
Semantic Bidirectionalisation

Janis Voigtländer

University of Bonn

October 18th, 2010

Bidirectional Transformation

source view

s v

s ′ v ′

get

1

Bidirectional Transformation

source view

s v

s ′ v ′

get

update

1

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

1

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

1

Bidirectional Transformation

source view

s v

s v

get

=

Acceptability / GetPut

1

Bidirectional Transformation

source view

s v

s v

get

put

=

Acceptability / GetPut

1

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

Consistency / PutGet

1

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

get

Consistency / PutGet

1

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

1

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

Lenses, DSLs

[Foster et al. 2007]

1

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

Syntactic

Bidirectionalisation

[Matsuda et al. 2007]

1

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

Syntactic Bidirectionalisation

[Matsuda et al. 2007]

1

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

?

Semantic Bidirectionalisation

[V. 2009]

1

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

X

Semantic Bidirectionalisation

[V. 2009]

1

Semantic Bidirectionalisation

Aim: Write a higher-order function bff such that any
get and bff get satisfy GetPut, PutGet,

Examples:

1 “Bidirectionalisation for free!”

2

Semantic Bidirectionalisation

Aim: Write a higher-order function bff1 such that any
get and bff get satisfy GetPut, PutGet,

Examples:

1 “Bidirectionalisation for free!” 2

Semantic Bidirectionalisation

Aim: Write a higher-order function bff1 such that any
get and bff get satisfy GetPut, PutGet,

Examples:

“abc” “bc”

“ade” “de”

tail

1 “Bidirectionalisation for free!” 2

Semantic Bidirectionalisation

Aim: Write a higher-order function bff1 such that any
get and bff get satisfy GetPut, PutGet,

Examples:

“abc” “bc”

“ade” “de”

tail

update

1 “Bidirectionalisation for free!” 2

Semantic Bidirectionalisation

Aim: Write a higher-order function bff1 such that any
get and bff get satisfy GetPut, PutGet,

Examples:

“abc” “bc”

“ade” “de”

tail

bff tail

update

1 “Bidirectionalisation for free!” 2

Semantic Bidirectionalisation

Aim: Write a higher-order function bff1 such that any
get and bff get satisfy GetPut, PutGet,

Examples:

‘a’ ‘b’ ‘a’ ‘c’
“abac”

‘a’ ‘b’ ‘x’ ‘c’
“abxc”

flatten

1 “Bidirectionalisation for free!” 2

Semantic Bidirectionalisation

Aim: Write a higher-order function bff1 such that any
get and bff get satisfy GetPut, PutGet,

Examples:

‘a’ ‘b’ ‘a’ ‘c’
“abac”

‘a’ ‘b’ ‘x’ ‘c’
“abxc”

flatten

update

1 “Bidirectionalisation for free!” 2

Semantic Bidirectionalisation

Aim: Write a higher-order function bff1 such that any
get and bff get satisfy GetPut, PutGet,

Examples:

‘a’ ‘b’ ‘a’ ‘c’
“abac”

‘a’ ‘b’ ‘x’ ‘c’
“abxc”

flatten

bff flatten

update

1 “Bidirectionalisation for free!” 2

Semantic Bidirectionalisation

Aim: Write a higher-order function bff1 such that any
get and bff get satisfy GetPut, PutGet,

Examples:

‘a’ ‘b’ ‘a’ ‘c’
“abc”

‘x’ ‘b’ ‘x’ ‘c’
“xbc”

nub ◦ flatten

1 “Bidirectionalisation for free!” 2

Semantic Bidirectionalisation

Aim: Write a higher-order function bff1 such that any
get and bff get satisfy GetPut, PutGet,

Examples:

‘a’ ‘b’ ‘a’ ‘c’
“abc”

‘x’ ‘b’ ‘x’ ‘c’
“xbc”

nub ◦ flatten

update

1 “Bidirectionalisation for free!” 2

Semantic Bidirectionalisation

Aim: Write a higher-order function bff1 such that any
get and bff get satisfy GetPut, PutGet,

Examples:

‘a’ ‘b’ ‘a’ ‘c’
“abc”

‘x’ ‘b’ ‘x’ ‘c’
“xbc”

nub ◦ flatten

bff (nub ◦ flatten)

update

1 “Bidirectionalisation for free!” 2

Analysing Specific Instances

Assume we are given some

get :: [α]→ [α]

How can we, or bff, analyse it without access to its source code?

Idea: How about applying get to some input?

Like:

get [0..n] =


[1..n] if get = tail

[n..0] if get = reverse

[0..(min 4 n)] if get = take 5
...

Then transfer the gained insights to source lists other than [0..n] !

3

Analysing Specific Instances

Assume we are given some

get :: [α]→ [α]

How can we, or bff, analyse it without access to its source code?

Idea: How about applying get to some input?

Like:

get [0..n] =


[1..n] if get = tail

[n..0] if get = reverse

[0..(min 4 n)] if get = take 5
...

Then transfer the gained insights to source lists other than [0..n] !

3

Analysing Specific Instances

Assume we are given some

get :: [α]→ [α]

How can we, or bff, analyse it without access to its source code?

Idea: How about applying get to some input?

Like:

get [0..n] =


[1..n] if get = tail

[n..0] if get = reverse

[0..(min 4 n)] if get = take 5
...

Then transfer the gained insights to source lists other than [0..n] !

3

Analysing Specific Instances

Assume we are given some

get :: [α]→ [α]

How can we, or bff, analyse it without access to its source code?

Idea: How about applying get to some input?

Like:

get [0..n] =


[1..n] if get = tail

[n..0] if get = reverse

[0..(min 4 n)] if get = take 5
...

Then transfer the gained insights to source lists other than [0..n] !

3

Using a Free Theorem [Wadler 1989]

For every
get :: [α]→ [α]

we have
map f (get l) = get (map f l)

for arbitrary f and l , where

map :: (α→ β)→ [α]→ [β]
map f [] = []
map f (a : as) = (f a) : (map f as)

4

Using a Free Theorem [Wadler 1989]

For every
get :: [α]→ [α]

we have
map f (get l) = get (map f l)

for arbitrary f and l , where

map :: (α→ β)→ [α]→ [β]
map f [] = []
map f (a : as) = (f a) : (map f as)

Given an arbitrary list s of length n + 1, set l = [0..n], f = (s !!),
leading to:

map (s !!) (get [0..n]) = get (map (s !!) [0..n])

︸ ︷︷ ︸
= get s

4

Using a Free Theorem [Wadler 1989]

For every
get :: [α]→ [α]

we have
map f (get l) = get (map f l)

for arbitrary f and l , where

map :: (α→ β)→ [α]→ [β]
map f [] = []
map f (a : as) = (f a) : (map f as)

Given an arbitrary list s of length n + 1, set l = [0..n], f = (s !!),
leading to:

map (s !!) (get [0..n]) = get (map (s !!) [0..n])︸ ︷︷ ︸
= get s

4

Using a Free Theorem [Wadler 1989]

For every
get :: [α]→ [α]

we have
map f (get l) = get (map f l)

for arbitrary f and l , where

map :: (α→ β)→ [α]→ [β]
map f [] = []
map f (a : as) = (f a) : (map f as)

Given an arbitrary list s of length n + 1,

set l = [0..n], f = (s !!),
leading to:

map (s !!) (get [0..n])

= get (map (s !!) [0..n])︸ ︷︷ ︸

= get s

4

Using a Free Theorem [Wadler 1989]

For every
get :: [α]→ [α]

we have
map f (get l) = get (map f l)

for arbitrary f and l , where

map :: (α→ β)→ [α]→ [β]
map f [] = []
map f (a : as) = (f a) : (map f as)

Given an arbitrary list s of length n + 1,

set f = (s !!), l = [0..n],
leading to:

get s = map (s !!) (get [0..n])

4

The Resulting Bidirectionalisation Scheme by Example

0 1 2 3

[1,2,3]

‘b’ ‘a’ ‘c’ ‘a’

0 → ‘b’

1 → ‘a’

2 → ‘c’

3 → ‘a’

“aca”

0 → ‘b’

1 → ‘x’

2 → ‘c’

3 → ‘a’

1 → ‘x’

2 → ‘c’

3 → ‘a’

? “xca”
bff (tail ◦ flatten)

tail ◦ flatten

update

5

The Resulting Bidirectionalisation Scheme by Example

0 1 2 3

[1,2,3]

‘b’ ‘a’ ‘c’ ‘a’

0 → ‘b’

1 → ‘a’

2 → ‘c’

3 → ‘a’

“aca”

0 → ‘b’

1 → ‘x’

2 → ‘c’

3 → ‘a’

1 → ‘x’

2 → ‘c’

3 → ‘a’

? “xca”
bff (tail ◦ flatten)

5

The Resulting Bidirectionalisation Scheme by Example

0 1 2 3

[1,2,3]

‘b’ ‘a’ ‘c’ ‘a’

0 → ‘b’

1 → ‘a’

2 → ‘c’

3 → ‘a’

“aca”

0 → ‘b’

1 → ‘x’

2 → ‘c’

3 → ‘a’

1 → ‘x’

2 → ‘c’

3 → ‘a’

? “xca”

5

The Resulting Bidirectionalisation Scheme by Example

0 1 2 3

[1,2,3]

‘b’ ‘a’ ‘c’ ‘a’

0 → ‘b’

1 → ‘a’

2 → ‘c’

3 → ‘a’

“aca”

0 → ‘b’

1 → ‘x’

2 → ‘c’

3 → ‘a’

1 → ‘x’

2 → ‘c’

3 → ‘a’

? “xca”

tail ◦ flatten

5

The Resulting Bidirectionalisation Scheme by Example

0 1 2 3

[1,2,3]

‘b’ ‘a’ ‘c’ ‘a’

0 → ‘b’

1 → ‘a’

2 → ‘c’

3 → ‘a’

“aca”

0 → ‘b’

1 → ‘x’

2 → ‘c’

3 → ‘a’

1 → ‘x’

2 → ‘c’

3 → ‘a’

? “xca”

tail ◦ flatten

5

The Resulting Bidirectionalisation Scheme by Example

0 1 2 3

[1,2,3]

‘b’ ‘a’ ‘c’ ‘a’

0 → ‘b’

1 → ‘a’

2 → ‘c’

3 → ‘a’

“aca”

0 → ‘b’

1 → ‘x’

2 → ‘c’

3 → ‘a’

1 → ‘x’

2 → ‘c’

3 → ‘a’

? “xca”

tail ◦ flatten

5

The Resulting Bidirectionalisation Scheme by Example

0 1 2 3

[1,2,3]

‘b’ ‘a’ ‘c’ ‘a’

0 → ‘b’

1 → ‘a’

2 → ‘c’

3 → ‘a’

“aca”

0 → ‘b’

1 → ‘x’

2 → ‘c’

3 → ‘a’

1 → ‘x’

2 → ‘c’

3 → ‘a’

‘b’ ‘x’ ‘c’ ‘a’
“xca”

tail ◦ flatten

5

The Resulting Bidirectionalisation Scheme by Example

0 1 2 3

[1,2,3]

‘b’ ‘a’ ‘c’ ‘a’

0 → ‘b’

1 → ‘a’

2 → ‘c’

3 → ‘a’

“aca”

0 → ‘b’

1 → ‘x’

2 → ‘c’

3 → ‘a’

1 → ‘x’

2 → ‘c’

3 → ‘a’

‘b’ ‘x’ ‘c’ ‘a’
“xca”

bff (tail ◦ flatten)
5

The Resulting Bidirectionalisation Scheme by Example

0 1 2 3

[1,2,3]

‘b’ ‘a’ ‘c’ ‘a’

0 → ‘b’

1 → ‘a’

2 → ‘c’

3 → ‘a’

“aca”

0 → ‘b’

1 → ‘x’

2 → ‘c’

3 → ‘a’

1 → ‘x’

2 → ‘c’

3 → ‘a’

‘b’ ‘x’ ‘c’ ‘a’
“xca”

tail ◦ flatten

5

The Implementation (here: lists only, inefficient version)

bff get s v ′ = let n = (length s)− 1
t = [0..n]
g = zip t s
h = assoc (get t) v ′

h′ = h ++ g
in seq h (map (λi → fromJust (lookup i h′)) t)

assoc [] [] = []
assoc (i : is) (b : bs) = let m = assoc is bs

in case lookup i m of
Nothing → (i , b) : m
Just c | b == c → m

I actual code only slightly more elaborate

I online: http://www-ps.iai.uni-bonn.de/cgi-bin/bff.cgi

6

http://www-ps.iai.uni-bonn.de/cgi-bin/bff.cgi

The Implementation (here: lists only, inefficient version)

bff get s v ′ = let n = (length s)− 1
t = [0..n]
g = zip t s
h = assoc (get t) v ′

h′ = h ++ g
in seq h (map (λi → fromJust (lookup i h′)) t)

assoc [] [] = []
assoc (i : is) (b : bs) = let m = assoc is bs

in case lookup i m of
Nothing → (i , b) : m
Just c | b == c → m

I actual code only slightly more elaborate

I online: http://www-ps.iai.uni-bonn.de/cgi-bin/bff.cgi

6

http://www-ps.iai.uni-bonn.de/cgi-bin/bff.cgi

Another Interesting Example

0 1 0 2

[0,1,2]

‘a’ ‘b’ ‘a’ ‘c’

0 → ‘a’

1 → ‘b’

2 → ‘c’

“abc”

0 → ‘x’

1 → ‘b’

2 → ‘c’

0 → ‘x’

1 → ‘b’

2 → ‘c’

? “xbc”
bff (nub ◦ flatten)

nub ◦ flatten

update

7

Another Interesting Example

0 1 0 2

[0,1,2]

‘a’ ‘b’ ‘a’ ‘c’

0 → ‘a’

1 → ‘b’

2 → ‘c’

“abc”

0 → ‘x’

1 → ‘b’

2 → ‘c’

0 → ‘x’

1 → ‘b’

2 → ‘c’

? “xbc”

7

Another Interesting Example

0 1 0 2

[0,1,2]

‘a’ ‘b’ ‘a’ ‘c’

0 → ‘a’

1 → ‘b’

2 → ‘c’

“abc”

0 → ‘x’

1 → ‘b’

2 → ‘c’

0 → ‘x’

1 → ‘b’

2 → ‘c’

? “xbc”

nub ◦ flatten

7

Another Interesting Example

0 1 0 2

[0,1,2]

‘a’ ‘b’ ‘a’ ‘c’

0 → ‘a’

1 → ‘b’

2 → ‘c’

“abc”

0 → ‘x’

1 → ‘b’

2 → ‘c’

0 → ‘x’

1 → ‘b’

2 → ‘c’

? “xbc”

nub ◦ flatten

7

Another Interesting Example

0 1 0 2

[0,1,2]

‘a’ ‘b’ ‘a’ ‘c’

0 → ‘a’

1 → ‘b’

2 → ‘c’

“abc”

0 → ‘x’

1 → ‘b’

2 → ‘c’

0 → ‘x’

1 → ‘b’

2 → ‘c’

? “xbc”

nub ◦ flatten

7

Another Interesting Example

0 1 0 2

[0,1,2]

‘a’ ‘b’ ‘a’ ‘c’

0 → ‘a’

1 → ‘b’

2 → ‘c’

“abc”

0 → ‘x’

1 → ‘b’

2 → ‘c’

0 → ‘x’

1 → ‘b’

2 → ‘c’

‘x’ ‘b’ ‘x’ ‘c’
“xbc”

nub ◦ flatten

7

What Else?

[V. 2009]:

I full treatment of equality and ordering constraints

I proofs, using free theorems and equational reasoning

I a datatype-generic account of the whole story

Pros of the approach:

I liberation from syntactic constraints

I very lightweight, easy access to bidirectionality

Cons of the approach:

I efficiency still leaves room for improvement

I partiality, e.g., rejection of shape-affecting updates

[V. et al. 2010]:

I a synthesis of syntactic and semantic bidirectionalisation

I . . . to the benefit of both approaches

8

What Else?

[V. 2009]:

I full treatment of equality and ordering constraints

I proofs, using free theorems and equational reasoning

I a datatype-generic account of the whole story

Pros of the approach:

I liberation from syntactic constraints

I very lightweight, easy access to bidirectionality

Cons of the approach:

I efficiency still leaves room for improvement

I partiality, e.g., rejection of shape-affecting updates

[V. et al. 2010]:

I a synthesis of syntactic and semantic bidirectionalisation

I . . . to the benefit of both approaches

8

What Else?

[V. 2009]:

I full treatment of equality and ordering constraints

I proofs, using free theorems and equational reasoning

I a datatype-generic account of the whole story

Pros of the approach:

I liberation from syntactic constraints

I very lightweight, easy access to bidirectionality

Cons of the approach:

I efficiency still leaves room for improvement

I partiality, e.g., rejection of shape-affecting updates

[V. et al. 2010]:

I a synthesis of syntactic and semantic bidirectionalisation

I . . . to the benefit of both approaches

8

What Else?

[V. 2009]:

I full treatment of equality and ordering constraints

I proofs, using free theorems and equational reasoning

I a datatype-generic account of the whole story

Pros of the approach:

I liberation from syntactic constraints

I very lightweight, easy access to bidirectionality

Cons of the approach:

I efficiency still leaves room for improvement

I partiality, e.g., rejection of shape-affecting updates

[V. et al. 2010]:

I a synthesis of syntactic and semantic bidirectionalisation

I . . . to the benefit of both approaches

8

References I

F. Bancilhon and N. Spyratos.
Update semantics of relational views.
ACM Transactions on Database Systems, 6(3):557–575, 1981.

J.N. Foster, M.B. Greenwald, J.T. Moore, B.C. Pierce, and
A. Schmitt.
Combinators for bidirectional tree transformations: A linguistic
approach to the view-update problem.
ACM Transactions on Programming Languages and Systems,
29(3):17, 2007.

K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi.
Bidirectionalization transformation based on automatic
derivation of view complement functions.
In International Conference on Functional Programming,
Proceedings, pages 47–58. ACM Press, 2007.

9

References II

J. Voigtländer.
Bidirectionalization for free!
In Principles of Programming Languages, Proceedings, pages
165–176. ACM Press, 2009.

J. Voigtländer, Z. Hu, K. Matsuda, and M. Wang.
Combining syntactic and semantic bidirectionalization.
In International Conference on Functional Programming,
Proceedings, pages 181–192. ACM Press, 2010.

P. Wadler.
Theorems for free!
In Functional Programming Languages and Computer
Architecture, Proceedings, pages 347–359. ACM Press, 1989.

10

	Bidirectional Transformation
	Semantic Bidirectionalisation
	Conclusion
	References

