- if inv (v, c) defined, then compl (inv $(v, c))=c$

Use a free theorem [Wadler, FPCA'89], namely that for every

$$
\text { get }::[\alpha] \rightarrow[\alpha]
$$

we have, for arbitrary f and I,

$$
\operatorname{map} f(\operatorname{get} I)=\operatorname{get}(\operatorname{map} f l)
$$

Given an arbitrary list s of length $n+1$, set $I=[0 . . n], f=(s!!)$, leading to:

$$
\operatorname{map}(s!!)(\operatorname{get}[0 . . n])=\operatorname{get}(\operatorname{map}(s!!)[0 . . n])
$$

Correctness

To prove formally:

- inv $($ get s, compl $s)=s$
- if inv (v, c) defined, then get $(\operatorname{inv}(v, c))=v$
- if inv (v, c) defined, then compl (inv $(v, c))=c$

Use a free theorem [Wadler, FPCA'89], namely that for every

$$
\text { get }::[\alpha] \rightarrow[\alpha]
$$

we have, for arbitrary f and I,

$$
\operatorname{map} f(\operatorname{get} I)=\operatorname{get}(\operatorname{map} f l)
$$

Given an arbitrary list s of length $n+1$, set $I=[0 . . n], f=(s!!)$, leading to:

$$
\begin{aligned}
\operatorname{map}(s!!)(\operatorname{get}[0 . . n]) & =\operatorname{get}(\underbrace{\operatorname{map}(s!!)[0 . . n]}_{s}) \\
& =\operatorname{get} \underbrace{}_{s})
\end{aligned}
$$

Correctness

To prove formally:

- inv $($ get s, compl $s)=s$
- if inv (v, c) defined, then get $(\operatorname{inv}(v, c))=v$
- if inv (v, c) defined, then compl (inv $(v, c))=c$

Use a free theorem [Wadler, FPCA'89], namely that for every

$$
\text { get }::[\alpha] \rightarrow[\alpha]
$$

we have, for arbitrary f and I,

$$
\operatorname{map} f(\operatorname{get} I)=\operatorname{get}(\operatorname{map} f l)
$$

Given an arbitrary list s of length $n+1$,
$\operatorname{map}(s!!)($ get $[0 . . n])$

$$
=\text { get } s
$$

Correctness

To prove formally:

- inv $($ get s, compl $s)=s$
- if inv (v, c) defined, then get $(\operatorname{inv}(v, c))=v$
- if inv (v, c) defined, then compl (inv $(v, c))=c$

Use a free theorem [Wadler, FPCA'89], namely that for every

$$
\text { get }::[\alpha] \rightarrow[\alpha]
$$

we have, for arbitrary f and I,

$$
\operatorname{map} f(\operatorname{get} I)=\operatorname{get}(\operatorname{map} f l)
$$

Given an arbitrary list s of length $n+1$,

$$
\text { get } s=\operatorname{map}(s!!)(\operatorname{get}[0 . . n])
$$

Altogether, So Far:

```
compl \(::[\alpha] \rightarrow(\operatorname{Int},[\alpha])\)
compl \(s=\) let \(n=(\) length \(s)-1\)
        \(t=[0 . . n]\)
        \(g=\operatorname{zip} t s\)
        \(g^{\prime}=\) filter \(\left(\lambda\left(i,{ }_{\prime}\right) \rightarrow\right.\) notElem \(i(\) get \(\left.t)\right) g\)
        in \(\left(n+1\right.\), map snd \(\left.g^{\prime}\right)\)
inv : \(:([\alpha],(\) Int, \([\alpha])) \rightarrow[\alpha]\)
inv \(([],(0,-))=[]\)
\(\operatorname{inv}\left(v^{\prime},(n+1, a s)\right)=\)
    let \(t=[0 . . n]\)
    \(h=\operatorname{assoc}(\) get \(t) v^{\prime}\)
    \(g^{\prime}=\operatorname{zip}(\) filter \((\lambda i \rightarrow\) notElem \(i(\) get \(t)) t) a s\)
    \(h^{\prime}=h+g^{\prime}\)
    in map \(\left(\lambda i \rightarrow\right.\) fromJust (lookup \(\left.\left.i h^{\prime}\right)\right) t\)
```


"Fusion"

Inlining compl and inv into put, plus some clever rewriting:

$$
\begin{aligned}
& \text { put [] [] = [] } \\
& \text { put } s v^{\prime}=\text { let } n=(\text { length } s)-1 \\
& t=[0 . . n] \\
& g=z i p t s \\
& g^{\prime}=\text { filter }\left(\lambda\left(i,{ }_{-}\right) \rightarrow \text { notElem } i(\text { get } t)\right) g \\
& h=\operatorname{assoc}(\text { get } t) v^{\prime} \\
& h^{\prime}=h+g^{\prime} \\
& \text { in seq } \left.h\left(\operatorname{map}\left(\lambda i \rightarrow \text { fromJust (lookup } i h^{\prime}\right)\right) t\right)
\end{aligned}
$$

"Fusion"

Inlining compl and inv into put, plus some clever rewriting:

$$
\begin{aligned}
& \text { put [] [] = [] } \\
& \text { put } s v^{\prime}=\text { let } n=(\text { length } s)-1 \\
& t=[0 . . n] \\
& g=z i p t s \\
& g^{\prime}=\text { filter }(\lambda(i, \ldots) \rightarrow \text { notElem } i(\text { get } t)) g \\
& h=\operatorname{assoc}(\text { get } t) v^{\prime} \\
& h^{\prime}=h+g^{\prime} \\
& \text { in seq } \left.h\left(\operatorname{map}\left(\lambda i \rightarrow \text { fromJust (lookup } i h^{\prime}\right)\right) t\right) \\
& \begin{aligned}
\operatorname{assoc}[] \quad[] & {[] } \\
\operatorname{assoc}(i: i s)(b: b s)= & \text { let } m=\text { assoc is } b s \\
& \text { in case lookup i } m \text { of }
\end{aligned} \\
& \text { Nothing } \quad \rightarrow(i, b): m \\
& \text { Just } c \mid b==c \rightarrow m
\end{aligned}
$$

"Fusion"

Inlining compl and inv into put, plus some clever rewriting:

$$
\begin{aligned}
& \text { bff get [] [] = [] } \\
& \text { bff get } s v^{\prime}=\text { let } n=(\text { length } s)-1 \\
& t=[0 . . n] \\
& g=\operatorname{zip} t s \\
& g^{\prime}=\text { filter }\left(\lambda\left(i,{ }_{-}\right) \rightarrow \text { notElem } i(\text { get } t)\right) g \\
& h=\operatorname{assoc}(\operatorname{get} t) v^{\prime} \\
& h^{\prime}=h+g^{\prime} \\
& \text { in seq } \left.h\left(\operatorname{map}\left(\lambda i \rightarrow \text { fromJust (lookup } i h^{\prime}\right)\right) t\right) \\
& \begin{aligned}
\operatorname{assoc}[] \quad[] & {[] } \\
\operatorname{assoc}(i: i s)(b: b s)= & \text { let } m=\text { assoc is } b s \\
& \text { in case lookup i } m \text { of }
\end{aligned} \\
& \text { Nothing } \quad \rightarrow(i, b): m \\
& \text { Just } c \mid b==c \rightarrow m
\end{aligned}
$$

"Fusion"

Inlining compl and inv into put, plus some clever rewriting:

$$
\begin{aligned}
& \text { bff get [] [] = [] } \\
& \text { bff get } s v^{\prime}=\text { let } n=(\text { length } s)-1 \\
& t=[0 . . n] \\
& g=z i p t s \\
& g^{\prime}=\text { filter }\left(\lambda\left(i,{ }_{-}\right) \rightarrow \text { notElem } i(\text { get } t)\right) g \\
& h=\operatorname{assoc}(\operatorname{get} t) v^{\prime} \\
& h^{\prime}=h+g^{\prime} \\
& \text { in seq } \left.h\left(\operatorname{map}\left(\lambda i \rightarrow \text { fromJust (lookup } i h^{\prime}\right)\right) t\right) \\
& \begin{aligned}
\operatorname{assoc}[] \quad[] & {[] } \\
\operatorname{assoc}(i: i s)(b: b s)= & \text { let } m=\text { assoc is } b s \\
& \text { in case lookup i } m \text { of }
\end{aligned} \\
& \text { Nothing } \quad \rightarrow(i, b): m \\
& \text { Just } c \mid b==c \rightarrow m
\end{aligned}
$$

Actual code only slightly more elaborate!

Overview of the Bidirectionalization Method

Extending the Technique

Major Problem:

- Shape-affecting updates lead to failure.

Extending the Technique

Major Problem:

- Shape-affecting updates lead to failure.
- For example, bff tail "abcde" "xyz" ...

Extending the Technique

Major Problem:

- Shape-affecting updates lead to failure.
- For example, bff tail "abcde" "xyz" ...

Analysis as to Why:

- Our approach to making

$$
\lambda s \rightarrow(\text { get } s, \text { compl } s)
$$

injective was to record, via compl, the following information:

1. length of the source list
2. discarded list elements

Extending the Technique

Major Problem:

- Shape-affecting updates lead to failure.
- For example, bff tail "abcde" "xyz" ...

Analysis as to Why:

- Our approach to making

$$
\lambda s \rightarrow(\text { get } s, \text { compl } s)
$$

injective was to record, via compl, the following information:

1. length of the source list
2. discarded list elements

- Being maximally conservative this way often does not "collapse enough".

Extending the Technique

Major Problem:

- Shape-affecting updates lead to failure.
- For example, bff tail "abcde" "xyz" ...

Analysis as to Why:

- Our approach to making

$$
\lambda s \rightarrow(\text { get } s, \text { compl } s)
$$

injective was to record, via compl, the following information:

1. length of the source list
2. discarded list elements

- Being maximally conservative this way often does not "collapse enough".
- For example:

$$
\begin{aligned}
\text { get }=\text { tail } \rightsquigarrow & \text { put "abcde" "xyz" fails precisely because } \\
& \text { compl "abcde" }=(5,[\text { 'a'] })
\end{aligned}
$$

Assuming Shape-Injectivity

So assume there is a function

$$
\text { shapeInv :: Int } \rightarrow \text { Int }
$$

with, for every source list s,

$$
\text { length } s=\text { shapeInv (length }(\text { get } s))
$$

Assuming Shape-Injectivity

So assume there is a function

$$
\text { shapeInv :: Int } \rightarrow \text { Int }
$$

with, for every source list s,

$$
\text { length } s=\operatorname{shapeInv}(\text { length }(\text { get } s))
$$

Then:

$$
\begin{aligned}
& \text { compl }::[\alpha] \rightarrow(\operatorname{lnt},[\alpha]) \\
& \text { compl } s=\text { let } n=(\text { length } s)-1 \\
& t=[0 . . n] \\
& \quad g=\text { zip } t \\
& g^{\prime}=\text { filter }\left(\lambda\left(i,{ }_{-}\right) \rightarrow \text { notElem } i(\text { get } t)\right) g \\
& \quad \text { in }\left(n+1, \text { map snd } g^{\prime}\right)
\end{aligned}
$$

Assuming Shape-Injectivity

So assume there is a function

$$
\text { shapeInv :: Int } \rightarrow \text { Int }
$$

with, for every source list s,

$$
\text { length } s=\operatorname{shapeInv}(\text { length }(\text { get } s))
$$

Then:

$$
\begin{aligned}
\text { compl }::[\alpha] \rightarrow \quad & {[\alpha] } \\
\text { compl } s=\text { let } n & =(\text { length } s)-1 \\
t & =[0 . . n] \\
g & =\operatorname{zip} t s \\
g^{\prime} & =\text { filter }(\lambda(i,,) \rightarrow \text { notElem } i(\text { get } t)) g \\
\text { in } \quad & \quad \operatorname{map} \text { snd } g^{\prime}
\end{aligned}
$$

Assuming Shape-Injectivity

$$
\begin{aligned}
& \text { inv }::([\alpha],(\text { Int },[\alpha])) \rightarrow[\alpha] \\
& \text { inv }([],(0,-))=[] \\
& \text { inv }\left(v^{\prime},(n+1, \text { as })\right)= \\
& \quad \text { let } t=[0 . . n] \\
& \quad h=\operatorname{assoc}(\text { get } t) v^{\prime} \\
& \quad g^{\prime}=\operatorname{zip}(\text { filter }(\lambda i \rightarrow \text { notElem } i(\text { get } t)) t) \text { as } \\
& \quad h^{\prime}=h+g^{\prime} \\
& \text { in } \operatorname{map}\left(\lambda i \rightarrow \text { fromJust }\left(\text { lookup } i h^{\prime}\right)\right) t
\end{aligned}
$$

Assuming Shape-Injectivity

$$
\left.\begin{array}{l}
\text { inv }::([\alpha], \quad[\alpha]) \rightarrow[\alpha] \\
\text { inv }([], \quad-)=[] \\
\text { inv }\left(v^{\prime}, \quad \quad a s\right)= \\
\text { let } n=\left(\text { shapeInv }\left(\text { length } v^{\prime}\right)\right)-1 \\
t
\end{array}\right)=[0 . . n] \quad \begin{aligned}
h & =\text { assoc }(\text { get } t) v^{\prime} \\
g^{\prime} & =\text { zip }(\text { filter }(\lambda i \rightarrow \text { notElem } i(\text { get } t)) t) \text { as } \\
h^{\prime} & =h+g^{\prime}
\end{aligned}
$$

in $\operatorname{map}\left(\lambda i \rightarrow\right.$ fromJust (lookup $\left.\left.i h^{\prime}\right)\right) t$

Assuming Shape-Injectivity

$$
\left.\begin{array}{l}
\text { inv }::([\alpha], \quad[\alpha]) \rightarrow[\alpha] \\
\text { inv }([], \quad-)=[] \\
\text { inv }\left(v^{\prime}, \quad \quad \text { as }\right)= \\
\text { let } n=\left(\text { shapeInv }\left(\text { length } v^{\prime}\right)\right)-1 \\
t
\end{array}\right)=[0 . . n] \quad \begin{aligned}
h & =\text { assoc }(\text { get } t) v^{\prime} \\
g^{\prime} & =\text { zip }(\text { filter }(\lambda i \rightarrow \text { notElem } i(\text { get } t)) t) \text { as } \\
h^{\prime} & =h+g^{\prime}
\end{aligned}
$$

in $\operatorname{map}\left(\lambda i \rightarrow\right.$ fromJust (lookup $\left.\left.i h^{\prime}\right)\right) t$

But how to obtain shapeInv ???

Assuming Shape-Injectivity

$$
\begin{aligned}
& \text { inv : }([\alpha], \quad[\alpha]) \rightarrow[\alpha] \\
& \operatorname{inv}([],-)=[] \\
& \operatorname{inv}\left(v^{\prime}, \quad a s\right)= \\
& \text { let } n=\left(\text { shapeInv }\left(\text { length } v^{\prime}\right)\right)-1 \\
& t=[0 . . n] \\
& h=\operatorname{assoc}(\text { get } t) v^{\prime} \\
& g^{\prime}=\operatorname{zip}(\text { filter }(\lambda i \rightarrow \text { notElem } i(\text { get } t)) t) a s \\
& h^{\prime}=h+g^{\prime}
\end{aligned}
$$

in map $\left(\lambda i \rightarrow\right.$ fromJust (lookup $\left.\left.i h^{\prime}\right)\right) t$

But how to obtain shapeInv ???
Just for experimentation:
shapeInv :: Int \rightarrow Int
shapeInv $I_{V}=$ head $[n+1 \mid n \leftarrow[0 .$.$] , (length ($ get $\left.[0 . . n]))==I_{V}\right]$

Some Tests

Works quite nicely in some cases:

$$
\begin{aligned}
\text { get }=\text { tail } \rightsquigarrow & \text { put "abcde" "xyz" = "axyz", using } \\
& \text { compl "abcde" }=[\text { 'a'] }
\end{aligned}
$$

Some Tests

Works quite nicely in some cases:

$$
\left.\begin{array}{rll}
\text { get }=\text { tail } \rightsquigarrow & \text { put "abcde" "xyz" }=\text { "axyz", using } \\
& \text { compl "abcde" }=[\text { 'a'] }
\end{array}\right\}
$$

Some Tests

Works quite nicely in some cases:

$$
\left.\begin{array}{rll}
\text { get }=\text { tail } \rightsquigarrow & \text { put "abcde" "xyz" }=\text { "axyz", using } \\
& \text { compl "abcde" }=[' a ']
\end{array}\right\}
$$

But not so in others:

$$
\text { get }=\text { take } 3 \rightsquigarrow \text { put "abcde" "abc" = "abc" }
$$

Some Tests

Works quite nicely in some cases:

$$
\begin{array}{rll}
\text { get }=\text { tail } \rightsquigarrow & \text { put "abcde" "xyz" }=\text { "axyz", using } \\
& \text { compl "abcde" }=[\text { 'a'] } \\
\text { get }=\text { init } \rightsquigarrow & \text { put "abcde" "xyz" }=" x y z e ", ~ u s i n g ~ \\
& \text { compl "abcde" }=[' e ']
\end{array}
$$

But not so in others:

$$
\text { get }=\text { take } 3 \rightsquigarrow \text { put "abcde" "abc" = "abc" }
$$

The problem: have forgotten to take the original source length into account.

Some Tests

Works quite nicely in some cases:

$$
\left.\begin{array}{rll}
\text { get }=\text { tail } \rightsquigarrow & \text { put "abcde" "xyz" }=\text { "axyz", using } \\
& \text { compl "abcde" }=[' a ']
\end{array}\right\}
$$

But not so in others:

$$
\text { get }=\text { take } 3 \rightsquigarrow \text { put "abcde" "abc" = "abc" }
$$

The problem: have forgotten to take the original source length into account.

Better:

$$
\begin{aligned}
& \text { shapeInv }:: \text { Int } \rightarrow \text { Int } \rightarrow \text { Int } \\
& \text { shapeInv } I_{s} I_{v}=\text { head }\left[n+1 \mid n \leftarrow\left(I_{s}-1\right):[0 . .],\right. \\
& \\
& \\
& \left.(\text { length }(\text { get }[0 . . n]))==I_{v}\right]
\end{aligned}
$$

Conclusion

[V., POPL'09]:

- very lightweight, easy access to bidirectionality
- full treatment of equality and ordering constraints
- proofs, using free theorems and equational reasoning
- a datatype-generic account of the whole story

Conclusion

[V., POPL'09]:

- very lightweight, easy access to bidirectionality
- full treatment of equality and ordering constraints
- proofs, using free theorems and equational reasoning
- a datatype-generic account of the whole story

Here:

- a constant-complement perspective on the method
- ... helps expanding its scope to updates that affect shape

Conclusion

[V., POPL'09]:

- very lightweight, easy access to bidirectionality
- full treatment of equality and ordering constraints
- proofs, using free theorems and equational reasoning
- a datatype-generic account of the whole story

Here:

- a constant-complement perspective on the method
- ... helps expanding its scope to updates that affect shape

Outlook:

- ... could also be a way to inject/exploit "user knowledge"

Conclusion

[V., POPL'09]:

- very lightweight, easy access to bidirectionality
- full treatment of equality and ordering constraints
- proofs, using free theorems and equational reasoning
- a datatype-generic account of the whole story

Here:

- a constant-complement perspective on the method
- ... helps expanding its scope to updates that affect shape

Outlook:

- ... could also be a way to inject/exploit "user knowledge"
- combination with syntactic bidirectionalization à la [Matsuda et al., ICFP'07] is work in progress

Conclusion

[V., POPL'09]:

- very lightweight, easy access to bidirectionality
- full treatment of equality and ordering constraints
- proofs, using free theorems and equational reasoning
- a datatype-generic account of the whole story

Here:

- a constant-complement perspective on the method
- ... helps expanding its scope to updates that affect shape

Outlook:

- ... could also be a way to inject/exploit "user knowledge"
- combination with syntactic bidirectionalization à la [Matsuda et al., ICFP'07] is work in progress
- efficiency issues untackled so far, ...

References I

Fi Bancilhon and N. Spyratos.
Update semantics of relational views.
ACM Transactions on Database Systems, 6(3):557-575, 1981.
囯 J.N. Foster, M.B. Greenwald, J.T. Moore, B.C. Pierce, and A. Schmitt.
Combinators for bidirectional tree transformations: A linguistic approach to the view-update problem.
ACM Transactions on Programming Languages and Systems, 29(3):17, 2007.

雷 K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi.
Bidirectionalization transformation based on automatic derivation of view complement functions.
In International Conference on Functional Programming, Proceedings, pages 47-58. ACM Press, 2007.

References II

嗇 J. Voigtländer.
Bidirectionalization for free!
In Principles of Programming Languages, Proceedings, pages 165-176. ACM Press, 2009.

- P. Wadler.

Theorems for free!
In Functional Programming Languages and Computer
Architecture, Proceedings, pages 347-359. ACM Press, 1989.

