Circular vs. Higher-Order Shortcut Fusion

Janis Voigtländer

Technische Universität Dresden
March 30th, 2009

Classical Shortcut Fusion [Gill et al., FPCA'93]

Example: upTo $n=$ go 1 where go $i=$ if $i>n$ then [] else i : go $(i+1)$

Classical Shortcut Fusion [Gill et al., FPCA'93]

Example: upTo $n=$ go 1

> where go $i=$ if $i>n$ then [] else $i:$ go $(i+1)$

$$
\begin{array}{ll}
\operatorname{sum}[] & =0 \\
\operatorname{sum}(x: x s) & =x+\operatorname{sum} x s
\end{array}
$$

Classical Shortcut Fusion [Gill et al., FPCA'93]

Example: upTo $n=$ go 1
where go $i=$ if $i>n$ then [] else i : go $(i+1)$

$$
\begin{array}{ll}
\operatorname{sum}[] & =0 \\
\operatorname{sum}(x: x s) & =x+\operatorname{sum} x s
\end{array}
$$

Problem: Expressions like
sum (upTo 10)
require explicit construction of intermediate results.

Classical Shortcut Fusion [Gill et al., FPCA'93]

Example: upTo $n=$ go 1
where go $i=$ if $i>n$ then [] else $i: g o(i+1)$

$$
\begin{array}{ll}
\operatorname{sum}[] & =0 \\
\operatorname{sum}(x: x s) & =x+\operatorname{sum} x s
\end{array}
$$

Problem: Expressions like
sum (upTo 10)
require explicit construction of intermediate results.
Solution: 1. Write upTo in terms of build.

Classical Shortcut Fusion [Gill et al., FPCA'93]

Example: upTo $n=$ go 1
where go $i=$ if $i>n$ then [] else $i: g o(i+1)$

$$
\begin{array}{ll}
\operatorname{sum}[] & =0 \\
\operatorname{sum}(x: x s) & =x+\operatorname{sum} x s
\end{array}
$$

Problem: Expressions like
sum (upTo 10)
require explicit construction of intermediate results.
Solution: 1. Write upTo in terms of build.
2. Write sum in terms of foldr.

Classical Shortcut Fusion [Gill et al., FPCA'93]

Example: upTo $n=$ go 1
where go $i=$ if $i>n$ then [] else $i: g o(i+1)$

$$
\begin{aligned}
\operatorname{sum}[] & =0 \\
\operatorname{sum}(x: x s) & =x+\operatorname{sum} x s
\end{aligned}
$$

Problem: Expressions like
sum (upTo 10)
require explicit construction of intermediate results.
Solution: 1. Write upTo in terms of build.
2. Write sum in terms of foldr.
3. Use the following fusion rule:

$$
\text { foldr } h_{1} h_{2}(\text { build } g) \rightsquigarrow g h_{1} h_{2}
$$

Circular Shortcut Fusion [Fernandes et al., Haskell'07]

Producing intermediate results:

$$
\begin{aligned}
& \text { buildp :: }(\forall a .(b \rightarrow a \rightarrow a) \rightarrow a \rightarrow c \rightarrow(a, z)) \rightarrow c \rightarrow([b], z) \\
& \text { buildp } g c=g(:)[] c
\end{aligned}
$$

Circular Shortcut Fusion [Fernandes et al., Haskell'07]

Producing intermediate results:

$$
\begin{aligned}
& \text { buildp }::(\forall a .(b \rightarrow a \rightarrow a) \rightarrow a \rightarrow c \rightarrow(a, z)) \rightarrow c \rightarrow([b], z) \\
& \text { buildp g c=g }(:)[] c \\
& \text { filterAndCount }::(b \rightarrow \text { Bool }) \rightarrow[b] \rightarrow([b], \text { Int }) \\
& \text { filterAndCount } f=\text { buildp } \cdots
\end{aligned}
$$

Circular Shortcut Fusion [Fernandes et al., Haskell'07]

Producing intermediate results:

$$
\begin{aligned}
& \text { buildp :: }(\forall a .(b \rightarrow a \rightarrow a) \rightarrow a \rightarrow c \rightarrow(a, z)) \rightarrow c \rightarrow([b], z) \\
& \text { buildp } g c=g(:)[] c
\end{aligned}
$$

Consuming intermediate results:

$$
\begin{aligned}
& \text { pfold :: }(b \rightarrow a \rightarrow z \rightarrow a) \rightarrow(z \rightarrow a) \rightarrow([b], z) \rightarrow a \\
& \text { pfold } h_{1} h_{2}(b s, z)=\text { foldr }\left(\lambda b a \rightarrow h_{1} b a z\right)\left(h_{2} z\right) b s
\end{aligned}
$$

Circular Shortcut Fusion [Fernandes et al., Haskell'07]

Producing intermediate results:

$$
\begin{aligned}
& \text { buildp :: }(\forall a .(b \rightarrow a \rightarrow a) \rightarrow a \rightarrow c \rightarrow(a, z)) \rightarrow c \rightarrow([b], z) \\
& \text { buildp } g c=g(:)[] c
\end{aligned}
$$

Consuming intermediate results:

$$
\begin{aligned}
& \text { pfold }::(b \rightarrow a \rightarrow z \rightarrow a) \rightarrow(z \rightarrow a) \rightarrow([b], z) \rightarrow a \\
& \text { pfold } h_{1} h_{2}(b s, z)=\text { foldr }\left(\lambda b a \rightarrow h_{1} b a z\right)\left(h_{2} z\right) b s \\
& \text { normalise }::([\text { Int }], \text { Int }) \rightarrow[\text { Float }] \\
& \text { normalise }=\text { pfold } \cdots
\end{aligned}
$$

Circular Shortcut Fusion [Fernandes et al., Haskell'07]

Producing intermediate results:

$$
\begin{aligned}
& \text { buildp :: }(\forall a .(b \rightarrow a \rightarrow a) \rightarrow a \rightarrow c \rightarrow(a, z)) \rightarrow c \rightarrow([b], z) \\
& \text { buildp } g c=g(:)[] c
\end{aligned}
$$

Consuming intermediate results:

$$
\begin{aligned}
& \text { pfold :: }(b \rightarrow a \rightarrow z \rightarrow a) \rightarrow(z \rightarrow a) \rightarrow([b], z) \rightarrow a \\
& \text { pfold } h_{1} h_{2}(b s, z)=\text { foldr }\left(\lambda b a \rightarrow h_{1} b a z\right)\left(h_{2} z\right) b s
\end{aligned}
$$

The fusion rule:

$$
\begin{gathered}
\text { pfold } h_{1} h_{2}(\text { buildp } g c) \\
\text { let }(a, z)=g\left(\lambda b a \rightarrow h_{1} b a z\right)\left(h_{2} z\right) c \text { in } a
\end{gathered}
$$

Circular Shortcut Fusion [Fernandes et al., Haskell'07]

Producing intermediate results:

$$
\begin{aligned}
& \text { buildp :: }(\forall a .(b \rightarrow a \rightarrow a) \rightarrow a \rightarrow c \rightarrow(a, z)) \rightarrow c \rightarrow([b], z) \\
& \text { buildp } g c=g(:)[] c
\end{aligned}
$$

Consuming intermediate results:

$$
\begin{aligned}
& \text { pfold :: }(b \rightarrow a \rightarrow z \rightarrow a) \rightarrow(z \rightarrow a) \rightarrow([b], z) \rightarrow a \\
& \text { pfold } h_{1} h_{2}(b s, z)=\text { foldr }\left(\lambda b a \rightarrow h_{1} b a z\right)\left(h_{2} z\right) b s
\end{aligned}
$$

The fusion rule:

$$
\begin{gathered}
\text { pfold } h_{1} h_{2}(\text { buildp } g c) \\
\text { let }(a, z)=g\left(\lambda b a \rightarrow h_{1} b a z\right)\left(h_{2} z\right) c \text { in } a
\end{gathered}
$$

Circular Shortcut Fusion [Fernandes et al., Haskell'07]

Producing intermediate results:

$$
\begin{aligned}
& \text { buildp }::(\forall a .(b \rightarrow a \rightarrow a) \rightarrow a \rightarrow c \rightarrow(a, z)) \rightarrow c \rightarrow([b], z) \\
& \text { buildp } g c=g(:)[] c
\end{aligned}
$$

Circular Shortcut Fusion [Fernandes et al., Haskell'07]

Producing intermediate results:

$$
\begin{aligned}
& \text { buildp }::(\forall a .(b \rightarrow a \rightarrow a) \rightarrow a \rightarrow c \rightarrow(a, z)) \rightarrow c \rightarrow([b], z) \\
& \text { buildp } g c=g(:)[] c
\end{aligned}
$$

The type of g forces it to be essentially of the following form:

Circular Shortcut Fusion [Fernandes et al., Haskell'07]

Producing intermediate results:

$$
\begin{aligned}
& \text { buildp :: }(\forall a .(b \rightarrow a \rightarrow a) \rightarrow a \rightarrow c \rightarrow(a, z)) \rightarrow c \rightarrow([b], z) \\
& \text { buildp } g c=g(:)[] c
\end{aligned}
$$

The type of g forces it to be essentially of the following form:

Formal justification: free theorems [Wadler, FPCA'89]

Circular Shortcut Fusion [Fernandes et al., Haskell'07]

Consuming intermediate results:

$$
\begin{aligned}
& \text { pfold }::(b \rightarrow a \rightarrow z \rightarrow a) \rightarrow(z \rightarrow a) \rightarrow([b], z) \rightarrow a \\
& \text { pfold } h_{1} h_{2}(b s, z)=\text { foldr }\left(\lambda b a \rightarrow h_{1} b a z\right)\left(h_{2} z\right) b s
\end{aligned}
$$

A concrete output (buildp $g c$) will be consumed as follows:

Circular Shortcut Fusion [Fernandes et al., Haskell'07] pfold $h_{1} h_{2}(g(:)[] c) \rightsquigarrow$

Circular Shortcut Fusion [Fernandes et al., Haskell'07] pfold $h_{1} h_{2}(g(:)[] c) \rightsquigarrow \operatorname{let}(a, z)=g\left(\lambda b a \rightarrow h_{1} b a z\right)\left(h_{2} z\right) c$ in a

Circular Shortcut Fusion [Fernandes et al., Haskell'07]

 pfold $h_{1} h_{2}(g(:)[] c) \rightsquigarrow \operatorname{let}(a, z)=g\left(\lambda b a \rightarrow h_{1} b a z\right)\left(h_{2} z\right) c$ in a

Circular Shortcut Fusion [Fernandes et al., Haskell'07]

 pfold $h_{1} h_{2}(g(:)[] c) \rightsquigarrow$ let $(a, z)=g\left(\lambda b a \rightarrow h_{1} b a z\right)\left(h_{2} z\right) c$ in a

This is Where I got Interested

- Free-theorems-based transformations had been studied before.

This is Where I got Interested

- Free-theorems-based transformations had been studied before.
- ... but been found to not be totally correct when considering certain language features [Johann and V., POPL'04].

This is Where I got Interested

- Free-theorems-based transformations had been studied before.
- ... but been found to not be totally correct when considering certain language features [Johann and V., POPL'04].
- Circular shortcut fusion depends on evaluation order, which is precisely a "dangerous" corner for free theorems.

This is Where I got Interested

- Free-theorems-based transformations had been studied before.
- ... but been found to not be totally correct when considering certain language features [Johann and V., POPL'04].
- Circular shortcut fusion depends on evaluation order, which is precisely a "dangerous" corner for free theorems.
- So would it be possible to manufacture counterexamples?

A Problem with Selective Strictness

Producing intermediate results:

$$
\begin{aligned}
& \text { buildp :: }(\forall a .(b \rightarrow a \rightarrow a) \rightarrow a \rightarrow c \rightarrow(a, z)) \rightarrow c \rightarrow([b], z) \\
& \text { buildp } g c=g(:)[] c
\end{aligned}
$$

In Haskell, g could also be, for example, of the following form:

A Problem with Selective Strictness

Producing intermediate results:

$$
\begin{aligned}
& \text { buildp :: }(\forall a .(b \rightarrow a \rightarrow a) \rightarrow a \rightarrow c \rightarrow(a, z)) \rightarrow c \rightarrow([b], z) \\
& \text { buildp } g c=g(:)[] c
\end{aligned}
$$

The type of g forces it to be essentially of the following form:

A Problem with Selective Strictness

Producing intermediate results:

$$
\begin{aligned}
& \text { buildp :: }(\forall a .(b \rightarrow a \rightarrow a) \rightarrow a \rightarrow c \rightarrow(a, z)) \rightarrow c \rightarrow([b], z) \\
& \text { buildp } g c=g(:)[] c
\end{aligned}
$$

In Haskell, g could also be, for example, of the following form:

A Problem with Selective Strictness

This would lead to the following replacement:

A Problem with Selective Strictness

This would lead to the following replacement:

A Problem with Selective Strictness

This would lead to the following replacement:

A Problem with Selective Strictness

This would lead to the following replacement:

A Problem with Selective Strictness

This would lead to the following replacement:

A Problem with Selective Strictness

This would lead to the following replacement:

A Problem with Selective Strictness

This would lead to the following replacement:

Total and Partial Correctness [V., FLOPS’08]

Theorem 1
If $h_{2} \perp \neq \perp$ and $h_{1} \perp \perp \perp \neq \perp$, then

$$
\begin{gathered}
\text { pfold } h_{1} h_{2}(\text { buildp } g c) \\
= \\
\text { let }(a, z)=g\left(\lambda b a \rightarrow h_{1} b a z\right)\left(h_{2} z\right) c \text { in } a
\end{gathered}
$$

Total and Partial Correctness [V., FLOPS'08]

Theorem 1
If $h_{2} \perp \neq \perp$ and $h_{1} \perp \perp \perp \neq \perp$, then

$$
\begin{gathered}
\text { pfold } h_{1} h_{2}(\text { buildp } g c) \\
= \\
\text { let }(a, z)=g\left(\lambda b a \rightarrow h_{1} b a z\right)\left(h_{2} z\right) c \text { in } a
\end{gathered}
$$

Theorem 2
Without preconditions,

$$
\begin{gathered}
\text { pfold } \left.h_{1} h_{2} \text { (buildp } g c\right) \\
\text { Đ } \\
\text { let }(a, z)=g\left(\lambda b a \rightarrow h_{1} b a z\right)\left(h_{2} z\right) c \text { in } a
\end{gathered}
$$

Replacing Circularity by Higher-Orderedness
pfold $h_{1} h_{2}(g(:)[] c) \rightsquigarrow$ let $(a, z)=g\left(\lambda b a \rightarrow h_{1} b a z\right)\left(h_{2} z\right) c$ in a

Replacing Circularity by Higher-Orderedness
pfold $h_{1} h_{2}(g(:)[] c) \rightsquigarrow \operatorname{let}(a, z)=g\left(\lambda b a \rightarrow h_{1} b a z\right)\left(h_{2} z\right) c$ in a case $g\left(\lambda b k z \rightarrow h_{1} b(k z) z\right)\left(\lambda z \rightarrow h_{2} z\right) c$ of $(k, z) \rightarrow k z$

Replacing Circularity by Higher-Orderedness

pfold $h_{1} h_{2}(g(:)[] c) \rightsquigarrow$ case $g\left(\lambda b k z \rightarrow h_{1} b(k z) z\right)\left(\lambda z \rightarrow h_{2} z\right) c$ of $(k, z) \rightarrow k z$

Replacing Circularity by Higher-Orderedness

pfold $h_{1} h_{2}(g(:)[] c) \rightsquigarrow$ case $g\left(\lambda b k z \rightarrow h_{1} b(k z) z\right)\left(\lambda z \rightarrow h_{2} z\right) c$ of $(k, z) \rightarrow k z$

Replacing Circularity by Higher-Orderedness

pfold $h_{1} h_{2}(g(:)[] c) \rightsquigarrow$ case $g\left(\lambda b k z \rightarrow h_{1} b(k z) z\right)\left(\lambda z \rightarrow h_{2} z\right) c$ of $(k, z) \rightarrow k z$

Replacing Circularity by Higher-Orderedness
pfold $h_{1} h_{2}(g(:)[] c) \rightsquigarrow$ case $g\left(\lambda b k z \rightarrow h_{1} b(k z) z\right)\left(\lambda z \rightarrow h_{2} z\right) c$ of $(k, z) \rightarrow k z$

Replacing Circularity by Higher-Orderedness

pfold $h_{1} h_{2}(g(:)[] c) \rightsquigarrow$ case $g\left(\lambda b k z \rightarrow h_{1} b(k z) z\right)\left(\lambda z \rightarrow h_{2} z\right) c$ of $(k, z) \rightarrow k z$

Replacing Circularity by Higher-Orderedness

pfold $h_{1} h_{2}(g(:)[] c) \rightsquigarrow$ case $g\left(\lambda b k z \rightarrow h_{1} b(k z) z\right)\left(\lambda z \rightarrow h_{2} z\right) c$ of $(k, z) \rightarrow k z$

No Problem with Selective Strictness

For a g of the problematic form considered earlier:

Total Correctness [V., FLOPS'08]

Theorem 3
Without preconditions,

$$
\text { pfold } h_{1} h_{2} \text { (buildp } g \quad c \text {) }
$$

case $g\left(\lambda b k z \rightarrow h_{1} b(k z) z\right)\left(\lambda z \rightarrow h_{2} z\right) c$ of $(k, z) \rightarrow k z$

Total Correctness [V., FLOPS'08]

Theorem 3
Without preconditions,

$$
\text { pfold } h_{1} h_{2}(\text { buildp } g c)
$$

case $g\left(\lambda b k z \rightarrow h_{1} b(k z) z\right)\left(\lambda z \rightarrow h_{2} z\right) c$ of $(k, z) \rightarrow k z$

Circular vs. Higher-Order Shortcut Fusion

Which flavour is better?

Circular vs. Higher-Order Shortcut Fusion

Which flavour is better?

- Intellectually, I find the circular approach more fascinating.

Circular vs. Higher-Order Shortcut Fusion

Which flavour is better?

- Intellectually, I find the circular approach more fascinating.
- But semantically, the high-order approach is more robust.

Circular vs. Higher-Order Shortcut Fusion

Which flavour is better?

- Intellectually, I find the circular approach more fascinating.
- But semantically, the high-order approach is more robust.
- Performance measurements do not give a very clear picture.

Circular vs. Higher-Order Shortcut Fusion

Which flavour is better?

- Intellectually, I find the circular approach more fascinating.
- But semantically, the high-order approach is more robust.
- Performance measurements do not give a very clear picture.
- There are interesting interactions with rather low-level details of the language implementation!

Tricky Sharing Issues - Circular Shortcut Fusion

 pfold $h_{1} h_{2}($ buildp $g c) \rightsquigarrow$ let $(a, z)=g\left(\lambda b a \rightarrow h_{1} b a z\right)\left(h_{2} z\right) c$ in aTricky Sharing Issues - Circular Shortcut Fusion pfold $h_{1} h_{2}($ buildp $g c) \rightsquigarrow$ let $(a, z)=g\left(\lambda b a \rightarrow h_{1} b a z\right)\left(h_{2} z\right) c$ in a

If $h_{1}=\lambda b a z \rightarrow h_{1}^{\prime} b a(h z)$,

Tricky Sharing Issues - Circular Shortcut Fusion

 pfold $h_{1} h_{2}($ buildp $g c) \rightsquigarrow$ let $(a, z)=g\left(\lambda b a \rightarrow h_{1} b a z\right)\left(h_{2} z\right) c$ in a If $h_{1}=\lambda b$ a $z \rightarrow h_{1}^{\prime} b a(h z)$, then:

Tricky Sharing Issues - Circular Shortcut Fusion

 pfold $h_{1} h_{2}($ buildp $g c) \rightsquigarrow$ let $(a, z)=g\left(\lambda b a \rightarrow h_{1} b a z\right)\left(h_{2} z\right) c$ in a If $h_{1}=\lambda b a z \rightarrow h_{1}^{\prime} b a(h z)$, then using full laziness:

Tricky Sharing Issues - Higher-Order Shortcut Fusion

 pfold $h_{1} h_{2}($ buildp $g c) \rightsquigarrow$ case $g\left(\lambda b k z \rightarrow h_{1} b(k z) z\right)\left(\lambda z \rightarrow h_{2} z\right) c$ of $(k, z) \rightarrow k z$If $h_{1}=\lambda b a z \rightarrow h_{1}^{\prime} b a(h z)$, then:

Tricky Sharing Issues - Higher-Order Shortcut Fusion

 pfold $h_{1} h_{2}($ buildp $g c) \rightsquigarrow$ case $g\left(\lambda b k z \rightarrow h_{1} b(k z) z\right)\left(\lambda z \rightarrow h_{2} z\right) c$ of $(k, z) \rightarrow k z$If $h_{1}=\lambda b a z \rightarrow h_{1}^{\prime} b a(h z)$, then using full laziness:

What can be Learnt

- Both semantic and pragmatic considerations can motivate studying new rules as well as new combinators.

What can be Learnt

- Both semantic and pragmatic considerations can motivate studying new rules as well as new combinators.
- These lessons also inform new developments for more classical shortcut fusion techniques.

What can be Learnt

- Both semantic and pragmatic considerations can motivate studying new rules as well as new combinators.
- These lessons also inform new developments for more classical shortcut fusion techniques.
- There is still an interesting design space to explore!

Recent (and Future?) Developments

- [Pardo et al., PEPM'09] study circular and higher-order shortcut fusion in the presence of monads.

Recent (and Future?) Developments

- [Pardo et al., PEPM'09] study circular and higher-order shortcut fusion in the presence of monads.
- From a semantics perspective, the circular flavour is again more intriguing.

Recent (and Future?) Developments

- [Pardo et al., PEPM'09] study circular and higher-order shortcut fusion in the presence of monads.
- From a semantics perspective, the circular flavour is again more intriguing.
- The higher-order flavour is (again) more generally applicable.

Recent (and Future?) Developments

- [Pardo et al., PEPM'09] study circular and higher-order shortcut fusion in the presence of monads.
- From a semantics perspective, the circular flavour is again more intriguing.
- The higher-order flavour is (again) more generally applicable.
- It should be interesting to investigate the interplay with other fusion work involving monads [V., MPC'08].

References I

© J.P. Fernandes, A. Pardo, and J. Saraiva.
A shortcut fusion rule for circular program calculation.
In Haskell Workshop, Proceedings, pages 95-106. ACM Press, 2007.
: A. Gill, J. Launchbury, and S.L. Peyton Jones.
A short cut to deforestation.
In Functional Programming Languages and Computer
Architecture, Proceedings, pages 223-232. ACM Press, 1993.
围 P. Johann and J. Voigtländer.
Free theorems in the presence of seq.
In Principles of Programming Languages, Proceedings, pages
99-110. ACM Press, 2004.

References II

P A. Pardo, J.P. Fernandes, and J. Saraiva.
Shortcut fusion rules for the derivation of circular and higher-order monadic programs.
In Partial Evaluation and Program Manipulation, Proceedings, pages 81-90. ACM Press, 2009.
R S.L. Peyton Jones and D. Lester.
A modular fully-lazy lambda lifter in Haskell.
Software Practice and Experience, 21(5):479-506, 1991.
(J. Svenningsson.
Shortcut fusion for accumulating parameters \& zip-like functions.
In International Conference on Functional Programming,
Proceedings, pages 124-132. ACM Press, 2002.

References III

圊 J．Voigtländer．
Asymptotic improvement of computations over free monads．
In Mathematics of Program Construction，Proceedings，
volume 5133 of LNCS，pages 388－403．Springer－Verlag， 2008.
圊 J．Voigtländer．
Semantics and pragmatics of new shortcut fusion rules．
In Functional and Logic Programming，Proceedings，volume 4989 of LNCS，pages 163－179．Springer－Verlag， 2008.
目 P．Wadler．
Theorems for free！
In Functional Programming Languages and Computer
Architecture，Proceedings，pages 347－359．ACM Press， 1989.

