Free Theorems - Foundations

Janis Voigtländer
University of Bonn

October 18th, 2010

Using a Free Theorem [Wadler 1989]

For every

$$
\text { get }::[\alpha] \rightarrow[\alpha]
$$

we have

$$
\operatorname{map} f(\text { get } I)=\operatorname{get}(\operatorname{map} f I)
$$

for arbitrary f and I, where

$$
\begin{aligned}
& \operatorname{map}::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta] \\
& \operatorname{map} f[]=[] \\
& \operatorname{map} f(a: a s)=(f a):(\operatorname{map} f \text { as })
\end{aligned}
$$

Using a Free Theorem [Wadler 1989]

For every

$$
\text { get }::[\alpha] \rightarrow[\alpha]
$$

we have

$$
\operatorname{map} f(\operatorname{get} I)=\operatorname{get}(\operatorname{map} f l)
$$

for arbitrary f and l, where

$$
\begin{aligned}
& \operatorname{map}::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta] \\
& \operatorname{map} f[]=[] \\
& \operatorname{map} f(a: a s)=(f a):(\operatorname{map} f a s)
\end{aligned}
$$

But how do we know this?

Why map $f(\operatorname{get} I)=\operatorname{get}(\operatorname{map} f I)$, Intuitively

- get $::[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.

Why map $f(\operatorname{get} I)=\operatorname{get}(\operatorname{map} f l)$, Intuitively

- get $::[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list $/$.

Why map $f($ get $I)=\operatorname{get}(\operatorname{map} f I)$, Intuitively

- get $::[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list $/$.
- Which, and in which order/multiplicity, can only be decided based on I.

Why map $f(\operatorname{get} I)=\operatorname{get}(\operatorname{map} f l)$, Intuitively

- get $::[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list l.
- Which, and in which order/multiplicity, can only be decided based on $/$.
- The only means for this decision is to inspect the length of I.

Why map $f(\operatorname{get} I)=\operatorname{get}(\operatorname{map} f l)$, Intuitively

- get $::[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list l.
- Which, and in which order/multiplicity, can only be decided based on I.
- The only means for this decision is to inspect the length of I.
- The lists (map $f /$) and $/$ always have equal length.

Why map $f(\operatorname{get} I)=\operatorname{get}(\operatorname{map} f l)$, Intuitively

- get $::[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list l.
- Which, and in which order/multiplicity, can only be decided based on $/$.
- The only means for this decision is to inspect the length of I.
- The lists (map $f I$) and $/$ always have equal length.
- get always chooses "the same" elements from (map $f l$) for output as it does from $/$,

Why map $f(\operatorname{get} I)=\operatorname{get}(\operatorname{map} f l)$, Intuitively

- get $::[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list l.
- Which, and in which order/multiplicity, can only be decided based on $/$.
- The only means for this decision is to inspect the length of I.
- The lists (map $f I$) and $/$ always have equal length.
- get always chooses "the same" elements from (map $f l$) for output as it does from l, except that in the former case it outputs their images under f.

Why map $f(\operatorname{get} I)=\operatorname{get}(\operatorname{map} f l)$, Intuitively

- get $::[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list l.
- Which, and in which order/multiplicity, can only be decided based on $/$.
- The only means for this decision is to inspect the length of I.
- The lists (map $f I$) and $/$ always have equal length.
- get always chooses "the same" elements from (map $f l$) for output as it does from I, except that in the former case it outputs their images under f.
- (get $(\operatorname{map} f l))$ is equivalent to $(\operatorname{map} f($ get $I))$.

Why map $f(\operatorname{get} I)=\operatorname{get}(\operatorname{map} f l)$, Intuitively

- get $::[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list l.
- Which, and in which order/multiplicity, can only be decided based on $/$.
- The only means for this decision is to inspect the length of I.
- The lists (map $f I$) and $/$ always have equal length.
- get always chooses "the same" elements from (map $f l$) for output as it does from l, except that in the former case it outputs their images under f.
- (get $(\operatorname{map} f l))$ is equivalent to $(\operatorname{map} f($ get $l))$.
- That is what was claimed!

Another Example

$$
\begin{aligned}
& \text { takeWhile }:(\alpha \rightarrow \text { Bool }) \rightarrow[\alpha] \rightarrow[\alpha] \\
& \text { takeWhile } p[]=[] \\
& \text { takeWhile } p(a: a s) \left\lvert\, \begin{array}{ll}
\mid & p a \quad=a:(\text { takeWhile } p \text { as }) \\
& \text { otherwise }=[]
\end{array}\right.
\end{aligned}
$$

Another Example

$$
\begin{aligned}
& \text { takeWhile }::(\alpha \rightarrow \text { Bool }) \rightarrow[\alpha] \rightarrow[\alpha] \\
& \text { takeWhile } p[]=[] \\
& \text { takeWhile } p(a: a s) \left\lvert\, \begin{array}{ll}
& p a \quad=a:(\text { takeWhile } p \text { as }) \\
& \text { otherwise }=[]
\end{array}\right.
\end{aligned}
$$

For arbitrary p, f, and I :

$$
\text { takeWhile } p(\operatorname{map} f I)=\operatorname{map} f(\text { takeWhile }(p \circ f) I)
$$

Provable by induction.

Another Example

$$
\begin{aligned}
& \text { takeWhile }::(\alpha \rightarrow \text { Bool }) \rightarrow[\alpha] \rightarrow[\alpha] \\
& \text { takeWhile } p[]=[] \\
& \text { takeWhile } p(a: a s) \left\lvert\, \begin{array}{ll}
\left\lvert\, \begin{array}{ll}
& \\
& \text { otherwise }=[]
\end{array}\right.
\end{array} \begin{array}{l}
\text { (takeWhile } p \text { as })
\end{array}\right.
\end{aligned}
$$

For arbitrary p, f, and I :

$$
\text { takeWhile } p(\operatorname{map} f I)=\operatorname{map} f(\text { takeWhile }(p \circ f) I)
$$

Provable by induction.
Or again as a free theorem.

Another Example

$$
\text { takeWhile }::(\alpha \rightarrow \text { Bool }) \rightarrow[\alpha] \rightarrow[\alpha]
$$

For arbitrary p, f, and I :

$$
\text { takeWhile } p(\operatorname{map} f I)=\operatorname{map} f(\text { takeWhile }(p \circ f) I)
$$

Provable by induction.
Or again as a free theorem.

Another Example

$$
\begin{aligned}
& \text { takeWhile }:: \\
& \text { filter }:: ~(\alpha \rightarrow \text { Bool }) \rightarrow[\alpha] \rightarrow[\alpha] \\
& \rightarrow[\alpha] \rightarrow[\alpha]
\end{aligned}
$$

For arbitrary p, f, and I :

$$
\begin{aligned}
\text { takeWhile } p(\operatorname{map} f l) & =\operatorname{map} f(\text { takeWhile }(p \circ f) I) \\
\text { filter } p(\operatorname{map} f I) & =\operatorname{map} f(\text { filter }(p \circ f) I)
\end{aligned}
$$

Another Example

$$
\begin{aligned}
\text { takeWhile }::(\alpha & \rightarrow \text { Bool }) \\
\text { filter }::(\alpha] \text { Bool }) \rightarrow[\alpha] & \rightarrow[\alpha] \\
\mathrm{g}::(\alpha & \rightarrow \text { Bool })
\end{aligned} \rightarrow[\alpha] \rightarrow[\alpha] .\left[\begin{array}{l}
\end{array}\right.
$$

For arbitrary p, f, and I :

$$
\begin{aligned}
\text { takeWhile } p(\operatorname{map} f I) & =\operatorname{map} f(\operatorname{takeWhile}(p \circ f) I) \\
\text { filter } p(\operatorname{map} f I) & =\operatorname{map} f(\text { filter }(p \circ f) I) \\
g p(\operatorname{map} f I) & =\operatorname{map} f(g(p \circ f) I)
\end{aligned}
$$

Why $g p(\operatorname{map} f I)=\operatorname{map} f(g(p \circ f) I)$, Intuitively

- $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.

Why $g p(\operatorname{map} f I)=\operatorname{map} f(g(p \circ f) I)$, Intuitively

- $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list l.

Why $g p(\operatorname{map} f I)=\operatorname{map} f(g(p \circ f) I)$, Intuitively

- $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list l.
- Which, and in which order/multiplicity, can only be decided based on I and the input predicate p.

Why $g p(\operatorname{map} f I)=\operatorname{map} f(g(p \circ f) I)$, Intuitively

- $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list l.
- Which, and in which order/multiplicity, can only be decided based on I and the input predicate p.
- The only means for this decision are to inspect the length of I and to check the outcome of p on its elements.

Why $g p(\operatorname{map} f I)=\operatorname{map} f(g(p \circ f) I)$, Intuitively

- $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list l.
- Which, and in which order/multiplicity, can only be decided based on I and the input predicate p.
- The only means for this decision are to inspect the length of I and to check the outcome of p on its elements.
- The lists (map $f /$) and I always have equal length.

Why $g p(\operatorname{map} f I)=\operatorname{map} f(g(p \circ f) I)$, Intuitively

- $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list l.
- Which, and in which order/multiplicity, can only be decided based on I and the input predicate p.
- The only means for this decision are to inspect the length of I and to check the outcome of p on its elements.
- The lists (map $f I$) and I always have equal length.
- Applying p to an element of (map $f l$) always has the same outcome as applying $(p \circ f)$ to the corresponding element of l.

Why $g p(\operatorname{map} f I)=\operatorname{map} f(g(p \circ f) I)$, Intuitively

- $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list l.
- Which, and in which order/multiplicity, can only be decided based on I and the input predicate p.
- The only means for this decision are to inspect the length of I and to check the outcome of p on its elements.
- The lists (map $f /$) and I always have equal length.
- Applying p to an element of (map $f l$) always has the same outcome as applying $(p \circ f)$ to the corresponding element of I.
- g with p always chooses "the same" elements from (map $f l$) for output as does g with $(p \circ f)$ from I, except that in the former case it outputs their images under f.

Why $g p(\operatorname{map} f I)=\operatorname{map} f(g(p \circ f) I)$, Intuitively

- $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list l.
- Which, and in which order/multiplicity, can only be decided based on I and the input predicate p.
- The only means for this decision are to inspect the length of I and to check the outcome of p on its elements.
- The lists (map $f /$) and I always have equal length.
- Applying p to an element of (map $f l$) always has the same outcome as applying $(p \circ f)$ to the corresponding element of I.
- g with p always chooses "the same" elements from (map $f l$) for output as does g with $(p \circ f)$ from I, except that in the former case it outputs their images under f.
- $(\mathrm{g} p(\operatorname{map} f l))$ is equivalent to $(\operatorname{map} f(\mathrm{~g}(p \circ f) I))$.

Why $g p(\operatorname{map} f I)=\operatorname{map} f(g(p \circ f) I)$, Intuitively

- $\mathrm{g}::(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ must work uniformly for every instantiation of α.
- The output list can only contain elements from the input list l.
- Which, and in which order/multiplicity, can only be decided based on I and the input predicate p.
- The only means for this decision are to inspect the length of I and to check the outcome of p on its elements.
- The lists (map $f /$) and I always have equal length.
- Applying p to an element of (map $f l$) always has the same outcome as applying $(p \circ f)$ to the corresponding element of I.
- g with p always chooses "the same" elements from (map $f l$) for output as does g with $(p \circ f)$ from I, except that in the former case it outputs their images under f.
- $(g p(\operatorname{map} f l))$ is equivalent to $(\operatorname{map} f(g(p \circ f) I))$.
- That is what was claimed!

Automatic Generation of Free Theorems

At http://www-ps.iai.uni-bonn.de/ft:

This tool allows to generate free theorems for sublanguages of Haskell as described here.
The source code of the underlying library and a shell-based application using it is available here and here.

```
Please enter a (polymorphic) type, e.g. "(a -> Bool) -> [a] -> [a]" or simply "filter":
g :: (a -> Bool) -> [a] -> [a]
Please choose a sublanguage of Haskell:
- no bottoms (hence no general recursion and no selective strictness)
`general recursion but no selective strictness
* general recursion and selective strictness
Please choose a theorem style (without effect in the sublanguage with no bottoms):
- equational
* inequational
Generate
```


Automatic Generation of Free Theorems

The theorem generated for functions of the type

```
g :: forall a . (a -> Bool) -> [a] -> [a]
```

in the sublanguage of Haskell with no bottoms is:

```
forall t1,t2 in TYPES, R in REL(t1,t2).
    forall p :: t1 -> Bool.
    forall q :: t2 -> Bool.
        (forall (x, y) in R. p x = q y)
        ==> (forall (z,v) in lift{[]}(R).
            (g p z, g q v) in lift{[]}(R))
```

The structural lifting occurring therein is defined as follows:

```
lift{[]}(R)
    = {([], [])}
    u {(x: xs, y : ys) |
        ((x,y) in R) && ((xs, ys) in lift{[]}(R))}
```

Reducing all permissible relation variables to functions yields:

```
forall t1,t2 in TYPES, f :: t1 -> t2.
    forall p :: t1 -> Bool.
    forall q :: t2 -> Bool.
        (forall x :: tl. p x = q (f x))
        ==> (forall y :: [tl]. map f (g p y) = g q (map f y))
```


Formal Background: Parametric Polymorphism

Question: What g have type $\forall \alpha .(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$?

Formal Background: Parametric Polymorphism

Question: What g have type $\forall \alpha$. $(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$?
Approach: Give denotations of types as sets. (A bit naive ...)

Formal Background: Parametric Polymorphism

Question: What g have type $\forall \alpha$. $(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$?
Approach: Give denotations of types as sets. (A bit naive ...)

$$
\begin{array}{ll}
\llbracket \text { Bool } & =\{\text { True, False }\} \\
\llbracket \operatorname{Int} \rrbracket & =\{\ldots,-2,-1,0,1,2, \ldots\}
\end{array}
$$

Formal Background: Parametric Polymorphism

Question: What g have type $\forall \alpha$. $(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$?
Approach: Give denotations of types as sets. (A bit naive ...)

$$
\begin{array}{ll}
\llbracket \text { Bool } & =\{\text { True, False }\} \\
\llbracket!1 n \rrbracket & =\{\ldots,-2,-1,0,1,2, \ldots\} \\
\llbracket\left(\tau_{1}, \tau_{2}\right) \rrbracket & =\llbracket \tau_{1} \rrbracket \times \llbracket \tau_{2} \rrbracket \\
\llbracket[\tau] \rrbracket & =\left\{\left[x_{1}, \ldots, x_{n} \rrbracket \mid n \geq 0, x_{i} \in \llbracket \tau \rrbracket\right\}\right.
\end{array}
$$

Formal Background：Parametric Polymorphism

Question：What g have type $\forall \alpha$ ．$(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$ ？
Approach：Give denotations of types as sets．（A bit naive ．．．）

$$
\begin{aligned}
& \text { 【Bool】 }=\text { \{True, False }\} \\
& \llbracket \operatorname{lnt} \rrbracket=\{\ldots,-2,-1,0,1,2, \ldots\} \\
& \llbracket\left(\tau_{1}, \tau_{2}\right) \rrbracket=\llbracket \tau_{1} \rrbracket \times \llbracket \tau_{2} \rrbracket \\
& \left.\llbracket[\tau] \rrbracket=\left\{\left[x_{1}, \ldots, x_{n}\right] \mid n \geq 0, x_{i} \in \llbracket \tau\right]\right\} \\
& \llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket=\left\{f: \llbracket \tau_{1} \rrbracket \rightarrow \llbracket \tau_{2} \rrbracket\right\}
\end{aligned}
$$

Formal Background: Parametric Polymorphism

Question: What g have type $\forall \alpha .(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$?
Approach: Give denotations of types as sets. (A bit naive ...)

$$
\begin{array}{ll}
\llbracket \text { Bool } & =\{\text { True, False }\} \\
\llbracket \llbracket n \rrbracket & =\{\ldots,-2,-1,0,1,2, \ldots\} \\
\llbracket\left(\tau_{1}, \tau_{2}\right) \rrbracket & =\llbracket \llbracket \tau_{1} \rrbracket \times \llbracket \tau_{2} \rrbracket \\
\mathbb{I} \tau \rrbracket] & =\left\{\left[x_{1}, \ldots, x_{n}\right] \mid n \geq 0, x_{i} \in \llbracket \tau \rrbracket\right\} \\
\llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket & =\left\{f: \llbracket \tau_{1} \rrbracket \rightarrow \llbracket \tau_{2} \rrbracket\right\} \\
\llbracket \forall \alpha . \tau \rrbracket & =?
\end{array}
$$

Formal Background: Parametric Polymorphism

Question: What g have type $\forall \alpha .(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$?
Approach: Give denotations of types as sets. (A bit naive ...)

$$
\begin{array}{ll}
\llbracket \text { Bool } & =\{\text { True, False }\} \\
\llbracket \operatorname{lnt} & =\{\ldots,-2,-1,0,1,2, \ldots\} \\
\llbracket\left(\tau_{1}, \tau_{2}\right) \rrbracket & =\llbracket \tau_{1} \rrbracket \times \llbracket \tau_{2} \rrbracket \\
\llbracket[\tau] \rrbracket & =\left\{\left[x_{1}, \ldots, x_{n}\right] \mid n \geq 0, x_{i} \in \llbracket \tau \rrbracket\right\} \\
\llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket & =\left\{f: \llbracket \tau_{1} \rrbracket \rightarrow \llbracket \tau_{2} \rrbracket\right\} \\
\llbracket \forall \alpha \cdot \tau \rrbracket & =?
\end{array}
$$

- $g \in \llbracket \forall \alpha . \tau \rrbracket$ would have to be a whole "collection" of values: for every type τ^{\prime}, an instance with type $\tau\left[\tau^{\prime} / \alpha\right]$.

Formal Background: Parametric Polymorphism

Question: What g have type $\forall \alpha .(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$?
Approach: Give denotations of types as sets. (A bit naive ...)

$$
\begin{array}{ll}
\llbracket \text { Bool } & =\{\text { True, False }\} \\
\llbracket \operatorname{lnt} & =\{\ldots,-2,-1,0,1,2, \ldots\} \\
\llbracket\left(\tau_{1}, \tau_{2}\right) \rrbracket & =\llbracket \tau_{1} \rrbracket \times \llbracket \tau_{2} \rrbracket \\
\llbracket[\tau] \rrbracket & =\left\{\left[x_{1}, \ldots, x_{n}\right] \mid n \geq 0, x_{i} \in \llbracket \tau \rrbracket\right\} \\
\llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket & =\left\{f: \llbracket \tau_{1} \rrbracket \rightarrow \llbracket \tau_{2} \rrbracket\right\} \\
\llbracket \forall \alpha . \tau \rrbracket & =?
\end{array}
$$

- $g \in \llbracket \forall \alpha . \tau \rrbracket$ would have to be a whole "collection" of values: for every type τ^{\prime}, an instance with type $\tau\left[\tau^{\prime} / \alpha\right]$.
- $\llbracket \forall \alpha . \tau \rrbracket=\left\{g \mid \forall \tau^{\prime} . g_{\tau^{\prime}} \in \llbracket \tau\left[\tau^{\prime} / \alpha\right] \rrbracket\right\}$?

Formal Background: Parametric Polymorphism

Question: What g have type $\forall \alpha .(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$?
Approach: Give denotations of types as sets. (A bit naive ...)

$$
\begin{array}{ll}
\llbracket \text { Bool } & =\{\text { True, False }\} \\
\llbracket \operatorname{lnt} & =\{\ldots,-2,-1,0,1,2, \ldots\} \\
\llbracket\left(\tau_{1}, \tau_{2}\right) \rrbracket & =\llbracket \tau_{1} \rrbracket \times \llbracket \tau_{2} \rrbracket \\
\llbracket[\tau] \rrbracket & =\left\{\left[x_{1}, \ldots, x_{n}\right] \mid n \geq 0, x_{i} \in \llbracket \tau \rrbracket\right\} \\
\llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket & =\left\{f: \llbracket \tau_{1} \rrbracket \rightarrow \llbracket \tau_{2} \rrbracket\right\} \\
\llbracket \forall \alpha . \tau \rrbracket & =?
\end{array}
$$

- $g \in \llbracket \forall \alpha . \tau \rrbracket$ would have to be a whole "collection" of values: for every type τ^{\prime}, an instance with type $\tau\left[\tau^{\prime} / \alpha\right]$.
$-\llbracket \forall \alpha . \tau \rrbracket=\left\{g \mid \forall \tau^{\prime} . g_{\tau^{\prime}} \in \llbracket \tau\left[\tau^{\prime} / \alpha\right] \rrbracket\right\}$?
- But this includes "ad-hoc polymorphic" functions!

Unwanted Ad-Hoc Polymorphism: Example

- With the proposed definition,
$\llbracket \forall \alpha .(\alpha, \alpha) \rightarrow \alpha \rrbracket=\left\{g \mid \forall \tau . g_{\tau}: \llbracket \tau \rrbracket \times \llbracket \tau \rrbracket \rightarrow \llbracket \tau \rrbracket\right\}$.

Unwanted Ad-Hoc Polymorphism: Example

- With the proposed definition,
$\llbracket \forall \alpha .(\alpha, \alpha) \rightarrow \alpha \rrbracket=\left\{g \mid \forall \tau . g_{\tau}: \llbracket \tau \rrbracket \times \llbracket \tau \rrbracket \rightarrow \llbracket \tau \rrbracket\right\}$.
- But this also allows a g with

$$
\begin{aligned}
& g_{\text {Bool }}(x, y)=\operatorname{not} x \\
& g_{\text {Int }}(x, y)=y+1,
\end{aligned}
$$

which is not possible in Haskell at type $\forall \alpha .(\alpha, \alpha) \rightarrow \alpha$.

Unwanted Ad-Hoc Polymorphism: Example

- With the proposed definition,
$\llbracket \forall \alpha .(\alpha, \alpha) \rightarrow \alpha \rrbracket=\left\{g \mid \forall \tau . g_{\tau}: \llbracket \tau \rrbracket \times \llbracket \tau \rrbracket \rightarrow \llbracket \tau \rrbracket\right\}$.
- But this also allows a g with

$$
\begin{aligned}
& g_{\text {Bool }}(x, y)=\operatorname{not} x \\
& g_{\text {Int }}(x, y)=y+1,
\end{aligned}
$$

which is not possible in Haskell at type $\forall \alpha .(\alpha, \alpha) \rightarrow \alpha$.

- To prevent this, we have to compare

$$
\begin{aligned}
& g_{\text {Bool }}: \llbracket \mathrm{Bool} \rrbracket \times \llbracket \mathrm{Bool} \rrbracket \rightarrow \llbracket \mathrm{Bool} \rrbracket \text { and } \\
& g_{\text {Int }}: \llbracket \mathrm{lnt} \rrbracket \times \llbracket \operatorname{lnt} \rrbracket \rightarrow \llbracket \mathrm{lnt} \rrbracket,
\end{aligned}
$$

and ensure that they "behave identically".

Unwanted Ad-Hoc Polymorphism: Example

- With the proposed definition,
$\llbracket \forall \alpha .(\alpha, \alpha) \rightarrow \alpha \rrbracket=\left\{g \mid \forall \tau . g_{\tau}: \llbracket \tau \rrbracket \times \llbracket \tau \rrbracket \rightarrow \llbracket \tau \rrbracket\right\}$.
- But this also allows a g with

$$
\begin{aligned}
& g_{\text {Bool }}(x, y)=\operatorname{not} x \\
& g_{\text {Int }}(x, y)=y+1,
\end{aligned}
$$

which is not possible in Haskell at type $\forall \alpha .(\alpha, \alpha) \rightarrow \alpha$.

- To prevent this, we have to compare

$$
\begin{aligned}
& g_{\text {Bool }}: \llbracket \text { Bool } \rrbracket \times \llbracket \mathrm{Bool} \rrbracket \rightarrow \llbracket \mathrm{Bool} \rrbracket \text { and } \\
& g_{\operatorname{lnt}}: \llbracket \mathrm{lnt} \rrbracket \times \llbracket \operatorname{lnt} \rrbracket \rightarrow \llbracket \mathrm{lnt} \rrbracket,
\end{aligned}
$$

and ensure that they "behave identically".
But how?

Key Idea [Reynolds 1983]

Use arbitrary relations to tie instances together!

Key Idea [Reynolds 1983]

Use arbitrary relations to tie instances together!
In the example ($\mathrm{g}:: \forall \alpha .(\alpha, \alpha) \rightarrow \alpha)$:

- Choose a relation $\mathcal{R} \subseteq \llbracket$ Bool $\rrbracket \times \llbracket \mathrm{Int} \rrbracket$.

Key Idea [Reynolds 1983]

Use arbitrary relations to tie instances together!
In the example ($\mathrm{g}:: \forall \alpha .(\alpha, \alpha) \rightarrow \alpha)$:

- Choose a relation $\mathcal{R} \subseteq \llbracket$ Bool $\rrbracket \times \llbracket \mathrm{Int} \rrbracket$.
- Call $\left(x_{1}, x_{2}\right) \in \llbracket \mathrm{Bool} \rrbracket \times \llbracket \mathrm{Bool} \rrbracket$ and $\left(y_{1}, y_{2}\right) \in \llbracket \mathrm{Int} \rrbracket \times \llbracket \mathrm{Int} \rrbracket$ related if $\left(x_{1}, y_{1}\right) \in \mathcal{R}$ and $\left(x_{2}, y_{2}\right) \in \mathcal{R}$.

Key Idea [Reynolds 1983]

Use arbitrary relations to tie instances together!
In the example ($\mathrm{g}:: \forall \alpha .(\alpha, \alpha) \rightarrow \alpha)$:

- Choose a relation $\mathcal{R} \subseteq \llbracket$ Bool $\rrbracket \times \llbracket \mid \mathrm{nt} \rrbracket$.
- Call $\left(x_{1}, x_{2}\right) \in \llbracket$ Bool $\rrbracket \times \llbracket \mathrm{Bool} \rrbracket$ and $\left(y_{1}, y_{2}\right) \in \llbracket \mathrm{Int} \rrbracket \times \llbracket \mathrm{Int} \rrbracket$ related if $\left(x_{1}, y_{1}\right) \in \mathcal{R}$ and $\left(x_{2}, y_{2}\right) \in \mathcal{R}$.
- Call $f_{1}: \llbracket$ Bool $\rrbracket \times$ Bool \rrbracket 【Bool $\rrbracket, f_{2}: \llbracket|\operatorname{lnt} \rrbracket \times \llbracket \operatorname{lnt} \rrbracket \rightarrow \llbracket| n t \rrbracket$ related if related inputs lead to related outputs.

Key Idea [Reynolds 1983]

Use arbitrary relations to tie instances together!
In the example ($\mathrm{g}:: \forall \alpha .(\alpha, \alpha) \rightarrow \alpha)$:

- Choose a relation $\mathcal{R} \subseteq \llbracket \mathrm{Bool} \rrbracket \times \llbracket \mathrm{Int} \rrbracket$.
- Call $\left(x_{1}, x_{2}\right) \in \llbracket$ Bool $\rrbracket \times \llbracket$ Bool \rrbracket and $\left(y_{1}, y_{2}\right) \in \llbracket|n t \rrbracket \times \llbracket| \mathrm{nt} \rrbracket$ related if $\left(x_{1}, y_{1}\right) \in \mathcal{R}$ and $\left(x_{2}, y_{2}\right) \in \mathcal{R}$.
- Call $f_{1}: \llbracket$ Bool $\rrbracket \times$ Bool \rrbracket 【Bool $\rrbracket, f_{2}: \llbracket|\operatorname{lnt} \rrbracket \times \llbracket \operatorname{lnt} \rrbracket \rightarrow \llbracket| n t \rrbracket$ related if related inputs lead to related outputs.
- Then $g_{\text {Bool }}$ and $g_{\text {Int }}$ with

$$
\begin{aligned}
& g_{\text {Bool }}(x, y)=\text { not } x \\
& g_{\text {Int }}(x, y)=y+1
\end{aligned}
$$

are not related for choice of, e.g., $\mathcal{R}=\{($ True, 1$)\}$.

Key Idea [Reynolds 1983]

Use arbitrary relations to tie instances together!
In the example ($\mathrm{g}:: \forall \alpha .(\alpha, \alpha) \rightarrow \alpha)$:

- Choose a relation $\mathcal{R} \subseteq \llbracket \mathrm{Bool} \rrbracket \times \llbracket \mathrm{Int} \rrbracket$.
- Call $\left(x_{1}, x_{2}\right) \in \llbracket$ Bool $\rrbracket \times \llbracket$ Bool \rrbracket and $\left(y_{1}, y_{2}\right) \in \llbracket|n t \rrbracket \times \llbracket| \mathrm{lnt} \rrbracket$ related if $\left(x_{1}, y_{1}\right) \in \mathcal{R}$ and $\left(x_{2}, y_{2}\right) \in \mathcal{R}$.
- Call $f_{1}: \llbracket$ Bool $\rrbracket \times \llbracket \mathrm{Bool} \rrbracket \rightarrow$ Bool】, $f_{2}: \llbracket|\mathrm{nt} \rrbracket \times \llbracket \mathrm{lnt} \rrbracket \rightarrow \llbracket| \mathrm{nt} \rrbracket$ related if related inputs lead to related outputs.
- Then $g_{\text {Bool }}$ and $g_{\text {Int }}$ with

$$
\begin{aligned}
& g_{\text {Bool }}(x, y)=\operatorname{not} x \\
& g_{\text {Int }}(x, y)=y+1
\end{aligned}
$$

are not related for choice of, e.g., $\mathcal{R}=\{($ True, 1$)\}$.
Reynolds: $g \in \llbracket \forall \alpha . \tau \rrbracket$ iff for every τ_{1}, τ_{2} and $\mathcal{R} \subseteq \llbracket \tau_{1} \rrbracket \times \llbracket \tau_{2} \rrbracket$, $g_{\tau_{1}}$ is related to $g_{\tau_{2}}$ by the "propagation" of \mathcal{R} along τ.

Polymorphic Lambda Calculus

[Girard 1972, Reynolds 1974]
Types: $\tau:=\alpha|\tau \rightarrow \tau| \forall \alpha . \tau$
Terms: $t:=x|\lambda x: \tau . t| t t|\Lambda \alpha . t| t \tau$

Polymorphic Lambda Calculus

[Girard 1972, Reynolds 1974]
Types: $\tau:=\alpha|\tau \rightarrow \tau| \forall \alpha . \tau$
Terms: $t:=x|\lambda x: \tau . t| t t|\Lambda \alpha . t| t \tau$

$$
\ulcorner, x: \tau \vdash x: \tau
$$

Polymorphic Lambda Calculus

[Girard 1972, Reynolds 1974]
Types: $\tau:=\alpha|\tau \rightarrow \tau| \forall \alpha . \tau$
Terms: $t:=x|\lambda x: \tau . t| t t|\Lambda \alpha . t| t \tau$
$\Gamma, x: \tau \vdash x: \tau$
$\frac{\Gamma, x: \tau_{1} \vdash t: \tau_{2}}{\Gamma \vdash\left(\lambda x: \tau_{1} \cdot t\right): \tau_{1} \rightarrow \tau_{2}}$

Polymorphic Lambda Calculus

[Girard 1972, Reynolds 1974]

$$
\begin{aligned}
& \text { Types: } \tau:=\alpha|\tau \rightarrow \tau| \forall \alpha . \tau \\
& \text { Terms: } t:=x|\lambda x: \tau . t| t t|\Lambda \alpha . t| t \tau \\
& \Gamma, x: \tau \vdash x: \tau \\
& \frac{\Gamma, x: \tau_{1} \vdash t: \tau_{2}}{\Gamma \vdash\left(\lambda x: \tau_{1} \cdot t\right): \tau_{1} \rightarrow \tau_{2}} \\
& \frac{\Gamma \vdash t: \tau_{1} \rightarrow \tau_{2} \quad \Gamma \vdash u: \tau_{1}}{\Gamma \vdash(t u): \tau_{2}}
\end{aligned}
$$

Polymorphic Lambda Calculus

[Girard 1972, Reynolds 1974]

$$
\begin{aligned}
& \text { Types: } \tau:=\alpha|\tau \rightarrow \tau| \forall \alpha . \tau \\
& \text { Terms: } t:=x|\lambda x: \tau . t| t t|\Lambda \alpha . t| t \tau \\
& \Gamma, x: \tau \vdash x: \tau \\
& \frac{\Gamma, x: \tau_{1} \vdash t: \tau_{2}}{\Gamma \vdash\left(\lambda x: \tau_{1} \cdot t\right): \tau_{1} \rightarrow \tau_{2}} \\
& \frac{\Gamma \vdash t: \tau_{1} \rightarrow \tau_{2} \quad \Gamma \vdash u: \tau_{1}}{\Gamma \vdash(t u): \tau_{2}} \\
& \frac{\alpha, \Gamma \vdash t: \tau}{\Gamma \vdash(\Lambda \alpha . t): \forall \alpha . \tau}
\end{aligned}
$$

Polymorphic Lambda Calculus

[Girard 1972, Reynolds 1974]

$$
\begin{aligned}
& \text { Types: } \tau:=\alpha|\tau \rightarrow \tau| \forall \alpha . \tau \\
& \text { Terms: } t:=x|\lambda x: \tau . t| t t|\Lambda \alpha . t| t \tau \\
& \quad \Gamma, x: \tau \vdash x: \tau \\
& \frac{\Gamma, x: \tau_{1} \vdash t: \tau_{2}}{\Gamma \vdash\left(\lambda x: \tau_{1} \cdot t\right): \tau_{1} \rightarrow \tau_{2}} \\
& \frac{\Gamma \vdash t: \tau_{1} \rightarrow \tau_{2} \quad \Gamma \vdash u: \tau_{1}}{\Gamma \vdash(t u): \tau_{2}} \\
& \frac{\alpha, \Gamma \vdash t: \tau}{\Gamma \vdash(\Lambda \alpha . t): \forall \alpha \cdot \tau} \\
& \frac{\Gamma \vdash t: \forall \alpha . \tau}{\Gamma \vdash\left(t \tau^{\prime}\right): \tau\left[\tau^{\prime} / \alpha\right]}
\end{aligned}
$$

Polymorphic Lambda Calculus

[Girard 1972, Reynolds 1974]

> Types: $\tau:=\alpha|\tau \rightarrow \tau| \forall \alpha . \tau$
> Terms: $t:=x|\lambda x: \tau . t| t t|\wedge \alpha . t| t \tau$
> $\Gamma, x: \tau \vdash x: \tau$
> $\llbracket \times \rrbracket_{\theta, \sigma}$
> $=\sigma(x)$
> $\frac{\Gamma, x: \tau_{1} \vdash t: \tau_{2}}{\Gamma \vdash\left(\lambda x: \tau_{1} . t\right): \tau_{1} \rightarrow \tau_{2}}$
> $\llbracket \lambda x: \tau_{1} \cdot t \rrbracket_{\theta, \sigma} a=\llbracket t \rrbracket_{\theta, \sigma[x \leftrightarrow a]}$
> $\frac{\Gamma \vdash t: \tau_{1} \rightarrow \tau_{2} \quad \Gamma \vdash u: \tau_{1}}{\Gamma \vdash(t u): \tau_{2}}$
> $\llbracket t u \rrbracket_{\theta, \sigma} \quad=\llbracket t \rrbracket_{\theta, \sigma} \llbracket u \rrbracket_{\theta, \sigma}$
> $\frac{\alpha, \Gamma \vdash t: \tau}{\Gamma \vdash(\Lambda \alpha . t): \forall \alpha . \tau}$
> $\frac{\Gamma \vdash t: \forall \alpha . \tau}{\Gamma \vdash\left(t \tau^{\prime}\right): \tau\left[\tau^{\prime} / \alpha\right]}$
> $\llbracket \Lambda \alpha . t \rrbracket_{\theta, \sigma} S \quad=\llbracket t \rrbracket_{\theta[\alpha \leftrightarrow S], \sigma}$
> $\llbracket t \tau^{\prime} \rrbracket_{\theta, \sigma}$
> $=\llbracket t \rrbracket_{\theta, \sigma} \llbracket \tau^{\prime} \rrbracket_{\theta}$

Parametricity Theorem [Reynolds 1983, Wadler 1989]

Given τ and environments $\theta_{1}, \theta_{2}, \rho$ with $\rho(\alpha) \subseteq \theta_{1}(\alpha) \times \theta_{2}(\alpha)$, define $\Delta_{\tau, \rho} \subseteq \llbracket \tau \rrbracket_{\theta_{1}} \times \llbracket \tau \rrbracket_{\theta_{2}}$ as follows:

Parametricity Theorem [Reynolds 1983, Wadler 1989]

Given τ and environments $\theta_{1}, \theta_{2}, \rho$ with $\rho(\alpha) \subseteq \theta_{1}(\alpha) \times \theta_{2}(\alpha)$, define $\Delta_{\tau, \rho} \subseteq \llbracket \tau \rrbracket_{\theta_{1}} \times \llbracket \tau \rrbracket_{\theta_{2}}$ as follows:
$\Delta_{\alpha, \rho}=\rho(\alpha)$

Parametricity Theorem [Reynolds 1983, Wadler 1989]

Given τ and environments $\theta_{1}, \theta_{2}, \rho$ with $\rho(\alpha) \subseteq \theta_{1}(\alpha) \times \theta_{2}(\alpha)$, define $\Delta_{\tau, \rho} \subseteq \llbracket \tau \rrbracket_{\theta_{1}} \times \llbracket \tau \rrbracket_{\theta_{2}}$ as follows:

$$
\begin{aligned}
& \Delta_{\alpha, \rho}=\rho(\alpha) \\
& \Delta_{\tau_{1} \rightarrow \tau_{2}, \rho}=\left\{\left(f_{1}, f_{2}\right) \mid \forall\left(a_{1}, a_{2}\right) \in \Delta_{\tau_{1}, \rho} .\left(f_{1} a_{1}, f_{2} a_{2}\right) \in \Delta_{\tau_{2}, \rho}\right\}
\end{aligned}
$$

Parametricity Theorem [Reynolds 1983, Wadler 1989]

Given τ and environments $\theta_{1}, \theta_{2}, \rho$ with $\rho(\alpha) \subseteq \theta_{1}(\alpha) \times \theta_{2}(\alpha)$, define $\Delta_{\tau, \rho} \subseteq \llbracket \tau \rrbracket_{\theta_{1}} \times \llbracket \tau \rrbracket_{\theta_{2}}$ as follows:

$$
\begin{aligned}
& \Delta_{\alpha, \rho}=\rho(\alpha) \\
& \Delta_{\tau_{1} \rightarrow \tau_{2}, \rho}=\left\{\left(f_{1}, f_{2}\right) \mid \forall\left(a_{1}, a_{2}\right) \in \Delta_{\tau_{1}, \rho .} .\left(f_{1} a_{1}, f_{2} a_{2}\right) \in \Delta_{\tau_{2}, \rho}\right\} \\
& \Delta_{\forall \alpha . \tau, \rho}=\left\{\left(g_{1}, g_{2}\right) \mid \forall \mathcal{R} \subseteq S_{1} \times S_{2} .\left(g_{1} S_{1}, g_{2} S_{2}\right) \in \Delta_{\tau, \rho[\alpha \mapsto \mathcal{R}]}\right\}
\end{aligned}
$$

Parametricity Theorem [Reynolds 1983, Wadler 1989]

Given τ and environments $\theta_{1}, \theta_{2}, \rho$ with $\rho(\alpha) \subseteq \theta_{1}(\alpha) \times \theta_{2}(\alpha)$, define $\Delta_{\tau, \rho} \subseteq \llbracket \tau \rrbracket_{\theta_{1}} \times \llbracket \tau \rrbracket_{\theta_{2}}$ as follows:

$$
\begin{aligned}
& \Delta_{\alpha, \rho}=\rho(\alpha) \\
& \Delta_{\tau_{1} \rightarrow \tau_{2}, \rho}=\left\{\left(f_{1}, f_{2}\right) \mid \forall\left(a_{1}, a_{2}\right) \in \Delta_{\tau_{1}, \rho} .\left(f_{1} a_{1}, f_{2} a_{2}\right) \in \Delta_{\tau_{2}, \rho}\right\} \\
& \Delta_{\forall \alpha . \tau, \rho}=\left\{\left(g_{1}, g_{2}\right) \mid \forall \mathcal{R} \subseteq S_{1} \times S_{2} .\left(g_{1} S_{1}, g_{2} S_{2}\right) \in \Delta_{\tau, \rho[\alpha \mapsto \mathcal{R}]}\right\}
\end{aligned}
$$

Then, for every closed term t of closed type τ :

$$
\left(\llbracket t \rrbracket_{\emptyset, \emptyset}, \llbracket t \rrbracket_{\emptyset, \emptyset}\right) \in \Delta_{\tau, \emptyset} .
$$

Proof Sketch

Prove the following more general statement:

$$
\Gamma \vdash t: \tau \text { implies }\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau, \rho},
$$ provided $\left(\sigma_{1}(x), \sigma_{2}(x)\right) \in \Delta_{\tau^{\prime}, \rho}$ for every $x: \tau^{\prime}$ in Γ by induction on the structure of typing derivations.

Proof Sketch

Prove the following more general statement:

$$
\begin{aligned}
& \Gamma \vdash t: \tau \text { implies }\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau, \rho}, \\
& \text { provided }\left(\sigma_{1}(x), \sigma_{2}(x)\right) \in \Delta_{\tau^{\prime}, \rho} \text { for every } x: \tau^{\prime} \text { in } \Gamma
\end{aligned}
$$

by induction on the structure of typing derivations.
The base case is immediate.

Proof Sketch

Prove the following more general statement:

$$
\begin{aligned}
& \Gamma \vdash t: \tau \text { implies }\left(\llbracket t \rrbracket_{\left.\theta_{1}, \sigma_{1}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau, \rho},}^{\text {provided }\left(\sigma_{1}(x), \sigma_{2}(x)\right) \in \Delta_{\tau^{\prime}, \rho} \text { for every } x: \tau^{\prime} \text { in } \Gamma}\right.
\end{aligned}
$$

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

$$
\frac{\Gamma, x: \tau_{1} \vdash t: \tau_{2}}{\Gamma \vdash\left(\lambda x: \tau_{1} \cdot t\right): \tau_{1} \rightarrow \tau_{2}}
$$

Proof Sketch

Prove the following more general statement:

$$
\begin{aligned}
& \Gamma \vdash t: \tau \text { implies }\left(\llbracket t \rrbracket_{\left.\theta_{1}, \sigma_{1}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau, \rho},}^{\text {provided }\left(\sigma_{1}(x), \sigma_{2}(x)\right) \in \Delta_{\tau^{\prime}, \rho} \text { for every } x: \tau^{\prime} \text { in } \Gamma}\right.
\end{aligned}
$$

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

$$
\frac{\Gamma, x: \tau_{1} \vdash t: \tau_{2}}{\left(\llbracket \lambda x: \tau_{1} \cdot t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket \lambda x: \tau_{1} \cdot t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1} \rightarrow \tau_{2}, \rho}}
$$

Proof Sketch

Prove the following more general statement:

$$
\begin{aligned}
& \Gamma \vdash t: \tau \text { implies }\left(\llbracket t \rrbracket_{\left.\theta_{1}, \sigma_{1}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau, \rho},}^{\text {provided }\left(\sigma_{1}(x), \sigma_{2}(x)\right) \in \Delta_{\tau^{\prime}, \rho} \text { for every } x: \tau^{\prime} \text { in } \Gamma}\right.
\end{aligned}
$$

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

$$
\frac{\forall\left(a_{1}, a_{2}\right) \in \Delta_{\tau_{1}, \rho} \cdot\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}\left[x \mapsto a_{1}\right]}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}\left[x \mapsto a_{2}\right]}\right) \in \Delta_{\tau_{2}, \rho}}{\left(\llbracket \lambda x: \tau_{1} \cdot t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket \lambda x: \tau_{1} \cdot t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1} \rightarrow \tau_{2}, \rho}}
$$

Proof Sketch

Prove the following more general statement:

$$
\begin{aligned}
& \Gamma \vdash t: \tau \text { implies }\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau, \rho}, \\
& \text { provided }\left(\sigma_{1}(x), \sigma_{2}(x)\right) \in \Delta_{\tau^{\prime}, \rho} \text { for every } x: \tau^{\prime} \text { in } \Gamma
\end{aligned}
$$

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

$$
\begin{gathered}
\forall\left(a_{1}, a_{2}\right) \in \Delta_{\tau_{1}, \rho \cdot}\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}\left[x \mapsto a_{1}\right]}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}\left[x \mapsto a_{2}\right]}\right) \in \Delta_{\tau_{2}, \rho} \\
\left(\llbracket \lambda x: \tau_{1} \cdot t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket \lambda x: \tau_{1} \cdot t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1} \rightarrow \tau_{2}, \rho} \\
\frac{\Gamma \vdash t: \tau_{1} \rightarrow \tau_{2} \quad \Gamma \vdash u: \tau_{1}}{\Gamma \vdash(t u): \tau_{2}}
\end{gathered}
$$

Proof Sketch

Prove the following more general statement:

$$
\begin{aligned}
& \Gamma \vdash t: \tau \text { implies }\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau, \rho}, \\
& \text { provided }\left(\sigma_{1}(x), \sigma_{2}(x)\right) \in \Delta_{\tau^{\prime}, \rho} \text { for every } x: \tau^{\prime} \text { in } \Gamma
\end{aligned}
$$

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

$$
\begin{gathered}
\forall\left(a_{1}, a_{2}\right) \in \Delta_{\tau_{1}, \rho \cdot}\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}\left[x \mapsto a_{1}\right]}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}\left[x \mapsto a_{2}\right]}\right) \in \Delta_{\tau_{2}, \rho} \\
\left(\llbracket \lambda x: \tau_{1} \cdot t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket \lambda x: \tau_{1} \cdot t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1} \rightarrow \tau_{2}, \rho} \\
\frac{\Gamma \vdash t: \tau_{1} \rightarrow \tau_{2} \quad \Gamma \vdash u: \tau_{1}}{\left(\llbracket t u \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t u \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{2}, \rho}}
\end{gathered}
$$

Proof Sketch
Prove the following more general statement:
$\Gamma \vdash t: \tau$ implies $\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau, \rho}$, provided $\left(\sigma_{1}(x), \sigma_{2}(x)\right) \in \Delta_{\tau^{\prime}, \rho}$ for every $x: \tau^{\prime}$ in Γ by induction on the structure of typing derivations. The base case is immediate. In the step cases:

$$
\begin{gathered}
\frac{\forall\left(a_{1}, a_{2}\right) \in \Delta_{\tau_{1}, \rho} \cdot\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}\left[x \mapsto a_{1}\right]}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}\left[x \mapsto a_{2}\right]}\right) \in \Delta_{\tau_{2}, \rho}}{\left(\llbracket \lambda x: \tau_{1} \cdot t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket \lambda x: \tau_{1} \cdot t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1} \rightarrow \tau_{2}, \rho}} \\
\frac{\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1} \rightarrow \tau_{2}, \rho} \quad\left(\llbracket u \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket u \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1}, \rho}}{\left(\llbracket t u \rrbracket_{\theta_{1}, \sigma_{1}} \llbracket t u \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{2}, \rho}}
\end{gathered}
$$

Proof Sketch
Prove the following more general statement:
$\Gamma \vdash t: \tau$ implies $\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau, \rho}$, provided $\left(\sigma_{1}(x), \sigma_{2}(x)\right) \in \Delta_{\tau^{\prime}, \rho}$ for every $x: \tau^{\prime}$ in Γ by induction on the structure of typing derivations. The base case is immediate. In the step cases:

$$
\begin{gathered}
\frac{\forall\left(a_{1}, a_{2}\right) \in \Delta_{\tau_{1}, \rho} \cdot\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}\left[x \mapsto a_{1}\right]}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}\left[x \mapsto a_{2}\right]}\right) \in \Delta_{\tau_{2}, \rho}}{\left(\llbracket \lambda x: \tau_{1} \cdot t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket \lambda x: \tau_{1} \cdot t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1} \rightarrow \tau_{2}, \rho}} \\
\frac{\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1} \rightarrow \tau_{2}, \rho} \quad\left(\llbracket u \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket u \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1}, \rho}}{\left(\llbracket t u \rrbracket_{\left.\theta_{1}, \sigma_{1}, \llbracket t u \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{2}, \rho}}\right.}+\frac{\alpha, \Gamma \vdash t: \tau}{\Gamma \vdash(\Lambda \alpha . t): \forall \alpha . \tau}
\end{gathered}
$$

Proof Sketch

Prove the following more general statement:

$$
\begin{aligned}
& \Gamma \vdash t: \tau \text { implies }\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau, \rho}, \\
& \text { provided }\left(\sigma_{1}(x), \sigma_{2}(x)\right) \in \Delta_{\tau^{\prime}, \rho} \text { for every } x: \tau^{\prime} \text { in } \Gamma
\end{aligned}
$$

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

$$
\begin{gathered}
\frac{\forall\left(a_{1}, a_{2}\right) \in \Delta_{\tau_{1}, \rho}\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}\left[x \mapsto a_{1}\right]}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}\left[x \mapsto a_{2}\right]}\right) \in \Delta_{\tau_{2}, \rho}}{\left(\llbracket \lambda x: \tau_{1} \cdot t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket \lambda x: \tau_{1} \cdot t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1} \rightarrow \tau_{2}, \rho}} \\
\frac{\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1} \rightarrow \tau_{2}, \rho} \quad\left(\llbracket u \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket u \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1}, \rho}}{\left(\llbracket t u \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t u \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{2}, \rho}} \\
\frac{\alpha, \Gamma \vdash t: \tau}{\left(\llbracket \Lambda \alpha \cdot t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket \Lambda \alpha \cdot t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\forall \alpha \cdot \tau, \rho}}
\end{gathered}
$$

Proof Sketch
Prove the following more general statement:
$\Gamma \vdash t: \tau$ implies $\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau, \rho}$, provided $\left(\sigma_{1}(x), \sigma_{2}(x)\right) \in \Delta_{\tau^{\prime}, \rho}$ for every $x: \tau^{\prime}$ in Γ by induction on the structure of typing derivations. The base case is immediate. In the step cases:

$$
\begin{aligned}
& \frac{\forall\left(a_{1}, a_{2}\right) \in \Delta_{\tau_{1}, \rho \cdot} \cdot\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}\left[x \mapsto a_{1}\right]}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}\left[x \mapsto a_{2}\right]}\right) \in \Delta_{\tau_{2}, \rho}}{\left(\llbracket \lambda x: \tau_{1} . t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket \lambda x: \tau_{1} \cdot t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1} \rightarrow \tau_{2}, \rho}} \\
& \frac{\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1} \rightarrow \tau_{2}, \rho} \quad\left(\llbracket u \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket u \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1}, \rho}}{\left(\llbracket t u \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t u \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{2}, \rho}} \\
& \forall \mathcal{R} \subseteq S_{1} \times S_{2} .\left(\llbracket t \rrbracket_{\theta_{1}\left[\alpha \leftrightarrow S_{1}\right], \sigma_{1}}, \llbracket t \rrbracket_{\theta_{2}\left[\alpha \mapsto S_{2}\right], \sigma_{2}}\right) \in \Delta_{\tau, \rho[\alpha \mapsto \mathcal{R}]} \\
& \left(\llbracket \Lambda \alpha . t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket \Lambda \alpha . t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\forall \alpha . \tau, \rho}
\end{aligned}
$$

Proof Sketch
Prove the following more general statement:
$\Gamma \vdash t: \tau$ implies $\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau, \rho}$, provided $\left(\sigma_{1}(x), \sigma_{2}(x)\right) \in \Delta_{\tau^{\prime}, \rho}$ for every $x: \tau^{\prime}$ in Γ by induction on the structure of typing derivations. The base case is immediate. In the step cases:

$$
\begin{gathered}
\frac{\forall\left(a_{1}, a_{2}\right) \in \Delta_{\tau_{1}, \rho \cdot}\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}\left[x \mapsto a_{1}\right]}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}\left[x \mapsto a_{2}\right]}\right) \in \Delta_{\tau_{2}, \rho}}{\left(\llbracket \lambda x: \tau_{1} \cdot t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket \lambda x: \tau_{1} \cdot t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1} \rightarrow \tau_{2}, \rho}} \\
\frac{\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1} \rightarrow \tau_{2}, \rho} \quad\left(\llbracket u \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket u \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1}, \rho}}{\left(\llbracket t u \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t u \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{2}, \rho}} \\
\forall \mathcal{R} \subseteq S_{1} \times S_{2} \cdot\left(\llbracket t \rrbracket_{\left.\theta_{1}\left[\alpha \mapsto S_{1}\right], \sigma_{1}, \llbracket t \rrbracket_{\theta_{2}\left[\alpha \mapsto S_{2}\right], \sigma_{2}}\right) \in \Delta_{\tau, \rho[\alpha \mapsto \mathcal{R}]}}^{\left(\llbracket \Lambda \alpha \cdot t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket \Lambda \alpha \cdot t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\forall \alpha \cdot \tau, \rho}}\right. \\
\frac{\Gamma \vdash t: \forall \alpha \cdot \tau}{\Gamma \vdash\left(t \tau^{\prime}\right): \tau\left[\tau^{\prime} / \alpha\right]}
\end{gathered}
$$

Proof Sketch
Prove the following more general statement:
$\Gamma \vdash t: \tau$ implies $\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau, \rho}$, provided $\left(\sigma_{1}(x), \sigma_{2}(x)\right) \in \Delta_{\tau^{\prime}, \rho}$ for every $x: \tau^{\prime}$ in Γ by induction on the structure of typing derivations. The base case is immediate. In the step cases:

$$
\begin{gathered}
\frac{\forall\left(a_{1}, a_{2}\right) \in \Delta_{\tau_{1}, \rho} .\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}\left[x \mapsto a_{1}\right]}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}\left[x \mapsto a_{2}\right]}\right) \in \Delta_{\tau_{2}, \rho}}{\left(\llbracket \lambda x: \tau_{1} \cdot t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket \lambda x: \tau_{1} \cdot t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1} \rightarrow \tau_{2}, \rho}} \\
\frac{\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1} \rightarrow \tau_{2}, \rho} \quad\left(\llbracket u \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket u \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1}, \rho}}{\left(\llbracket t u \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t u \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{2}, \rho}} \\
\forall \mathcal{R} \subseteq S_{1} \times S_{2 .}\left(\llbracket t \rrbracket_{\theta_{1}\left[\alpha \mapsto S_{1}\right], \sigma_{1}}, \llbracket t \rrbracket_{\theta_{2}\left[\alpha \mapsto S_{2}\right], \sigma_{2}}\right) \in \Delta_{\tau, \rho[\alpha \mapsto \mathcal{R}]} \\
\left(\llbracket \Lambda \alpha \cdot t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket \Lambda \alpha \cdot t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\forall \alpha \cdot \tau, \rho} \\
\Gamma \vdash t: \forall \alpha \cdot \tau \\
\left(\llbracket t \tau^{\prime} \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t \tau^{\prime} \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau\left[\tau^{\prime} / \alpha\right], \rho}
\end{gathered}
$$

Proof Sketch
Prove the following more general statement:
$\Gamma \vdash t: \tau$ implies $\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau, \rho}$, provided $\left(\sigma_{1}(x), \sigma_{2}(x)\right) \in \Delta_{\tau^{\prime}, \rho}$ for every $x: \tau^{\prime}$ in Γ by induction on the structure of typing derivations. The base case is immediate. In the step cases:

$$
\begin{gathered}
\frac{\forall\left(a_{1}, a_{2}\right) \in \Delta_{\tau_{1}, \rho \cdot}\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}\left[x \mapsto a_{1}\right]}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}\left[x \mapsto a_{2}\right]}\right) \in \Delta_{\tau_{2}, \rho}}{\left(\llbracket \lambda x: \tau_{1} \cdot t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket \lambda x: \tau_{1}, t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1} \rightarrow \tau_{2}, \rho}} \\
\frac{\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1} \rightarrow \tau_{2}, \rho} \quad\left(\llbracket u \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket u \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{1}, \rho}}{\left(\llbracket t u \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t u \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau_{2}, \rho}} \\
\forall \mathcal{R} \subseteq S_{1} \times S_{2} \cdot\left(\llbracket t \rrbracket_{\left.\theta_{1}\left[\alpha \mapsto s_{1}\right], \sigma_{1}, \llbracket t \rrbracket_{\theta_{2}\left[\alpha \mapsto S_{2}\right], \sigma_{2}}\right) \in \Delta_{\tau, \rho[\alpha \mapsto \mathcal{R}]}}^{\left(\llbracket \Lambda \alpha \cdot t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket \Lambda \alpha \cdot t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\forall \alpha \cdot \tau, \rho}}\right. \\
\frac{\left(\llbracket t \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\forall \alpha \cdot \tau, \rho}}{\left(\llbracket t \tau^{\prime} \rrbracket_{\theta_{1}, \sigma_{1}}, \llbracket t \tau^{\prime} \rrbracket_{\theta_{2}, \sigma_{2}}\right) \in \Delta_{\tau\left[\tau^{\prime} / \alpha\right], \rho}}
\end{gathered}
$$

Adding Datatypes

Types: $\tau:=\cdots \mid$ Bool $\mid[\tau]$
Terms: $t:=\cdots \mid$ True \mid False $\left|[]_{\tau}\right| t: t \mid$ case t of $\{\cdots\}$

Adding Datatypes

Types: $\tau:=\cdots$ Bool | $[\tau]$
Terms: $t:=\cdots \mid$ True \mid False $\left|[]_{\tau}\right| t: t \mid$ case t of $\{\cdots\}$
$\Gamma \vdash$ True: Bool , $\Gamma \vdash$ False: Bool , $\Gamma \vdash[]_{\tau}:[\tau]$

$$
\begin{gathered}
\frac{\Gamma \vdash t: \tau \quad \Gamma \vdash u:[\tau]}{\Gamma \vdash(t: u):[\tau]} \\
\frac{\Gamma \vdash t: \text { Bool } \quad \Gamma \vdash u: \tau \quad \Gamma \vdash v: \tau}{\Gamma \vdash(\text { case } t \text { of }\{\text { True } \rightarrow u ; \text { False } \rightarrow v\}): \tau} \\
\frac{\Gamma \vdash t:\left[\tau^{\prime}\right] \quad \Gamma \vdash u: \tau \quad \Gamma, x_{1}: \tau^{\prime}, x_{2}:\left[\tau^{\prime}\right] \vdash v: \tau}{\Gamma \vdash\left(\text { case } t \text { of }\left\{[] \rightarrow u ;\left(x_{1}: x_{2}\right) \rightarrow v\right\}\right): \tau}
\end{gathered}
$$

Adding Datatypes

$$
\begin{gathered}
\text { Types: } \tau:=\cdots \mid \text { Bool } \mid[\tau] \\
\text { Terms: } t:=\cdots \mid \text { True } \mid \text { False }\left|[]_{\tau}\right| t: t \mid \text { case } t \text { of }\{\cdots\} \\
\Gamma \vdash \text { True }: \text { Bool }, \Gamma \vdash \text { False }: \text { Bool }, \Gamma \vdash[]_{\tau}:[\tau] \\
\frac{\Gamma \vdash t: \tau \quad \Gamma \vdash u:[\tau]}{\Gamma \vdash(t: u):[\tau]} \\
\frac{\Gamma \vdash t: \text { Bool } \Gamma \vdash u: \tau \quad \Gamma \vdash v: \tau}{\Gamma \vdash(\text { case } t \text { of }\{\text { True } \rightarrow u ; \text { False } \rightarrow v\}): \tau} \\
\frac{\Gamma \vdash t:\left[\tau^{\prime}\right] \quad \Gamma \vdash u: \tau \quad \Gamma, x_{1}: \tau^{\prime}, x_{2}:\left[\tau^{\prime}\right] \vdash v: \tau}{\Gamma \vdash\left(\text { case } t \text { of }\left\{[] \rightarrow u ;\left(x_{1}: x_{2}\right) \rightarrow v\right\}\right): \tau}
\end{gathered}
$$

With the straightforward extension of the semantics and with

$$
\begin{aligned}
\Delta_{\text {Bool }, \rho} & =\{(\text { True, True }),(\text { False, False })\} \\
\Delta_{[\tau], \rho} & =\left\{\left(\left[x_{1}, \ldots, x_{n}\right],\left[y_{1}, \ldots, y_{n}\right]\right) \mid n \geq 0,\left(x_{i}, y_{i}\right) \in \Delta_{\tau, \rho}\right\},
\end{aligned}
$$

the parametricity theorem still holds.

Now Formal Counterpart to Intuitive Reasoning

Given g of type $\forall \alpha .(\alpha \rightarrow$ Bool $) \rightarrow([\alpha] \rightarrow[\alpha])$, by the parametricity theorem:

$$
\left.(\mathrm{g}, \mathrm{~g}) \in \Delta_{\forall \alpha .}(\alpha \rightarrow \text { Bool }) \rightarrow([\alpha] \rightarrow[\alpha]), \emptyset\right)
$$

Now Formal Counterpart to Intuitive Reasoning

Given g of type $\forall \alpha .(\alpha \rightarrow$ Bool $) \rightarrow([\alpha] \rightarrow[\alpha])$, by the parametricity theorem:

$$
\begin{aligned}
& (\mathrm{g}, \mathrm{~g}) \in \Delta_{\forall \alpha .}(\alpha \rightarrow \text { Bool }) \rightarrow([\alpha] \rightarrow[\alpha]), \emptyset \\
\Leftrightarrow & \forall \mathcal{R} \in \operatorname{Rel} .(\mathrm{g}, \mathrm{~g}) \in \Delta_{(\alpha \rightarrow \text { Bool }) \rightarrow([\alpha] \rightarrow[\alpha]),[\alpha \mapsto \mathcal{R}]} \\
& \text { by definition of } \Delta
\end{aligned}
$$

Now Formal Counterpart to Intuitive Reasoning

Given g of type $\forall \alpha .(\alpha \rightarrow$ Bool $) \rightarrow([\alpha] \rightarrow[\alpha])$, by the parametricity theorem:

```
    \((\mathrm{g}, \mathrm{g}) \in \Delta_{\forall \alpha .}(\alpha \rightarrow\) Bool \() \rightarrow([\alpha] \rightarrow[\alpha]), \emptyset\)
\(\Leftrightarrow \forall \mathcal{R} \in \operatorname{Rel} .(\mathrm{g}, \mathrm{g}) \in \Delta_{(\alpha \rightarrow \text { Bool }) \rightarrow([\alpha] \rightarrow[\alpha]),[\alpha \mapsto \mathcal{R}]}\)
\(\Leftrightarrow \forall \mathcal{R} \in \operatorname{Rel},\left(a_{1}, a_{2}\right) \in \Delta_{\alpha \rightarrow \text { Bool },[\alpha \mapsto \mathcal{R}]} .\left(\mathrm{g} a_{1}, \mathrm{~g} a_{2}\right) \in \Delta_{[\alpha] \rightarrow[\alpha],[\alpha \mapsto \mathcal{R}]}\) by definition of \(\Delta\)
```


Now Formal Counterpart to Intuitive Reasoning

Given g of type $\forall \alpha .(\alpha \rightarrow$ Bool $) \rightarrow([\alpha] \rightarrow[\alpha])$, by the parametricity theorem:

```
\((\mathrm{g}, \mathrm{g}) \in \Delta_{\forall \alpha .}(\alpha \rightarrow\) Bool \() \rightarrow([\alpha] \rightarrow[\alpha]), \emptyset\)
\(\Leftrightarrow \forall \mathcal{R} \in \operatorname{Rel} . \quad(\mathrm{g}, \mathrm{g}) \in \Delta_{(\alpha \rightarrow \text { Bool }) \rightarrow([a] \rightarrow[a]),[\alpha \mapsto \mathcal{R}]}\)
\(\Leftrightarrow \forall \mathcal{R} \in \operatorname{Rel},\left(a_{1}, a_{2}\right) \in \Delta_{\alpha \rightarrow \text { Bool },[\alpha \mapsto \mathcal{R}]} \cdot\left(\mathrm{g} a_{1}, \mathrm{~g} a_{2}\right) \in \Delta_{[\alpha] \rightarrow[\alpha],[\alpha \mapsto \mathcal{R}]}\)
\(\Leftrightarrow \forall \mathcal{R} \in \operatorname{Rel},\left(a_{1}, a_{2}\right) \in \Delta_{\alpha \rightarrow \text { Bool },[\alpha \mapsto \mathcal{R}]},\left(I_{1}, I_{2}\right) \in \Delta_{[\alpha],[\alpha \mapsto \mathcal{R}]}\).
    \(\left(\mathrm{g} \mathrm{a} \mathrm{a}_{1} I_{1}, \mathrm{~g} a_{2} I_{2}\right) \in \Delta_{[\alpha],[\alpha \mapsto \mathcal{R}]}\)
    by definition of \(\Delta\)
```


Now Formal Counterpart to Intuitive Reasoning

Given g of type $\forall \alpha .(\alpha \rightarrow$ Bool $) \rightarrow([\alpha] \rightarrow[\alpha])$, by the parametricity theorem:

```
\((\mathrm{g}, \mathrm{g}) \in \Delta_{\forall \alpha .}(\alpha \rightarrow\) Bool \(\left.) \rightarrow([\alpha] \rightarrow[\alpha]), \varnothing\right)\)
\(\Leftrightarrow \forall \mathcal{R} \in \operatorname{Rel} .(\mathrm{g}, \mathrm{g}) \in \Delta_{(\alpha \rightarrow \text { Bool }) \rightarrow([\alpha] \rightarrow[\alpha]),[\alpha \mapsto \mathcal{R}]}\)
\(\Leftrightarrow \forall \mathcal{R} \in \operatorname{Rel},\left(a_{1}, a_{2}\right) \in \Delta_{\alpha \rightarrow \text { Bool },[\alpha \mapsto \mathcal{R}]} \cdot\left(\mathrm{g} a_{1}, \mathrm{~g} a_{2}\right) \in \Delta_{[\alpha] \rightarrow[\alpha],[\alpha \mapsto \mathcal{R}]}\)
\(\Leftrightarrow \forall \mathcal{R} \in \operatorname{Rel},\left(a_{1}, a_{2}\right) \in \Delta_{\alpha \rightarrow \text { Bool },[\alpha \mapsto \mathcal{R}]},\left(I_{1}, I_{2}\right) \in \Delta_{[\alpha],[\alpha \mapsto \mathcal{R}]}\).
    \(\left(\mathrm{g} \mathrm{a} a_{1} l_{1}, \mathrm{~g} a_{2} l_{2}\right) \in \Delta_{[\alpha],[\alpha \mapsto \mathcal{R}]}\)
\(\Rightarrow \forall\left(a_{1}, a_{2}\right) \in \Delta_{\alpha \rightarrow \text { Bool },[\alpha \mapsto f]},\left(l_{1}, l_{2}\right) \in(\) map \(f)\).
    \(\left(\mathrm{g} a_{1} I_{1}, \mathrm{~g} a_{2} I_{2}\right) \in(\operatorname{map} f)\)
```

 by instantiating \(\mathcal{R}=f\) and realising that \(\Delta_{[\alpha],[\alpha \mapsto f]}=\operatorname{map} f\)
 for every function f

Now Formal Counterpart to Intuitive Reasoning

Given g of type $\forall \alpha .(\alpha \rightarrow$ Bool $) \rightarrow([\alpha] \rightarrow[\alpha])$, by the parametricity theorem:

```
\((\mathrm{g}, \mathrm{g}) \in \Delta_{\forall \alpha .}(\alpha \rightarrow\) Bool \(\left.) \rightarrow([\alpha] \rightarrow[\alpha]), \varnothing\right)\)
\(\Leftrightarrow \forall \mathcal{R} \in \operatorname{Rel} .(\mathrm{g}, \mathrm{g}) \in \Delta_{(\alpha \rightarrow \text { Bool }) \rightarrow([\alpha] \rightarrow[\alpha]),[\alpha \mapsto \mathcal{R}]}\)
\(\Leftrightarrow \forall \mathcal{R} \in \operatorname{Rel},\left(a_{1}, a_{2}\right) \in \Delta_{\alpha \rightarrow \text { Bool },[\alpha \mapsto \mathcal{R}]} .\left(\mathrm{g} a_{1}, \mathrm{~g} a_{2}\right) \in \Delta_{[\alpha] \rightarrow[\alpha],[\alpha \mapsto \mathcal{R}]}\)
\(\Leftrightarrow \forall \mathcal{R} \in \operatorname{Rel},\left(a_{1}, a_{2}\right) \in \Delta_{\alpha \rightarrow \text { Bool, }[\alpha \mapsto \mathcal{R}],},\left(I_{1}, l_{2}\right) \in \Delta_{[\alpha],[\alpha \mapsto \mathcal{R}]}\).
    \(\left(g a_{1} l_{1}, g a_{2} / 2\right) \in \Delta_{[\alpha],[\alpha \mapsto R]}\)
\(\Rightarrow \forall\left(a_{1}, a_{2}\right) \in \Delta_{\alpha \rightarrow \text { Bool },[\alpha \mapsto f]},\left(l_{1}, l_{2}\right) \in(\operatorname{map} f)\).
    \(\left(\mathrm{g} a_{1} l_{1}, \mathrm{~g} a_{2} l_{2}\right) \in(\operatorname{map} f)\)
\(\Rightarrow \forall\left(l_{1}, l_{2}\right) \in(\operatorname{map} f) .\left(g(p \circ f) I_{1}, g p I_{2}\right) \in(\operatorname{map} f)\)
    by instantiating \(\left(a_{1}, a_{2}\right)=(p \circ f, p) \in \Delta_{\alpha \rightarrow \text { Bool },[\alpha \mapsto f]}\)
```

for every function f and predicate p.

Now Formal Counterpart to Intuitive Reasoning

Given g of type $\forall \alpha .(\alpha \rightarrow$ Bool $) \rightarrow([\alpha] \rightarrow[\alpha])$, by the parametricity theorem:

for every function f and predicate p.

Now Formal Counterpart to Intuitive Reasoning

Given g of type $\forall \alpha .(\alpha \rightarrow$ Bool $) \rightarrow([\alpha] \rightarrow[\alpha])$, by the parametricity theorem:

for every function f and predicate p.

That is what was claimed!

References

國 J.-Y. Girard.
Interprétation functionelle et élimination des coupures dans
l'arithmétique d'ordre supérieure.
PhD thesis, Université Paris VII, 1972.
目 J.C. Reynolds.
Towards a theory of type structure.
In Colloque sur la Programmation, Proceedings, pages
408-423. Springer-Verlag, 1974.
R J.C. Reynolds.
Types, abstraction and parametric polymorphism.
In Information Processing, Proceedings, pages 513-523.
Elsevier Science Publishers B.V., 1983.

- P. Wadler.

Theorems for free!
In Functional Programming Languages and Computer
Architecture, Proceedings, pages 347-359. ACM Press, 1989.

