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Parametric Polymorphism in Haskell

A standard function:

map f [] =[]
map f (a:as) = (f a): (map f as)
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Parametric Polymorphism in Haskell

A standard function:

map :: (a — ) — [o] — [0]

map f [] =[]
map f (a:as) = (f a): (map f as)
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Parametric Polymorphism in Haskell

A standard function:

map :: (o — ) — [o] — [A]
map f [] =[]
map f (a:as) = (f a): (map f as)

Some invocations:

map succ [1,2,3] =[2,3,4] — a, 8+ Int, Int
map not [True, False] = [False, True] — «a, 8 — Bool, Bool
map even [1,2,3] = [False, True, False] — «, 3 — Int, Bool

map not [1,2,3]
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Parametric Polymorphism in Haskell

A standard function:

map :: (o — ) — [o] — [A]
map f [] =[]
map f (a:as) = (f a): (map f as)

Some invocations:

map succ [1,2,3] =[2,3,4] — o, B+ Int, Int
map not [True, False] = [False, True] — a, 3 — Bool, Bool
map even [1,2,3] = [False, True, False] — «, 3 — Int, Bool

map not [1,2,3] 4 rejected at compile-time
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Parametric Polymorphism in Haskell

A standard function:

map :: (a — ) — [o] — [0]

Some invocations:

map succ [1,2,3] =[2,3,4] — o, B+ Int, Int
map not [True, False] = [False, True] — a, 3 — Bool, Bool
map even [1,2,3] = [False, True, False] — «, 3 — Int, Bool

map not [1,2,3] 4 rejected at compile-time
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Another Example

reverse :: [a] — [a]
reverse [] =]
reverse (a: as) = (reverse as) + [a]
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Provable by induction.
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Or as a “free theorem” [Wadler, FPCA'89].

2 -12/15



Another Example

reverse : [a] — [¢]

For every choice of f and [:

reverse (map f /) = map f (reverse /)

Provable by induction.

Or as a “free theorem” [Wadler, FPCA'89].

2 -13/15



Another Example

reverse :: [a] — [a]

tail:: [a] — [o]

For every choice of f and [:

reverse (map f /) =

tail (map f /1) =

map f (reverse /)

map f (tail /)
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Another Example

reverse :: [a] — [a]
tail:: [a] — [o]

g [o] = [d]

For every choice of f and [:

reverse (map f /) =
tail (map f /1) =

g (map 1) =

map f (reverse /)
map f (tail /)

map f (g /)
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Automatic Generation of Free Theorems

At http://linux.tcs.inf.tu-dresden.de/~voigt/ft:

This tool allows to generate free theorems for sublanguages of Haskell as described here.

The source code of the underlying library and a shell-based application using it is available
here and here.

Please enter a (polymorphic) type, e.g. "(a -> Bool) -> [a] -> [a]" or simply "filter":

h :: (a -> Bool) -> [a] -> [a]

Please choose a sublanguage of Haskell:

® no bottoms (hence no general recursion and no selective strictness)

® general recursion but no selective strictness

® general recursion and selective strictness

Please choose a theorem style (without effect in the sublanguage with no bottoms):
® equational

®inequational

Generate
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http://linux.tcs.inf.tu-dresden.de/~voigt/ft

Automatic Generation of Free Theorems

The theorem generated for functions of the type

‘g :: forall a . (a -> Bool) -> [a] -> [a]

in the sublanguage of Haskell with no bottoms is:

forall t1,t2 in TYPES, R in REL(tl,t2).
forall p :: tl -> Bool.
forall q :: t2 -> Bool.

(forall (x, y) inR. p x = qy)
==> (forall (z, v) in lift{[]}(R).
(g pz, ggqv)in Lift{[]}(R))

The structural lifting occurring therein is defined as follows:

XS, y 1 ys) |
((x, y) in R) & ((xs, ys) in Wft{[1}(R))}

Reducing all permissible relation variables to functions yields:

forall t1,t2 in TYPES, f :: tl -> t2.
forall p :: tl -> Bool.

forall q :: t2 -> Bool.

(forall x :: tl. p x =g (f x))

==> (forall 'y :: [tl]. map f (g py) =g q (map fy))
Export as PDF Show type instantiations | Enter a new type Help page

3 -17/17



Some Applications

» Short Cut Fusion [Gill et al., FPCA'93]
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Some Applications

» Short Cut Fusion [Gill et al., FPCA'93]
» The Dual of Short Cut Fusion [Svenningsson, ICFP'02]
» Circular Short Cut Fusion [Fernandes et al., Haskell'07]

> ..

» Knuth's 0-1-principle and the like [Day et al., Haskell'99],
[V., POPL'08]

» Bidirectionalisation [V., POPL'09]

» Reasoning about invariants for monadic programs
[V., ICFP'09]
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Bidirectional Transformation

source view

get
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Bidirectional Transformation

source view

get

Acceptability / GetPut

5 —28/37
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Bidirectional Transformation

source view

get

update

A

put

Consistency / PutGet
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Bidirectional Transformation

source view
get R
update
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Consistency / PutGet
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Bidirectional Transformation
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Lenses, DSLs
[Foster et al., ACM TOPLAS'07, ...]
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Bidirectional Transformation

source view

get

update
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put

Bidirectionalisation
[Matsuda et al., ICFP'07]
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Bidirectional Transformation

source view

get
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Syntactic Bidirectionalisation
[Matsuda et al., ICFP'07]
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Bidirectional Transformation
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Bidirectional Transformation
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Semantic Bidirectionalisation
[V., POPL'09]
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Semantic Bidirectionalisation

Aim: Write a higher-order function bff such that any
get and bff get satisfy GetPut, PutGet, .. ..
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Aim: Write a higher-order function bff! such that any
get and bff get satisfy GetPut, PutGet, .. ..

Examples:

" tail

abc > “bc”

T “Bidirectionalization for free!”

6 — 40/48



Semantic Bidirectionalisation

Aim: Write a higher-order function bff! such that any
get and bff get satisfy GetPut, PutGet, .. ..

Examples:
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update
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Semantic Bidirectionalisation

Aim: Write a higher-order function bff! such that any
get and bff get satisfy GetPut, PutGet, .. ..

Examples:
“abcﬂ tall ; Hbcll
update
v
ade” < DIf tail de

T “Bidirectionalization for free!”
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Semantic Bidirectionalisation

Aim: Write a higher-order function bff! such that any
get and bff get satisfy GetPut, PutGet, .. ..

Examples:

flatten

> uabacn
lav xbv Aav xcv

T “Bidirectionalization for free!”
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Semantic Bidirectionalisation
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Examples:
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Semantic Bidirectionalisation

Aim: Write a higher-order function bff! such that any
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Examples:
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update
\
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Semantic Bidirectionalisation
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Semantic Bidirectionalisation

Aim: Write a higher-order function bff! such that any
get and bff get satisfy GetPut, PutGet, .. ..

Examples:
nuboflatten o "
*> “abc
lal lb! laY ICY
update
v
“Xbc”

T “Bidirectionalization for free!”
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Semantic Bidirectionalisation

Aim: Write a higher-order function bff! such that any

get and bff get satisfy GetPut, PutGet,

Examples:
nuboflatten o "
*> “abc
lal lb! laY ICY
update
\
< “Xbc”

AR bff (nuboflatten)
x" ‘b’ 'x" ‘c

T “Bidirectionalization for free!”
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Analysing Specific Instances

Assume we are given some
get 2 [a] — [a]

How can we, or bff, analyse it without access to its source code?
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Assume we are given some
get 2 [a] — [a]
How can we, or bff, analyse it without access to its source code?
Idea: How about applying get to some input?
Like:
[1..n] if get = tail

[n..0] if get = reverse
get [0..n] = [0..(min 4 n)] if get = take 5
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Analysing Specific Instances

Assume we are given some
get 2 [a] — [a]

How can we, or bff, analyse it without access to its source code?

Idea: How about applying get to some input?
Like:

[1..n] if get = tail
[n..0] if get = reverse
get [0.n] = [0..(min 4 n)] if get = take 5

Then transfer the gained insights to source lists other than [0..n] !

7 - 52/52



Using a Free Theorem

For every
g [o] = o]
we have
map f (g/) = g (map f /)
for arbitrary f and /.
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Using a Free Theorem

For every
g [o] = o]
we have
map f (g/) = g (map f /)
for arbitrary f and /.

Given an arbitrary list s of length n+ 1, set g = get, | = [0..n]
f = (s!), leading to:

map (s!!) (get [0..n]) = get (map (s!!) [0..n])
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Using a Free Theorem

For every
g [o] = o]
we have
map f (g/) = g (map f /)
for arbitrary f and /.

Given an arbitrary list s of length n+ 1, set g = get, [ = [0..n],
f = (s!), leading to:

map (s!!) (get [0..n]) = get (map (s!!) [0..n])
= get s
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Using a Free Theorem

For every
g [o] = o]
we have
map f (g/) = g (map f /)
for arbitrary f and /.

Given an arbitrary list s of length n 41,

map (s!!) (get [0..n])
= gets
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Using a Free Theorem
For every
g o] = [df
we have
map f (g/) = g (map f /)
for arbitrary f and /.

Given an arbitrary list s of length n 41,
get s = map (s!!) (get [0..n])

for every get :: [a] — [a].

8 — 57/57



The Constant-Complement Approach
[Bancilhon & Spyratos, ACM TODS'81]

In general, given
get S —V
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The Constant-Complement Approach
[Bancilhon & Spyratos, ACM TODS'81]

In general, given

get:S—V
define a V¢ and
compl : S — V¢
such that
As — (get s, compl s)

is injective and has an inverse

inv:(V,V€) =S

Then:

put:S—=V —=S§
put s v/ = inv (V/, compl s)
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The Constant-Complement Approach
[Bancilhon & Spyratos, ACM TODS'81]

In general, given

get S —V
define a V¢ and
compl : S — V¢
such that
As — (get s, compl s)

is injective and has an inverse

inv: (V,VE) =S

Then:
put:S—=V —=S§
put s v/ = inv (V/, compl s)

Important: compl should “collapse” as much as possible.
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The Constant-Complement Approach

For our setting,
get 2 [a] — [ao],

what should be V¢ and

compl :: [o] — VE 777
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The Constant-Complement Approach

For our setting,
get 2 [a] — [ao],

what should be V¢ and

compl :: [a] — V€ 777

To make
As — (get s, compl s)

injective, need to record information discarded by get.

Candidates:
1. length of the source list
2. discarded list elements
For the moment, be maximally conservative.

10 - 68/68



The Complement Function

type IntMap a = [(Int, )]

compl :: [o] — (Int, IntMap «)
compl s =let n = (lengths)—1
t =[0..n]
g =zipts
g’ = filter (A\(i,.) — notElem i (get t)) g
in (n+1,g)
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For example:

get = tail ~» compl "abcde” = (5,[(0,'a")])
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compl :: [o] — (Int, IntMap «)
compl s =let n = (lengths)—1

t =[0..n]
g =zipts
g =filter (\(i,_) — notElem / (get t)) g
in (n+1,g)
For example:
get = tail ~» compl "abcde” = (5,[(0,'a")])

get =take 3 ~» compl “abcde” = (5,[(3,'d"), (4,'e")])
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The Complement Function

type IntMap a = [(Int, )]

compl :: [o] — (Int, IntMap «)
compl s =let n = (lengths)—1

t =[0..n]
g =zipts
g =filter (\(i,_) — notElem / (get t)) g
in (n+1,g)
For example:
get = tail ~» compl "abcde” = (5,[(0,'a")])

get =take 3 ~» compl “abcde” = (5,[(3,'d"), (4,'e")])

get = reverse ~» compl “abcde” = (5,][])
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An Inverse of As — (get s, compl s)

inv :: ([af, (Int, IntMap «)) — [a]
inv (V/,(n+1,g")) =let t =[0..n]
h = assoc (get t) v/
W=h+g
in seq h (map (Ai — fromJust (Lookup i h')) t)
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An Inverse of As — (get s, compl s)

inv :: ([af, (Int, IntMap «)) — [a]
inv (V/,(n+1,g")) =let t =[0..n]
h = assocl (get t) v/
h =h-+g
in seq h (map (Ai — fromJust (Lookup i h')) t)

For example:
get =tail  ~» inv (“bede”,(5,[(0,'a")])) = “abcde”
get =take 3 ~» inv ("xyz",(5,[(3,'d"),(4,'e")])) = “xyzde”
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An Inverse of As — (get s, compl s)

inv :: ([af, (Int, IntMap «)) — [a]
inv (V/,(n+1,g")) =let t =[0..n]
h = assocl (get t) v/
h =h-+g
in seq h (map (Ai — fromJust (Lookup i h')) t)

For example:
get =tail  ~» inv (“bede”,(5,[(0,'a")])) = “abcde”
get =take 3 ~» inv ("xyz",(5,[(3,'d"),(4,'e")])) = “xyzde”

To prove formally:
» inv (get s,compl s) =s
» if inv (v, ¢) defined, then get (inv (v,c)) =v

» if inv (v, ¢) defined, then compl (inv (v,c)) =c¢

T Can be thought of as zip for the moment. 12 — 77/77



Altogether:

type IntMap a = [(Int, «)]

compl :: [a] — (Int, IntMap «)
compl s=let n = (lengths)—1

t =1[0..n]

g =zipts

g = filter (\(i,-) — notElem i (get t)) g
in (n+1,g")

inv :: ([af, (Int, IntMap «)) — [a]
inv (V/,(n+1,g")) =let t =[0..n]
h = assoc (get t) v/
W =h+g
in seq h (map (A/ — fromJust (lookup i h')) t)

put = [o] — [a] = [q]
put s v/ = inv (V/, compl s)
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“Fusion”
Inlining compl and inv into put:

put s v/ =let n = (lengths)—1
t =1[0..n]
=zipts
g = filter (\(i,-) — notElem i (get t)) g
h = assoc (get t) v/
W =h+g
in seq h (map (A/ — fromJust (lookup i h')) t)

o
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“Fusion”
Inlining compl and inv into put:

put s v/ =let n = (lengths)—1
t =1[0..n]
=zipts
g = filter (\(i,-) — notElem i (get t)) g
h = assoc (get t) v/
W =h+g
in seq h (map (A/ — fromJust (lookup i h')) t)

assoc[] [ =]
assoc (i :is) (b: bs) =let m = assoc is bs
in case lookup /i m of
Nothing — (i,b) :m
Justc|b==c—m

o
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“Fusion”
Inlining compl and inv into put:

bff get s v/ =let n = (lengths)—1
t =1[0..n]
=zipts
g = filter (\(i,-) — notElem i (get t)) g
h = assoc (get t) v/
W =h+g
in seq h (map (A/ — fromJust (lookup i h')) t)

assoc[] [ =]
assoc (i :is) (b: bs) =let m = assoc is bs
in case lookup /i m of
Nothing — (i,b) :m
Justc|b==c—m

o
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“Fusion”
Inlining compl and inv into put:

bff get s v/ =let n = (lengths)—1
t =1[0..n]
=zipts
g = filter (\(i,-) — notElem i (get t)) g
h = assoc (get t) v/
W =h+g
in seq h (map (A/ — fromJust (lookup i h')) t)

assoc[] [ =]
assoc (i :is) (b: bs) =let m = assoc is bs
in case lookup /i m of
Nothing — (i,b) :m
Justc|b==c—m

o

Actual code only slightly more elaborate!
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The Resulting Bidirectionalisation Method in Action

tailoflatten u "

xby xal ACI xa

update

bff (tailoflatten)
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The Resulting Bidirectionalisation Method in Action
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The Resulting Bidirectionalisation Method in Action
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The Resulting Bidirectionalisation Method in Action

tailoflatten > [1,2,3]
012 3
0—'b

11—

e —

1 ] 1 ‘ 1 ] 1 2 _) ‘C’
b c' ‘a .

3—‘a

“XCa”
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The Resulting Bidirectionalisation Method in Action

xby xal ACI xa

tailoflatten

00—
1—
2 —

3 —

o oo v o

1 —
2— '
3 iy

> [1,2,3]
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The Resulting Bidirectionalisation Method in Action

tailoflatten . [1 2 3]

0123

00—
1—

1 2 -

xby xal ACI xa

o oo v o

3 —

1= o
«— |2 ¢
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The Resulting Bidirectionalisation Method in Action

tailoflatten . [1 2 3]

0123

00—
1—

1 2 -

o oo v o

xby xal ACI xa 3 .

1 =%
2 i

33—

e N

XCa

1—

2 —

o o) X o

lbl IXI ACI lal
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Extending the Technique

Major Problem:
» Shape-affecting updates lead to failure.
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Extending the Technique

Major Problem:
» Shape-affecting updates lead to failure.

» For example, bff tail “abcde” ‘“xyz

Analysis as to Why:
» Qur approach to making

As — (get s, compl s)
injective was to record, via compl, the following information:

1. length of the source list
2. discarded list elements

» Being maximally conservative this way often does not
“collapse enough”.

» For example:

get =tail ~» put “abcde” “xyz" fails precisely because
compl “abcde” = (5,[(0,'a")])
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Assuming Shape-Injectivity
So assume there is a function
shapeInv :: Int — Int
with, for every source list s,

length s = shapeInv (length (get s))
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Assuming Shape-Injectivity
So assume there is a function
shapeInv :: Int — Int
with, for every source list s,

length s = shapeInv (length (get s))

Then:

compl :: [@] — (Int, IntMap «)
compl s =let n = (lengths)—1
t =[0..n]
g =zipts
g = filter (\(i,.) — notElem i (get t)) g
in (n+1,g)
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Assuming Shape-Injectivity
So assume there is a function
shapeInv :: Int — Int
with, for every source list s,

length s = shapeInv (length (get s))

Then:
compl :: [a] — IntMap «
compl s =let n = (lengths)—1
t =[0..n]
g =zipts

g = filter (\(i,.) — notElem i (get t)) g
in g
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Assuming Shape-Injectivity

inv i ([a], (Int, IntMap «)) — [¢]
inv (V/,(n+1,g")) =let t =[0..n]
h = assoc (get t) v
W =h+g
in seq h (map (A/ — fromJust (Lookup i h')) t)

/
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Assuming Shape-Injectivity

inv : ([«], IntMap « ) — [o]

inv (V/, g’ ) =let n = (shapelnv (length v')) —1
t =[0..n]
h = assoc (get t) v/
W =h+g

in seq h (map (A — fromJust (Lookup i h')) t)
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Assuming Shape-Injectivity

inv : ([«], IntMap a ) — [o]

inv (V/, g’ ) =let n = (shapelnv (length v')) —1
t =[0..n]
h = assoc (get t) v/
h =h-+g

in seq h (map (Ai — fromJust (Lookup i h')) t)

But how to obtain shapelInv 777
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inv (V/, g’ ) =let n = (shapelnv (length v')) —1
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h =h-+g

in seq h (map (Ai — fromJust (Lookup i h')) t)
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Assuming Shape-Injectivity

inv : ([«], IntMap a ) — [o]

inv (V/, g’ ) =let n = (shapelnv (length v')) —1
t =[0..n]
h = assoc (get t) v/
h =h-+g

in seq h (map (Ai — fromJust (Lookup i h')) t)

But how to obtain shapelInv 777
One possibility: provided by user.
Another possibility: determined statically (dependent types?).

Just for experimentation:

shapeInv :: Int — Int
shapeInv [ =head [n+ 1| n« [0..], (length (get [0..n])) == ]
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Not Quite There, Yet

Works quite nicely in some cases:

get =tail ~» put “abcde” “xyz’ = "axyz", using
compl “abcde” = [(0,'a")]
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Not Quite There, Yet

Works quite nicely in some cases:

get =tail ~» put “abcde” “xyz’ = "axyz", using
compl “abcde” = [(0,'a")]

But not so in others:

get =init ~» put “abcde” “xyz" fails, because
compl “abcde” = [(4,'¢e)]

The problem: by keeping indices around, compl still does
not “collapse enough”.

Note: even without these indices, As — (get s, compl s)
would be injective.
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Eliminating Indices

compl :: [a] — [(Int, &)]
compl s =let n = (lengths)—1
t =[0..n]
g =zipts
g’ = filter (\(i,.) — notElem i (get t)) g
in g’
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Eliminating Indices

compl :: [a] — | a |

compl s =let n = (lengths)—1
t =[0..n]
g =—zipts

g =filter (\(/,_) — notElem / (get t)) g
in map snd g’
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Eliminating Indices

compl :: [a] — | a |

compl s =let n = (lengths)—1
t =[0..n]
g =—zipts

g =filter (\(/,_) — notElem / (get t)) g
in map snd g’

inv ([, [(Int, @)]) — [¢]
inv (v/,g’) =let n = (shapelnv (length v')) —1

t =1[0..n]
h = assoc (get t) v/
W — h_H_g/

in seq h (map (A\i — fromJust (lookup i h')) t)
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Eliminating Indices

compl :: [a] — | a |

compl s =let n = (lengths)—1
t =[0..n]
g =—zipts

g =filter (\(/,_) — notElem / (get t)) g
in map snd g’

invi([o],[ al)—la]
inv (v/,c ) =let n = (shapelnv (length v')) —1
t =1[0..n]
h = assoc (get t) v/
g’ = zip (filter (A — notElem / (get t)) t) ¢
W =h+g
in seq h (map (Ai — fromJust (lookup i h')) t)
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Eliminating Indices

compl :: [a] — | a |

compl s =let n = (lengths)—1
t =[0..n]
g =—zipts

g =filter (\(/,_) — notElem / (get t)) g
in map snd g’

inv:([al,[ al)—[a]
inv (v/,c ) =let n = (shapelnv (length v/)) —1
t =1[0..n]
h = assoc (get t) v/
g =zip (filter (M — notElem i (get t)) t) ¢
W =h+g
in seq h (map (A/ — fromJust (lookup i h')) t)

Now:

get = init ~» put “abcde” “xyz’ = "xyze"
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More Examples
Let get = sieve with:

sieve = [a] — [a]
sieve (a: b:cs)=b: (sieve cs)
sieve _ =]
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More Examples
Let get = sieve with:

sieve = [a] — [a]
sieve (a: b:cs)=b: (sieve cs)
sieve _ =]

Then:
put [1..8] [2,—4,6,8] = [1,2,3,—4,5,6,7,8]
put [1..8] [2,—4,6] = [1,2,3,—4,5,6]
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More Examples
Let get = sieve with:

sieve = [a] — [a]
sieve (a: b:cs)=b: (sieve cs)

sieve _ =]
Then:
put [1..8] [2, —4,6,8] — [1,2,3,-4,5,6,7,8]
put [1..8] [2, —4, 6] — [1,2,3,-4,5,6]

put [1.8] [2,—4,6,8,10,12] = [1,2,3,-4,5,6,7,8, 1,10, 1,12
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More Examples
Let get = sieve with:

sieve = [a] — [a]
sieve (a: b:cs)=b: (sieve cs)

sieve _ =]
Then:
put [1..8] [2,—4,6,8] = [1,2,3,—4,5,6,7,8]
put [1..8] [2,—4,6] = [1,2,3,—4,5,6]
put [1..8] [2,—4,6,8,10,12] = [1,2,3,—4,5,6,7,8, 1,10, 1,12]
However:

put [1..8] [0,2,—4,6,8] = [1,0,3,2,5,—4,7,6,L1,8]
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More Examples
Let get = sieve with:

sieve = [a] — [a]
sieve (a: b:cs)=b: (sieve cs)

sieve _ =]
Then:
put [1..8] [2,—4,6,8] = [1,2,3,—4,5,6,7,8]
put [1..8] [2,—4,6] = [1,2,3,—4,5,6]
put [1..8] [2,—4,6,8,10,12] = [1,2,3,—4,5,6,7,8, 1,10, 1,12]
However:
put [1..8] [0,2,—4,6,8] = [1,0,3,2,5,—4,7,6,L1,8]

Whereas we might have preferred:

put [1.8] [0,2,—4,6,8] = [L,0,1,2,3,—4,5,6,7,8|

21 - 120/120



Conclusion

Types:
» constrain the behaviour of programs
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Conclusion

Types:
» constrain the behaviour of programs
» thus lead to interesting theorems about programs

> enable lightweight, semantic analysis methods

On the practical side:
» efficiency-improving program transformations

» applications in specific domains (more out there?)

Bidirectionalisation in particular:
» hot topic (databases, models community, .. .)

> need a way to inject/exploit “user knowledge”

On the programming language side:
» push towards full programming languages

» aim for exploiting more expressive type systems
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