New Applications of Parametricity

Janis Voigtlander

Technische Universitdat Dresden

ISS-AiPL'09

Recent Applications of Parametricity

Janis Voigtlander

Technische Universitdat Dresden

ISS-AiPL'09

A Recent Applicationg of Parametricity

Janis Voigtlander

Technische Universitdat Dresden

ISS-AiPL'09

News About

A Recent Applicationg of Parametricity

Janis Voigtlander

Technische Universitdat Dresden

ISS-AiPL'09

Parametric Polymorphism in Haskell

A standard function:

map f [] =[]
map f (a:as) = (f a): (map f as)

1-1/9

Parametric Polymorphism in Haskell

A standard function:

map f [] =[]
map f (a:as) = (f a): (map f as)

Some invocations:

map succ [1,2,3] =[2,3,4]

1-2/9

Parametric Polymorphism in Haskell

A standard function:

map f [] =[]
map f (a:as) = (f a): (map f as)

Some invocations:
map succ [1,2,3] =[2,3,4]

map not [True, False] = [False, True]

1-3/9

Parametric Polymorphism in Haskell

A standard function:

map f [] =[]
map f (a:as) = (f a): (map f as)

Some invocations:
map succ [1,2,3] =[2,3,4]
map not [True, False] = [False, True]

map even [1,2, 3] = [False, True, False]

1-4/9

Parametric Polymorphism in Haskell
A standard function:

map f [] =[]
map f (a:as) = (f a): (map f as)

Some invocations:

map succ [1,2,3] =[2,3,4]

map not [True, False] = [False, True]

map even [1,2, 3] = [False, True, False]
map not [1,2,3]

1-5/9

Parametric Polymorphism in Haskell

A standard function:

map :: (a —) — [o] — [0]

map f [] =[]
map f (a:as) = (f a): (map f as)

Some invocations:

map succ [1,2,3] =[2,3,4]

map not [True, False] = [False, True]

map even [1,2, 3] = [False, True, False]
map not [1,2,3]

1-6/9

Parametric Polymorphism in Haskell

A standard function:

map :: (o —) — [o] — [A]
map f [] =[]
map f (a:as) = (f a): (map f as)

Some invocations:

map succ [1,2,3] =[2,3,4] — a, 8+ Int, Int
map not [True, False] = [False, True] — «a, 8 — Bool, Bool
map even [1,2,3] = [False, True, False] — «, 3 — Int, Bool

map not [1,2,3]

1-7/9

Parametric Polymorphism in Haskell

A standard function:

map :: (o —) — [o] — [A]
map f [] =[]
map f (a:as) = (f a): (map f as)

Some invocations:

map succ [1,2,3] =[2,3,4] — o, B+ Int, Int
map not [True, False] = [False, True] — a, 3 — Bool, Bool
map even [1,2,3] = [False, True, False] — «, 3 — Int, Bool

map not [1,2,3] 4 rejected at compile-time

1-38/9

Parametric Polymorphism in Haskell

A standard function:

map :: (a —) — [o] — [0]

Some invocations:

map succ [1,2,3] =[2,3,4] — o, B+ Int, Int
map not [True, False] = [False, True] — a, 3 — Bool, Bool
map even [1,2,3] = [False, True, False] — «, 3 — Int, Bool

map not [1,2,3] 4 rejected at compile-time

1-9/9

Another Example

reverse :: [a] — [a]
reverse [] =]
reverse (a: as) = (reverse as) + [a]

2 —10/15

Another Example

reverse :: [a] — [a]
reverse [] =]
reverse (a: as) = (reverse as) + [a]

For every choice of f and [:
reverse (map f /) = map f (reverse /)

Provable by induction.

2 -11/15

Another Example

reverse :: [a] — [a]
reverse [] =]
reverse (a: as) = (reverse as) + [a]

For every choice of f and [:
reverse (map f /) = map f (reverse /)
Provable by induction.

Or as a “free theorem” [Wadler, FPCA'89].

2 -12/15

Another Example

reverse : [a] — [¢]

For every choice of f and [:

reverse (map f /) = map f (reverse /)

Provable by induction.

Or as a “free theorem” [Wadler, FPCA'89].

2 -13/15

Another Example

reverse :: [a] — [a]

tail:: [a] — [o]

For every choice of f and [:

reverse (map f /) =

tail (map f /1) =

map f (reverse /)

map f (tail /)

2 - 14/15

Another Example

reverse :: [a] — [a]
tail:: [a] — [o]

g [o] = [d]

For every choice of f and [:

reverse (map f /) =
tail (map f /1) =

g (map 1) =

map f (reverse /)
map f (tail /)

map f (g /)

2 -15/15

Automatic Generation of Free Theorems

At http://linux.tcs.inf.tu-dresden.de/~voigt/ft:

This tool allows to generate free theorems for sublanguages of Haskell as described here.

The source code of the underlying library and a shell-based application using it is available
here and here.

Please enter a (polymorphic) type, e.g. "(a -> Bool) -> [a] -> [a]" or simply "filter":

h :: (a -> Bool) -> [a] -> [a]

Please choose a sublanguage of Haskell:

® no bottoms (hence no general recursion and no selective strictness)

® general recursion but no selective strictness

® general recursion and selective strictness

Please choose a theorem style (without effect in the sublanguage with no bottoms):
® equational

®inequational

Generate

3 - 16/17

http://linux.tcs.inf.tu-dresden.de/~voigt/ft

Automatic Generation of Free Theorems

The theorem generated for functions of the type

‘g :: forall a . (a -> Bool) -> [a] -> [a]

in the sublanguage of Haskell with no bottoms is:

forall t1,t2 in TYPES, R in REL(tl,t2).
forall p :: tl -> Bool.
forall q :: t2 -> Bool.

(forall (x, y) inR. p x = qy)
==> (forall (z, v) in lift{[]}(R).
(g pz, ggqv)in Lift{[]}(R))

The structural lifting occurring therein is defined as follows:

XS, y 1 ys) |
((x, y) in R) & ((xs, ys) in Wft{[1}(R))}

Reducing all permissible relation variables to functions yields:

forall t1,t2 in TYPES, f :: tl -> t2.
forall p :: tl -> Bool.

forall q :: t2 -> Bool.

(forall x :: tl. p x =g (f x))

==> (forall 'y :: [tl]. map f (g py) =g q (map fy))
Export as PDF Show type instantiations | Enter a new type Help page

3 -17/17

Some Applications

» Short Cut Fusion [Gill et al., FPCA'93]

4 - 18/23

Some Applications

» Short Cut Fusion [Gill et al., FPCA'93]

» The Dual of Short Cut Fusion [Svenningsson, ICFP'02]

4 —19/23

Some Applications

» Short Cut Fusion [Gill et al., FPCA'93]
» The Dual of Short Cut Fusion [Svenningsson, ICFP'02]
» Circular Short Cut Fusion [Fernandes et al., Haskell'07]

> ..

4 —20/23

Some Applications

» Short Cut Fusion [Gill et al., FPCA'93]

» The Dual of Short Cut Fusion [Svenningsson, ICFP'02]
» Circular Short Cut Fusion [Fernandes et al., Haskell'07]
> ...

» Knuth's 0-1-principle and the like [Day et al., Haskell'99],
[V., POPL'08]

4 —21/23

Some Applications

» Short Cut Fusion [Gill et al., FPCA'93]
» The Dual of Short Cut Fusion [Svenningsson, ICFP'02]
» Circular Short Cut Fusion [Fernandes et al., Haskell'07]

> ..

» Knuth's 0-1-principle and the like [Day et al., Haskell'99],
[V., POPL'08]

» Bidirectionalisation [V., POPL'09]

4 —22/23

Some Applications

» Short Cut Fusion [Gill et al., FPCA'93]
» The Dual of Short Cut Fusion [Svenningsson, ICFP'02]
» Circular Short Cut Fusion [Fernandes et al., Haskell'07]

> ..

» Knuth's 0-1-principle and the like [Day et al., Haskell'99],
[V., POPL'08]

» Bidirectionalisation [V., POPL'09]

» Reasoning about invariants for monadic programs
[V., ICFP'09]

4 —23/23

Bidirectional Transformation

source view

get

5 —24/37

Bidirectional Transformation

source

get

view

update

5 —25/37

Bidirectional Transformation

source

get

put

view

update

5 —26/37

Bidirectional Transformation

source

get

A

put

view

update

5 —27/37

Bidirectional Transformation

source view

get

Acceptability / GetPut

5 —28/37

Bidirectional Transformation

source view

get

4

put

Acceptability / GetPut

5 —29/37

Bidirectional Transformation

source view

get

update

A

put

Consistency / PutGet

5 —30/37

Bidirectional Transformation

source view
get R
update
< put
\/
get

Consistency / PutGet

5—31/37

Bidirectional Transformation

source

get

A

put

view

update

5 —32/37

Bidirectional Transformation

source

A view
4 N\
/4 \
[\
get\
[} \ v
] \
] \
] \
[\
(] \
i \
0 [update
[}]
\]
\]
\ I
1]
\]
\ [}
\‘ ’l
\vput,
\ 4
\ (4
A\ W4
v

Lenses, DSLs
[Foster et al., ACM TOPLAS'07, ...]

5 —33/37

Bidirectional Transformation

source view

get

update

A

put

Bidirectionalisation
[Matsuda et al., ICFP'07]

5 —34/37

Bidirectional Transformation

source view

get

update

drrccccccccca=

A

put

Syntactic Bidirectionalisation
[Matsuda et al., ICFP'07]

5 —35/37

Bidirectional Transformation

source view

get

JE

update

drrccccccccca=

-~

A

put

Semantic Bidirectionalisation

5 —36/37

Bidirectional Transformation

source view

get

JE

update

put &

Semantic Bidirectionalisation
[V., POPL'09]

drrccccccccca=

N

A

5 —37/37

Semantic Bidirectionalisation

Aim: Write a higher-order function bff such that any
get and bff get satisfy GetPut, PutGet,

6 — 38/48

Semantic Bidirectionalisation

Aim: Write a higher-order function bff! such that any
get and bff get satisfy GetPut, PutGet,

T “Bidirectionalization for free!”
6 — 39/48

Semantic Bidirectionalisation

Aim: Write a higher-order function bff! such that any
get and bff get satisfy GetPut, PutGet,

Examples:

" tail

abc > “bc”

T “Bidirectionalization for free!”

6 — 40/48

Semantic Bidirectionalisation

Aim: Write a higher-order function bff! such that any
get and bff get satisfy GetPut, PutGet,

Examples:
“abCH tall ; HbC”
update
v
“ge

T “Bidirectionalization for free!”

6 — 41/48

Semantic Bidirectionalisation

Aim: Write a higher-order function bff! such that any
get and bff get satisfy GetPut, PutGet,

Examples:
“abcﬂ tall ; Hbcll
update
v
ade” < DIf tail de

T “Bidirectionalization for free!”

6 — 42/48

Semantic Bidirectionalisation

Aim: Write a higher-order function bff! such that any
get and bff get satisfy GetPut, PutGet,

Examples:

flatten

> uabacn
lav xbv Aav xcv

T “Bidirectionalization for free!”
6 — 43/48

Semantic Bidirectionalisation

Aim: Write a higher-order function bff! such that any
get and bff get satisfy GetPut, PutGet,

Examples:
flatten o "
» “abac
lal lb! laY ICY
update
v
Habxc”

T “Bidirectionalization for free!”

6 — 44/48

Semantic Bidirectionalisation

Aim: Write a higher-order function bff! such that any
get and bff get satisfy GetPut, PutGet,

Examples:
flatten . "
> “abac
lal lb! laY ICY
update
\
AN AY bif flatten abxc
a' ‘b’ 'x' ‘c

T “Bidirectionalization for free!”

6 — 45/48

Semantic Bidirectionalisation

Aim: Write a higher-order function bff! such that any
get and bff get satisfy GetPut, PutGet,

Examples:

nuboflatten _ u
> “abc

lav xbv Aav xcv

T “Bidirectionalization for free!”

6 — 46/48

Semantic Bidirectionalisation

Aim: Write a higher-order function bff! such that any
get and bff get satisfy GetPut, PutGet,

Examples:
nuboflatten o "
*> “abc
lal lb! laY ICY
update
v
“Xbc”

T “Bidirectionalization for free!”

6 — 47/48

Semantic Bidirectionalisation

Aim: Write a higher-order function bff! such that any

get and bff get satisfy GetPut, PutGet,

Examples:
nuboflatten o "
*> “abc
lal lb! laY ICY
update
\
< “Xbc”

AR bff (nuboflatten)
x" ‘b’ 'x" ‘c

T “Bidirectionalization for free!”

6 — 48/48

Analysing Specific Instances

Assume we are given some
get 2 [a] — [a]

How can we, or bff, analyse it without access to its source code?

7 - 49/52

Analysing Specific Instances

Assume we are given some
get 2 [a] — [a]

How can we, or bff, analyse it without access to its source code?

Idea: How about applying get to some input?

7 - 50/52

Analysing Specific Instances
Assume we are given some
get 2 [a] — [a]
How can we, or bff, analyse it without access to its source code?
Idea: How about applying get to some input?
Like:
[1..n] if get = tail

[n..0] if get = reverse
get [0..n] = [0..(min 4 n)] if get = take 5

7 - 51/52

Analysing Specific Instances

Assume we are given some
get 2 [a] — [a]

How can we, or bff, analyse it without access to its source code?

Idea: How about applying get to some input?
Like:

[1..n] if get = tail
[n..0] if get = reverse
get [0.n] = [0..(min 4 n)] if get = take 5

Then transfer the gained insights to source lists other than [0..n] !

7 - 52/52

Using a Free Theorem

For every
g [o] = o]
we have
map f (g/) = g (map f /)
for arbitrary f and /.

8 — 53/57

Using a Free Theorem

For every
g [o] = o]
we have
map f (g/) = g (map f /)
for arbitrary f and /.

Given an arbitrary list s of length n+ 1, set g = get, | = [0..n]
f = (s!), leading to:

map (s!!) (get [0..n]) = get (map (s!!) [0..n])

8 — 54/57

Using a Free Theorem

For every
g [o] = o]
we have
map f (g/) = g (map f /)
for arbitrary f and /.

Given an arbitrary list s of length n+ 1, set g = get, [= [0..n],
f = (s!), leading to:

map (s!!) (get [0..n]) = get (map (s!!) [0..n])
= get s

8 — 55/57

Using a Free Theorem

For every
g [o] = o]
we have
map f (g/) = g (map f /)
for arbitrary f and /.

Given an arbitrary list s of length n 41,

map (s!!) (get [0..n])
= gets

8 — 56/57

Using a Free Theorem
For every
g o] = [df
we have
map f (g/) = g (map f /)
for arbitrary f and /.

Given an arbitrary list s of length n 41,
get s = map (s!!) (get [0..n])

for every get :: [a] — [a].

8 — 57/57

The Constant-Complement Approach
[Bancilhon & Spyratos, ACM TODS'81]

In general, given
get S —V

9 - 58/63

The Constant-Complement Approach
[Bancilhon & Spyratos, ACM TODS'81]
In general, given
get S —V

define a V€ and
compl 2 § — V€

9 —59/63

The Constant-Complement Approach
[Bancilhon & Spyratos, ACM TODS'81]

In general, given
get S —V

define a V€ and
compl : S — V¢

such that
As — (get s, compl s)

is injective

9 - 60/63

The Constant-Complement Approach
[Bancilhon & Spyratos, ACM TODS'81]

In general, given

get:S—V
define a V¢ and
compl : S — V¢
such that
As — (get s, compl s)

is injective and has an inverse

inv:(V,V€) =S

9 - 61/63

The Constant-Complement Approach
[Bancilhon & Spyratos, ACM TODS'81]

In general, given

get:S—V
define a V¢ and
compl : S — V¢
such that
As — (get s, compl s)

is injective and has an inverse

inv:(V,V€) =S

Then:

put:S—=V —=S§
put s v/ = inv (V/, compl s)

9 - 62/63

The Constant-Complement Approach
[Bancilhon & Spyratos, ACM TODS'81]

In general, given

get S —V
define a V¢ and
compl : S — V¢
such that
As — (get s, compl s)

is injective and has an inverse

inv: (V,VE) =S

Then:
put:S—=V —=S§
put s v/ = inv (V/, compl s)

Important: compl should “collapse” as much as possible.

9 - 63/63

The Constant-Complement Approach

For our setting,
get 2 [a] — [ao],

what should be V¢ and

compl :: [o] — VE 777

10 - 64/68

The Constant-Complement Approach

For our setting,
get 2 [a] — [ao],

what should be V¢ and
compl :: [a] — V€ 777
To make

As — (get s, compl s)

injective, need to record information discarded by get.

10 - 65/68

The Constant-Complement Approach

For our setting,
get 2 [a] — [ao],

what should be V¢ and
compl :: [a] — V€ 777

To make
As — (get s, compl s)

injective, need to record information discarded by get.

Candidates:

1. length of the source list

10 - 66/68

The Constant-Complement Approach

For our setting,
get 2 [a] — [ao],

what should be V¢ and

compl :: [a] — V€ 777

To make
As — (get s, compl s)

injective, need to record information discarded by get.

Candidates:
1. length of the source list

2. discarded list elements

10 - 67/68

The Constant-Complement Approach

For our setting,
get 2 [a] — [ao],

what should be V¢ and

compl :: [a] — V€ 777

To make
As — (get s, compl s)

injective, need to record information discarded by get.

Candidates:
1. length of the source list
2. discarded list elements
For the moment, be maximally conservative.

10 - 68/68

The Complement Function

type IntMap a = [(Int,)]

compl :: [o] — (Int, IntMap «)
compl s =let n = (lengths)—1
t =[0..n]
g =zipts
g’ = filter (A\(i,.) — notElem i (get t)) g
in (n+1,g)

11 - 69/72

The Complement Function

type IntMap a = [(Int,)]

compl :: [o] — (Int, IntMap «)
compl s =let n = (lengths)—1

t =[0..n]

g =zipts

g’ = filter (A\(i,.) — notElem i (get t)) g
in (n+1,g)

For example:

get = tail ~» compl "abcde” = (5,[(0,'a")])

11 - 70/72

The Complement Function

type IntMap a = [(Int,)]

compl :: [o] — (Int, IntMap «)
compl s =let n = (lengths)—1

t =[0..n]
g =zipts
g =filter (\(i,_) — notElem / (get t)) g
in (n+1,g)
For example:
get = tail ~» compl "abcde” = (5,[(0,'a")])

get =take 3 ~» compl “abcde” = (5,[(3,'d"), (4,'e")])

11 - 71/72

The Complement Function

type IntMap a = [(Int,)]

compl :: [o] — (Int, IntMap «)
compl s =let n = (lengths)—1

t =[0..n]
g =zipts
g =filter (\(i,_) — notElem / (get t)) g
in (n+1,g)
For example:
get = tail ~» compl "abcde” = (5,[(0,'a")])

get =take 3 ~» compl “abcde” = (5,[(3,'d"), (4,'e")])

get = reverse ~» compl “abcde” = (5,][])

11 - 72/72

An Inverse of As — (get s, compl s)

inv :: ([af, (Int, IntMap «)) — [a]
inv (V/,(n+1,g")) =let t =[0..n]
h = assoc (get t) v/
W=h+g
in seq h (map (Ai — fromJust (Lookup i h')) t)

12 — 73/77

An Inverse of As — (get s, compl s)

inv :: ([af, (Int, IntMap «)) — [a]
inv (V/,(n+1,g")) =let t =[0..n]
h = assocl (get t) v/
W=h+g
in seq h (map (Ai — fromJust (Lookup i h')) t)

T Can be thought of as zip for the moment. 12 — 74/77

An Inverse of As — (get s, compl s)

inv :: ([af, (Int, IntMap «)) — [a]
inv (V/,(n+1,g")) =let t =[0..n]
h = assocl (get t) v/
h =h-+g
in seq h (map (Ai — fromJust (Lookup i h')) t)

For example:
get =tail ~» inv (“bede”,(5,[(0,'a")])) = “abcde”

T Can be thought of as zip for the moment. 12 — 75/77

An Inverse of As — (get s, compl s)

inv :: ([af, (Int, IntMap «)) — [a]
inv (V/,(n+1,g")) =let t =[0..n]
h = assocl (get t) v/
h =h-+g
in seq h (map (Ai — fromJust (Lookup i h')) t)

For example:
get =tail ~» inv (“bede”,(5,[(0,'a")])) = “abcde”
get =take 3 ~» inv ("xyz",(5,[(3,'d"),(4,'e")])) = “xyzde”

T Can be thought of as zip for the moment. 12 — 76/77

An Inverse of As — (get s, compl s)

inv :: ([af, (Int, IntMap «)) — [a]
inv (V/,(n+1,g")) =let t =[0..n]
h = assocl (get t) v/
h =h-+g
in seq h (map (Ai — fromJust (Lookup i h')) t)

For example:
get =tail ~» inv (“bede”,(5,[(0,'a")])) = “abcde”
get =take 3 ~» inv ("xyz",(5,[(3,'d"),(4,'e")])) = “xyzde”

To prove formally:
» inv (get s,compl s) =s
» if inv (v, ¢) defined, then get (inv (v,c)) =v

» if inv (v, ¢) defined, then compl (inv (v,c)) =c¢

T Can be thought of as zip for the moment. 12 — 77/77

Altogether:

type IntMap a = [(Int, «)]

compl :: [a] — (Int, IntMap «)
compl s=let n = (lengths)—1

t =1[0..n]

g =zipts

g = filter (\(i,-) — notElem i (get t)) g
in (n+1,g")

inv :: ([af, (Int, IntMap «)) — [a]
inv (V/,(n+1,g")) =let t =[0..n]
h = assoc (get t) v/
W =h+g
in seq h (map (A/ — fromJust (lookup i h')) t)

put = [o] — [a] = [q]
put s v/ = inv (V/, compl s)

13 - 78/78

“Fusion”
Inlining compl and inv into put:

put s v/ =let n = (lengths)—1
t =1[0..n]
=zipts
g = filter (\(i,-) — notElem i (get t)) g
h = assoc (get t) v/
W =h+g
in seq h (map (A/ — fromJust (lookup i h')) t)

o

14 — 79/82

“Fusion”
Inlining compl and inv into put:

put s v/ =let n = (lengths)—1
t =1[0..n]
=zipts
g = filter (\(i,-) — notElem i (get t)) g
h = assoc (get t) v/
W =h+g
in seq h (map (A/ — fromJust (lookup i h')) t)

assoc[] [=]
assoc (i :is) (b: bs) =let m = assoc is bs
in case lookup /i m of
Nothing — (i,b) :m
Justc|b==c—m

o

14 — go/82

“Fusion”
Inlining compl and inv into put:

bff get s v/ =let n = (lengths)—1
t =1[0..n]
=zipts
g = filter (\(i,-) — notElem i (get t)) g
h = assoc (get t) v/
W =h+g
in seq h (map (A/ — fromJust (lookup i h')) t)

assoc[] [=]
assoc (i :is) (b: bs) =let m = assoc is bs
in case lookup /i m of
Nothing — (i,b) :m
Justc|b==c—m

o

14 - 81/82

“Fusion”
Inlining compl and inv into put:

bff get s v/ =let n = (lengths)—1
t =1[0..n]
=zipts
g = filter (\(i,-) — notElem i (get t)) g
h = assoc (get t) v/
W =h+g
in seq h (map (A/ — fromJust (lookup i h')) t)

assoc[] [=]
assoc (i :is) (b: bs) =let m = assoc is bs
in case lookup /i m of
Nothing — (i,b) :m
Justc|b==c—m

o

Actual code only slightly more elaborate!

14 — 82/82

The Resulting Bidirectionalisation Method in Action

tailoflatten u "

xby xal ACI xa

update

bff (tailoflatten)

15 — 83/90

The Resulting Bidirectionalisation Method in Action

? - “xca"

bff (tailoflatten)

15 — 84/90

The Resulting Bidirectionalisation Method in Action

0123

f
g2

xbyxvxyxav

“XCa”

15 — 85/90

The Resulting Bidirectionalisation Method in Action

0123

0= b
11—
2 —'c

bl llACI la' .
3—a

“XCa”

15 — 86/90

The Resulting Bidirectionalisation Method in Action

tailoflatten > [1,2,3]
012 3
0—'b

11—

e —

1] 1 ‘ 1] 1 2 _) ‘C’
b c' ‘a .

3—‘a

“XCa”

15 — 87/90

The Resulting Bidirectionalisation Method in Action

xby xal ACI xa

tailoflatten

00—
1—
2 —

3 —

o oo v o

1 —
2— '
3 iy

> [1,2,3]

15 — 88/90

The Resulting Bidirectionalisation Method in Action

tailoflatten . [1 2 3]

0123

00—
1—

1 2 -

xby xal ACI xa

o oo v o

3 —

1= o
«— |2 ¢
. 3

XCa

1—

2 —

o o) X o

15 — 89/90

The Resulting Bidirectionalisation Method in Action

tailoflatten . [1 2 3]

0123

00—
1—

1 2 -

o oo v o

xby xal ACI xa 3 .

1 =%
2 i

33—

e N

XCa

1—

2 —

o o) X o

lbl IXI ACI lal
15 — 90/90

Extending the Technique

Major Problem:
» Shape-affecting updates lead to failure.

16 —91/95

Extending the Technique

Major Problem:
» Shape-affecting updates lead to failure.

» For example, bff tail “abcde” ‘“xyz

16 — 92/95

Extending the Technique

Major Problem:
» Shape-affecting updates lead to failure.

» For example, bff tail “abcde” ‘“xyz

Analysis as to Why:
» Qur approach to making

As — (get s, compl s)
injective was to record, via compl, the following information:

1. length of the source list
2. discarded list elements

16 — 93/95

Extending the Technique

Major Problem:
» Shape-affecting updates lead to failure.

» For example, bff tail “abcde” ‘“xyz

Analysis as to Why:
» Qur approach to making

As — (get s, compl s)
injective was to record, via compl, the following information:

1. length of the source list
2. discarded list elements

» Being maximally conservative this way often does not
“collapse enough”.

16 — 94/95

Extending the Technique

Major Problem:
» Shape-affecting updates lead to failure.

» For example, bff tail “abcde” ‘“xyz

Analysis as to Why:
» Qur approach to making

As — (get s, compl s)
injective was to record, via compl, the following information:

1. length of the source list
2. discarded list elements

» Being maximally conservative this way often does not
“collapse enough”.

» For example:

get =tail ~» put “abcde” “xyz" fails precisely because
compl “abcde” = (5,[(0,'a")])

16 — 95/95

Assuming Shape-Injectivity
So assume there is a function
shapeInv :: Int — Int
with, for every source list s,

length s = shapeInv (length (get s))

17 — 96/98

Assuming Shape-Injectivity
So assume there is a function
shapeInv :: Int — Int
with, for every source list s,

length s = shapeInv (length (get s))

Then:

compl :: [@] — (Int, IntMap «)
compl s =let n = (lengths)—1
t =[0..n]
g =zipts
g = filter (\(i,.) — notElem i (get t)) g
in (n+1,g)

17 - 97/98

Assuming Shape-Injectivity
So assume there is a function
shapeInv :: Int — Int
with, for every source list s,

length s = shapeInv (length (get s))

Then:
compl :: [a] — IntMap «
compl s =let n = (lengths)—1
t =[0..n]
g =zipts

g = filter (\(i,.) — notElem i (get t)) g
in g

17 - 98/98

Assuming Shape-Injectivity

inv i ([a], (Int, IntMap «)) — [¢]
inv (V/,(n+1,g")) =let t =[0..n]
h = assoc (get t) v
W =h+g
in seq h (map (A/ — fromJust (Lookup i h')) t)

/

18 — 99/104

Assuming Shape-Injectivity

inv : ([«], IntMap «) — [o]

inv (V/, g’) =let n = (shapelnv (length v')) —1
t =[0..n]
h = assoc (get t) v/
W =h+g

in seq h (map (A — fromJust (Lookup i h')) t)

18 — 100/104

Assuming Shape-Injectivity

inv : ([«], IntMap a) — [o]

inv (V/, g’) =let n = (shapelnv (length v')) —1
t =[0..n]
h = assoc (get t) v/
h =h-+g

in seq h (map (Ai — fromJust (Lookup i h')) t)

But how to obtain shapelInv 777

18 — 101/104

Assuming Shape-Injectivity

inv : ([«], IntMap a) — [o]

inv (V/, g’) =let n = (shapelnv (length v')) —1
t =[0..n]
h = assoc (get t) v/
h =h-+g

in seq h (map (Ai — fromJust (Lookup i h')) t)

But how to obtain shapelInv 777

One possibility: provided by user.

18 — 102/104

Assuming Shape-Injectivity

inv : ([«], IntMap a) — [o]

inv (V/, g’) =let n = (shapelnv (length v')) —1
t =[0..n]
h = assoc (get t) v/
h =h-+g

in seq h (map (Ai — fromJust (Lookup i h')) t)

But how to obtain shapelInv 777
One possibility: provided by user.

Another possibility: determined statically (dependent types?).

18 — 103/104

Assuming Shape-Injectivity

inv : ([«], IntMap a) — [o]

inv (V/, g’) =let n = (shapelnv (length v')) —1
t =[0..n]
h = assoc (get t) v/
h =h-+g

in seq h (map (Ai — fromJust (Lookup i h')) t)

But how to obtain shapelInv 777
One possibility: provided by user.
Another possibility: determined statically (dependent types?).

Just for experimentation:

shapeInv :: Int — Int
shapeInv [=head [n+ 1| n« [0..], (length (get [0..n])) ==]

18 — 104/104

Not Quite There, Yet

Works quite nicely in some cases:

get =tail ~» put “abcde” “xyz’ = "axyz", using
compl “abcde” = [(0,'a")]

19 - 105/109

Not Quite There, Yet

Works quite nicely in some cases:

get =tail ~» put “abcde” “xyz’ = "axyz", using
compl “abcde” = [(0,'a")]

But not so in others:

get =1init ~» put “abcde” “xyz" fails

19 - 106/109

Not Quite There, Yet

Works quite nicely in some cases:

get =tail ~» put “abcde” “xyz" = "axyz", using
compl “abcde” = [(0,'a")]

But not so in others:

get = init ~» put “abcde” “xyz” fails, because
compl “abcde” = [(4,'¢e)]

19 - 107/109

Not Quite There, Yet

Works quite nicely in some cases:

get =tail ~» put “abcde” “xyz’ = "axyz", using
compl “abcde” = [(0,'a")]

But not so in others:
get = init ~» put “abcde” “xyz” fails, because
compl “abcde” = [(4,'¢e)]

The problem: by keeping indices around, compl still does
not “collapse enough”.

19 — 108/109

Not Quite There, Yet

Works quite nicely in some cases:

get =tail ~» put “abcde” “xyz’ = "axyz", using
compl “abcde” = [(0,'a")]

But not so in others:

get =init ~» put “abcde” “xyz" fails, because
compl “abcde” = [(4,'¢e)]

The problem: by keeping indices around, compl still does
not “collapse enough”.

Note: even without these indices, As — (get s, compl s)
would be injective.

19 - 109/109

Eliminating Indices

compl :: [a] — [(Int, &)]
compl s =let n = (lengths)—1
t =[0..n]
g =zipts
g’ = filter (\(i,.) — notElem i (get t)) g
in g’

20 — 110/114

Eliminating Indices

compl :: [a] — | a |

compl s =let n = (lengths)—1
t =[0..n]
g =—zipts

g =filter (\(/,_) — notElem / (get t)) g
in map snd g’

20 — 111/114

Eliminating Indices

compl :: [a] — | a |

compl s =let n = (lengths)—1
t =[0..n]
g =—zipts

g =filter (\(/,_) — notElem / (get t)) g
in map snd g’

inv ([, [(Int, @)]) — [¢]
inv (v/,g’) =let n = (shapelnv (length v')) —1

t =1[0..n]
h = assoc (get t) v/
W — h_H_g/

in seq h (map (A\i — fromJust (lookup i h')) t)

20 — 112/114

Eliminating Indices

compl :: [a] — | a |

compl s =let n = (lengths)—1
t =[0..n]
g =—zipts

g =filter (\(/,_) — notElem / (get t)) g
in map snd g’

invi([o],[al)—la]
inv (v/,c) =let n = (shapelnv (length v')) —1
t =1[0..n]
h = assoc (get t) v/
g’ = zip (filter (A — notElem / (get t)) t) ¢
W =h+g
in seq h (map (Ai — fromJust (lookup i h')) t)

20 — 113/114

Eliminating Indices

compl :: [a] — | a |

compl s =let n = (lengths)—1
t =[0..n]
g =—zipts

g =filter (\(/,_) — notElem / (get t)) g
in map snd g’

inv:([al,[al)—[a]
inv (v/,c) =let n = (shapelnv (length v/)) —1
t =1[0..n]
h = assoc (get t) v/
g =zip (filter (M — notElem i (get t)) t) ¢
W =h+g
in seq h (map (A/ — fromJust (lookup i h')) t)

Now:

get = init ~» put “abcde” “xyz’ = "xyze"

20 — 114/114

More Examples
Let get = sieve with:

sieve = [a] — [a]
sieve (a: b:cs)=b: (sieve cs)
sieve _ =]

21 - 115/120

More Examples
Let get = sieve with:

sieve = [a] — [a]
sieve (a: b:cs)=b: (sieve cs)
sieve _ =]

Then:
put [1..8] [2,—4,6,8] = [1,2,3,—4,5,6,7,8]

21 — 116/120

More Examples
Let get = sieve with:

sieve = [a] — [a]
sieve (a: b:cs)=b: (sieve cs)
sieve _ =]

Then:
put [1..8] [2,—4,6,8] = [1,2,3,—4,5,6,7,8]
put [1..8] [2,—4,6] = [1,2,3,—4,5,6]

21 - 117/120

More Examples
Let get = sieve with:

sieve = [a] — [a]
sieve (a: b:cs)=b: (sieve cs)

sieve _ =]
Then:
put [1..8] [2, —4,6,8] — [1,2,3,-4,5,6,7,8]
put [1..8] [2, —4, 6] — [1,2,3,-4,5,6]

put [1.8] [2,—4,6,8,10,12] = [1,2,3,-4,5,6,7,8, 1,10, 1,12

21 — 118/120

More Examples
Let get = sieve with:

sieve = [a] — [a]
sieve (a: b:cs)=b: (sieve cs)

sieve _ =]
Then:
put [1..8] [2,—4,6,8] = [1,2,3,—4,5,6,7,8]
put [1..8] [2,—4,6] = [1,2,3,—4,5,6]
put [1..8] [2,—4,6,8,10,12] = [1,2,3,—4,5,6,7,8, 1,10, 1,12]
However:

put [1..8] [0,2,—4,6,8] = [1,0,3,2,5,—4,7,6,L1,8]

21 — 119/120

More Examples
Let get = sieve with:

sieve = [a] — [a]
sieve (a: b:cs)=b: (sieve cs)

sieve _ =]
Then:
put [1..8] [2,—4,6,8] = [1,2,3,—4,5,6,7,8]
put [1..8] [2,—4,6] = [1,2,3,—4,5,6]
put [1..8] [2,—4,6,8,10,12] = [1,2,3,—4,5,6,7,8, 1,10, 1,12]
However:
put [1..8] [0,2,—4,6,8] = [1,0,3,2,5,—4,7,6,L1,8]

Whereas we might have preferred:

put [1.8] [0,2,—4,6,8] = [L,0,1,2,3,—4,5,6,7,8|

21 - 120/120

Conclusion

Types:
» constrain the behaviour of programs

22 - 121/129

Conclusion

Types:
» constrain the behaviour of programs

» thus lead to interesting theorems about programs

22 — 122/129

Conclusion

Types:
» constrain the behaviour of programs
» thus lead to interesting theorems about programs

> enable lightweight, semantic analysis methods

22 — 123/129

Conclusion

Types:
» constrain the behaviour of programs
» thus lead to interesting theorems about programs

> enable lightweight, semantic analysis methods

On the practical side:

» efficiency-improving program transformations

22 — 124/129

Conclusion

Types:
» constrain the behaviour of programs
» thus lead to interesting theorems about programs

> enable lightweight, semantic analysis methods

On the practical side:
» efficiency-improving program transformations

» applications in specific domains (more out there?)

22 — 125/129

Conclusion

Types:
» constrain the behaviour of programs
» thus lead to interesting theorems about programs

> enable lightweight, semantic analysis methods

On the practical side:
» efficiency-improving program transformations

» applications in specific domains (more out there?)

Bidirectionalisation in particular:

» hot topic (databases, models community, .. .)

22 — 126/129

Conclusion

Types:
» constrain the behaviour of programs
» thus lead to interesting theorems about programs

> enable lightweight, semantic analysis methods

On the practical side:
» efficiency-improving program transformations

» applications in specific domains (more out there?)

Bidirectionalisation in particular:
» hot topic (databases, models community, .. .)

> need a way to inject/exploit “user knowledge”

22 — 127/129

Conclusion

Types:
» constrain the behaviour of programs
» thus lead to interesting theorems about programs

> enable lightweight, semantic analysis methods

On the practical side:
» efficiency-improving program transformations

» applications in specific domains (more out there?)

Bidirectionalisation in particular:
» hot topic (databases, models community, .. .)

> need a way to inject/exploit “user knowledge”

On the programming language side:

» push towards full programming languages

22 — 128/129

Conclusion

Types:
» constrain the behaviour of programs
» thus lead to interesting theorems about programs

> enable lightweight, semantic analysis methods

On the practical side:
» efficiency-improving program transformations

» applications in specific domains (more out there?)

Bidirectionalisation in particular:
» hot topic (databases, models community, .. .)

> need a way to inject/exploit “user knowledge”

On the programming language side:
» push towards full programming languages

» aim for exploiting more expressive type systems

22 — 129/129

References |

@ F. Bancilhon and N. Spyratos.
Update semantics of relational views.
ACM Transactions on Database Systems, 6(3):557-575, 1981.

@ N.A. Day, J. Launchbury, and J. Lewis.
Logical abstractions in Haskell.
In Haskell Workshop, Proceedings. Technical Report
UU-CS-1999-28, Utrecht University, 1999.

[J.N. Foster, M.B. Greenwald, J.T. Moore, B.C. Pierce, and A.
Schmitt.
Combinators for bidirectional tree transformations: A linguistic
approach to the view-update problem.
ACM Transactions on Programming Languages and Systems,
29(3):17, 2007.

23 - 130/133

References |l

@ J.P. Fernandes, A. Pardo, and J. Saraiva.
A shortcut fusion rule for circular program calculation.
In Haskell Workshop, Proceedings, pages 95-106. ACM Press,
2007.

[@ A. Gill, J. Launchbury, and S.L. Peyton Jones.
A short cut to deforestation.
In Functional Programming Languages and Computer
Architecture, Proceedings, pages 223-232. ACM Press, 1993.

[l K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi.
Bidirectionalization transformation based on automatic
derivation of view complement functions.

In International Conference on Functional Programming,
Proceedings, pages 47-58. ACM Press, 2007.

24 — 131/133

References ||

@ J.C. Reynolds.
Types, abstraction and parametric polymorphism.
In Information Processing, Proceedings, pages 513-523.
Elsevier, 1983.

[§ J. Svenningsson.
Shortcut fusion for accumulating parameters & zip-like
functions.
In International Conference on Functional Programming,
Proceedings, pages 124-132. ACM Press, 2002.

@ J. Voigtlinder.
Much ado about two: A pearl on parallel prefix computation.
In Principles of Programming Languages, Proceedings, pages
29-35. ACM Press, 2008.

25 —132/133

References IV

J. Voigtlander.
Bidirectionalization for free!

In Principles of Programming Languages, Proceedings, pages
165-176. ACM Press, 2009.

J. Voigtlander.
Free theorems involving type constructor classes.

In International Conference on Functional Programming,
Proceedings. ACM Press, 2009.

@ P. Wadler.
Theorems for free!
In Functional Programming Languages and Computer
Architecture, Proceedings, pages 347-359. ACM Press, 1989.

26 — 133/133

	Haskell
	Free Theorems
	Bidirectional Transformation
	Semantic Bidirectionalisation
	A Constant-Complement Perspective
	Extending the Technique
	Conclusion
	References

