Free Theorems — Foundations

Janis Voigtlander

University of Bonn

October 18th, 2010

Using a Free Theorem [Wadler 1989]

For every
get 2 [a] =[]
we have
map f (get /) = get (map f /)
for arbitrary f and /, where
map :: (a — B) = [a] — [5]

map f [] =[]
map f (a:as) = (f a): (map f as)

Using a Free Theorem [Wadler 1989]

For every
get = [a] = [o]

we have
map f (get /) = get (map f /)

for arbitrary f and /, where
map :: (a — B) = [a] — [5]

map f [] =[]
map f (a:as) = (f a): (map f as)

But how do we know this?

Why map f (get /) = get (map f /), Intuitively

» get iz [a] — [a] must work uniformly for every instantiation
of «.

Why map f (get /) = get (map f /), Intuitively

» get iz [a] — [a] must work uniformly for every instantiation
of a.

» The output list can only contain elements from the input list /.

Why map f (get /) = get (map f /), Intuitively
» get iz [a] — [a] must work uniformly for every instantiation
of a.
» The output list can only contain elements from the input list /.

» Which, and in which order/multiplicity, can only be decided
based on /.

Why map f (get /) = get (map f /), Intuitively
» get iz [a] — [a] must work uniformly for every instantiation
of a.
» The output list can only contain elements from the input list /.
» Which, and in which order/multiplicity, can only be decided
based on /.

» The only means for this decision is to inspect the length of /.

Why map f (get /) = get (map f /), Intuitively
» get iz [a] — [a] must work uniformly for every instantiation
of a.
» The output list can only contain elements from the input list /.

» Which, and in which order/multiplicity, can only be decided
based on /.

» The only means for this decision is to inspect the length of /.

» The lists (map f /) and / always have equal length.

Why map f (get /) = get (map f /), Intuitively
» get iz [a] — [a] must work uniformly for every instantiation
of a.
» The output list can only contain elements from the input list /.

» Which, and in which order/multiplicity, can only be decided
based on /.

» The only means for this decision is to inspect the length of /.
» The lists (map f /) and / always have equal length.

» get always chooses “the same” elements from (map f /) for
output as it does from /,

Why map f (get /) = get (map f /), Intuitively
» get iz [a] — [a] must work uniformly for every instantiation
of a.
» The output list can only contain elements from the input list /.

» Which, and in which order/multiplicity, can only be decided
based on /.

» The only means for this decision is to inspect the length of /.
» The lists (map f /) and / always have equal length.

» get always chooses “the same” elements from (map f /) for
output as it does from /, except that in the former case it
outputs their images under f.

Why map f (get /) = get (map f /), Intuitively
» get iz [a] — [a] must work uniformly for every instantiation
of a.
» The output list can only contain elements from the input list /.

» Which, and in which order/multiplicity, can only be decided
based on /.

» The only means for this decision is to inspect the length of /.
» The lists (map f /) and / always have equal length.

» get always chooses “the same” elements from (map f /) for
output as it does from /, except that in the former case it
outputs their images under f.

v

(get (map f 1)) is equivalent to (map f (get /).

Why map f (get /) = get (map f /), Intuitively
» get iz [a] — [a] must work uniformly for every instantiation
of a.
» The output list can only contain elements from the input list /.

» Which, and in which order/multiplicity, can only be decided
based on /.

» The only means for this decision is to inspect the length of /.
» The lists (map f /) and / always have equal length.

» get always chooses “the same” elements from (map f /) for
output as it does from /, except that in the former case it
outputs their images under f.

> (get (map f I)) is equivalent to (map f (get /).

» That is what was claimed!

Another Example

takeWhile :: (& — Bool) — [a] — [a]

takeWhile p [] =]

takeWhile p(a:as) | pa = a: (takeWhile p as)
| otherwise = []

Another Example

takeWhile :: (a — Bool) — [a] — [a]

takeWhile p [] =]

takeWhile p (a:as) | pa = a: (takeWhile p as)
| otherwise = []

For arbitrary p, f, and I
takeWhile p (map f /) = map f (takeWhile (pof) /)

Provable by induction.

Another Example

takeWhile :: (a — Bool) — [a] — [a]

takeWhile p [] =]

takeWhile p (a:as) | pa = a: (takeWhile p as)
| otherwise = []

For arbitrary p, f, and I
takeWhile p (map f /) = map f (takeWhile (pof) /)
Provable by induction.

Or again as a free theorem.

Another Example

takeWhile :: (a — Bool) — [a] — [a]

For arbitrary p, f, and I
takeWhile p (map f /) = map f (takeWhile (pof) /)
Provable by induction.

Or again as a free theorem.

Another Example

takeWhile :: (a — Bool) — [a] — [a]

filter :: (o — Bool) = [a] — [a]

For arbitrary p, f, and [:
takeWhile p (map f /) = map f (takeWhile (pof) /)

filter p (map f /) = map f (filter (pof) /)

Another Example

takeWhile :: (a — Bool) — [a] — [a]

filter :: (o — Bool) = [a] — [a]

g (a0 — Bool) = [a] — [a]

For arbitrary p, f, and [
takeWhile p (map f /)
filter p (map f /)

g p (map f)

map f (takeWhile (pof) /)
map f (filter (pof) /)
map f (g (pof) /)

Why g p (map f /) =map f (g (pof) I), Intuitively

» g (o = Bool) — [a] — [@] must work uniformly for every
instantiation of .

Why g p (map f /) =map f (g (pof) I), Intuitively

» g (o = Bool) — [a] — [@] must work uniformly for every
instantiation of .

» The output list can only contain elements from the input list /.

Why g p (map f /) =map f (g (pof) I), Intuitively
» g (o = Bool) — [a] — [@] must work uniformly for every
instantiation of a.
» The output list can only contain elements from the input list /.

» Which, and in which order/multiplicity, can only be decided
based on / and the input predicate p.

Why g p (map f /) =map f (g (pof) I), Intuitively
» g (o = Bool) — [a] — [@] must work uniformly for every
instantiation of a.
» The output list can only contain elements from the input list /.
» Which, and in which order/multiplicity, can only be decided
based on / and the input predicate p.

» The only means for this decision are to inspect the length of /
and to check the outcome of p on its elements.

Why g p (map f /) =map f (g (pof) I), Intuitively
» g (o = Bool) — [a] — [@] must work uniformly for every
instantiation of a.
» The output list can only contain elements from the input list /.

» Which, and in which order/multiplicity, can only be decided
based on / and the input predicate p.

» The only means for this decision are to inspect the length of /
and to check the outcome of p on its elements.

» The lists (map f /) and / always have equal length.

Why g p (map f /) =map f (g (pof) I), Intuitively
» g (o = Bool) — [a] — [@] must work uniformly for every
instantiation of a.
» The output list can only contain elements from the input list /.

» Which, and in which order/multiplicity, can only be decided
based on / and the input predicate p.

» The only means for this decision are to inspect the length of /
and to check the outcome of p on its elements.

» The lists (map f /) and / always have equal length.

» Applying p to an element of (map 7 /) always has the same
outcome as applying (po f) to the corresponding element of /.

Why g p (map f /) =map f (g (pof) I), Intuitively

» g (o = Bool) — [a] — [@] must work uniformly for every
instantiation of a.

» The output list can only contain elements from the input list /.

» Which, and in which order/multiplicity, can only be decided
based on / and the input predicate p.

» The only means for this decision are to inspect the length of /
and to check the outcome of p on its elements.

» The lists (map f /) and / always have equal length.

» Applying p to an element of (map 7 /) always has the same
outcome as applying (po f) to the corresponding element of /.

» g with p always chooses “the same” elements from (map f /)
for output as does g with (p o f) from [, except that in the
former case it outputs their images under f.

Why g p (map f /) =map f (g (pof) I), Intuitively

>

v

g (o — Bool) — [a] — [a] must work uniformly for every
instantiation of .

The output list can only contain elements from the input list /.

Which, and in which order/multiplicity, can only be decided
based on / and the input predicate p.

The only means for this decision are to inspect the length of /
and to check the outcome of p on its elements.

The lists (map f /) and / always have equal length.

Applying p to an element of (map f /) always has the same
outcome as applying (po f) to the corresponding element of /.

g with p always chooses “the same” elements from (map f /)
for output as does g with (p o f) from [, except that in the
former case it outputs their images under f.

(g p (map f 1)) is equivalent to (map f (g (po 1) I)).

Why g p (map f /) =map f (g (pof) I), Intuitively
» g (o = Bool) — [a] — [@] must work uniformly for every
instantiation of a.
» The output list can only contain elements from the input list /.

» Which, and in which order/multiplicity, can only be decided
based on / and the input predicate p.

» The only means for this decision are to inspect the length of /
and to check the outcome of p on its elements.

» The lists (map f /) and / always have equal length.

» Applying p to an element of (map 7 /) always has the same
outcome as applying (po f) to the corresponding element of /.

» g with p always chooses “the same” elements from (map f /)
for output as does g with (p o f) from [, except that in the
former case it outputs their images under f.

» (g p (map f 1)) is equivalent to (map f (g (pof) /).

» That is what was claimed!

Automatic Generation of Free Theorems

At http://www-ps.iai.uni-bonn.de/ft:

This tool allows to generate free theorems for sublanguages of Haskell as described here.

The source code of the underlying library and a shell-based application using it is available
here and here.

Please enter a (polymorphic) type, e.g. "(a -> Bool) -> [a] -> [a]" or simply "filter":

h :: (a -> Bool) -> [a] -> [a]

Please choose a sublanguage of Haskell:

® no bottoms (hence no general recursion and no selective strictness)

® general recursion but no selective strictness

® general recursion and selective strictness

Please choose a theorem style (without effect in the sublanguage with no bottoms):
® equational

®inequational

Generate

http://www-ps.iai.uni-bonn.de/ft

Automatic Generation of Free Theorems

The theorem generated for functions of the type

‘g :: forall a . (a -> Bool) -> [a] -> [a]

in the sublanguage of Haskell with no bottoms is:

forall t1,t2 in TYPES, R in REL(tl,t2).
forall p :: tl -> Bool.
forall q :: t2 -> Bool.
(forall (x, y) inR. p x =
==> (forall (z, v) in lift{
(gpz,gqyv)inlif

+—a

The structural lifting occurring therein is defined as follows:

Lift{[]}(R)
= {(1, [}
u {(x : x5,y

cys) |
((x, y) in R) & ((xs, ys) in Lift{[]}(R))}

Reducing all permissible relation variables to functions yields:

forall t1,t2 in TYPES, f :: tl -> t2.
forall p :: t1l -> Bool.
forall q :: t2 -> Bool.
(foral.l x :: tl. p x =g (f x))
=> (forall'y :: [tl]. map f (g py) =g q (map fy))

Export as PDF Show type instantiations | Enter a new type Help page

Formal Background: Parametric Polymorphism

Question: What g have type Va. (a — Bool) — [a] — [a] 7

Formal Background: Parametric Polymorphism

Question: What g have type Va. (a — Bool) — [a] — [a] 7
Approach: Give denotations of types as sets. (A bit naive ...)

Formal Background: Parametric Polymorphism

Question: What g have type Va. (a — Bool) — [a] — [a] 7
Approach: Give denotations of types as sets. (A bit naive ...)

[Bool] = {True, False}
[Int] ={..,-2,-1,0,1,2,...}

Formal Background: Parametric Polymorphism

Question: What g have type Va. (a — Bool) — [a] — [a] 7
Approach: Give denotations of types as sets. (A bit naive ...)

[Bool] = {True, False}

[Int] = {..,-2,-1,0,1,2,...}
[(r1,72)] = [n] x [nl]

=1 = {[x1,...,xa] | n>0,x €[]}

Formal Background: Parametric Polymorphism

Question: What g have type Va. (a — Bool) — [a] — [a] 7
Approach: Give denotations of types as sets. (A bit naive ...)

[Bool] = {True, False}

[Int] = {..,-2,-1,0,1,2,...}
[(r,2)] = [n] x [7]

=1 = {[x1,...,xa] | n>0,x €[]}
[1—=] = {f:[n] =[]}

Formal Background: Parametric Polymorphism

Question: What g have type Va. (a — Bool) — [a] — [a] 7
Approach: Give denotations of types as sets. (A bit naive ...)

[Bool] = {True FaIse}

[Int] = {.. -1,0,1,2,...}
[,)] = [mal % [[72]]

(kg = {bqa,-- -, x] [n=0,x €[]}
|[7’1 — Tz]] =

{f [nl =[]}
[Va.7] ?

Formal Background: Parametric Polymorphism

Question: What g have type Va. (a — Bool) — [a] — [a] 7
Approach: Give denotations of types as sets. (A bit naive ...)

[Bool] = {True, False}

[Int] = {..,-2,-1,0,1,2,...}
[(ri.2)] = [n] x []

=1 = {[x1,...,xa] | n>0,x €[]}
[1—=] = {f:[n] =[]}

[Va.7] =7

» g € [Va.7] would have to be a whole “collection” of values:
for every type 7/, an instance with type 7[7'/a].

Formal Background: Parametric Polymorphism

Question: What g have type Va. (a — Bool) — [a] — [a] 7
Approach: Give denotations of types as sets. (A bit naive ...)

[Bool] = {True, False}

[Int] = {..,-2,-1,0,1,2,...}
[(ri.2)] = [n] x []

=1 = {[x1,...,xa] | n>0,x €[]}
[1—=] = {f:[n] =[]}

[Va.7] =7

» g € [Va.7] would have to be a whole “collection” of values:
for every type 7/, an instance with type 7[7'/a].

> [Vor] = {g | v7'. gr € [7[7'/ed]} 7

Formal Background: Parametric Polymorphism

Question: What g have type Va. (a — Bool) — [a] — [a] 7
Approach: Give denotations of types as sets. (A bit naive ...)

[Bool] = {True, False}

[Int] = {..,-2,-1,0,1,2,...}
[(ri.2)] = [n] x []

=1 = {[x1,...,xa] | n>0,x €[]}
[1—=] = {f:[n] =[]}

[Va.7] =7

» g € [Va.7] would have to be a whole “collection” of values:
for every type 7/, an instance with type 7[7'/a].

> [Var] ={g | V7. g~ € [r[7'/a]]} ?
» But this includes “ad-hoc polymorphic” functions!

Unwanted Ad-Hoc Polymorphism: Example

> With the proposed definition,
[Va. (o,) = o] ={g | V7. g- : [7] x [7] = [7]}-

Unwanted Ad-Hoc Polymorphism: Example

> With the proposed definition,
[Va. (o,) = o] ={g | V7. g- : [7] x [7] = [7]}-
> But this also allows a g with

8Bool (X7y) = not x
gt (x,y) = y+1,

which is not possible in Haskell at type Va. (o,) — a.

Unwanted Ad-Hoc Polymorphism: Example

> With the proposed definition,
[Va. (o,) = o] ={g | V7. g- : [7] x [7] = [7]}-
> But this also allows a g with

8Bool (X7y) = not x
gt (x,y) = y+1,

which is not possible in Haskell at type V. (o,) — a.

» To prevent this, we have to compare

8Bool : [Bool] x [Bool] — [Bool] and
gint : [Int] x [Int] — [Int],

and ensure that they “behave identically”.

Unwanted Ad-Hoc Polymorphism: Example

> With the proposed definition,
[Va. (o,) = o] ={g | V7. g- : [7] x [7] = [7]}-
> But this also allows a g with

8Bool (X7y) = not x
gt (x,y) = y+1,

which is not possible in Haskell at type V. (o,) — a.

» To prevent this, we have to compare

8Bool : [Bool] x [Bool] — [Bool] and
gint : [Int] x [Int] — [Int],

and ensure that they “behave identically”.
But how?

Key ldea [Reynolds 1983]

Use arbitrary relations to tie instances together!

Key ldea [Reynolds 1983]

Use arbitrary relations to tie instances together!
In the example (g :: Vo (o,) = a):
» Choose a relation R C [Bool] x [Int].

Key ldea [Reynolds 1983]

Use arbitrary relations to tie instances together!
In the example (g :: Vo (o,) = a):
» Choose a relation R C [Bool] x [Int].
» Call (x1,x2) € [Bool] x [Bool] and (y1,y2) € [Int] x [Int]
related if (x1,y1) € R and (x2,y2) € R.

Key ldea [Reynolds 1983]

Use arbitrary relations to tie instances together!
In the example (g :: Vo (o,) = a):
» Choose a relation R C [Bool] x [Int].
» Call (x1,x2) € [Bool] x [Bool] and (y1,y2) € [Int] x [Int]
related if (x1,y1) € R and (x2,y2) € R.
» Call f; : [Bool] x [Bool] — [Bool], f : [Int] x [Int] — [Int]
related if related inputs lead to related outputs.

Key ldea [Reynolds 1983]

Use arbitrary relations to tie instances together!

In the example (g :: Vo (o,) = a):

>

>

Choose a relation R C [Bool] x [Int].

Call (x1,x2) € [Bool] x [Bool] and (y1, y2) € [Int] x [Int]
related if (x1,y1) € R and (x2,y2) € R.

Call f : [Bool] x [Bool] — [Bool], f» : [Int] x [Int] — [Int]
related if related inputs lead to related outputs.

Then ggool and gt with

8Bool (Xa)/) = not x
gnt (xy) = y+1

are not related for choice of, e.g., R = {(True, 1)}.

Key ldea [Reynolds 1983]

Use arbitrary relations to tie instances together!
In the example (g :: Vo (o,) = a):
» Choose a relation R C [Bool] x [Int].
» Call (x1,x2) € [Bool] x [Bool] and (y1,y2) € [Int] x [Int]
related if (x1,y1) € R and (x2,y2) € R.
» Call f; : [Bool] x [Bool] — [Bool], f : [Int] x [Int] — [Int]
related if related inputs lead to related outputs.

» Then ggool and gyt with

8Bool (Xa)/) = not x
gnt (xy) = y+1

are not related for choice of, e.g., R = {(True, 1)}.

Reynolds: g € [Va.7] iff for every 71,72 and R C [r1] X [2],
gr is related to g, by the “propagation” of R
along 7.

Polymorphic Lambda Calculus
[Girard 1972, Reynolds 1974|
Types: 7:=a |7 — 7 | Va.T

Terms: t:=x | Ax:7t|tt|Nat]|tT

Polymorphic Lambda Calculus
[Girard 1972, Reynolds 1974|

Types: T:=a |7 —= 7 | Va.r
Terms: t:=x | Ax:7t|tt|Nat]|tT

Mx:7kx:71

Polymorphic Lambda Calculus
[Girard 1972, Reynolds 1974|

Types: 7:=a |7 — 7 | Va.T
Terms: t:=x | Ax:7t|tt|Nat]|tT
Mx:7kEx:7

Mx:mmbEt:m
rl—(AXZTl.t)ZTl—>T2

Polymorphic Lambda Calculus
[Girard 1972, Reynolds 1974]

Types: 7:=a |7 — 7 | Va.T
Terms: t:=x | Ax:7t|tt|Nat]|tT
Mx:TEx:7

Mx:mmbEt:m
rl—(AXZTl.t)ZTl—>T2

lEt:m — NlFu:m
M= (tu):m

Polymorphic Lambda Calculus
[Girard 1972, Reynolds 1974]

Types: 7:=a |7 — 7 | Va.T
Terms: t:=x | Ax:7t|tt|Nat]|tT
Mx:TEx:7

Mx:mmbEt:m
rl—(AXZTl.t)ZTl—>T2

lEt:m — NlFu:m
M= (tu):m

a,l+t:T
I+ (Aa.t) : Va.r

Polymorphic Lambda Calculus
[Girard 1972, Reynolds 1974]

Types: 7:=a |7 — 7 | Va.T
Terms: t:=x | Ax:7t|tt|Nat]|tT
Mx:TEx:7

Mx:mmbEt:m
rl—(AXZTl.t)ZTl—>T2

Tt —>m lu:m
M= (tu):m

a,l+t:T
I+ (Aa.t) : Va.r

[+t:VarT
M= (t7):7[r"/a]

Polymorphic Lambda Calculus
[Girard 1972, Reynolds 1974]

Types: 7:=a |7 — 7 | Va.T
Terms: t:=x | Ax:7t|tt|Nat]|tT
Mx:7kx:71 [[X]]e,a = o(x)

Mx:mmbEt:m
rl—(AXZTl.t)ZTl—>7'2

[Ax:71tloo @ = [tlooxsa)

Tt —>m lu:m
ME(tu):m

[t u]]H,U = |[t]]9,0 |[“]]9,0

a,l+t:T
I+ (Aa.t) : Va.r

I[/\Oé.t]]gﬂ S = IIt]]O[Ou—}S],O'

-t:VarT / o /
FF(t7) e ja] Lt 7o = [thoo 7o

Parametricity Theorem [Reynolds 1983, Wadler 1989]

Given 7 and environments 61, 02, p with p(a) C 61(a) x 62(«),
define A, , C [7]s, x [7]o, as follows:

10

Parametricity Theorem [Reynolds 1983, Wadler 1989]

Given 7 and environments 61, 02, p with p(a) C 61(a) x 62(«),
define A, , C [7]s, x [7]o, as follows:

Bap = pla)

10

Parametricity Theorem [Reynolds 1983, Wadler 1989]

Given 7 and environments 61, 02, p with p(a) C 61(a) x 62(«),
define A, , C [7]s, x [7]o, as follows:

Aoy = pla)
A71—>7'2,p = {(flv f2) | v(31; 32) € Aﬁ,p- (fl ai, fH 32) S ATz,p}

10

Parametricity Theorem [Reynolds 1983, Wadler 1989]

Given 7 and environments 61, 02, p with p(a) C 61(a) x 62(«),
define A, , C [7]s, x [7]o, as follows:

Bap = pla)

A71—>7'2,p = {(ﬁv f2) ’ v(31; 32) € Aﬁ,p- (fl a1, b 32) € ATz,p}
Avarp = {(81,82) | VR C S1 X S2. (81 51,82 S2) € Ar plasr]}

10

Parametricity Theorem [Reynolds 1983, Wadler 1989]

Given 7 and environments 61, 02, p with p(a) C 61(a) x 62(«),
define A, , C [7]s, x [7]o, as follows:

Bap = pla)

A’H—)’Tz,p = {(ﬁv f2) ’ v(31; 32) € Aﬁ,p- (fl a1, b 32) € ATz,p}
Avarp = {(81,82) | VR C S1 X S2. (81 51,82 S2) € Ar plasr]}

Then, for every closed term t of closed type 7:

([t1o.0, [tlo0) € Arp-

10

Proof Sketch

Prove the following more general statement:

[+ t:7 implies ([t]o,,01, [t]62,00) € Drpp
provided (01(x),02(x)) € A, for every x : 7/ in T

by induction on the structure of typing derivations.

11

Proof Sketch

Prove the following more general statement:
[+ t:7 implies ([t]o,,01, [t]62,00) € Drpp
provided (01(x),02(x)) € A, for every x : 7/ in T
by induction on the structure of typing derivations.
The base case is immediate.

11

Proof Sketch

Prove the following more general statement:
Mt t:7 implies ([tlo,,00, [t]6s,00) € Drpp
provided (01(x),02(x)) € A, for every x : 7/ in T
by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

Mx:mmbEt:m
FNe(Ax:m.t) im0 — m

11

Proof Sketch

Prove the following more general statement:

[+ t:7 implies ([t]o,,01, [t]62,00) € Drpp
provided (01(x),02(x)) € A, for every x : 7/ in T

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

Mx:mmbEt:m
(I[)‘X : Tl't]]91701> I[)‘X : 7—1't]]927¢72) € Arsmp

11

Proof Sketch

Prove the following more general statement:

[+ t:7 implies ([t]o,,01, [t]62,00) € Drpp
provided (01(x),02(x)) € A, for every x : 7/ in T

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

v(alv 32) € Aﬁ,p- (l[t]]91,ol[)o—>al]a [[t]]02,0'2[xi—>32]) € A7’2,p
(l[AX : Tl.t]lghgl, |[)\X : Tl.t]lgz’gz) S A71—>7'2,p

11

Proof Sketch

Prove the following more general statement:

[+ t:7 implies ([t]o,,01, [t]62,00) € Drpp
provided (01(x),02(x)) € A, for every x : 7/ in T

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

v(alv 32) € Arp p. (l[t]]91,01[x»—>al]a I[t]]GQ,UQ[XHQQ]) €A,
(l[AX : Tl.t]lghgl, |[)\X : Tl.t]lgz’gz) S A71—>7'2,p
MlM-t:m—m Mu:m
M= (tu):m

11

Proof Sketch

Prove the following more general statement:

[+ t:7 implies ([t]o,,01, [t]62,00) € Drpp
provided (01(x),02(x)) € A, for every x : 7/ in T

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

V(a1, a2) € Aryp. ([tlo 01 xsar]s [tl0s.001x0s20]) € Drayp
(IMx = m1-tloy,o0, IAX 2 T1-tl0n,00) € Drissmap
MlM-t:m—m Mu:m
(I[t u]]91,¢71> I[t u]]92702) SRAV W,

11

Proof Sketch

Prove the following more general statement:

[+ t:7 implies ([t]o,,01, [t]62,00) € Drpp
provided (01(x),02(x)) € A, for every x : 7/ in T

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

V(a1, a2) € Aryp. ([tlo 01 xsar]s [tl0s.001x0s20]) € Drayp
(IMx = m1-tloy,o0, IAX 2 T1-tl0n,00) € Drissmap
([t161.01: [t162,00) € Drisrs ([uloy,01: [ul6s,05) € Ary p
([t uloy,o0: [t U]6s00) € Dryp

11

Proof Sketch

Prove the following more general statement:

[+ t:7 implies ([t]o,,01, [t]62,00) € Drpp
provided (01(x),02(x)) € A, for every x : 7/ in T

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

V(a1, a2) € Aryp. ([tlo 01 xsar]s [tl0s.001x0s20]) € Drayp
(IMx = m1-tloy,o0, IAX 2 T1-tl0n,00) € Drissmap
([t161.01: [t162,00) € Drisrs ([uloy,01: [ul6s,05) € Ary p
([t uloy,o0: [t U]6s00) € Dryp
a,lFt:T
M= (Ao.t) : Yot

11

Proof Sketch

Prove the following more general statement:

[+ t:7 implies ([t]o,,01, [t]62,00) € Drpp
provided (01(x),02(x)) € A, for every x : 7/ in T

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

V(a1,22) € Dry p. ([t]0,.01 00 a]: [102.00 005 22]) € Dy
(IMx = m1-tloy,o0, IAX 2 T1-tl0n,00) € Drissmap
([t161.01: [t162,00) € Drisrs ([l .01, [U]0s,0) € Dryp
([t uloy,o0: [t U]6s00) € Dryp
a,lFt:T
([Aa-t]o, .05 [Nx-t]6,,0,) € Avacr,p

11

Proof Sketch

Prove the following more general statement:

[+ t:7 implies ([t]o,,01, [t]62,00) € Drpp
provided (01(x),02(x)) € A, for every x : 7/ in T

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

V(a1,a2) € Ar p. ([tloy,001xsar)s [El0r,001s21) € By
(IMx = m1-tloy,o0, IAX 2 T1-tl0n,00) € Drissmap
([t161.01: [t162,00) € Drisrs ([l .01, [U]0s,0) € Dryp
([t uloy,o0: [t U]6s00) € Dryp
VR C S1 x S2. ([tlos[jas 511015 [Elbajas $2],02) € Dr plarsr]
([Aa-tlo,,005 [Nx-t]l6y,05) € Avar,p

11

Proof Sketch

Prove the following more general statement:

[+ t:7 implies ([t]o,,01, [t]62,00) € Drpp
provided (01(x),02(x)) € A, for every x : 7/ in T

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

V(a1,a2) € Ar p. ([tloy,001xsar)s [El0r,001s21) € By
(IMx = m1-tloy,o0, IAX 2 T1-tl0n,00) € Drissmap
([t161.01: [t162,00) € Drisrs ([l .01, [U]0s,0) € Dryp
([t uloy,o0: [t U]6s00) € Dryp
VR C S1 x S2. ([tlos[jas 511015 [Elbajas $2],02) € Dr plarsr]
([Aa-tlo,,005 [Nx-t]l6y,05) € Avar,p

Ht:Voar
M= (t7):7[r'/a]

11

Proof Sketch

Prove the following more general statement:

[+ t:7 implies ([t]o,,01, [t]62,00) € Drpp
provided (01(x),02(x)) € A, for every x : 7/ in T

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

V(a1, a2) € Ary p. ([l 0100115 [tl62,020x0322) € B
(IMx = m1-tloy,o0, IAX 2 T1-tl0n,00) € Drissmap
([tloy,00, [t]62,0.) € Drisrap ([uloy 005 [ul6s.05) € Dryp
(I[t U]]91,017 I[t U]]92,U2) € ATMJ
VR C S1 % So. ([tloy[ars 511,005 [El6s[0s520.02) € Dr plas]
([Aev.t]oy 01, [N t]p,,05) € Dva.rp
[Ft:Var
([t TI]]91,017 [t 7—/]]92,02) S AT[T’/aLp

11

Proof Sketch

Prove the following more general statement:

[+ t:7 implies ([t]o,,01, [t]62,00) € Drpp
provided (01(x),02(x)) € A, for every x : 7/ in T

by induction on the structure of typing derivations.
The base case is immediate. In the step cases:

V(a1, a2) € Aryp. ([tlo 01 xsar]s [tl0s.001x0s20]) € Drayp
(IMx = m1-tloy,o0, IAX 2 T1-tl0n,00) € Drissmap
(I[t]]‘gl,o'ﬂ |[t]]92,02) EArrp (l[”]]el,au |[”]]92,02) SAV
(I[t U]]91,017 I[t U]]92,U2) € ATMJ
VR C 51 X 52' (l[t]lél[a»—)&],alv |It]]92[a»—>52],02) € AT,p[Oz»—)R]
(II/\a.t]lghgl, II/\a‘t]]92,Uz) S AVa.T,p
(l[t]]91,017 IIt]]Qz,Uz) € AVom-,p
(IIt T/]]91,0’17 ﬂt T/]]92,02) € A7-[7—’/04],;;

11

Adding Datatypes

Types: 7 :=
Terms: t :=

.-+ | Bool | [7]
-+ | True | False | []- | t: t | case t of {---}

12

Adding Datatypes

Types: 7:= --- | Bool | [7]
Terms: t:= --- | True | False | []; | t:t | case t of {---}
[+ True: Bool , It False:Bool , T[] :[7]

Fr=t:r MeEw: 7]
FE(t:u):[7]

[-t : Bool [Fwu:T Fv:T
I+ (case t of {True — u;False — v}): 7

Met: 7] Flu:t Coxi 7 x: [flFv:T
M- (case tof {[] > u;(x1:x)—v}):T

12

Adding Datatypes

Types: 7:= --- | Bool | [7]
Terms: t:= --- | True | False | []; | t:t | case t of {---}
[+ True: Bool , It False:Bool , T[] :[7]

Fr=t:r MeEw: 7]
FE(t:u):[7]

[-t : Bool [Fwu:T Fv:T
I+ (case t of {True — u;False — v}): 7

Met: 7] Flu:t Coxi 7 x: [flFv:T
M- (case tof {[] > u;(x1:x)—v}):T

With the straightforward extension of the semantics and with

Agoolp = {(True, True), (False, False)}
A[T],P = {([X17 vee 7Xn]7 [Y17 v 7)/n]) ’ n> 0, (X,',y,-) € AT,p} s

the parametricity theorem still holds.

12

Now Formal Counterpart to Intuitive Reasoning

Given g of type Va. (a« — Bool) — ([a] — [¢]),
by the parametricity theorem:

(8,8) € Ava. (a—Bool)—(Ja]—[a]),0

13

Now Formal Counterpart to Intuitive Reasoning

Given g of type Va. (a« — Bool) — ([a] — [¢]),
by the parametricity theorem:

(8,8) € Ava. (a—Bool)—(Ja]—[a]),0

& VR € Rel. (g,8) € A(asBool)—([a]—=[a]),[a—7R]
by definition of A

13

Now Formal Counterpart to Intuitive Reasoning

Given g of type Va. (a« — Bool) — ([a] — [¢]),
by the parametricity theorem:

VR € Rel. (g,8) € A(aBool)—([a]—[a]),[a—R]
& VR € Rel, (a1, a2) € AusBool[asr] (8 31,8 a2) € Ala]sa][asR]
by definition of A

13

Now Formal Counterpart to Intuitive Reasoning

Given g of type Va. (a« — Bool) — ([a] — [¢]),
by the parametricity theorem:

VR € Rel,(a1,32) € AqsBooljamsR]- (& 31,8 32) € Ajg)—s[a] [amR]
& VR € Rel, (a1, 22) € Aq—Bool[asR]s (15 2) € Do) jarsR]-

(g a1 h,g @ b) € D] [amsr]
by definition of A

13

Now Formal Counterpart to Intuitive Reasoning

Given g of type Va. (a« — Bool) — ([a] — [¢]),
by the parametricity theorem:

VR € Rel,(a1,32) € AqsBool,jasR]s (1, 2) € Ala]fasR]-
(g a1 h,g a2 h) € A [asR]
= V(a1, &) € Aa%BooI,[ou—nf]a (h, k) € (map f).
(g a1 h,g a2 b) € (map f)
by instantiating R = f and realising that A[y) [qsr] = map f

for every function f

13

Now Formal Counterpart to Intuitive Reasoning

Given g of type Va. (a« — Bool) — ([a] — [¢]),
by the parametricity theorem:

V(a1,a2) € Aa%BooI,[ou—nf]a (h, k) € (map f).
(g a1 h,g a2 b) € (map f)

= V(h, k) € (map). (g (pof) h,g p k) € (nap f)
by instantiating (a1,32) = (p© f, P) € Aa_Booljars]

for every function f and predicate p.

13

Now Formal Counterpart to Intuitive Reasoning

Given g of type Va. (a« — Bool) — ([a] — [¢]),
by the parametricity theorem:

V(h, k) € (map f). (g (pof) h,g p k) € (map f)
< Vh.map f (g (pof) h)=gp (map f h)
by inlining

for every function f and predicate p.

13

Now Formal Counterpart to Intuitive Reasoning

Given g of type Va. (a« — Bool) — ([a] — [¢]),
by the parametricity theorem:

Vh.map f (g (pof) h) =g p (map f h)
for every function f and predicate p.

That is what was claimed!

13

References

@ J.-Y. Girard.
Interprétation functionelle et élimination des coupures dans
I'arithmétique d’ordre supérieure.
PhD thesis, Université Paris VII, 1972.

@ J.C. Reynolds.
Towards a theory of type structure.
In Colloque sur la Programmation, Proceedings, pages
408-423. Springer-Verlag, 1974.

@ J.C. Reynolds.
Types, abstraction and parametric polymorphism.
In Information Processing, Proceedings, pages 513-523.
Elsevier Science Publishers B.V., 1983.

@ P. Wadler.
Theorems for free!
In Functional Programming Languages and Computer
Architecture, Proceedings, pages 347-359. ACM Press, 1989.

	Free Theorems, Intuitively
	Parametric Polymorphism
	Polymorphic Lambda Calculus
	Parametricity Theorem
	Example Derivation
	References

