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A standard function:

map f [ ] = [ ]
map f (a : as) = (f a) : (map f as)
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Another Example

reverse :: [α]→ [α]
reverse [ ] = [ ]
reverse (a : as) = (reverse as) ++ [a]
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Another Example

reverse :: [α]→ [α]

tail :: [α]→ [α]

For every choice of f and l :

reverse (map f l) = map f (reverse l)

tail (map f l) = map f (tail l)
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Another Example

reverse :: [α]→ [α]

tail :: [α]→ [α]

g :: [α]→ [α]

For every choice of f and l :

reverse (map f l) = map f (reverse l)

tail (map f l) = map f (tail l)

g (map f l) = map f (g l)
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Automatic Generation of Free Theorems

At http://linux.tcs.inf.tu-dresden.de/∼voigt/ft:
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Automatic Generation of Free Theorems

3 – 17/17



Some Applications

◮ Short Cut Fusion [Gill et al., FPCA’93]
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◮ The Dual of Short Cut Fusion [Svenningsson, ICFP’02]

◮ Circular Short Cut Fusion [Fernandes et al., Haskell’07]

◮ . . .

◮ Knuth’s 0-1-principle and the like [Day et al., Haskell’99],
[V., POPL’08]

◮ Bidirectionalisation [V., POPL’09]

◮ Reasoning about invariants for monadic programs
[V., ICFP’09]
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Lenses, DSLs

[Foster et al., ACM TOPLAS’07, . . . ]
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Bidirectional Transformation

source view
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Bidirectionalisation

[Matsuda et al., ICFP’07]
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Semantic Bidirectionalisation

[V., POPL’09]
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Semantic Bidirectionalisation

Aim: Write a higher-order function bff† such that any
get and bff get satisfy GetPut, PutGet, . . . .

Examples:

‘a’ ‘b’ ‘a’ ‘c’
“abc”

‘x’ ‘b’ ‘x’ ‘c’
“xbc”

nub ◦ flatten

bff (nub ◦ flatten)

update

† “Bidirectionalization for free!”
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Analysing Specific Instances

Assume we are given some

get :: [α]→ [α]

How can we, or bff, analyse it without access to its source code?
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Assume we are given some

get :: [α]→ [α]

How can we, or bff, analyse it without access to its source code?

Idea: How about applying get to some input?

Like:

get [0..n] =







[1..n] if get = tail

[n..0] if get = reverse

[0..(min 4 n)] if get = take 5
...

Then transfer the gained insights to source lists other than [0..n] !
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Using a Free Theorem

For every

g :: [α]→ [α]

we have

map f (g l) = g (map f l)

for arbitrary f and l .

Given an arbitrary list s of length n + 1,

get s = map (s !!) (get [0..n])

for every get :: [α]→ [α].
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The Constant-Complement Approach

[Bancilhon & Spyratos, ACM TODS’81]

In general, given
get :: S → V

define a V C and
compl :: S → V C

such that
λs → (get s, compl s)

is injective and has an inverse

inv :: (V ,V C )→ S

Then:

put :: S → V → S

put s v ′ = inv (v ′, compl s)

Important: compl should “collapse” as much as possible.
9 – 63/63
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The Constant-Complement Approach

For our setting,
get :: [α]→ [α] ,

what should be V C and

compl :: [α]→ V C ???

To make

λs → (get s, compl s)

injective, need to record information discarded by get.

Candidates:

1. length of the source list

2. discarded list elements

For the moment, be maximally conservative.
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The Complement Function

type IntMap α = [(Int, α)]

compl :: [α]→ (Int, IntMap α)
compl s = let n = (length s)− 1

t = [0..n]
g = zip t s

g ′ = filter (λ(i , )→ notElem i (get t)) g

in (n + 1, g ′)
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The Complement Function

type IntMap α = [(Int, α)]

compl :: [α]→ (Int, IntMap α)
compl s = let n = (length s)− 1

t = [0..n]
g = zip t s

g ′ = filter (λ(i , )→ notElem i (get t)) g

in (n + 1, g ′)

For example:

get = tail  compl “abcde” = (5, [(0, ’a’)])

get = take 3  compl “abcde” = (5, [(3, ’d’), (4, ’e’)])

get = reverse  compl “abcde” = (5, [ ])
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An Inverse of λs → (get s, compl s)

inv :: ([α], (Int, IntMap α))→ [α]
inv (v ′, (n + 1, g ′)) = let t = [0..n]

h = assoc (get t) v ′

h′ = h ++ g ′

in seq h (map (λi → fromJust (lookup i h′)) t)
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An Inverse of λs → (get s, compl s)

inv :: ([α], (Int, IntMap α))→ [α]
inv (v ′, (n + 1, g ′)) = let t = [0..n]

h = assoc† (get t) v ′

h′ = h ++ g ′

in seq h (map (λi → fromJust (lookup i h′)) t)

For example:

get = tail  inv (“bcde”, (5, [(0, ’a’)])) = “abcde”

get = take 3  inv (“xyz”, (5, [(3, ’d’), (4, ’e’)])) = “xyzde”

To prove formally:

◮ inv (get s, compl s) = s

◮ if inv (v , c) defined, then get (inv (v , c)) = v

◮ if inv (v , c) defined, then compl (inv (v , c)) = c

† Can be thought of as zip for the moment. 12 – 77/77



Altogether:

type IntMap α = [(Int, α)]

compl :: [α]→ (Int, IntMap α)
compl s = let n = (length s)− 1

t = [0..n]
g = zip t s

g ′ = filter (λ(i , )→ notElem i (get t)) g

in (n + 1, g ′)

inv :: ([α], (Int, IntMap α))→ [α]
inv (v ′, (n + 1, g ′)) = let t = [0..n]

h = assoc (get t) v ′

h′ = h ++ g ′

in seq h (map (λi → fromJust (lookup i h′)) t)

put :: [α]→ [α]→ [α]
put s v ′ = inv (v ′, compl s)
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“Fusion”

Inlining compl and inv into put:

put s v ′ = let n = (length s)− 1
t = [0..n]
g = zip t s

g ′ = filter (λ(i , )→ notElem i (get t)) g

h = assoc (get t) v ′

h′ = h ++ g ′

in seq h (map (λi → fromJust (lookup i h′)) t)
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Inlining compl and inv into put:

put s v ′ = let n = (length s)− 1
t = [0..n]
g = zip t s

g ′ = filter (λ(i , )→ notElem i (get t)) g

h = assoc (get t) v ′

h′ = h ++ g ′

in seq h (map (λi → fromJust (lookup i h′)) t)

assoc [ ] [ ] = [ ]
assoc (i : is) (b : bs) = let m = assoc is bs

in case lookup i m of

Nothing → (i , b) : m

Just c | b == c → m
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“Fusion”

Inlining compl and inv into put:

bff get s v ′ = let n = (length s)− 1
t = [0..n]
g = zip t s

g ′ = filter (λ(i , )→ notElem i (get t)) g

h = assoc (get t) v ′

h′ = h ++ g ′

in seq h (map (λi → fromJust (lookup i h′)) t)

assoc [ ] [ ] = [ ]
assoc (i : is) (b : bs) = let m = assoc is bs

in case lookup i m of
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“Fusion”

Inlining compl and inv into put:

bff get s v ′ = let n = (length s)− 1
t = [0..n]
g = zip t s

g ′ = filter (λ(i , )→ notElem i (get t)) g

h = assoc (get t) v ′

h′ = h ++ g ′

in seq h (map (λi → fromJust (lookup i h′)) t)

assoc [ ] [ ] = [ ]
assoc (i : is) (b : bs) = let m = assoc is bs

in case lookup i m of

Nothing → (i , b) : m

Just c | b == c → m

Actual code only slightly more elaborate!
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The Resulting Bidirectionalisation Method in Action

0 1 2 3

[1,2,3]

‘b’ ‘a’ ‘c’ ‘a’

0 → ‘b’

1 → ‘a’

2 → ‘c’

3 → ‘a’

“aca”

0 → ‘b’

1 → ‘x’

2 → ‘c’

3 → ‘a’

1 → ‘x’

2 → ‘c’

3 → ‘a’

? “xca”
bff (tail ◦ flatten)

tail ◦ flatten

update

t
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The Resulting Bidirectionalisation Method in Action
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‘b’ ‘a’ ‘c’ ‘a’
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3 → ‘a’

1 → ‘x’

2 → ‘c’
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s

t

g

get t
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Extending the Technique

Major Problem:

◮ Shape-affecting updates lead to failure.
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Extending the Technique

Major Problem:

◮ Shape-affecting updates lead to failure.

◮ For example, bff tail “abcde” “xyz” . . .

Analysis as to Why:
◮ Our approach to making

λs → (get s, compl s)

injective was to record, via compl, the following information:

1. length of the source list
2. discarded list elements

◮ Being maximally conservative this way often does not
“collapse enough”.

◮ For example:

get = tail  put “abcde” “xyz” fails precisely because
compl “abcde” = (5, [(0, ’a’)])
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Assuming Shape-Injectivity

So assume there is a function

shapeInv :: Int→ Int

with, for every source list s,

length s = shapeInv (length (get s))
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So assume there is a function

shapeInv :: Int→ Int

with, for every source list s,

length s = shapeInv (length (get s))

Then:

compl :: [α]→ (Int, IntMap α)
compl s = let n = (length s)− 1

t = [0..n]
g = zip t s

g ′ = filter (λ(i , )→ notElem i (get t)) g

in (n + 1, g ′)
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shapeInv :: Int→ Int

with, for every source list s,

length s = shapeInv (length (get s))

Then:

compl :: [α]→ IntMap α

compl s = let n = (length s)− 1
t = [0..n]
g = zip t s

g ′ = filter (λ(i , )→ notElem i (get t)) g

in g ′
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Assuming Shape-Injectivity

inv :: ([α], (Int, IntMap α))→ [α]
inv (v ′, (n + 1, g ′)) = let t = [0..n]

h = assoc (get t) v ′

h′ = h ++ g ′

in seq h (map (λi → fromJust (lookup i h′)) t)
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Assuming Shape-Injectivity

inv :: ([α], IntMap α )→ [α]
inv (v ′, g ′ ) = let n = (shapeInv (length v ′))− 1

t = [0..n]
h = assoc (get t) v ′

h′ = h ++ g ′

in seq h (map (λi → fromJust (lookup i h′)) t)

But how to obtain shapeInv ???

One possibility: provided by user.

Another possibility: determined statically (dependent types?).

Just for experimentation:

shapeInv :: Int→ Int
shapeInv l = head [n + 1 | n← [0..], (length (get [0..n])) == l ]
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Not Quite There, Yet

Works quite nicely in some cases:

get = tail  put “abcde” “xyz” = “axyz”, using
compl “abcde” = [(0, ’a’)]
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Not Quite There, Yet

Works quite nicely in some cases:

get = tail  put “abcde” “xyz” = “axyz”, using
compl “abcde” = [(0, ’a’)]

But not so in others:

get = init  put “abcde” “xyz” fails, because
compl “abcde” = [(4, ’e’)]

The problem: by keeping indices around, compl still does
not “collapse enough”.

Note: even without these indices, λs → (get s, compl s)
would be injective.
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Eliminating Indices

compl :: [α]→ [(Int, α)]
compl s = let n = (length s)− 1

t = [0..n]
g = zip t s

g ′ = filter (λ(i , )→ notElem i (get t)) g

in g ′
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Eliminating Indices

compl :: [α]→ [ α ]
compl s = let n = (length s)− 1

t = [0..n]
g = zip t s
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in map snd g ′
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Eliminating Indices

compl :: [α]→ [ α ]
compl s = let n = (length s)− 1

t = [0..n]
g = zip t s

g ′ = filter (λ(i , )→ notElem i (get t)) g

in map snd g ′

inv :: ([α], [(Int, α)])→ [α]
inv (v ′, g ′) = let n = (shapeInv (length v ′))− 1

t = [0..n]
h = assoc (get t) v ′

h′ = h ++ g ′

in seq h (map (λi → fromJust (lookup i h′)) t)
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Eliminating Indices

compl :: [α]→ [ α ]
compl s = let n = (length s)− 1

t = [0..n]
g = zip t s

g ′ = filter (λ(i , )→ notElem i (get t)) g

in map snd g ′

inv :: ([α], [ α ])→ [α]
inv (v ′, c ) = let n = (shapeInv (length v ′))− 1

t = [0..n]
h = assoc (get t) v ′

g ′ = zip (filter (λi → notElem i (get t)) t) c

h′ = h ++ g ′

in seq h (map (λi → fromJust (lookup i h′)) t)
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Eliminating Indices

compl :: [α]→ [ α ]
compl s = let n = (length s)− 1

t = [0..n]
g = zip t s

g ′ = filter (λ(i , )→ notElem i (get t)) g

in map snd g ′

inv :: ([α], [ α ])→ [α]
inv (v ′, c ) = let n = (shapeInv (length v ′))− 1

t = [0..n]
h = assoc (get t) v ′

g ′ = zip (filter (λi → notElem i (get t)) t) c

h′ = h ++ g ′

in seq h (map (λi → fromJust (lookup i h′)) t)

Now:

get = init  put “abcde” “xyz” = “xyze”
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More Examples

Let get = sieve with:

sieve :: [α]→ [α]
sieve (a : b : cs) = b : (sieve cs)
sieve = [ ]
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21 – 116/120
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Let get = sieve with:

sieve :: [α]→ [α]
sieve (a : b : cs) = b : (sieve cs)
sieve = [ ]

Then:

put [1..8] [2,−4, 6, 8] = [1, 2, 3,−4, 5, 6, 7, 8]

put [1..8] [2,−4, 6] = [1, 2, 3,−4, 5, 6]
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More Examples

Let get = sieve with:

sieve :: [α]→ [α]
sieve (a : b : cs) = b : (sieve cs)
sieve = [ ]

Then:

put [1..8] [2,−4, 6, 8] = [1, 2, 3,−4, 5, 6, 7, 8]

put [1..8] [2,−4, 6] = [1, 2, 3,−4, 5, 6]

put [1..8] [2,−4, 6, 8, 10, 12] = [1, 2, 3,−4, 5, 6, 7, 8,⊥, 10,⊥, 12]

21 – 118/120



More Examples

Let get = sieve with:

sieve :: [α]→ [α]
sieve (a : b : cs) = b : (sieve cs)
sieve = [ ]

Then:

put [1..8] [2,−4, 6, 8] = [1, 2, 3,−4, 5, 6, 7, 8]

put [1..8] [2,−4, 6] = [1, 2, 3,−4, 5, 6]

put [1..8] [2,−4, 6, 8, 10, 12] = [1, 2, 3,−4, 5, 6, 7, 8,⊥, 10,⊥, 12]

However:

put [1..8] [0, 2,−4, 6, 8] = [1, 0, 3, 2, 5,−4, 7, 6,⊥, 8]
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More Examples

Let get = sieve with:

sieve :: [α]→ [α]
sieve (a : b : cs) = b : (sieve cs)
sieve = [ ]

Then:

put [1..8] [2,−4, 6, 8] = [1, 2, 3,−4, 5, 6, 7, 8]

put [1..8] [2,−4, 6] = [1, 2, 3,−4, 5, 6]

put [1..8] [2,−4, 6, 8, 10, 12] = [1, 2, 3,−4, 5, 6, 7, 8,⊥, 10,⊥, 12]

However:

put [1..8] [0, 2,−4, 6, 8] = [1, 0, 3, 2, 5,−4, 7, 6,⊥, 8]

Whereas we might have preferred:

put [1..8] [0, 2,−4, 6, 8] = [⊥, 0, 1, 2, 3,−4, 5, 6, 7, 8]
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Conclusion

Types:

◮ constrain the behaviour of programs
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Conclusion

Types:

◮ constrain the behaviour of programs

◮ thus lead to interesting theorems about programs

◮ enable lightweight, semantic analysis methods

On the practical side:

◮ efficiency-improving program transformations

◮ applications in specific domains (more out there?)

Bidirectionalisation in particular:

◮ hot topic (databases, models community, . . . )

◮ need a way to inject/exploit “user knowledge”

On the programming language side:

◮ push towards full programming languages

◮ aim for exploiting more expressive type systems
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