
Semantic Bidirectionalisation

Janis Voigtländer

University of Bonn

October 18th, 2010



Bidirectional Transformation

source view

s v

s ′ v ′

get

1



Bidirectional Transformation

source view

s v

s ′ v ′

get

update

1



Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

1



Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

1



Bidirectional Transformation

source view

s v

s v

get

=

Acceptability / GetPut

1



Bidirectional Transformation

source view

s v

s v

get

put

=

Acceptability / GetPut

1



Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

Consistency / PutGet

1



Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

get

Consistency / PutGet

1



Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

1



Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

Lenses, DSLs

[Foster et al. 2007]

1



Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

Syntactic

Bidirectionalisation

[Matsuda et al. 2007]

1



Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

Syntactic Bidirectionalisation

[Matsuda et al. 2007]

1



Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

?

Semantic Bidirectionalisation

[V. 2009]

1



Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

X

Semantic Bidirectionalisation

[V. 2009]

1



Semantic Bidirectionalisation

Aim: Write a higher-order function bff such that any
get and bff get satisfy GetPut, PutGet, . . . .
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Analysing Specific Instances

Assume we are given some

get :: [α]→ [α]

How can we, or bff, analyse it without access to its source code?

Idea: How about applying get to some input?

Like:

get [0..n] =


[1..n] if get = tail

[n..0] if get = reverse

[0..(min 4 n)] if get = take 5
...

Then transfer the gained insights to source lists other than [0..n] !
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Using a Free Theorem [Wadler 1989]

For every
get :: [α]→ [α]

we have
map f (get l) = get (map f l)

for arbitrary f and l , where

map :: (α→ β)→ [α]→ [β]
map f [ ] = [ ]
map f (a : as) = (f a) : (map f as)

4



Using a Free Theorem [Wadler 1989]

For every
get :: [α]→ [α]

we have
map f (get l) = get (map f l)

for arbitrary f and l , where

map :: (α→ β)→ [α]→ [β]
map f [ ] = [ ]
map f (a : as) = (f a) : (map f as)

Given an arbitrary list s of length n + 1, set l = [0..n], f = (s !!),
leading to:

map (s !!) (get [0..n]) = get (map (s !!) [0..n])

︸ ︷︷ ︸
= get s

4



Using a Free Theorem [Wadler 1989]

For every
get :: [α]→ [α]

we have
map f (get l) = get (map f l)

for arbitrary f and l , where

map :: (α→ β)→ [α]→ [β]
map f [ ] = [ ]
map f (a : as) = (f a) : (map f as)

Given an arbitrary list s of length n + 1, set l = [0..n], f = (s !!),
leading to:

map (s !!) (get [0..n]) = get (map (s !!) [0..n])︸ ︷︷ ︸
= get s

4



Using a Free Theorem [Wadler 1989]

For every
get :: [α]→ [α]

we have
map f (get l) = get (map f l)

for arbitrary f and l , where

map :: (α→ β)→ [α]→ [β]
map f [ ] = [ ]
map f (a : as) = (f a) : (map f as)

Given an arbitrary list s of length n + 1,

set l = [0..n], f = (s !!),
leading to:

map (s !!) (get [0..n])

= get (map (s !!) [0..n])︸ ︷︷ ︸

= get s

4



Using a Free Theorem [Wadler 1989]

For every
get :: [α]→ [α]

we have
map f (get l) = get (map f l)

for arbitrary f and l , where

map :: (α→ β)→ [α]→ [β]
map f [ ] = [ ]
map f (a : as) = (f a) : (map f as)

Given an arbitrary list s of length n + 1,

set f = (s !!), l = [0..n],
leading to:

get s = map (s !!) (get [0..n])

4



The Resulting Bidirectionalisation Scheme by Example
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bff (tail ◦ flatten)
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The Implementation (here: lists only, inefficient version)

bff get s v ′ = let n = (length s)− 1
t = [0..n]
g = zip t s
h = assoc (get t) v ′

h′ = h ++ g
in seq h (map (λi → fromJust (lookup i h′)) t)

assoc [ ] [ ] = [ ]
assoc (i : is) (b : bs) = let m = assoc is bs

in case lookup i m of
Nothing → (i , b) : m
Just c | b == c → m

I actual code only slightly more elaborate

I online: http://www-ps.iai.uni-bonn.de/cgi-bin/bff.cgi
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What Else?

[V. 2009]:

I full treatment of equality and ordering constraints

I proofs, using free theorems and equational reasoning

I a datatype-generic account of the whole story

Pros of the approach:

I liberation from syntactic constraints

I very lightweight, easy access to bidirectionality

Cons of the approach:

I efficiency still leaves room for improvement

I partiality, e.g., rejection of shape-affecting updates

[V. et al. 2010]:

I a synthesis of syntactic and semantic bidirectionalisation

I . . . to the benefit of both approaches
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