Circular vs. Higher-Order Shortcut Fusion

Janis Voigtländer

Technische Universität Dresden

March 30th, 2009

Example: $upTo \ n = go \ 1$ where $go \ i = if \ i > n$ then [] else $i : go \ (i + 1)$

Example:
$$upTo \ n = go \ 1$$

where $go \ i = if \ i > n$ then []
else $i : go \ (i+1)$

$$sum [] = 0$$

$$sum (x : xs) = x + sum xs$$

Example:
$$upTo \ n = go \ 1$$

where $go \ i = if \ i > n$ then []
else $i : go \ (i + 1)$

$$sum [] = 0$$

 $sum (x : xs) = x + sum xs$

Problem: Expressions like

sum (upTo 10)

require explicit construction of intermediate results.

Example:
$$upTo \ n = go \ 1$$

where $go \ i = if \ i > n$ then []
else $i : go \ (i + 1)$

$$sum [] = 0$$

$$sum (x : xs) = x + sum xs$$

Problem: Expressions like

sum (upTo 10)

require explicit construction of intermediate results.

Solution: 1. Write *upTo* in terms of *build*.

Example:
$$upTo \ n = go \ 1$$

where $go \ i = if \ i > n$ then []
else $i : go \ (i + 1)$

$$sum [] = 0$$

 $sum (x : xs) = x + sum xs$

Problem: Expressions like

sum (upTo 10)

require explicit construction of intermediate results.

- Solution: 1. Write *upTo* in terms of *build*.
 - 2. Write sum in terms of foldr.

Example:
$$upTo \ n = go \ 1$$

where $go \ i = if \ i > n$ then []
else $i : go \ (i + 1)$

$$sum [] = 0$$

 $sum (x : xs) = x + sum xs$

Problem: Expressions like

sum (upTo 10)

require explicit construction of intermediate results.

- Solution: 1. Write *upTo* in terms of *build*.
 - 2. Write sum in terms of foldr.
 - 3. Use the following fusion rule:

foldr h_1 h_2 (build g) \rightsquigarrow g h_1 h_2

Producing intermediate results:

$$\begin{array}{l} \textit{buildp} :: (\forall a. \ (b \to a \to a) \to a \to c \to (a, z)) \to c \to ([b], z) \\ \textit{buildp} \ g \ c = g \ (:) \ [] \ c \end{array}$$

Producing intermediate results:

$$\begin{array}{l} \textit{buildp} :: (\forall a. \ (b \to a \to a) \to a \to c \to (a, z)) \to c \to ([b], z) \\ \textit{buildp} \ g \ c = g \ (:) \ [] \ c \end{array}$$

 $filterAndCount :: (b \rightarrow Bool) \rightarrow [b] \rightarrow ([b], Int)$ $filterAndCount f = buildp \cdots$

Producing intermediate results:

 $\begin{array}{l} \textit{buildp} :: (\forall a. \ (b \to a \to a) \to a \to c \to (a, z)) \to c \to ([b], z) \\ \textit{buildp} \ g \ c = g \ (:) \ [] \ c \end{array}$

Consuming intermediate results:

$$\begin{array}{l} \textit{pfold} :: (b \rightarrow a \rightarrow z \rightarrow a) \rightarrow (z \rightarrow a) \rightarrow ([b], z) \rightarrow a \\ \textit{pfold} \ h_1 \ h_2 \ (bs, z) = \textit{foldr} \ (\lambda b \ a \rightarrow h_1 \ b \ a \ z) \ (h_2 \ z) \ bs \end{array}$$

Producing intermediate results:

 $\begin{array}{l} \textit{buildp} :: (\forall a. \ (b \to a \to a) \to a \to c \to (a, z)) \to c \to ([b], z) \\ \textit{buildp} \ g \ c = g \ (:) \ [] \ c \end{array}$

Consuming intermediate results:

$$\begin{array}{l} \textit{pfold} :: (b \rightarrow a \rightarrow z \rightarrow a) \rightarrow (z \rightarrow a) \rightarrow ([b], z) \rightarrow a \\ \textit{pfold} \ h_1 \ h_2 \ (bs, z) = \textit{foldr} \ (\lambda b \ a \rightarrow h_1 \ b \ a \ z) \ (h_2 \ z) \ bs \end{array}$$

normalise :: $([Int], Int) \rightarrow [Float]$ normalise = pfold ...

Producing intermediate results:

 $\begin{array}{l} \textit{buildp} :: (\forall a. \ (b \to a \to a) \to a \to c \to (a, z)) \to c \to ([b], z) \\ \textit{buildp} \ g \ c = g \ (:) \ [] \ c \end{array}$

Consuming intermediate results:

$$\begin{array}{l} \textit{pfold} :: (b \rightarrow a \rightarrow z \rightarrow a) \rightarrow (z \rightarrow a) \rightarrow ([b], z) \rightarrow a \\ \textit{pfold} \ h_1 \ h_2 \ (bs, z) = \textit{foldr} \ (\lambda b \ a \rightarrow h_1 \ b \ a \ z) \ (h_2 \ z) \ bs \end{array}$$

The fusion rule:

$$\begin{array}{c} \textit{pfold } h_1 \ h_2 \ (\textit{buildp g c}) \\ & \stackrel{\sim}{\longrightarrow} \\ \textbf{let} \ (a,z) = g \ (\lambda b \ a \rightarrow h_1 \ b \ a \ z) \ (h_2 \ z) \ c \ \textbf{in } a \end{array}$$

Producing intermediate results:

 $\begin{array}{l} \textit{buildp} :: (\forall a. \ (b \to a \to a) \to a \to c \to (a, z)) \to c \to ([b], z) \\ \textit{buildp} \ g \ c = g \ (:) \ [] \ c \end{array}$

Consuming intermediate results:

$$\begin{array}{l} \textit{pfold} :: (b \rightarrow a \rightarrow z \rightarrow a) \rightarrow (z \rightarrow a) \rightarrow ([b], z) \rightarrow a \\ \textit{pfold} \ h_1 \ h_2 \ (bs, z) = \textit{foldr} \ (\lambda b \ a \rightarrow h_1 \ b \ a \ z) \ (h_2 \ z) \ bs \end{array}$$

The fusion rule:

$$\begin{array}{c} \textit{pfold } h_1 \ h_2 \ (\textit{buildp g c}) \\ & \stackrel{\sim}{\longrightarrow} \\ \textbf{let} \ (a, \textbf{z}) = g \ (\lambda b \ a \rightarrow h_1 \ b \ a \ \textbf{z}) \ (h_2 \ \textbf{z}) \ c \ \textbf{in } a \end{array}$$

Producing intermediate results:

 $\begin{array}{l} \text{buildp} :: (\forall a. (b \to a \to a) \to a \to c \to (a, z)) \to c \to ([b], z) \\ \text{buildp} g c = g (:) [] c \end{array}$

Producing intermediate results:

 $\begin{array}{l} \text{buildp} :: (\forall a. (b \rightarrow a \rightarrow a) \rightarrow a \rightarrow c \rightarrow (a, z)) \rightarrow c \rightarrow ([b], z) \\ \text{buildp} g c = g (:) [] c \end{array}$

The type of g forces it to be essentially of the following form:

Producing intermediate results:

 $\begin{array}{l} \text{buildp} :: (\forall a. (b \to a \to a) \to a \to c \to (a, z)) \to c \to ([b], z) \\ \text{buildp} g c = g (:) [] c \end{array}$

The type of g forces it to be essentially of the following form:

Formal justification: free theorems [Wadler, FPCA'89]

Consuming intermediate results:

pfold ::
$$(b \rightarrow a \rightarrow z \rightarrow a) \rightarrow (z \rightarrow a) \rightarrow ([b], z) \rightarrow a$$

pfold $h_1 \ h_2 \ (bs, z) = foldr \ (\lambda b \ a \rightarrow h_1 \ b \ a \ z) \ (h_2 \ z) \ bs$

A concrete output (buildp g c) will be consumed as follows:

Circular Shortcut Fusion [Fernandes et al., Haskell'07] pfold $h_1 h_2 (g (:) [] c) \rightsquigarrow$

 \rightarrow

Circular Shortcut Fusion [Fernandes et al., Haskell'07] pfold $h_1 h_2 (g (:) [] c) \rightsquigarrow$ let $(a, z) = g (\lambda b \ a \rightarrow h_1 \ b \ a \ z) (h_2 \ z) \ c$ in a

Circular Shortcut Fusion [Fernandes et al., Haskell'07] pfold $h_1 h_2 (g (:) [] c) \rightsquigarrow$ let $(a, z) = g (\lambda b \ a \rightarrow h_1 \ b \ a \ z) (h_2 \ z) \ c$ in a

Circular Shortcut Fusion [Fernandes et al., Haskell'07] pfold $h_1 h_2 (g (:) [] c) \rightsquigarrow$ let $(a, z) = g (\lambda b \ a \rightarrow h_1 \ b \ a \ z) (h_2 \ z) c$ in a

► Free-theorems-based transformations had been studied before.

Free-theorems-based transformations had been studied before.

 ... but been found to not be totally correct when considering certain language features [Johann and V., POPL'04].

Free-theorems-based transformations had been studied before.

- ... but been found to not be totally correct when considering certain language features [Johann and V., POPL'04].
- Circular shortcut fusion depends on evaluation order, which is precisely a "dangerous" corner for free theorems.

Free-theorems-based transformations had been studied before.

- ... but been found to not be totally correct when considering certain language features [Johann and V., POPL'04].
- Circular shortcut fusion depends on evaluation order, which is precisely a "dangerous" corner for free theorems.
- So would it be possible to manufacture counterexamples?

Producing intermediate results:

 $\begin{array}{l} \text{buildp} :: (\forall a. (b \to a \to a) \to a \to c \to (a, z)) \to c \to ([b], z) \\ \text{buildp} g c = g (:) [] c \end{array}$

In Haskell, g could also be, for example, of the following form:

Producing intermediate results:

 $\begin{array}{l} \text{buildp} :: (\forall a. (b \to a \to a) \to a \to c \to (a, z)) \to c \to ([b], z) \\ \text{buildp} g c = g (:) [] c \end{array}$

The type of g forces it to be essentially of the following form:

Producing intermediate results:

 $\begin{array}{l} \text{buildp} :: (\forall a. (b \to a \to a) \to a \to c \to (a, z)) \to c \to ([b], z) \\ \text{buildp} g c = g (:) [] c \end{array}$

In Haskell, g could also be, for example, of the following form:

Total and Partial Correctness [V., FLOPS'08]

Theorem 1 If $h_2 \perp \neq \perp$ and $h_1 \perp \perp \perp \neq \perp$, then

$$\begin{array}{r} pfold \ h_1 \ h_2 \ (buildp \ g \ c) \\ = \\ \textbf{let} \ (a,z) = g \ (\lambda b \ a \rightarrow h_1 \ b \ a \ z) \ (h_2 \ z) \ c \ \textbf{in} \ a \end{array}$$

Total and Partial Correctness [V., FLOPS'08]

Theorem 1 If $h_2 \perp \neq \perp$ and $h_1 \perp \perp \perp \neq \perp$, then pfold $h_1 h_2$ (buildp g c)

let
$$(a,z) = g \ (\lambda b \ a
ightarrow h_1 \ b \ a \ z) \ (h_2 \ z) \ c \ {\sf in} \ a$$

Theorem 2

Without preconditions,

$$pfold \ h_1 \ h_2 \ (buildp \ g \ c)$$

$$\blacksquare$$

$$let (a, z) = g \ (\lambda b \ a \rightarrow h_1 \ b \ a \ z) \ (h_2 \ z) \ c \ in \ a$$

Replacing Circularity by Higher-Orderedness pfold $h_1 h_2$ (g (:) [] c) \rightarrow let (a, z) = g ($\lambda b \ a \rightarrow h_1 \ b \ a \ z$) ($h_2 \ z$) c in a

pfold $h_1 h_2$ (g (:) [] c) \rightsquigarrow let $(a, z) = g (\lambda b \ a \rightarrow h_1 \ b \ a z) (h_2 z) c$ in a case g $(\lambda b \ k \ z \rightarrow h_1 \ b \ (k \ z) \ z) (\lambda z \rightarrow h_2 \ z) c$ of $(k, z) \rightarrow k \ z$

~

~

~

No Problem with Selective Strictness

For a g of the problematic form considered earlier:

Total Correctness [V., FLOPS'08]

Theorem 3 Without preconditions,

 $\begin{array}{l} \textit{pfold } h_1 \ h_2 \ (\textit{buildp g c}) \\ = \\ \textit{case } g \ (\lambda b \ k \ z \rightarrow h_1 \ b \ (k \ z) \ z) \ (\lambda z \rightarrow h_2 \ z) \ c \ \textit{of} \ (k, z) \rightarrow k \ z \end{array}$

Total Correctness [V., FLOPS'08]

Theorem 3 Without preconditions,

$$\begin{array}{c} \textit{pfold } h_1 \ h_2 \ (\textit{buildp g c}) \\ \hline \end{array}$$

$$\textbf{case } g \ (\lambda b \ k \ z \rightarrow h_1 \ b \ (k \ z) \ z) \ (\lambda z \rightarrow h_2 \ z) \ c \ \textbf{of} \ (k, z) \rightarrow k \ z \end{array}$$

Which flavour is better?

► Intellectually, I find the circular approach more fascinating.

- ► Intellectually, I find the circular approach more fascinating.
- ▶ But semantically, the high-order approach is more robust.

- Intellectually, I find the circular approach more fascinating.
- But semantically, the high-order approach is more robust.
- Performance measurements do not give a very clear picture.

- Intellectually, I find the circular approach more fascinating.
- But semantically, the high-order approach is more robust.
- Performance measurements do not give a very clear picture.
- There are interesting interactions with rather low-level details of the language implementation!

Tricky Sharing Issues — Circular Shortcut Fusion pfold $h_1 h_2$ (buildp g c) \rightsquigarrow let $(a, z) = g (\lambda b \ a \rightarrow h_1 \ b \ a \ z) (h_2 \ z) \ c \ in \ a$ Tricky Sharing Issues — Circular Shortcut Fusion pfold $h_1 h_2$ (buildp g c) \rightsquigarrow let $(a, z) = g (\lambda b \ a \rightarrow h_1 \ b \ a \ z) (h_2 \ z) \ c$ in a If $h_1 = \lambda b \ a \ z \rightarrow h'_1 \ b \ a \ (h \ z)$,

Tricky Sharing Issues — Circular Shortcut Fusion pfold $h_1 h_2$ (buildp g c) \rightsquigarrow let $(a, z) = g (\lambda b \ a \rightarrow h_1 \ b \ a \ z) (h_2 \ z) \ c$ in a If $h_1 = \lambda b \ a \ z \rightarrow h'_1 \ b \ a \ (h \ z)$, then:

Tricky Sharing Issues — Circular Shortcut Fusion pfold $h_1 h_2$ (buildp g c) \rightsquigarrow let $(a, z) = g (\lambda b \ a \rightarrow h_1 \ b \ a \ z) (h_2 \ z) \ c$ in a

If $h_1 = \lambda b \ a \ z \to h'_1 \ b \ a \ (h \ z)$, then using full laziness:

Tricky Sharing Issues — Higher-Order Shortcut Fusion pfold $h_1 h_2$ (buildp g c) \rightsquigarrow case g ($\lambda b \ k \ z \rightarrow h_1 \ b \ (k \ z) \ z$) ($\lambda z \rightarrow h_2 \ z$) c of (k, z) $\rightarrow k \ z$

If $h_1 = \lambda b \ a \ z \rightarrow h'_1 \ b \ a \ (h \ z)$, then:

Tricky Sharing Issues — Higher-Order Shortcut Fusion pfold $h_1 h_2$ (buildp g c) \sim case g ($\lambda b \ k \ z \rightarrow h_1 \ b \ (k \ z) \ z$) ($\lambda z \rightarrow h_2 \ z$) c of (k, z) $\rightarrow k \ z$

If $h_1 = \lambda b \ a \ z \to h'_1 \ b \ a \ (h \ z)$, then using full laziness:

What can be Learnt

 Both semantic and pragmatic considerations can motivate studying new rules as well as new combinators.

What can be Learnt

- Both semantic and pragmatic considerations can motivate studying new rules as well as new combinators.
- These lessons also inform new developments for more classical shortcut fusion techniques.

What can be Learnt

- Both semantic and pragmatic considerations can motivate studying new rules as well as new combinators.
- These lessons also inform new developments for more classical shortcut fusion techniques.
- ▶ There is still an interesting design space to explore!

 [Pardo et al., PEPM'09] study circular and higher-order shortcut fusion in the presence of monads.

- [Pardo et al., PEPM'09] study circular and higher-order shortcut fusion in the presence of monads.
- From a semantics perspective, the circular flavour is again more intriguing.

- [Pardo et al., PEPM'09] study circular and higher-order shortcut fusion in the presence of monads.
- From a semantics perspective, the circular flavour is again more intriguing.
- ▶ The higher-order flavour is (again) more generally applicable.

- [Pardo et al., PEPM'09] study circular and higher-order shortcut fusion in the presence of monads.
- From a semantics perspective, the circular flavour is again more intriguing.
- ▶ The higher-order flavour is (again) more generally applicable.
- It should be interesting to investigate the interplay with other fusion work involving monads [V., MPC'08].

References I

- J.P. Fernandes, A. Pardo, and J. Saraiva.
 A shortcut fusion rule for circular program calculation.
 In *Haskell Workshop, Proceedings*, pages 95–106. ACM Press, 2007.
- A. Gill, J. Launchbury, and S.L. Peyton Jones. A short cut to deforestation.
 In Functional Programming Languages and Computer Architecture, Proceedings, pages 223–232. ACM Press, 1993.
- P. Johann and J. Voigtländer.

Free theorems in the presence of seq. In *Principles of Programming Languages, Proceedings*, pages 99–110. ACM Press, 2004.

References II

- A. Pardo, J.P. Fernandes, and J. Saraiva.
 Shortcut fusion rules for the derivation of circular and higher-order monadic programs.
 In *Partial Evaluation and Program Manipulation, Proceedings*, pages 81–90. ACM Press, 2009.
- S.L. Peyton Jones and D. Lester.
 A modular fully-lazy lambda lifter in Haskell.
 Software Practice and Experience, 21(5):479–506, 1991.
- J. Svenningsson.

Shortcut fusion for accumulating parameters & zip-like functions.

In International Conference on Functional Programming, Proceedings, pages 124–132. ACM Press, 2002.

References III

J. Voigtländer.

Asymptotic improvement of computations over free monads. In *Mathematics of Program Construction, Proceedings*, volume 5133 of *LNCS*, pages 388–403. Springer-Verlag, 2008.

J. Voigtländer.

Semantics and pragmatics of new shortcut fusion rules. In *Functional and Logic Programming, Proceedings*, volume 4989 of *LNCS*, pages 163–179. Springer-Verlag, 2008.

P. Wadler.

Theorems for free!

In Functional Programming Languages and Computer Architecture, Proceedings, pages 347–359. ACM Press, 1989.